[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20140052558A - Method for estimating state of battery health - Google Patents

Method for estimating state of battery health Download PDF

Info

Publication number
KR20140052558A
KR20140052558A KR1020120118746A KR20120118746A KR20140052558A KR 20140052558 A KR20140052558 A KR 20140052558A KR 1020120118746 A KR1020120118746 A KR 1020120118746A KR 20120118746 A KR20120118746 A KR 20120118746A KR 20140052558 A KR20140052558 A KR 20140052558A
Authority
KR
South Korea
Prior art keywords
battery
internal resistance
current
measuring
voltage
Prior art date
Application number
KR1020120118746A
Other languages
Korean (ko)
Other versions
KR101835656B1 (en
Inventor
신현주
Original Assignee
현대중공업 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대중공업 주식회사 filed Critical 현대중공업 주식회사
Priority to KR1020120118746A priority Critical patent/KR101835656B1/en
Publication of KR20140052558A publication Critical patent/KR20140052558A/en
Application granted granted Critical
Publication of KR101835656B1 publication Critical patent/KR101835656B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/392Determining battery ageing or deterioration, e.g. state of health
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/165Indicating that current or voltage is either above or below a predetermined value or within or outside a predetermined range of values
    • G01R19/16566Circuits and arrangements for comparing voltage or current with one or several thresholds and for indicating the result not covered by subgroups G01R19/16504, G01R19/16528, G01R19/16533
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/3644Constructional arrangements
    • G01R31/3648Constructional arrangements comprising digital calculation means, e.g. for performing an algorithm
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/382Arrangements for monitoring battery or accumulator variables, e.g. SoC
    • G01R31/3842Arrangements for monitoring battery or accumulator variables, e.g. SoC combining voltage and current measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/389Measuring internal impedance, internal conductance or related variables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • G01R31/396Acquisition or processing of data for testing or for monitoring individual cells or groups of cells within a battery
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/486Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte for measuring temperature
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Secondary Cells (AREA)

Abstract

The present invention relates to a method for estimating the remaining life of a battery, enabling an accurate estimation by the following steps: measuring an internal resistance of a battery at the beginning and at the end; repeatedly performing a full charge and a full-discharge by changing the temperature and current, and storing an open circuit voltage as a standard open circuit voltage by measuring the open circuit voltage according to the number of charge and discharge of the cycle based on each SOC; measuring a temperature, current, SOC and a polarization potential of the battery; calculating an internal resistance of the battery by using the standard open circuit voltage; and comparing the internal resistance with the internal resistance of the battery at the beginning and the end.

Description

배터리의 잔존수명 추정방법{Method for Estimating State of Battery Health}[0001] The present invention relates to a method for estimating the remaining life of a battery,

본 발명은 배터리의 잔존수명을 추정하는 방법에 관한 것으로, 더욱 자세하게는 배터리의 노화과정에 영향을 미치는 배터리의 온도, 전류, SOC 등의 요인들과 분극현상에 따른 영향을 고려한 내부저항을 연산하여, 배터리의 잔존수명의 정확한 추정이 가능하도록 하는 배터리 잔존수명 추정방법에 관한 것이다.The present invention relates to a method for estimating the remaining life of a battery, and more particularly, to a method for estimating the remaining life of a battery, which comprises calculating internal resistance considering factors of temperature, current, and SOC affecting a battery aging process, And a method for estimating the remaining battery life of the battery.

배터리는 전기화학적인 반응을 통해서 충전 및 방전되고, 충전 및 방전이 거듭되면 배터리 내부의 화학물질들이 화학적 변성을 거치거나, 전기적 구조 또는 기계적 특성이 변형됨으로서 노화과정을 거치게 된다. 이러한 노화과정이 계속되면서 차츰 초기의 성능보다 저하된 성능을 갖게 되며 마지막에는 배터리의 수명을 다하게 된다. 배터리를 이용하는 많은 시스템에서 배터리의 노화에 의한 기능저하 및 교체필요시기를 추정하는 것은 시스템의 안정적인 운영에 있어 중요하므로, 잔존수명에 대한 관리가 필요하며 이를 위한 정확한 배터리의 수명예측은 매우 중요하다. The battery is charged and discharged through an electrochemical reaction. When the battery is repeatedly charged and discharged, the chemicals in the battery undergo chemical modification, or the electrical structure or mechanical characteristics are changed, thereby subjecting the battery to aging. As this aging process continues, it gradually has a lower performance than the initial performance, and at the end, the battery life is exhausted. In many systems using a battery, estimation of the degradation and replacement of the battery due to aging of the battery is important for the stable operation of the system, so it is necessary to manage the remaining life and accurate life prediction of the battery is very important.

