[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20140048904A - Cellulase fusion protein and method of degrading cellulosic material using the same - Google Patents

Cellulase fusion protein and method of degrading cellulosic material using the same Download PDF

Info

Publication number
KR20140048904A
KR20140048904A KR1020140023718A KR20140023718A KR20140048904A KR 20140048904 A KR20140048904 A KR 20140048904A KR 1020140023718 A KR1020140023718 A KR 1020140023718A KR 20140023718 A KR20140023718 A KR 20140023718A KR 20140048904 A KR20140048904 A KR 20140048904A
Authority
KR
South Korea
Prior art keywords
ala
leu
val
gly
asp
Prior art date
Application number
KR1020140023718A
Other languages
Korean (ko)
Inventor
김선원
아마르 텔케
수닐 사바쉬
강서희
Original Assignee
경상대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교산학협력단 filed Critical 경상대학교산학협력단
Priority to KR1020140023718A priority Critical patent/KR20140048904A/en
Publication of KR20140048904A publication Critical patent/KR20140048904A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K19/00Hybrid peptides, i.e. peptides covalently bound to nucleic acids, or non-covalently bound protein-protein complexes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2434Glucanases acting on beta-1,4-glucosidic bonds

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Molecular Biology (AREA)
  • Zoology (AREA)
  • Medicinal Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

The present invention provides cellulase with improve properties, and a method of degrading a cellulosic material using the same. The cellulase is fusion cellulase in which: a C terminal of one or more CBMs selected from the group consisting of a family 3 cellulose binding domain (CBM) derived from Clostridium thermocellum 35319, 4 CBM, and 30 CBM; and an N terminal of a glycosyl hydrolase family 9 (GH9) are fused. [Reference numerals] (AA) Genome DNA of C, thermocellum; (BB) Cel9A endoglucanase synthesis DNA

Description

셀룰라제 융합 단백질 및 그를 이용한 셀룰로즈 물질의 분해 방법{Cellulase fusion protein and method of degrading cellulosic material using the same} Cellulase fusion protein and method of degrading cellulosic material using the same

셀룰라제 및 그를 이용한 셀룰로즈 물질의 분해 방법에 관한 것이다.It relates to a cellulase and a method for decomposing a cellulosic substance using the same.

작물 유래의 셀룰로즈 기질은 에탄올과 같은 생물연료의 생산에 사용될 수 있다. 셀룰로즈는 자연에서 가장 풍부한 탄소원이지만, 그의 불용해성 및 반-결정성 구조 (quasi-crystalline structure), 및 셀룰로즈 표면에의 접근을 제한하는 다른 중합체와의 매트릭스 중에 식물 세포벽의 존재 때문에 분해하기 가장 어렵다. 셀룰로즈의 효율적인 분해가 생물연료 생산에 대한 주요 제한 단계이다. 따라서, 불용성 셀룰로즈에 작용하는 셀룰라제는 이 과정의 핵심 효소이다.Crop-derived cellulose substrates can be used in the production of biofuels such as ethanol. Cellulose is the most abundant carbon source in nature, but it is most difficult to degrade because of its insoluble and quasi-crystalline structure, and the presence of plant cell walls in the matrix with other polymers that limit access to the cellulose surface. Efficient decomposition of cellulose is a major limiting step for biofuel production. Thus, cellulase, which acts on insoluble cellulose, is a key enzyme in this process.

GH9는 다양한 미생물로부터 분리된 많은 셀룰라제를 포함한다. GH9는 넓은 범위 기질 특이성을 보이며, 단백질 분자 구조에 근거하여 서브그룹 A, B, C 및 D로 분류할 수 있다. 서브그룹 A는 셀룰로즈 결합 모듈 (CBM)이 없이 촉매 모듈로만 구성된 효소를 포함한다. 서브그룹 B는 촉매 모듈의 바로 하류에 패밀리 3 CBM을 갖는다. 서브그룹 C는 N-말단 면역글로불린 (Ig)-유사 도메인 및 뒤이어 하나의 촉매 모듈을 포함한다. 서브그룹 D는 Ig-유사 도메인뿐만 아니라 하나이상의 추가의 CBM을 포함한다. 불용성 셀룰로즈 기질을 이용하는 글리코시드 히드롤라제는 촉매 모듈과 하나이상의 비촉매 셀룰로즈 결합 모듈(CBM)을 포함하는 모듈성 단백질이다. CBM은 식물 구조 및 저장 다당의 효소적 가수분해에 중요한 역할을 한다. 현재 43 패밀리의 CBM이 알려져 있고, 이들 CBM은 리간드 특이성에 실질적 변이를 나타낸다. CBM은 20-200 아미노산으로 구성되고 하나, 둘 또는 3개 도메인으로 셀룰라제 촉매 모듈의 C-말단 또는 N-말단에 이웃하여 존재한다. GH9 contains many cellulases isolated from various microorganisms. GH9 exhibits a wide range of substrate specificities and can be classified into subgroups A, B, C and D based on the protein molecular structure. Subgroup A contains enzymes consisting solely of catalytic modules without a cellulose binding module (CBM). Subgroup B has Family 3 CBM just downstream of the catalytic module. Subgroup C contains an N-terminal immunoglobulin (Ig)-like domain followed by one catalytic module. Subgroup D contains the Ig-like domain as well as one or more additional CBMs. Glycoside hydrolases using insoluble cellulose substrates are modular proteins comprising a catalytic module and at least one non-catalytic cellulose binding module (CBM). CBM plays an important role in the enzymatic hydrolysis of plant structure and storage polysaccharides. Currently, 43 families of CBMs are known, and these CBMs show substantial variations in ligand specificity. CBM is composed of 20-200 amino acids and is present in one, two or three domains adjacent to the C-terminus or N-terminus of the cellulase catalytic module.

패밀리 3 CBM, 패밀리 4 CBM, 및 패밀리 30 CBM은 GH9 촉매 모듈과 함께 흔하게 발견되는 것으로서, 촉매 모듈로부터 제거하는 경우, 효소 활성의 현저한 감소를 초래한다. Family 3 CBM, Family 4 CBM, and Family 30 CBM are commonly found with the GH9 catalytic module and, when removed from the catalytic module, result in a significant decrease in enzyme activity.

상기한 바와 같이, 종래 알려진 셀룰라제에 비하여, 보다 개선된 효과를 갖는 셀룰라제가 여전히 요구되고 있다.As described above, there is still a need for a cellulase having an improved effect compared to the cellulase known in the art.

일 양상은 개선된 특성을 갖는 융합 셀룰라제를 제공하는 것이다.One aspect is to provide a fusion cellulase with improved properties.

다른 양상은 상기 셀룰로즈를 이용하여 셀룰로즈 물질을 분해하는 방법을 제공하는 것이다.Another aspect is to provide a method of decomposing a cellulosic material using the cellulose.

본 발명의 일 양상은 클로스트리듐 터모셀룸 (Clostridium thermocellum) 35319 유래의 패밀리 3 셀룰로즈결합모듈 (cellulose binding module: CBM), 4 CBM, 및 30 CBM로 이루어진 하나이상의 CBM의 C 말단과 글리코실 히드롤라제 패밀리 9 (glycosyl hydrolase family 9: GH9)의 N 말단이 융합된 융합 셀룰라제를 제공한다. One aspect of the present invention is Clostridium thermocellum thermocellum ) 35319-derived family 3 cellulose binding module (CBM), 4 CBM, and at least one CBM consisting of 30 CBM C-terminus and N of glycosyl hydrolase family 9: GH9 It provides a fused cellulase in which the ends are fused.