일반적으로 배터리의 SOH(State Of Health)는 배터리의 잔존 수명을 정격수명에 대하여 % 단위로 나타낸 것으로서, 배터리의 잔존수명을 나타내는 값으로 널리 사용된다. 기존의 배터리 수명의 추정방법은 여러 방법이 있으나, 그중 하나는 배터리의 내부저항 변화를 이용한 방법으로써, 배터리를 사용하게 되면 그 내부의 화학적 물리적 노화로 인하여 사용이 거듭 될수록 내부저항의 값이 증가하는 현상을 이용한 것이다. 종래의 내부저항을 이용한 배터리 수명 추정방법은 단순히 연속적으로 변화하는 입력전류를 발생시키고 그 입력전류에 따른 전압이 출력되면 이를 검출하여 내부저항값을 연산하고, 그 내부저항값으로부터 배터리 수명을 추정하는 방법을 사용한다. 그러나, 이러한 내부저항의 증가는 언제나 동일한 변화를 보이는 것이 아니라, 배터리의 온도, 방전심도(Deep Of Discharge : DOD), 충전상태(State od charge : SOC), 충전 및 방전 전류량 등의 요인에 따라 다른 변화특성을 보인다. 또한, 배터리는 전기화학적 작용으로 인해 분극현상이 발생하고, 분극현상으로 인하여 입력전류에 대응하는 전압의 출력이 일정하게 고정되어 나타나지 않으므로 정확한 출력전압의 측정이 어려워 오차가 크게 발생하게 되면 내부저항값도 큰 오차를 보일 수밖에 없는 문제점이 있다. 종래의 배터리 수명 추정방법들은 이러한 배터리의 잔존 수명을 추정함에 있어 영향을 미치는 여러 변수들을 충분히 고려하지 않아, 배터리 수명의 정확한 예측이 어려운 문제가 있었다.In general, the state of health (SOH) of a battery is a value indicating the remaining life of the battery in terms of the rated life in%, and is widely used as a value indicating the remaining life of the battery. There are various methods for estimating the battery life, but one of them is a method using the internal resistance change of the battery. When the battery is used, the internal resistance increases as the use is repeated due to the chemical and physical aging inside the battery. . The conventional method for estimating the battery life using the internal resistance simply generates an input current which changes continuously, and when a voltage corresponding to the input current is outputted, the internal resistance is calculated to calculate the internal resistance value and the battery life is estimated from the internal resistance value Method. However, the increase of the internal resistance does not always show the same change but depends on factors such as the temperature of the battery, the depth of discharge (DOD), the state of charge (SOC), the amount of charging and discharging current Change characteristics. In addition, since the polarity of the battery occurs due to the electrochemical action and the output of the voltage corresponding to the input current is not fixed due to the polarization phenomenon, it is difficult to measure the accurate output voltage, There is a problem in that it also shows a large error. Conventional battery life estimation methods do not sufficiently take into account various variables that affect the estimation of the remaining life of the battery, and thus it is difficult to accurately predict the battery life.

따라서 본 발명은 상기 문제점을 고려하여, 배터리의 초기 및 종기 내부저항을 측정하고, 상기 배터리의 온도, 전류별로 그 충방전 사이클의 횟수에 따라 각각의 SOC별로 개로전압을 측정하여 저장하고, 배터리의 온도, 전류, SOC 및 분극전압을 측정하여 배터리의 내부저항을 연산하고 상기 초기 및 종기 내부저항과 비교하여 배터리의 잔존수명의 정확한 추정이 가능하게 하는 방법을 제공하는 것을 그 목적으로 한다.Therefore, in view of the above problems, the present invention measures the initial and final internal resistance of a battery, measures and stores an open-circuit voltage for each SOC according to the number of charge-discharge cycles for each temperature and current of the battery, It is an object of the present invention to provide a method for calculating the internal resistance of a battery by measuring temperature, current, SOC, and polarization voltage, and comparing the initial resistance and the endurance internal resistance, thereby enabling accurate estimation of the remaining life of the battery.

상기의 목적을 달성하기 위한 본 발명에 따른 배터리의 잔존수명을 추정하는 방법은, 배터리의 수명 추정을 위한 기준값을 측정하고 저장하는 제 1 단계, 배터리의 수명 추정을 위한 현재값을 측정하는 제 2 단계, 상기 측정된 값들을 이용하여 배터리의 현재 내부저항을 연산하는 제 3 단계 및 상기 연산된 현재 내부저항과 상기 기준값을 비교하여 배터리의 잔존수명을 추정하는 제 4 단계를 포함하는 것을 특징으로 한다.According to an aspect of the present invention, there is provided a method for estimating a remaining life of a battery, the method comprising: a first step of measuring and storing a reference value for estimating the life of the battery; A third step of calculating a current internal resistance of the battery using the measured values, and a fourth step of estimating a remaining life of the battery by comparing the calculated current internal resistance with the reference value .

또한, 상기 제 1 단계는 배터리의 출고시의 초기내부저항을 측정하여 저장하는 단계, 상기 배터리를 일정 온도에 따라 완전 충전 및 완전 방전시키면서, 각 SOC에 따라 충방전 사이클 횟수당 개로전압의 변화를 측정하여 저장하는 단계, 상기 배터리를 수명이 끝날때까지 일정 전류에 따라 완전 충전 및 완전 방전시키면서, 각 SOC에 따라 충방전 사이클 횟수당 개로전압의 변화를 측정하여 저장하는 단계 및 상기 배터리의 수명이 끝난 시점의 종기내부저항을 측정하여 저장하는 단계를 더 포함하고, 상기 측정단계를 온도, 전류를 달리하면서 추가로 반복하며 그 결과를 저장하는 것을 특징으로 한다.The first step may include measuring and storing an initial internal resistance at the time of shipment of the battery, performing a full charge and a full discharge of the battery at a predetermined temperature, and varying the open-circuit voltage per charge / Storing and measuring a change in open-circuit voltage per the number of charge-discharge cycles according to each SOC while fully charging and discharging the battery according to a constant current until the end of its life; Further comprising the step of measuring and storing the endurance internal resistance at the end of the measurement, wherein the measurement step is further repeated while varying the temperature and the current, and the result is stored.