패밀리 3 CBM, 패밀리 4 CBM, 및 패밀리 30 CBM은 각각 서열번호 1, 2, 및 3의 아미노산 서열을 갖는 것일 수 있다. GH9는 알리시클로바실러스 아시도칼드리우스 (Alicyclobacillus acidocaldrious) ATCC27009 유래의 GH9 엔도글루카나제 (Cel9A)일 수 있다. Cel9A는 서열번호 4의 아미노산 서열을 갖는 것일 수 있다. Cel9A는 2개 도메인: 1-85번 잔기의 Ig-유사 도메인과 그 다음의 86-537번 잔기의 촉매 도메인으로 구성된 537 아미노산 잔기의 모노머이다. Family 3 CBM, family 4 CBM, and family 30 CBM may be those having the amino acid sequence of SEQ ID NO: 1, 2, and 3, respectively. GH9 is Alicyclobacillus acidocaldrius acidocaldrious ) It may be a GH9 endoglucanase (Cel9A) derived from ATCC27009. Cel9A may have the amino acid sequence of SEQ ID NO: 4. Cel9A is a 537 amino acid residue monomer consisting of two domains: an Ig-like domain at residues 1-85 followed by a catalytic domain at residues 86-537.

상기 융합 셀룰라제는 서열번호 5 내지 7 중 어느 하나의 아미노산 서열을 갖는 것일 수 있다.The fusion cellulase may have an amino acid sequence of any one of SEQ ID NOs: 5 to 7.

GH9는 다양한 미생물로부터 분리된 많은 셀룰라제를 포함한다. GH9는 넓은 범위 기질 특이성을 보이며, 단백질 분자 구조에 근거하여 서브그룹 A, B, C 및 D로 분류할 수 있다. 서브그룹 A는 셀룰로즈 결합 모듈 (CBM)이 없이 촉매 모듈로만 구성된 효소를 포함한다. 서브그룹 B는 촉매 모듈의 바로 하류에 패밀리 3 CBM을 갖는다. 서브그룹 C는 N-말단 면역글로불린 (Ig)-유사 도메인 및 뒤이어 하나의 촉매 모듈을 포함한다. 서브그룹 D는 Ig-유사 도메인뿐만 아니라 하나이상의 추가의 CBM을 포함한다. GH9 contains many cellulases isolated from various microorganisms. GH9 exhibits a wide range of substrate specificities and can be classified into subgroups A, B, C and D based on the protein molecular structure. Subgroup A contains enzymes consisting solely of catalytic modules without a cellulose binding module (CBM). Subgroup B has Family 3 CBM just downstream of the catalytic module. Subgroup C contains an N-terminal immunoglobulin (Ig)-like domain followed by one catalytic module. Subgroup D contains an Ig-like domain as well as one or more additional CBMs.

상기 융합 셀룰라제는 하나이상의 말단에 His6 태그 서열과 같은 융합 셀룰라제의 분리에 사용될 수 있는 서열 또는 모이어티를 포함할 수 있다. 융합 셀룰라제의 분리에 사용될 수 있는 서열 또는 모이어티는 융합 셀룰라제의 활성에는 실질적으로 영향을 미치지 않지만, 특정한 물질에 특이적 결합을 하는 것일 수 있다. 또한, 융합 셀룰라제는 CBM과 GH9 셀룰라제의 촉매 모듈 사이에 (Ig)-유사 도메인가 연결 서열 (junction sequence)의 역할을 하는 것으로 보여진다. The fusion cellulase may include a sequence or moiety that can be used for separation of a fusion cellulase, such as a His6 tag sequence, at one or more ends. The sequence or moiety that can be used for the separation of the fusion cellulase does not substantially affect the activity of the fusion cellulase, but may be one that specifically binds to a specific substance. In addition, it has been shown that the (Ig)-like domain serves as a junction sequence between the catalytic modules of CBM and GH9 cellulase in fusion cellulase.

패밀리 3 CBM, 패밀리 4 CBM, 및 패밀리 30 CBM은 GH9 촉매 모듈과 함께 흔하게 발견되는 것으로서, 촉매 모듈로부터 제거하는 경우, 효소 활성의 현저한 감소를 초래한다. Family 3 CBM, Family 4 CBM, and Family 30 CBM are commonly found with the GH9 catalytic module and, when removed from the catalytic module, result in a significant decrease in enzyme activity.

본 발명의 다른 양상은 상기 융합 셀룰라제를 코딩하는 핵산 또는 상기 핵산을 포함하는 벡터를 제공한다. 상기 벡터는 플라스미드 또는 바이러스 게놈을 포함하여, 숙주세포에서 복제될 수 있는 것이면 어느 것이나 포함된다. 또한, 상기 핵산은 조절 서열과 작동가능하게 연결된 것일 수 있다. 상기 조절은 리보좀 결합 서열, Kozak 서열, 프로모터, 오퍼레이터, 폴리A 신호 및 이들의 조합으로부터 선택될 것일 수 있다.Another aspect of the present invention provides a nucleic acid encoding the fusion cellulase or a vector comprising the nucleic acid. The vector includes anything that can be replicated in a host cell, including a plasmid or viral genome. In addition, the nucleic acid may be operably linked to a regulatory sequence. The regulation may be selected from ribosome binding sequences, Kozak sequences, promoters, operators, polyA signals, and combinations thereof.

또한, 본 발명의 다른 양상은 상기 핵산 또는 벡터를 포함하는 숙주세포를 제공한다. 상기 숙주세포는 상기 핵산을 발현할 수 있는 것이면 어느 것이나 될 수 있다. 예를 들면, 상기 숙주세포는 원핵 세포 또는 진핵세포일 수 있다. 상기 원핵 세포는 대장균과 같은 박테리아일 수 있다. 상기 진핵세포는 효모 세포와 같은 균류 세포를 포함하나, 여기에 한정되는 것은 아니다. In addition, another aspect of the present invention provides a host cell comprising the nucleic acid or vector. The host cell may be any one capable of expressing the nucleic acid. For example, the host cell may be a prokaryotic cell or a eukaryotic cell. The prokaryotic cells may be bacteria such as E. coli. The eukaryotic cells include, but are not limited to, fungal cells such as yeast cells.

본 발명의 다른 양상은 상기 숙주세포를 배양하는 단계를 포함하는, 상기 셀룰라제를 생산하는 방법을 제공한다. 상기 방법은 얻어진 배양물로부터 상기 셀룰라제를 분리하는 단계를 더 포함할 수 있다. 또한, 얻어진 배양물을 그대로 사용하거나 세포를 파쇄하여 사용하는 것을 포함할 수 있다. Another aspect of the present invention provides a method for producing the cellulase, comprising the step of culturing the host cell. The method may further include separating the cellulase from the obtained culture. In addition, it may include the use of the obtained culture as it is or by disrupting the cells.

본 발명의 다른 양상은 상기한 셀룰라제와 셀룰로즈 물질을 접촉시키는 단계를 포함하는, 셀룰로즈 물질을 분해시키는 방법을 제공한다. Another aspect of the present invention provides a method of decomposing a cellulosic material comprising the step of contacting the cellulase and a cellulosic material described above.

상기 접촉은 고상 또는 액상에서 이루어지는 것일 수 있다. 상기 접촉은 10℃ 내지 90℃의 온도, 예를 들면 , 40℃ 내지 90℃의 온도, 50℃ 내지 90℃, 40℃ 내지 80℃의 온도, 50℃ 내지 80℃ 또는 55℃ 내지 80℃의 온도에서 수행되는 것일 수 있다. 또한, 상기 접촉은 상압 또는 가압된 조건에서 수행될 수 있다.The contact may be made in a solid or liquid phase. The contact is at a temperature of 10° C. to 90° C., for example, a temperature of 40° C. to 90° C., a temperature of 50° C. to 90° C., a temperature of 40° C. to 80° C., a temperature of 50° C. to 80° C. or 55° C. to 80° C. It can be done in. In addition, the contacting may be performed under normal pressure or pressurized conditions.