또한, 상기 제 1단계에서 상기 완전 방전은 배터리를 사용하는 시스템이 동작할 수 있는 최소의 전압 레벨 이하로 배터리의 전압이 떨어지는 시점을 기준으로 이루어지는 것을 특징으로 한다.In the first step, the full discharge is performed based on a time point at which the battery voltage drops below a minimum voltage level at which the system using the battery can operate.

또한, 상기 제 2단계는 배터리의 온도, 전류, SOC, 충방전 사이클, 분극전압을 측정하는 것을 특징으로 한다.In the second step, the temperature, current, SOC, charge / discharge cycle, and polarization voltage of the battery are measured.

또한, 상기 제 3 단계는 상기 제 1단계에서 저장한 결과 중 상기 배터리의 해당 온도, 전류, SOC, 충방전 사이클에 따른 개로전압과 제 2단계에서 측정한 전류와 분극전압을 이용하여, 배터리의 현재 내부저항을 연산하는 것을 특징으로 한다.In the third step, the temperature, the current, the SOC of the battery among the results stored in the first step, the open-circuit voltage according to the charge-discharge cycle, the current measured in the second step, And the present internal resistance is calculated.

또한, 상기 제 4 단계는 상기 배터리의 초기내부저항, 종기내부저항과 상기 배터리의 현재 내부저항을 이용하여 SOH를 연산하는 것을 특징으로 한다.In the fourth step, the SOH is calculated using the initial internal resistance of the battery, the internal internal resistance of the battery, and the current internal resistance of the battery.

본 발명에 의한 배터리의 잔존수명 추정방법은 배터리의 노화과정에 영향을 미치는 온도, 전류, SOC 등의 요인들과 분극현상에 의한 영향을 고려하여 잔존수명을 추정함으로써, 더 정확한 배터리의 잔존수명 추정이 가능하도록 하여 배터리가 이용되는 시스템의 운영 및 관리에 있어서 효율 및 신뢰성을 향상시키는 효과가 있다.The method for estimating the remaining lifetime of a battery according to the present invention estimates the remaining lifetime in consideration of factors such as temperature, current, and SOC affecting the aging process of the battery and the effect of polarization, Thereby improving the efficiency and reliability in the operation and management of the system in which the battery is used.

도 1은 본 발명에 의한 실시예에 따른 본 발명의 흐름도를 나타낸 도면이다.
도 2는 배터리의 SOC와 내부저항 변화 간의 관계를 충방전 사이클에 대해 나타낸 것이다
도 3은 배터리의 온도와 내부저항 변화 간의 관계를 충방전 사이클에 대해 나타낸 것이다
도 4는 배터리의 전기적 등가회로를 나타낸 회로도이다.
도 5는 배터리의 SOC와 배터리 전압 간의 관계를 도시한 것이다.
도 6은 충전시의 배터리의 화학반응에 의한 분극 전압과 일정 시간 후의 개로전압과의 관계를 도시한 도면이다.
도 7은 방전시의 배터리의 화학반응에 의한 분극 전압과 일정 시간 후의 개로전압과의 관계를 도시한 도면이다.
BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a flow chart of the present invention according to an embodiment of the present invention; FIG.
Figure 2 shows the relationship between the SOC of the battery and the change in internal resistance for a charge-discharge cycle
Figure 3 shows the relationship between the temperature of the battery and the change in internal resistance for a charge-discharge cycle
4 is a circuit diagram showing an electrical equivalent circuit of a battery.
5 shows the relationship between the SOC of the battery and the battery voltage.
6 is a diagram showing the relationship between the polarization voltage due to the chemical reaction of the battery at the time of charging and the open-circuit voltage after a certain time.
7 is a diagram showing the relationship between the polarization voltage due to the chemical reaction of the battery during discharge and the open-circuit voltage after a certain period of time.

이하 첨부된 도면을 참조하여 본 발명에 따라 바람직한 실시예를 상세히 설명한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Reference will now be made in detail to the preferred embodiments of the present invention, examples of which are illustrated in the accompanying drawings.

도 1은 본 발명에 따른 바람직한 실시예에 따른 본 발명의 흐름도를 나타낸 것이다. 도 1을 참조하면, 본 발명의 바람직한 실시예는 배터리의 초기내부저항 및 종기내부저항을 측정 저장하고, 개로전압의 기준값을 측정 및 저장하는 단계(10)와 현재 배터리의 잔존수명을 측정하기 위한 온도, 전류, 분극전압을 측정하고 상기 기준값을 이용하여 배터리의 현재 내부저항을 연산하는 단계(20), 상기 초기내부저항, 종기내부저항과 상기 현재 내부저항을 이용하여 SOH 연산하는 단계(30)로 이루어진다. Figure 1 shows a flow diagram of the present invention in accordance with a preferred embodiment of the present invention. Referring to FIG. 1, a preferred embodiment of the present invention includes measuring and storing a reference value of an open-circuit voltage, measuring and storing an initial internal resistance and an internal internal resistance of a battery, Calculating a current internal resistance of the battery by measuring a temperature, a current, and a polarization voltage of the battery using the reference value, calculating a SOH using the initial internal resistance, the internal internal resistance and the current internal resistance, .

먼저 초기, 종기 내부저항 및 기준값을 측정 저장하는 단계(10)를 설명하면, 배터리가 처음 공장에서 출고되면, 배터리의 초기내부저항을 측정하여 저장한다. 그리고 배터리를 온도별, 전류별로 완전 충전 및 완전 방전시키면서 각 사이클 횟수별로 SOC별 개로전압을 측정하여 별도로 저장한다. 또한 상기 온도, 전류를 각기 달리하는 조건 하에서 SOC별로 각 충방전 사이클 횟수 당 개로전압을 측정하고 저장하는 과정을 반복한다. 이는 더 정확한 기준을 정하기 위한 데이터의 축적 과정으로서, 상기 데이터를 통해 특정온도, 전류, 충방전 사이클 횟수, SOC에 따라 나타나는 개로전압을 데이터베이스화한다. .First, measuring and storing initial, endurance internal resistance, and reference value will be described. When the battery is initially shipped from the factory, the initial internal resistance of the battery is measured and stored. Then, the battery is fully charged and discharged completely by temperature and current, and the open-circuit voltage of each SOC is measured and stored separately for each cycle number. Also, the process of measuring and storing the open-circuit voltage for each charge-discharge cycle number is repeated for each SOC under the condition that the temperature and the current are different from each other. This is an accumulation process of data for determining a more accurate reference, and the open-circuit voltage, which appears according to a specific temperature, current, number of charge / discharge cycles, and SOC, is stored in the database. .

도 2는 사이클 횟수에 따른 각 SOC별 내부저항의 변화를 나타낸 것이고 도 3은 사이클 횟수에 따른 각 온도별 내부저항의 변화를 나타낸 것이다. 도 2 및 도 3에서 도시한 바와 같이 , 배터리는 사이클이 반복될수록 점차 배터리 노화가 일어나서 성능이 저하되고 내부저항은 증가하는데, 이러한 변화는 온도, 전류, SOC에 따라 다른 변화를 보인다. 따라서, 상기 방법으로 각 변수를 달리 고려한 측정 결과를 축적하고 이를 이용하면 정확한 내부 저항을 연산할 수 있다.FIG. 2 shows changes in internal resistance for each SOC according to the number of cycles, and FIG. 3 shows change in internal resistance for each temperature according to the number of cycles. As shown in FIG. 2 and FIG. 3, as the battery is repeatedly cycled, battery aging occurs gradually to deteriorate the performance and increase the internal resistance. This change shows different changes depending on temperature, current, and SOC. Therefore, by accumulating measurement results considering different variables in the above method and using them, accurate internal resistance can be calculated.

또한 도 4는 배터리의 전기적 등가회로를 도시한 것이며, 도 5는 배터리의 SOC에 따른 전압의 변화를 나타낸 것이다. 도 4에서의 배터리의 전기적 등가회로를 참조하면 배터리의 개로전압(Vbatt)은,FIG. 4 shows an electrical equivalent circuit of the battery, and FIG. 5 shows a voltage change according to the SOC of the battery. Referring to the electrical equivalent circuit of the battery in Fig. 4, the open-circuit voltage (Vbatt)

Figure pat00001
Figure pat00001

으로 나타낼 수 있다. 여기서 Emf는 배터리의 설계상의 전압이며, 실제 배터리의 개로전압은 커패시터(C) 및 내부저항(Rd, Rc)에 의한 저항성분에 의하여 전압강하가 이루어진다. 이때, 커패시터 성분에 해당하는 부분은 도 5의 빗금친 부분(100)에 해당되며 이 부분은 전압 자체가 급격히 하강하여 구동전압 이하의 전압을 나타내는 부분이다. 배터리를 사용하는 여러 시스템은 일정 레벨 이상의 전압에서 시스템이 작동하게 되므로, 배터리가 상기 일정 레벨 이하의 전압을 나타낸다면 그 잔여 충전용량과 상관없이 완전 방전된 것과 같으므로, 결국 도 5에서의 빗금친 부분(100)은 시스템 관점에서 무시할 수 있는 사용범위에 해당한다. 따라서, 배터리의 등가회로는 커패시터를 제거하고 내부저항만으로 이루어진 모델로 생각할 수 있으며 결국 배터리의 전압이 배터리의 내부저항을 결정한다고 이해할 수 있다.. Here, Emf is the design voltage of the battery, and the open-circuit voltage of the actual battery is voltage-dropped by the resistance component by the capacitor C and the internal resistances Rd and Rc. At this time, the portion corresponding to the capacitor component corresponds to the shaded portion 100 of FIG. 5, and this portion is a portion that shows a voltage lower than the driving voltage because the voltage itself falls sharply. Since various systems using the battery operate the system at a voltage higher than a certain level, if the battery exhibits a voltage below the predetermined level, it is the same as the fully discharged regardless of the remaining charging capacity. Consequently, The portion 100 corresponds to a usable range that can be ignored from a system point of view. Therefore, it can be understood that the equivalent circuit of the battery is a model in which the capacitor is removed and only the internal resistance is determined, and the voltage of the battery finally determines the internal resistance of the battery.