상기 접촉 단계에서 있어서, 상기 셀룰라제에 대하여는 상기한 바와 같다. 상기 셀룰라제는 균질하게 분리된 것이거나, 농축된 것 또는 배양물 또는 세포 파쇄물에 포함된 형태의 것일 수 있다. In the contacting step, the cellulase is as described above. The cellulase may be homogeneously separated, concentrated, or contained in a culture or cell lysate.

상기 접촉 단계에서 있어서, 셀룰로즈 물질은 전체 또는 일부가 셀룰로즈를 포함하는 물질을 나타낸다. 셀룰로즈 물질은 수성 매질, 예를 들면 수용액에서 용해성 또는 수불용성의 것일 수 있다. 셀룰로즈 물질은 파쇄되거나 분말화된 것일 수 있다. 셀룰로즈 물질은 섬유 물질, 동물 사료로 사용되는 식물, 목재 유래 펄프 또는 2차 섬유인 것일 수 있다.In the contacting step, the cellulose material represents a material containing cellulose in whole or in part. The cellulosic material may be soluble or water insoluble in an aqueous medium, for example an aqueous solution. The cellulosic material may be crushed or powdered. The cellulose material may be a fibrous material, a plant used as animal feed, a wood-derived pulp, or a secondary fiber.

상기 접촉 단계에서 있어서, 상기 접촉은 다른 당 분해 효소의 존재하에서 수행되는 것일 수 있다. 상기 효소는 셀룰로즈 또는 그 분해산물을 단당류, 예를 들면 포도당으로 분해할 수 있는 효소 또는 효소 조합일 수 있다. 상기 효소는 셀로비오히드롤라제, 엔도글루카나제, 셀로덱스트리나제, β-글루코시다제 및 이들의 조합으로부터 선택되는 것일 수 있다. 다른 효소의 존재하에서 접촉시킴으로써, 셀룰로즈를 발효가능한 당으로 분해시킬 수 있으며, 얻어진 발효가능한 당을 탄소원으로 미생물의 존재하에서 배양함으로써, 에탄올과 같은 연료 물질을 생산할 수 있다. In the contacting step, the contacting may be performed in the presence of another glycolytic enzyme. The enzyme may be an enzyme or a combination of enzymes capable of decomposing cellulose or its degradation products into monosaccharides, for example, glucose. The enzyme may be selected from cellobiohydrolase, endoglucanase, cellodextrinase, β-glucosidase, and combinations thereof. By contacting in the presence of other enzymes, cellulose can be decomposed into fermentable sugars, and by culturing the obtained fermentable sugar as a carbon source in the presence of microorganisms, fuel materials such as ethanol can be produced.

따라서, 상기 방법은 얻어진 발효가능한 당을 미생물의 존재하에서 배양하여 상기 당을 연료물질로 전환시키는 단계를 포함할 수 있다. 발효가능한 당은 이당류, 또는 단당류일 수 있다. 발효가능한 당은 포도당일 수 있다. 상기 미생물은 메탄올 또는 에탄올과 같은 알콜 발효를 할 수 있는 미생물 또는 부탄디올과 같은 물질을 생성할 수 있는 미생물일 수 있다. 상기 미생물은 효모 또는 대장균과 같은 박테리아일 수 있다. 상기 연료물질은 메탄올, 에탄올, 부탄디올 및 이들의 조합으로부터 선택된 것일 수 있다.Accordingly, the method may include converting the obtained fermentable sugar into a fuel material by culturing the obtained fermentable sugar in the presence of microorganisms. Fermentable sugars may be disaccharides or monosaccharides. The fermentable sugar may be glucose. The microorganism may be a microorganism capable of alcoholic fermentation such as methanol or ethanol, or a microorganism capable of producing a substance such as butanediol. The microorganism may be yeast or bacteria such as E. coli. The fuel material may be selected from methanol, ethanol, butanediol, and combinations thereof.

본 발명의 융합 셀룰라제에 따르면, 호열성이며, 넓은 기질특이성을 가지고 있고, 불용성 셀룰로즈 물질에 대하여도 높은 분해활성을 가질 수 있다.According to the fused cellulase of the present invention, it is thermophilic, has broad substrate specificity, and can have high decomposition activity even for insoluble cellulose substances.

본 발명의 셀룰로즈 물질을 분해시키는 방법에 의하면, 셀룰로즈 물질을 효율적으로 분해할 수 있다.According to the method for decomposing a cellulose substance of the present invention, the cellulose substance can be decomposed efficiently.

도 1은 키메라 효소의 제작 과정을 도식적으로 나타낸 것이다. C. thermocellum 유래의 CBM3을 A. acidocaldrious 유래의 Cel9A 엔도글루카나제의 Ig-유사 도메인에 융합시켰다. C. thermocellum 유래의 CBM4와 CBM30과 Cel9A 엔도글루카나제의 융합도 동일한 전략을 따랐다.
도 2는 본 발명의 키메라 효소와 다른 패밀리 9 세룰라제의 분자 구조를 나타낸 도면이다.
도 3은 키메라 효소의 발현 및 정제에 대한 SDS-PAGE 분석 결과를 나타낸 도면이다. (A) CBM3-Cel9A, (B) CBM4-Cel9A, 및 (C) CBM30-Cel9A. 레인은 다음과 같다: (W) 전체 세포 단백질, (S) 가용성 단백질, (P) 세포 펠렛 단백질, (HP) His-tag 정제된 단백질, 및 (M) 분자량 마커.
도 4는 키메라 효소의 최적 pH 및 온도를 나타낸 도면이다. 기호는 다음을 나타낸다: Cel9A (네모), CBM3-Cel9A (원), CBM4-Cel9A (삼각형), 및 CBM30-Cel9A (다이아몬드). 표준편차 오류는 10%내이다.
도 5는 PASC, CMC, 필터 페이퍼, Avicel, 셀로테트라오즈, 및 p-NPC에 대한 가수분해 산물의 TLC 분석 결과를 나타낸 도면이다. A: CMC 및 PASC의 광범위(5시간) 가수분해 산물, B: 0 내지 150분까지의 PASC의 가수분해 산물의 시간 코스, C: 필터 페이퍼 및 Avicel의 광범위 (16 시간) 가수분해 산물, D: 셀로테트라오즈의 광범위 (5시간) 가수분해 산물, E: p-NPC 및 M의 광범위 가수분해 산물: 표준 마커로서, G1 내지 G4는 각각 글루코스, 셀로비오즈, 셀로트리오즈, 및 셀로테트라오즈를 나타낸다.
PASC, CMC, 셀로테트라오즈 및 p-NPC를 60℃에서 0.1 nmol CBM3-Cel9A로 처리하였다. 동일한 반응을 0.1 nmol CBM3-Cel9A로 Avicel 및 필터 페이퍼에 수행하였다. 반응을 효소의 부재 (-) 및 존재하에서 수행하였다.
1 schematically shows the manufacturing process of the chimeric enzyme. CBM3 from C. thermocellum was fused to the Ig-like domain of Cel9A endoglucanase from A. acidocaldrious. The fusion of CBM4 derived from C. thermocellum with CBM30 and Cel9A endoglucanase followed the same strategy.
Figure 2 is a view showing the molecular structure of the chimeric enzyme of the present invention and other family 9 cerulases.
3 is a diagram showing the results of SDS-PAGE analysis on the expression and purification of chimeric enzymes. (A) CBM3-Cel9A, (B) CBM4-Cel9A, and (C) CBM30-Cel9A. Lanes are as follows: (W) total cell protein, (S) soluble protein, (P) cell pellet protein, (HP) His-tag purified protein, and (M) molecular weight marker.
4 is a diagram showing the optimum pH and temperature of the chimeric enzyme. Symbols indicate: Cel9A (square), CBM3-Cel9A (circle), CBM4-Cel9A (triangle), and CBM30-Cel9A (diamond). The standard deviation error is within 10%.
5 is a diagram showing the TLC analysis results of hydrolysis products for PASC, CMC, filter paper, Avicel, cellotetraose, and p-NPC. A: Extensive (5 hours) hydrolysis products of CMC and PASC, B: Time course of hydrolysis products of PASC from 0 to 150 minutes, C: Extensive (16 hours) hydrolysis products of filter paper and Avicel, D: Extensive (5 hour) hydrolysis products of cellotetraose, E: p- NPC and extensive hydrolysis products of M: As standard markers, G1 to G4 represent glucose, cellobiose, cellotriose, and cellotetraose, respectively. Show.
PASC, CMC, cellotetraose and p- NPC were treated with 0.1 nmol CBM3-Cel9A at 60°C. The same reaction was carried out on Avicel and filter paper with 0.1 nmol CBM3-Cel9A. The reaction was carried out in the absence (-) and in the presence of enzymes.