결국 본 발명의 바람직한 실시예로써 상기 완전 방전의 기준은 배터리의 SOC가 20%인 시점으로 정해질 수 있으며, 이 경우 측정되는 배터리의 전압으로 내부저항을 선형적인 관계에 따라 연산할 수 있다.As a result, as a preferred embodiment of the present invention, the criterion of the full discharge can be determined to be the time point when the SOC of the battery is 20%. In this case, the internal resistance can be calculated according to the measured voltage of the battery.

상기 완전충전 및 완전충전을 여러 번 반복한 후, 배터리가 수명이 끝나게 되면 그때 배터리의 내부저항을 측정하여 종기내부저항으로 저장한다.After the full charge and the full charge are repeated several times, when the battery reaches the end of its life, the internal resistance of the battery is measured and stored as a boil internal resistance.

그 다음으로, 도 1에서의 현재 배터리의 잔존수명을 측정하기 위한 온도, 전류, SOC, 충방전 사이클, 분극전압을 측정하고 기준값을 이용하여 배터리의 현재 내부저항을 연산하는 단계(20)를 설명하면, 잔존수명을 추정하고자 하는 배터리의 온도, 전류, 분극전압을 측정하고, 축적된 기준값들 중에서 동일한 온도, 전류, SOC, 충방전 사이클에서의 개로전압 값을 얻는다. 이러한 개로전압의 기준값과 현재 측정된 전류, 분극전압으로 배터리의 내부저항을 연산한다. Next, a description will be given of a step 20 of measuring the temperature, current, SOC, charge / discharge cycle and polarization voltage for measuring the remaining life of the present battery in Fig. 1 and calculating the present internal resistance of the battery using the reference value The temperature, the current, and the polarization voltage of the battery for which the remaining life is to be estimated are measured, and the same temperature, current, SOC, and open-circuit voltage value in the charge / discharge cycle are obtained from the stored reference values. The internal resistance of the battery is calculated from the reference value of the open-circuit voltage and the current and the polarity voltage measured at present.

도 6은 충전시의 배터리의 화학반응에 의한 분극 전압과 일정 시간 후의 개로전압과의 관계를 도시한 도면이며, 도 7은 방전시의 배터리의 화학반응에 의한 분극 전압과 일정 시간 후의 개로전압과의 관계를 도시한 도면이다. FIG. 6 is a graph showing the relationship between the polarization voltage due to the chemical reaction of the battery during charging and the open-circuit voltage after a certain period of time. FIG. 7 is a graph showing the relationship between the polarization voltage due to the chemical reaction of the battery during discharge, Fig.

도 6 및 도 7을 참조하면, 실제 배터리 사용중에 충전 또는 방전상태에서는 초기에 배터리의 화학반응으로 인해 분극현상이 발생하며, 이는 분극전압(V1)으로 나타난다. 상기 분극전압(V1)은 방전시에는 개로전압(V2)보다 낮은 전압이 나타나고, 충전시에는 그 반대로 개로전압(V2)보다 높은 분극전압(V1)이 나타난다. 이러한 전압의 변화 때문에, 배터리의 충전 방전중에 내부전압을 구하기 위해서는 개로전압 외에 상기 분극전압의 영향도 고려하여야 한다. 분극전압(V1) 개로전압(V2), 배터리전류(Ibatt)를 이용하여 배터리의 현재 내부저항을 구하는 방법은 아래의 수식에 의한다.Referring to FIGS. 6 and 7, in a charging or discharging state during actual battery use, a polarization phenomenon occurs due to a chemical reaction of the battery at an initial stage, which is represented by a polarization voltage V1. The polarization voltage V1 exhibits a voltage lower than the open-circuit voltage V2 during discharging and a polarization voltage V1 higher than the open-circuit voltage V2 during charging. In order to obtain the internal voltage during the charging discharge of the battery due to the change of the voltage, the influence of the polarization voltage in addition to the open-circuit voltage should also be considered. The method of obtaining the current internal resistance of the battery using the polarization voltage (V1) open-circuit voltage (V2) and the battery current (Ibatt) is as follows.

Figure pat00002
Figure pat00002

상기 수식에서 Rc는 충전상태에서의 내부저항이며, Rd는 방전상태에서의 내부저항이다. 상기 수식에 의하여, 배터리의 분극현상을 고려한 내부저항(Rd 또는 Rc)을 연산할 수 있으며 이때 개로전압(V2)은 상기 기준값 중 현재 배터리와 동일 조건 하에서의 개로전압이 이용되어야 한다. 결국, 상기 연산과정에서 배터리의 분극전압이 반영됨으로써 배터리의 더 정확한 내부저항(Rd 또는 Rc)을 구할 수 있다.In the above equation, Rc is the internal resistance in the charged state, and Rd is the internal resistance in the discharged state. The internal resistance (Rd or Rc) considering the polarization of the battery can be calculated by the above equation, and the open-circuit voltage (V2) should be the open-circuit voltage under the same condition as the current battery. As a result, the more accurate internal resistance (Rd or Rc) of the battery can be obtained by reflecting the polarization voltage of the battery during the calculation process.

이하, 도 1에서의 상기 초기내부저항, 종기내부저항과 상기 현재 내부저항을 이용하여 SOH 연산단계(30)를 설명하면, 미리 측정한 초기 내부저항(Rend)과 종기내부저항(Rinit) 및 연산한 상기 배터리 내부저항(Rd 또는 Rc)를 이용하여 SOH를 연산한다. 연산을 위한 수식은 다음과 같다.Hereinafter, the SOH operation step 30 will be described using the initial internal resistance, the internal internal resistance and the current internal resistance shown in FIG. 1. The initial internal resistance Rend, the final internal resistance Rinit, And calculates the SOH by using the battery internal resistance (Rd or Rc). The formula for the operation is as follows.