이하 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이들 실시예는 본 발명을 예시적으로 설명하기 위한 것으로 본 발명의 범위가 이들 실시예에 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail through examples. However, these examples are for illustrative purposes only, and the scope of the present invention is not limited to these examples.

재료 및 방법Materials and methods

실시예에 사용된 재료 및 방법은 다음과 같다. Materials and methods used in the examples are as follows.

(1) 화학물질(1) Chemical substances

Avicel PH101, 카르복시메틸 셀룰로즈 (CMC), 보리 β-글루칸, p-니트로페닐-β-D-글루코시드 (p-NPG) 및 p-니트로페닐-β-D-셀로비오시드 (p-NPC)는 Sigma Chemicals (St.Louis, MO, USA)로부터 구입하였다. TLC 플레이트는 Merck Laboratory (Germany)로부터 구입하였다.Avicel PH101, carboxymethyl cellulose (CMC), barley β-glucan, p- nitrophenyl-β-D-glucoside ( p- NPG) and p- nitrophenyl-β-D- cellobioside (p- NPC) Was purchased from Sigma Chemicals (St. Louis, MO, USA). TLC plates were purchased from Merck Laboratory (Germany).

(2) 박테리아 균주, 플라스미드 및 성장 조건(2) bacterial strains, plasmids and growth conditions

플라스미드 pUCel9A 중의 Cel9A 엔도글루카나제를 코딩하는 코돈 최적화된 합성 유전자는 GenScript (NJ, USA)로부터 얻었다. 씨. 터모셀룸 (C. thermocellum) ATCC 35319의 게놈 DNA를 패밀리 3, 4 및 30 CBM 유전자 소스로서 사용하였다. 사카로파구스 데그라단스 (Saccharophagus degradans) 균주 2-40 ATCC43961의 게놈 DNA를 진행성 (processive) 엔도글루카나제 Cel5H로서 사용하였다. 발현 벡터 pET-28a(+)는 Novagen (Madison, WI, USA)으로부터 구입하였다. 대장균 (E. coli) DH5a 및 대장균 BL21 (DE3)를 각각 클로닝 및 발현을 위한 숙주로서 사용하였다. 카나미신으로 보충된 Luria-Bertani (LB) 배지 (50μg/ml)를 대장균 세포의 배양을 위하여 사용하였다.A codon optimized synthetic gene encoding Cel9A endoglucanase in plasmid pUCel9A was obtained from GenScript (NJ, USA). Seed. Thermocellum ( C. thermocellum ) Genomic DNA of ATCC 35319 was used as the family 3, 4 and 30 CBM gene source. Saccharophagus degradans ) The genomic DNA of strain 2-40 ATCC43961 was used as the processive endoglucanase Cel5H. The expression vector pET-28a(+) was purchased from Novagen (Madison, WI, USA). E. coli DH5a and E. coli BL21 (DE3) was used as a host for cloning and expression, respectively. Luria-Bertani (LB) medium (50 μg/ml) supplemented with kanamycin was used for the culture of E. coli cells.

(3) (3) 키메라chimera 유전자의 제조, The production of genes, 클로닝Cloning 및 서열분석 And sequencing

키메라 유전자 3-단계 겹침 (overlapping) PCR를 사용하여 제조하였다 (Zhang et al., 2010, Appl Environ Microbiol, 76, 6870-6). 도 1은 키메라 유전자의 제조 과정을 나타낸다. pUCel9A 플라스미드를 전장 Cel9A 엔도글루카나제의 증폭을 위한 주형으로 사용하였다. It was prepared using chimeric gene 3-step overlapping PCR (Zhang et al., 2010, Appl Environ Microbiol , 76, 6870-6). 1 shows the manufacturing process of the chimeric gene. The pUCel9A plasmid was used as a template for amplification of full-length Cel9A endoglucanase.

셀룰로좀-통합 단백질 (cellulosome-integrating protein) CipA로부터 패밀리 CBM3, 셀로비오히드롤라제 A (CbhA)로부터 패밀리 CBM4 및 진행성 엔도글루카나제 CelJ로부터 패밀리 CBM30을 C. thermocellum의 게놈 DNA로부터 PCR을 사용하여 증폭하였다. 진행성 엔도글루카나제 Cel5H의 전장 유전자는 S. degradans 균주 2-40의 게놈 DNA로부터 증폭하였다. CbhA (GH9-Fn3,2-CBDIII) 유전자를 C. thermocellum의 게놈 DNA로부터 PCR을 사용하여 클로닝하였다. 본 실시예에 사용된 프라이머의 서열은 표 1에 나타내었다. 제한 부위를 각 프라이머의 5' 및 3' 말단에 도입하였다. 프라이머는 Bioneer Co., Ltd. (South Korea)로부터 얻었다.Cellulosome-integrating protein CipA from family CBM3, cellobiohydrolase A (CbhA) from family CBM4 and advanced endoglucanase CelJ from family CBM30 from C. thermocellum 's genomic DNA by PCR. Used to amplify. The full-length gene of the progressive endoglucanase Cel5H is S. degradans It was amplified from genomic DNA of strains 2-40. The CbhA (GH9-Fn3,2-CBDIII) gene was cloned from genomic DNA of C. thermocellum using PCR. The sequence of the primers used in this example is shown in Table 1. Restriction sites were introduced at the 5'and 3'ends of each primer. The primer was Bioneer Co., Ltd. (South Korea).

프라이머primer 서열 (5'->3')a Sequence (5'->3') a 제한효소Restriction enzyme P1P1 TTGTCATATGAATTTGAAGGTTGAATTCTACAACAGCAATC (서열번호 8) TTGTCATATG AATTTGAAGGTTGAATTCTACAACAGCAATC (SEQ ID NO: 8) NdeINdeI P2P2 GATTTAGGCACACGGCTCGGGGGTTCTTTACCCCATACAAG(서열번호 9) GATTTAGGCACACGGCTCGG GGGTTCTTTACCCCATACAAG (SEQ ID NO: 9) P3P3 GGGTAAAGAACCCCCGAGCCGTGTGCCTAAATC(서열번호 10) GGGTAAAGAACCC CCGAGCCGTGTGCCTAAATC (SEQ ID NO: 10) P1'P1' ATGTTCATATGTTAGAAGATAATTCTTCGAC (서열번호 11) ATGTTCATATG TTAGAAGATAATTCTTCGAC (SEQ ID NO: 11) NdeINdeI P2'P2' GATTTAGGCACACGGCTCGGAGGCTGCGGAAGTATATATT(서열번호 12) GATTTAGGCACACGGCTCGG AGGCTGCGGAAGTATATATT (SEQ ID NO: 12) P3'P3' AATATATACTTCCGCAGCCTCCGAGCCGTGTGCCTAAATC(서열번호 13) AATATATACTTCCGCAGCCT CCGAGCCGTGTGCCTAAATC (SEQ ID NO: 13) P1"P1" ATTGTCATATGGCTCCTGAAGGCTACAGGAAGC(서열번호 14) ATTGTCATATG GCTCCTGAAGGCTACAGGAAGC (SEQ ID NO: 14) NdeINdeI P2"P2" GATTTAGGCACACGGCTCGGGATTGCAGGAGCGGACTTTTC(서열번호 15) GATTTAGGCACACGGCTCGG GATTGCAGGAGCGGACTTTTC (SEQ ID NO: 15) P3"P3" CCGCTCCTGCAATCCCGAGCCGTGTGCCTAAATC(서열번호 16) CCGCTCCTGCAATC CCGAGCCGTGTGCCTAAATC (SEQ ID NO: 16) P4P4 CCGATCTCGAGTTAACGGCCACGAGCCTCCAG(서열번호 17) CCGATCTCGAG TTAACGGCCACGAGCCTCCAG (SEQ ID NO: 17) XhoIXhoI Cel5H-FCel5H-F CCCGGATCCAATTCTTAGCGGTGGCCAGCAA(서열번호 18) CCCGGATCC AATTCTTAGCGGTGGCCAGCAA (SEQ ID NO: 18) BamHIBamHI Cel5H-RCel5H-R CCCGCTCGAGCCAGCTACCAAATTGCAGGGTGT(서열번호 19) CCCGCTCGAG CCAGCTACCAAATTGCAGGGTGT (SEQ ID NO: 19) XhoIXhoI CbhA-FCbhA-F CTAGCTAGCTATACTTCCGCAGCCTGAT(서열번호 20) CTAGCTAGC TATACTTCCGCAGCCTGAT (SEQ ID NO: 20) NheINheI CbhA-RCbhA-R TATATAAGCTTAACCGCCCGGCGGCGTTCCCCA(서열번호 21) TATATAAGCTT AACCGCCCGGCGGCGTTCCCCA (SEQ ID NO: 21) HindIIIHindIII