Figure pat00003
Figure pat00003

상기 수식에서 Rc,d는 현재 배터리의 충전 또는 방전 상태 여부에 따라서 Rc 또는 Rd를 대입하여 SOH를 연산하는 것이며, 상기 연산된 SOH값에 의하여 배터리의 잔존 수명을 판단하게 된다.In the above equation, Rc and d are calculated by substituting Rc or Rd depending on whether the battery is currently charged or discharged, and the remaining lifetime of the battery is determined based on the calculated SOH value.

이상에서 설명한 바와 같이 본 발명에 의한 배터리의 잔존수명 추정방법은 배터리의 노화과정에 따른 성능변화에 영향을 미치는 온도, 전류, SOC, 충방전 사이클 횟수 등의 요소들 및 분극현상에 의한 영향을 고려한 정확한 잔존수명의 예측이 가능하다. As described above, the method for estimating the remaining life of a battery according to the present invention is based on the consideration of factors such as temperature, current, SOC, the number of charge and discharge cycles, and the influence of polarization phenomenon, It is possible to predict an accurate remaining life.

본 발명을 설명하는데 있어서 정의되는 용어들은 본 발명에서의 기능을 고려하여 정의 내려진 것으로, 본 발명의 기술적 구성요소를 한정하는 의미로 이해되어서는 아니 될 것이다.The terms defined in describing the present invention have been defined in consideration of the functions of the present invention and should not be construed to limit the technical elements of the present invention.

따라서 본 발명의 해당 기술분야의 통상의 기술자이면 누구나 본 발명의 기술사상의 범위를 이탈하지 않는 범위 내에서, 상황에 따라 크기 및 모양 그리고 구조 등의 다양한 변형 및 모방이 가능함은 명백한 사실이며, 이러한 변형 및 모방은 본 발명의 기술 사상의 범위 내에 포함된다.Accordingly, it is a matter of course that various modifications and variations of the present invention can be made by those skilled in the art without departing from the scope of the present invention. Modifications and variations are intended to be included within the scope of the following claims.

100 : 커패시터 전압성분100: Capacitor voltage component

Claims (6)

배터리의 잔존수명을 추정하는 방법에 있어서,
배터리의 수명 추정을 위한 기준값을 측정하고 저장하는 제 1 단계;
배터리의 수명 추정을 위한 현재값을 측정하는 제 2 단계;
상기 측정된 값들을 이용하여 배터리의 현재 내부저항을 연산하는 제 3 단계; 및,
상기 연산된 현재 내부저항과 상기 기준값을 비교하여 배터리의 잔존수명을 추정하는 제 4 단계를 포함하는 것을 특징으로 하는 배터리의 잔존수명 추정방법.
A method for estimating a remaining life of a battery,
A first step of measuring and storing a reference value for estimating the life of the battery;
A second step of measuring a current value for estimating the life of the battery;
A third step of calculating a current internal resistance of the battery using the measured values; And
And a fourth step of estimating a remaining lifetime of the battery by comparing the calculated current internal resistance with the reference value.
제 1항에 있어서,
상기 제 1 단계는,
배터리의 출고시의 초기내부저항을 측정하여 저장하는 단계;
상기 배터리를 수명이 끝날 때까지 일정 온도에 따라 완전 충전 및 완전 방전시키면서, 각 SOC에 따라 충방전 사이클 횟수당 개로전압의 변화를 측정하여 저장하는 단계;
상기 배터리를 일정 전류에 따라 완전 충전 및 완전 방전시키면서, 각 SOC에 따라 충방전 사이클 횟수당 개로전압의 변화를 측정하여 저장하는 단계; 및
상기 배터리의 수명이 끝난 시점의 종기내부저항을 측정하여 저장하는 단계를 더 포함하고,
상기 측정단계를 온도, 전류를 달리하면서 추가로 반복하며 그 결과를 저장하는 것을 특징으로 하는 배터리의 잔존수명 추정방법.
The method according to claim 1,
In the first step,
Measuring and storing an initial internal resistance at the time of shipment of the battery;
Measuring and storing a change in open-circuit voltage per charge / discharge cycle according to each SOC while fully charging and discharging the battery at a predetermined temperature until the end of its life;
Measuring and storing a change in open-circuit voltage per charge / discharge cycle number according to each SOC while fully charging and discharging the battery according to a constant current; And
Further comprising measuring and storing a boil internal resistance at the end of the life of the battery,
Wherein the measuring step is further repeated while varying the temperature and the current, and the result is stored.
제 2항에 있어서,
상기 완전 방전은 배터리를 사용하는 시스템이 동작할 수 있는 최소의 전압 레벨 이하로 배터리의 전압이 떨어지는 시점을 기준으로 이루어지는 것을 특징으로 하는 배터리의 잔존수명 추정방법.
3. The method of claim 2,
Wherein the full discharge is based on a time point at which a voltage of the battery falls below a minimum voltage level at which the system using the battery can operate.
제 1항에 있어서,
상기 제 2단계는,
배터리의 온도, 전류, SOC, 충방전 사이클, 분극전압을 측정하는 것을 특징으로 하는 배터리의 잔존수명 추정방법.
The method according to claim 1,
The second step comprises:
Wherein the temperature, the current, the SOC, the charge / discharge cycle, and the polarization voltage of the battery are measured.
제 1항에 있어서,
상기 제 3 단계는,
상기 제 1단계에서 저장한 결과 중 상기 배터리의 해당 온도, 전류, SOC, 충방전 사이클에 따른 개로전압과 제 2단계에서 측정한 전류와 분극전압을 이용하여, 배터리의 현재 내부저항을 연산하는 것을 특징으로 하는 배터리의 잔존수명 추정방법.
The method according to claim 1,
In the third step,
Calculating the current internal resistance of the battery using the temperature, the current, the SOC, the open-circuit voltage according to the charge-discharge cycle, the current measured in the second step and the polarization voltage among the results stored in the first step And estimating the remaining lifetime of the battery.
제 1항에 있어서,
상기 제 4 단계는,
상기 배터리의 초기내부저항, 종기내부저항과 상기 배터리의 현재 내부저항을 이용하여 SOH를 연산하는 것을 특징으로 하는 배터리의 잔존수명 추정방법.
The method according to claim 1,
In the fourth step,
Wherein the SOH is calculated using an initial internal resistance of the battery, an internal internal resistance of the battery, and a current internal resistance of the battery.
KR1020120118746A 2012-10-25 2012-10-25 Method for Estimating State of Battery Health KR101835656B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120118746A KR101835656B1 (en) 2012-10-25 2012-10-25 Method for Estimating State of Battery Health

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120118746A KR101835656B1 (en) 2012-10-25 2012-10-25 Method for Estimating State of Battery Health

Publications (2)

Publication Number Publication Date
KR20140052558A true KR20140052558A (en) 2014-05-07
KR101835656B1 KR101835656B1 (en) 2018-03-08

Family

ID=50885771

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120118746A KR101835656B1 (en) 2012-10-25 2012-10-25 Method for Estimating State of Battery Health

Country Status (1)

Country Link
KR (1) KR101835656B1 (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20160092719A (en) 2015-01-28 2016-08-05 주식회사 엘지화학 Apparatus and Method for estimating state of battery
KR20160103332A (en) 2015-02-24 2016-09-01 주식회사 엘지화학 Apparatus and method for measuring state of battery health
KR20180006264A (en) * 2016-07-07 2018-01-17 주식회사 포스코아이씨티 Simulation apparatus and method of battery
US9895991B2 (en) 2015-01-22 2018-02-20 Samsung Electronics Co., Ltd. Method and apparatus estimating state of battery
CN109507591A (en) * 2018-12-05 2019-03-22 北京长城华冠汽车科技股份有限公司 Test method, the test device of battery core
CN111505507A (en) * 2019-01-31 2020-08-07 北京新能源汽车股份有限公司 Battery aging treatment method
WO2020189915A1 (en) * 2019-03-18 2020-09-24 주식회사 엘지화학 Battery management device
WO2020189918A1 (en) * 2019-03-18 2020-09-24 주식회사 엘지화학 Battery management device
CN112305415A (en) * 2020-12-21 2021-02-02 华人运通(江苏)技术有限公司 Method and system for monitoring service life of high-voltage contactor in real time
KR20210054407A (en) * 2019-11-05 2021-05-13 정대원 Battery Short Circuit Detection System And Battery Short Circuit Detection Method Using Same
KR20210054930A (en) * 2019-11-06 2021-05-14 정대원 Battery Management System with Battery Short Circuit Detection Algorithm And Battery Management System Fire Prevention Methods Using Same
CN112924869A (en) * 2021-02-08 2021-06-08 北京车和家信息技术有限公司 Method and device for determining health state of battery pack
CN113484762A (en) * 2021-07-16 2021-10-08 东风柳州汽车有限公司 Battery state of health estimation method, device, equipment and storage medium
CN113791361A (en) * 2021-08-23 2021-12-14 欣旺达电子股份有限公司 Internal resistance aging calculation method, system, management system, automobile and storage medium
CN114325399A (en) * 2021-11-24 2022-04-12 曙鹏科技(深圳)有限公司 Internal resistance prediction method of battery, and health state evaluation method, device and equipment
KR20220131703A (en) * 2021-03-22 2022-09-29 한국전력공사 Apparatus and method for diagnosing battery
CN116027218A (en) * 2021-10-27 2023-04-28 比亚迪股份有限公司 Battery state evaluation method and electronic equipment
EP4336200A1 (en) * 2022-09-08 2024-03-13 Volkswagen Ag Battery management system for determining a health of a power source based on an impedance indicator

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102520673B1 (en) 2019-03-18 2023-04-10 주식회사 엘지에너지솔루션 Apparatus for estimating state of battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4638195B2 (en) * 2004-09-28 2011-02-23 富士重工業株式会社 Battery degradation degree estimation device
JP5324196B2 (en) 2008-11-27 2013-10-23 カルソニックカンセイ株式会社 Battery degradation estimation method and apparatus