a: 제한 효소 부위는 볼드체로 나타내었다. 오버랩 PCR 영역의 부분 (14-20 bp)은 밑줄로 표시하였다. P1-P3, P1'-P3' 및 P1"-P3" 프라이머는 CBM3-Cel9A, CBM4-Cel9A, 및 CBM30-Cel9A 키메라 유전자의 생성을 위하여 사용하였다. P4 프라이머는 공통으로 모든 키메라 유전자의 생성을 위하여 사용하였다.a: Restriction enzyme sites are shown in bold. The portion of the overlap PCR region (14-20 bp) is underlined. P1-P3, P1'-P3' and P1"-P3" primers were used for the generation of CBM3-Cel9A, CBM4-Cel9A, and CBM30-Cel9A chimeric genes. P4 primers were commonly used for the generation of all chimeric genes.

PCR은 다음과 같이 30 연속 사이클을 사용하여 수행되었다.: 변성 98℃에서 0.5분, 어닐링 56℃에서 0.5분,및 연장 72℃에서 PCR 산물 길이에 따른 시간 동안.PCR was performed using 30 consecutive cycles as follows: denaturation at 98° C. for 0.5 min, annealing at 56° C. for 0.5 min, and extension at 72° C. for a time depending on the length of the PCR product.

Phusion high-fidelity DNA 폴리머라제 (Finnzymes, USA)를 과정 동안 사용하였다. PCR 산물을 1% 아가로즈 겔 전기영동에 의하여 분리하고, 겔 추출 키트를 사용하여 겔로부터 추출하였다. 추출된 DNA 단편을 제한효소로 절단하고 벡터 pET-28a(+)에 연결하였다. 연결 혼합물을 화학적으로 컴페턴트한 대장균 DH5a를 형질전환하는데 사용하였다. 이들 형질전환체로부터 분리된 플라스미드를 제한 분석에 의하여 검증하고, 유전자 서열을 DNA 서열분석에 의하여 확인하였다. Cel5H, CbhA, Cel9A, CBM3-Cel9A, CBM4-Cel9A 및 CBM30-Cel9A에 대한 맞는 서열을 가진 플라스미드를 pECel5H, pECbhA, pECel9A, pECBM3-Cel9A, pECBM4-Cel9A 및 pECBM30-Cel9A로 각각 명명하였다. Phusion high-fidelity DNA polymerase (Finnzymes, USA) was used during the procedure. The PCR product was separated by 1% agarose gel electrophoresis, and extracted from the gel using a gel extraction kit. The extracted DNA fragment was digested with a restriction enzyme and ligated to the vector pET-28a(+). E. coli, chemically competent in the connecting mixture It was used to transform DH5a. Plasmids isolated from these transformants were verified by restriction analysis, and gene sequences were confirmed by DNA sequencing. Plasmids with matching sequences for Cel5H, CbhA, Cel9A, CBM3-Cel9A, CBM4-Cel9A and CBM30-Cel9A were designated as pECel5H, pECbhA, pECel9A, pECBM3-Cel9A, pECBM4-Cel9A and pECBM30-Cel9A, respectively.

DNA 조작에 사용된 효소는 New England Biolabs (UK)으로부터 구입하였다. DNA 서열분석은 SolGent (South Korea)에 의하여 수행되었다. 게놈 DNA 추출은 이전에 기술된 방법에 따라 수행하였다 (Sambrook and Russell, 2001). 플라스미드 DNA는 Qiagen Spin Column 플라스미드 Mini-Preps kit (USA)를 사용하여 추출하였다. 제한된 플라스미드 및 PCR 산물을 Qiagen gel extraction kit (USA)를 사용하여 아가로즈 겔로부터 회수하였다.Enzymes used for DNA manipulation were purchased from New England Biolabs (UK). DNA sequencing was performed by SolGent (South Korea). Genomic DNA extraction was performed according to the previously described method (Sambrook and Russell, 2001). Plasmid DNA was extracted using the Qiagen Spin Column plasmid Mini-Preps kit (USA). Restricted plasmids and PCR products were recovered from agarose gels using a Qiagen gel extraction kit (USA).

(4) (4) 키메라chimera 단백질의 발현 및 정제 Protein expression and purification

pECel5H, pECbhA, pECel9A, pECBM3-Cel9A, pECBM4-Cel9A 및 pECBM30-Cel9A를 가진 대장균 BL21(DE3) 세포를 카나미신 (50 μg/ml) 함유 LB 배지에서 37℃에서 성장시켰다. 배양물이 A600 0.7에 도달하였을 때, IPTG (isopropyl-β-D-thiogalactopyranoside)를 최종 농도 0.2 mM까지 첨가하였다. 다음으로, 배양물을 교반 조건 (180 rpm)에서 22℃에서 밤새 인큐베이션하였다. 밤새 유도 후 배양물을 원심분리하고 (10,000xg, 20 분, 4℃), 세포 펠렛을 회수하였다. 단백질을 제조자의 지침에 따라 CelLyticB system (Sigma)을 사용하여 추출하였다. 키메라 단백질을 천연 조건 (native conditions) 하에서 미리채워진 니켈 세파로즈 칼럼상에 정제하였다 (HisTrap, GE Healthcare/Amersham, Piscataway, NJ). 상기 키메라 단백질은 N 말단에 (His)6 서열을 포함한다. E. coli with pECel5H, pECbhA, pECel9A, pECBM3-Cel9A, pECBM4-Cel9A and pECBM30-Cel9A BL21(DE3) cells were grown at 37° C. in LB medium containing kanamycin (50 μg/ml). When the culture reached A600 0.7, isopropyl-β-D-thiogalactopyranoside (IPTG) was added to a final concentration of 0.2 mM. Next, the culture was incubated overnight at 22° C. under stirring conditions (180 rpm). After induction overnight, the culture was centrifuged (10,000xg, 20 minutes, 4°C), and the cell pellet was recovered. Proteins were extracted using the CelLyticB system (Sigma) according to the manufacturer's instructions. Chimeric proteins were purified on a nickel Sepharose column pre-filled under native conditions (HisTrap, GE Healthcare/Amersham, Piscataway, NJ). The chimeric protein includes a (His) 6 sequence at the N-terminus.