Cited By (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9895991B2 (en) 2015-01-22 2018-02-20 Samsung Electronics Co., Ltd. Method and apparatus estimating state of battery
KR20160092719A (en) 2015-01-28 2016-08-05 주식회사 엘지화학 Apparatus and Method for estimating state of battery
KR20160103332A (en) 2015-02-24 2016-09-01 주식회사 엘지화학 Apparatus and method for measuring state of battery health
KR20180006264A (en) * 2016-07-07 2018-01-17 주식회사 포스코아이씨티 Simulation apparatus and method of battery
CN109507591A (en) * 2018-12-05 2019-03-22 北京长城华冠汽车科技股份有限公司 Test method, the test device of battery core
CN111505507A (en) * 2019-01-31 2020-08-07 北京新能源汽车股份有限公司 Battery aging treatment method
CN111505507B (en) * 2019-01-31 2022-03-29 北京新能源汽车股份有限公司 Battery aging treatment method
WO2020189915A1 (en) * 2019-03-18 2020-09-24 주식회사 엘지화학 Battery management device
US11824395B2 (en) 2019-03-18 2023-11-21 Lg Energy Solution, Ltd. Battery management apparatus
WO2020189918A1 (en) * 2019-03-18 2020-09-24 주식회사 엘지화학 Battery management device
KR20210054407A (en) * 2019-11-05 2021-05-13 정대원 Battery Short Circuit Detection System And Battery Short Circuit Detection Method Using Same
KR20210054930A (en) * 2019-11-06 2021-05-14 정대원 Battery Management System with Battery Short Circuit Detection Algorithm And Battery Management System Fire Prevention Methods Using Same
CN112305415A (en) * 2020-12-21 2021-02-02 华人运通(江苏)技术有限公司 Method and system for monitoring service life of high-voltage contactor in real time
CN112305415B (en) * 2020-12-21 2023-12-29 华人运通(江苏)技术有限公司 Real-time monitoring method and system for service life of high-voltage contactor
CN112924869B (en) * 2021-02-08 2023-08-29 北京车和家信息技术有限公司 Method and device for determining health state of battery pack
CN112924869A (en) * 2021-02-08 2021-06-08 北京车和家信息技术有限公司 Method and device for determining health state of battery pack
KR20220131703A (en) * 2021-03-22 2022-09-29 한국전력공사 Apparatus and method for diagnosing battery
CN113484762A (en) * 2021-07-16 2021-10-08 东风柳州汽车有限公司 Battery state of health estimation method, device, equipment and storage medium
CN113484762B (en) * 2021-07-16 2024-05-14 东风柳州汽车有限公司 Battery state of health estimation method, device, equipment and storage medium
CN113791361A (en) * 2021-08-23 2021-12-14 欣旺达电子股份有限公司 Internal resistance aging calculation method, system, management system, automobile and storage medium
CN113791361B (en) * 2021-08-23 2024-04-26 欣旺达电子股份有限公司 Internal resistance aging calculation method, system, management system, automobile and storage medium
CN116027218A (en) * 2021-10-27 2023-04-28 比亚迪股份有限公司 Battery state evaluation method and electronic equipment
CN114325399A (en) * 2021-11-24 2022-04-12 曙鹏科技(深圳)有限公司 Internal resistance prediction method of battery, and health state evaluation method, device and equipment
EP4336200A1 (en) * 2022-09-08 2024-03-13 Volkswagen Ag Battery management system for determining a health of a power source based on an impedance indicator

Also Published As

Publication number Publication date
KR101835656B1 (en) 2018-03-08

Similar Documents

Publication Publication Date Title
KR101835656B1 (en) Method for Estimating State of Battery Health
EP3018753B1 (en) Battery control method based on ageing-adaptive operation window
KR101866073B1 (en) Method for predicting State of Health of Battery
CN106461732B (en) Method for estimating state of health of battery
CN105891729B (en) The condition detection method and device of battery and battery pack
KR102080632B1 (en) Battery management system and its operating method
US9766298B2 (en) Method for estimating state of health of a battery in a hybrid vehicle
JP5936711B2 (en) Storage device life prediction apparatus and storage device life prediction method
CN107925135B (en) Degradation degree estimation device and degradation degree estimation method
US20100036627A1 (en) Apparatus and method for determination of the state-of-charge of a battery when the battery is not in equilibrium
US10261136B2 (en) Battery degradation degree estimation device and battery degradation degree estimation method
JP6440377B2 (en) Secondary battery state detection device and secondary battery state detection method
WO2020198118A1 (en) Methods, systems, and devices for estimating and predicting a remaining time to charge and a remaining time to discharge of a battery
KR20140106436A (en) Battery state of charge tracking, equivalent circuit selection and benchmarking
CN105319515A (en) A combined estimation method for the state of charge and the state of health of lithium ion batteries
JP2006242880A (en) Condition detector for power supply device, power supply device, and initial characteristic extractor used for power supply device
CN111463513B (en) Method and device for estimating full charge capacity of lithium battery
JP5474993B2 (en) Method for determining the state of charge of a battery in the charge or discharge phase
CN108120932B (en) Method and device for estimating state of health of rechargeable battery
JP2014025738A (en) Residual capacity estimation device
KR20160097243A (en) Assessing the quantity of energy in a motor vehicle battery
KR20240121779A (en) Method, device and storage medium for determining battery capacity
JP2016065844A (en) Battery system control apparatus and control method of battery system
TWI578006B (en) Method for determining characteristics of uknown battery
JP6494431B2 (en) Deterioration diagnosis device for electricity storage devices

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right