(5) 효소 분석(5) enzyme analysis

키메라 효소에 대한 대부분 분석은 50 mM 소듐 아세테이트 (pH 5.0), 200 mM NaCl, 및 10 mM CaCl2 함유 반응 버퍼 중 0.1-1.0 nmol 정제된 효소로 pH 5.0 및 70℃에서 수행하였다. 효소 활성 1 단위는 분당 1 μmol의 환원당을 방출하는 효소의 양으로 정의하였다. 촉매 활성에 대한 pH 및 온도의 영향은 각각 pH 범위 4.0-8.0 및 10-90℃에서 시험하였다. 소듐 아세테이트 (4.0 to 5.6) 및 피페라진-N,N′-비드(2-에탄술폰산) (6.0 내지 8.0) 버퍼 최종 농도 50 mM에서 pH를 유지하는데 사용하였다. Most analyzes for chimeric enzymes were performed at pH 5.0 and 70° C. with 0.1-1.0 nmol purified enzyme in reaction buffer containing 50 mM sodium acetate (pH 5.0), 200 mM NaCl, and 10 mM CaCl 2. One unit of enzyme activity was defined as the amount of enzyme that releases 1 μmol of reducing sugar per minute. The effect of pH and temperature on catalytic activity was tested in the pH range 4.0-8.0 and 10-90°C, respectively. Sodium acetate (4.0 to 5.6) and piperazine- N , N′ -bead (2-ethanesulfonic acid) (6.0 to 8.0) buffers were used to maintain the pH at a final concentration of 50 mM.

카르복시메틸 셀룰로즈 (CMC) 및 보리 β-글루칸 분석은 총부피 0.5 ml 중의 1% (w/v) 기질로 10 분 반응 시간 동안 수행하였다. 인산-부풀려진 셀룰로즈 (Phosphoric acid-swollen cellulose: PASC)는 이전 보고에 기술된 방법에 따라 제조하였다 (Wood, 1971, Biochem J, 121, 353-62; Zhang et al., 2006, Biomacromolecules, 7, 644-8). PASC (0.1%, w/v) 분해 분석은 10 분 동안 0.5ml 총부피 중에서 수행하였다. 디니트로살리실산 (DNS) 분석은 이들 반응 중 산물 형성을 검출하기 위하여 수행하였다 (Ghose, 1987, Pure Appl Chem, 59, 257-268).Carboxymethyl cellulose (CMC) and barley β-glucan assays were carried out for 10 minutes reaction time with 1% (w/v) substrate in 0.5 ml total volume. Phosphoric acid-swollen cellulose (PASC) was prepared according to the method described in the previous report (Wood, 1971,Biochem J, 121, 353-62; Zhang et al., 2006,Biomacromolecules, 7, 644-8). PASC (0.1%, w/v) degradation assay was performed in 0.5 ml total volume for 10 minutes. Dinitrosalicylic acid (DNS) analysis was performed to detect product formation during these reactions (Ghose, 1987,Pure Appl Chem, 59, 257-268).

Avicel (1%, w/v) 또는 왓트만 번호 1 필터 페이퍼 (3mg)의 분해는 총부피 0.25ml 중에서 60℃에서 2 시간 동안 수행하였다. 반응을 95℃에서 15 분 동안 인큐베이션시켜 중단시키고, 잔존 기질을 10,000xg에서 원심분리에 의하여 분리하였다. 다음으로, Avicel 또는 필터 페이퍼 분해의 산물을 총부피 0.35 ml 중 50 U의 β-글루코시다제 (Sigma, USA)로 37℃에서 1시간 동안 분해하였다. β-글루코시다제를 95℃에서 15분 동안 인큐베이션시켜 불활성화시켰다. 최종 반응 혼합물 중의 글루코스 농도를, 제조자의 지침에 따라, 글루코스 옥시다제 키트 (GAGO-20 from Sigma, USA)를 사용하여 측정하였다. 셀로비오즈의 방출은 글루코스 축적 속도의 50% (Watson et al., 2009, J Bacteriol, 191, 5697-705)로서 계산하였다. p-니트로페닐-β-D-글리코시드 (10 mM) 및 p-니트로페닐-β-D-셀로비오시드 (10 mM)의 가수분해는 최종농도 0.1 M로 NaOH를 첨가한 후 410nm에서 방출된 p-니트로페놀 농도를 모니터링하여 분석하였다 (Eckert et al.,2002, Appl Microbiol Biotechnol, 60, 428-36). CMC 용액의 점도는 Brookfield DV-III viscometer (USA)를 사용하여 측정하였다. 측정은 100rpm 모터 속도로 25℃에서 제2 숫자 방추 (second number spindle)을 사용하여 수행하였다. 셀룰라제를 0.5% (wt/v) CMC 용액에 0.1nmol의 양으로 첨가하고, 60℃에서 30분 동안 인큐베이션하고, 점도 측정에 사용하였다.Disintegration of Avicel (1%, w/v) or Whatman No. 1 filter paper (3 mg) was performed at 60° C. for 2 hours in 0.25 ml of a total volume. The reaction was stopped by incubation at 95° C. for 15 minutes, and the remaining substrate was separated by centrifugation at 10,000×g. Next, the product of Avicel or filter paper digestion was digested with 50 U of β-glucosidase (Sigma, USA) in a total volume of 0.35 ml at 37° C. for 1 hour. β-glucosidase was inactivated by incubation at 95° C. for 15 minutes. The glucose concentration in the final reaction mixture was measured using a glucose oxidase kit (GAGO-20 from Sigma, USA) according to the manufacturer's instructions. The release of cellobiose was calculated as 50% of the glucose accumulation rate (Watson et al., 2009, J Bacteriol , 191, 5697-705). Hydrolysis of p -nitrophenyl-β-D-glycoside (10 mM) and p -nitrophenyl-β-D-cellobioside (10 mM) was released at 410 nm after NaOH was added to a final concentration of 0.1 M. The concentration of p -nitrophenol was monitored and analyzed (Eckert et al., 2002, Appl Microbiol Biotechnol , 60, 428-36). The viscosity of the CMC solution was measured using a Brookfield DV-III viscometer (USA). Measurements were performed using a second number spindle at 25° C. with 100 rpm motor speed. Cellulase was added to a 0.5% (wt/v) CMC solution in an amount of 0.1 nmol, incubated at 60° C. for 30 minutes, and used for viscosity measurement.

(6) 단백질 정량 및 (6) protein quantification and SDSSDS -- PAGEPAGE 분석 analysis

단백질 농도는 표준으로서 정제된 소혈청알부민(BSA)을 사용하여 Pierce BCA 단백질 분석 키트 (Thermoscientific, USA)를 사용하여 결정하였다. 소듐 도데실 술페이트 폴리아크릴아미드 겔 전기영동 (SDS-PAGE)은 수직 폴리아크릴아미드 슬랩 겔 (vertical polyacrylamide slab gel)에서 수행하였다. Protein concentration was determined using the Pierce BCA Protein Assay Kit (Thermoscientific, USA) using purified bovine serum albumin (BSA) as a standard. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) was performed on a vertical polyacrylamide slab gel.

전기영동은 변성 조건에서 5% 스택킹 겔 및 12% 폴리아크릴아미드 겔 상에서 수행되었다. 스택킹 겔 및 폴리아크릴아미드 겔에 대한 버퍼 용액은 각각 1 M Tris-HCl (pH 6.8) 및 1.5 M Tris-HCl (pH 8.8)이었다.Electrophoresis was performed on 5% stacking gel and 12% polyacrylamide gel in denaturing conditions. The buffer solutions for the stacking gel and polyacrylamide gel were 1 M Tris-HCl (pH 6.8) and 1.5 M Tris-HCl (pH 8.8), respectively.

(7) (7) 셀룰라제Cellulase 결합 분석 Binding analysis

키메라 효소의 Avicel 결합 특성은 사소한 변형과 함께 이전에 기술된 바와 같이 연구하였다 (Li et al., 2007, Appl Environ Microbiol, 73, 3165-72). 결합 분석은 2.0 ml 튜브 내에서 수행하였다. Avicel 1 mg을 소듐 아세테이트 버퍼 (20 mM, pH 5) 중 0.5% BSA와 혼합하였다. 혼합물을 비특이적 결합을 방지하기 위하여 25℃에서 30 분 동안 인큐베이션하였다. 이 용액에 동일한 양 (2nmol)의 천연 또는 키메라 효소를 첨가하였다. Avicel binding properties of chimeric enzymes were studied as previously described with minor modifications (Li et al., 2007, Appl. Environ Microbiol , 73, 3165-72). Binding assays were performed in 2.0 ml tubes. 1 mg of Avicel was mixed with 0.5% BSA in sodium acetate buffer (20 mM, pH 5). The mixture was incubated at 25° C. for 30 minutes to prevent non-specific binding. To this solution an equal amount (2 nmol) of natural or chimeric enzyme was added.

다음으로, 회전속도 20rmp으로 1 시간 동안 intelli-mixer RM-2 (Rose Scientific Ltd., Canada) 내에 두었다. 반응 혼합물을 10,000xg에서 5분 동안 원심분리하고, 결합되지 않은 효소의 양을 상등액 중 잔존 셀룰라제 활성으로부터 추정하였다. Avicel 결합 효소의 양은 초기 효소 활성과 결합되지 않은 효소 활성 사이의 차이로부터 계산하였다. 대조군 반응은 Avicel이 없는 것을 제외하고, 동일한 조건에서 수행하였다. 또한, Avicel 결합 단백질은 SDS-PAGE를 사용하여 정성적으로 분석하였다.Next, it was placed in an intelli-mixer RM-2 (Rose Scientific Ltd., Canada) for 1 hour at a rotational speed of 20 rmp. The reaction mixture was centrifuged at 10,000×g for 5 minutes, and the amount of unbound enzyme was estimated from the residual cellulase activity in the supernatant. The amount of Avicel binding enzyme was calculated from the difference between the initial and unbound enzyme activity. The control reaction was performed under the same conditions, except that Avicel was not present. In addition, Avicel binding protein was qualitatively analyzed using SDS-PAGE.

(8) (8) 셀룰라제Cellulase 진행성 ( Progress ( processivityprocessivity ) 분석 및 상승적 상호작용) Analysis and synergistic interaction

셀룰라제 진행성은 Watson 등의 과정에 따른 불용성 환원당에 대한 가용성 환원당의 비율을 측정하여 평가하였다 (Watson et al., 2009, J Bacteriol, 191, 5697-705). 상기 비율은 가용성 환원당 μmol (셀로비오즈 표준)을 불용성 당 μmol (글루코스 표준)으로 나누는 것과 같이 얻었다. 필터 페이퍼를 셀룰라제 진행성 시험을 위한 기질로서 사용하였다. 필터 페이퍼 가수분해 및 원심분리 후, 상등액 분획 중 가용성 환원당을 상기한 바와 같은 글루코스 옥시다제 방법을 사용하여 측정하였다. 침전물 분획 중의 불용성 환원당은 변형된 2,2-비친코니네이트 (bicinchoninate) 분석 (Doner and Irwin, 1992, Anal Biochem, 202, 50-3)을 사용하여 결정하였다. 침전된 필터 페이퍼를 6 M 구아니딘 히드로클리드로 세척하여 결합되지 않은 셀룰라제를 제거한 다음, 분석 버퍼 및 물로 다시 4회 세척하였다. 처리된 필터 페이퍼의 환원당은 표준으로서 글루코스를 사용하여 Pierce microBCA 시약 (USA)을 사용하여 측정하였다. 상기 진행성을 1 nmol의 CBM3-Cel9A 키메라 효소 및 S. degradans Cel5H 엔도글루카나제를 사용하여 조사하였다. 필터 페이퍼에 대한 CBM3-Cel9A 및 CbhA 사이의 상승적 상호작용을 조사하였다. 반응 혼합물은 7 mg 필터 페이퍼 디스크, 및 50 mM 소듐 아세테이트 (pH 5.0), 200 mM NaCl, 및 10 mM CaCl2 함유 반응 버퍼 중 CBM3-Cel9A 및 CbhA의 동일한 몰 혼합물 (1:1)로 구성하였다. 반응을 60℃에서 10 시간 동안 수행하고 환원당 산물을 DNS 방법으로 측정하였다. 대조군으로서, 동일 반응을 CBM3-Cel9A 대신에 Cel9A를 사용하여 수행하였다. 상승적 효과의 정도 (degree of synergistic effect: DSE)는 관찰된 개별 활성의 합에 대한 조합된 효소의 관찰된 활성의 비로서 정의하였다. 모든 효소 활성 분석은 3배수로 진행하였고, 데이터는 평균±표준편차로서 나타내었다. Cellulase progression was evaluated by measuring the ratio of soluble reducing sugar to insoluble reducing sugar according to the process of Watson et al. (Watson et al., 2009, J Bacteriol , 191, 5697-705). The ratio was obtained as μmol of soluble reducing sugar (cellobiose standard) divided by μmol of insoluble sugar (glucose standard). Filter paper was used as a substrate for the cellulase progression test. After hydrolysis and centrifugation of filter paper, the soluble reducing sugar in the supernatant fraction was measured using the glucose oxidase method as described above. Insoluble reducing sugar in the precipitate fraction was analyzed by modified 2,2-bicinchoninate (Doner and Irwin, 1992, Anal. Biochem , 202, 50-3). The precipitated filter paper was washed with 6 M guanidine hydrochloride to remove unbound cellulase, and then washed again 4 times with assay buffer and water. The reducing sugar of the treated filter paper was measured using Pierce microBCA reagent (USA) using glucose as a standard. 1 nmol of CBM3-Cel9A chimeric enzyme and S. degradans It was investigated using Cel5H endoglucanase. The synergistic interaction between CBM3-Cel9A and CbhA on filter paper was investigated. The reaction mixture consisted of 7 mg filter paper disks, and an equal molar mixture (1:1) of CBM3-Cel9A and CbhA in reaction buffer containing 50 mM sodium acetate (pH 5.0), 200 mM NaCl, and 10 mM CaCl 2. The reaction was carried out at 60° C. for 10 hours, and the reducing sugar product was measured by the DNS method. As a control, the same reaction was carried out using Cel9A instead of CBM3-Cel9A. The degree of synergistic effect (DSE) was defined as the ratio of the observed activity of the combined enzyme to the sum of the observed individual activities. All enzyme activity assays were performed in triplicate, and data are presented as mean±standard deviation.

(9) 박막 크로마토그래피(9) thin layer chromatography

시료 1 미크로리터를 silica 60 TLC plate (Merck, USA) 상에 스팟팅하고, 공기 건조시켰다. 크로마토그램을 니트로메탄, 1-프로판올, 및 물 (2:5:1.5) (v/v/v) (Watson et al., 2009, J Bacteriol, 191, 5697-705)을 사용하여 현상하였다. TLC 판을 메탄올 중 0.3% (w/v) α-나프톨 및 5% (v/v) 황산의 혼합물 중에 담그고 110℃까지 10 분 동안 가열하여 분할된 산물을 가시화하였다. Sample 1 microliter was spotted on a silica 60 TLC plate (Merck, USA) and air dried. The chromatogram was developed using nitromethane, 1-propanol, and water (2:5:1.5) (v/v/v) (Watson et al., 2009, J Bacteriol , 191, 5697-705). The TLC plate was immersed in a mixture of 0.3% (w/v) α-naphthol and 5% (v/v) sulfuric acid in methanol and heated to 110° C. for 10 minutes to visualize the partitioned product.

실시예Example 1: One: 키메라chimera 효소의 제조 및 정제 Preparation and purification of enzymes

C. thermocellum 유래 패밀리 3, 4 및 30 CBM을 도 1에 기술된 바와 같이 오버랩 PCR 기법을 통하여 Cel9A 엔도글루카나제의 N-말단에 별개로 융합시켰다. 키메라 효소의 분자 구조 (molecular architecture) 및 이미 보고된 GH9 패밀리 셀룰라제와의 비교는 도 2에 나타내었다. 다음으로, 융합된 유전자를 N-말단 His6 태그를 코딩하는 발현 벡터 pET-28a(+)에 삽입하였다. 그 결과 얻어진 구조체를 대장균 BL21(DE3) 중에서 단백질 발현을 위하여 사용하였다. 발현된 단백질을 CelLyticB 시약을 사용하여 추출하였다. 단백질의 가용성 발현은 SDS-PAGE에 의하여 확인하였다 (도 3). 이들 단백질을 천연 조건에서 미리 채워진 니켈 세파로즈 칼럼을 사용하여 정제하였다. 결합은 20 mM 이미다졸의 존재하에서 이루어졌고, 40 mM 이미다졸 함유 1X 소듐 포스페이트 버퍼 (pH 7.5-8.0)를 사용하여 세척하였다. 마지막으로, 250 mM 이미다졸을 사용하여 용출하였다. 원하는 단백질 함유 분획을 풀링하고, 50 mM 소듐 포스페이트 버퍼 (pH 7.0)에 대하여 4℃에서 밤새 투석하였다. 마지막으로 효소를 10% 글리세롤 함유 50 mM 피페라진-N,N′-비스(2-에탄술폰산) 버퍼 (pH 7.0)에 저장하였다. 정제된 제조물 각각은 SDS-PAGE 상에서 단일 밴드를 나타내었고 분자량은 뉴클레오티드 서열로부터 계산된 것과 잘 일치하였다 (도 3). C. thermocellum Derived families 3, 4 and 30 CBM were separately fused to the N-terminus of Cel9A endoglucanase through overlap PCR technique as described in FIG. 1. The molecular architecture of the chimeric enzyme and the comparison with the previously reported GH9 family cellulase are shown in FIG. 2. Next, the fused gene was inserted into the expression vector pET-28a(+) encoding the N-terminal His 6 tag. E. coli It was used for protein expression in BL21 (DE3). The expressed protein was extracted using CelLyticB reagent. Soluble expression of the protein was confirmed by SDS-PAGE (Fig. 3). These proteins were purified using a nickel Sepharose column pre-filled in natural conditions. Binding was achieved in the presence of 20 mM imidazole and washed with 1× sodium phosphate buffer (pH 7.5-8.0) containing 40 mM imidazole. Finally, it was eluted using 250 mM imidazole. Fractions containing the desired protein were pooled and dialyzed overnight at 4° C. against 50 mM sodium phosphate buffer (pH 7.0). Finally, the enzyme was stored in 50 mM piperazine-N , N′ -bis(2-ethanesulfonic acid) buffer (pH 7.0) containing 10% glycerol. Each of the purified preparations showed a single band on SDS-PAGE and the molecular weight was in good agreement with that calculated from the nucleotide sequence (FIG. 3 ).

실시예Example 2: 2: 키메라chimera 효소의 효소 특성 Enzymatic properties of enzymes

키메라 효소의 최적 온도 및 pH를 온도 범위 10 내지 90℃ 및 pH 범위 4.0 내지 8.0에서 결정하였다 (도 4). 도 4A의 온도 변화 실험 조건은 pH 5.0에서 기질로 1%(w/v) CMC를 사용하고 반응 용액 조성은 50mM 소듐 아세테이트 (pH 5.0), 200 mM NaCl 및 10 mM CaCl2를 포함한다. 도 4B의 pH 변화 실험 조건은 70℃에서 기질 1%(w/v) CMC를 사용하고 pH 구간에 따라서 해당되는 버퍼를 사용하였다. 비교 목적을 위하여, Cel9A 엔도글루카나제를 또한 유사한 분석에 사용하였다. 그 결과, 모든 키메라 효소는 최적 pH 5.0을 보인 반면, 천연 Cel9A 엔도글루카나제는 최적 pH 5.5를 보였다. 놀랍지 않게도, 모든 천연 및 키메라 효소는 동일한 최적 온도 70℃를 보였다. 4℃에서 밤새 저장되었을 때, 키메라 효소는 pH 범위 5.0-8.0에서 안정하였다. 반면 60℃에서 1시간 후 약간의 효소 활성 손실이 있었다. 천연 Cel9A 엔도글루카나제의 반감기는 75℃에서 30분인 반면, 키메라 효소의 반감기는 동일 온도에서 20분이었다. The optimum temperature and pH of the chimeric enzyme were determined in a temperature range of 10 to 90°C and a pH range of 4.0 to 8.0 (FIG. 4). The temperature change experimental conditions of FIG. 4A used 1% (w/v) CMC as a substrate at pH 5.0, and the reaction solution composition included 50 mM sodium acetate (pH 5.0), 200 mM NaCl, and 10 mM CaCl 2 . As for the pH change experimental conditions of FIG. 4B, a substrate 1% (w/v) CMC was used at 70° C. and a corresponding buffer was used according to the pH range. For comparison purposes, Cel9A endoglucanase was also used in a similar assay. As a result, all chimeric enzymes showed an optimum pH of 5.0, while natural Cel9A endoglucanase showed an optimum pH of 5.5. Not surprisingly, all natural and chimeric enzymes showed the same optimum temperature of 70°C. When stored overnight at 4° C., the chimeric enzyme was stable in the pH range 5.0-8.0. On the other hand, there was a slight loss of enzyme activity after 1 hour at 60°C. The half-life of native Cel9A endoglucanase was 30 minutes at 75° C., whereas the half-life of chimeric enzymes was 20 minutes at the same temperature.

키메라 효소는 넓은 기질 특이성을 가졌고 가용성뿐만 아니라 불용성 셀룰로즈 기질을 효율적으로 가수분해하였다 (표 2). The chimeric enzyme had broad substrate specificity and efficiently hydrolyzed both soluble as well as insoluble cellulose substrates (Table 2).

기질temperament 비활성(U/μmol)Inert (U/μmol) Cel9A
(59kDa)
Cel9A
(59kDa)
CBM3-Cel9A
(76kDa)
CBM3-Cel9A
(76kDa)
CBM4-Cel9A
(80kDa)
CBM4-Cel9A
(80kDa)
CBM30-Cel9A
(80kDa)
CBM30-Cel9A
(80kDa)
CMCCMC 4,325±704,325±70 6,600±906,600±90 7,320±807,320±80 7,720±907,720±90 보리 β-글루칸Barley β-glucan 11,800±20011,800±200 12,800±19012,800±190 15,000±17015,000±170 15,000±18015,000±180 PASCPASC 649±50649±50 1,000±601,000±60 1,260±701,260±70 1,280±701,280±70 AvicelAvicel 0.50±0.090.50±0.09 6.0±0.96.0±0.9 4.0±0.74.0±0.7 5.0±0.85.0±0.8 필터 페이퍼Filter paper 0.70±0.080.70±0.08 7.0±1.07.0±1.0 5.4±1.05.4±1.0 6.0±0.96.0±0.9 pNPGpNPG NDa ND a NDa ND a NDa ND a NDa ND a pNPCpNPC 118±30118±30 120±30120±30 130±20130±20 135±20135±20

a: 활성이 검출되지 않음 a : no activity is detected

CMC에 대한 CBM4-Cel9A 및 CBM30-Cel9A 키메라 효소의 촉매 활성은 천연 Cel9A 엔도글루카나제의 그것에 비하여 1.7 및 1.8 배 증가하였다. 천연 효소에 비하여, PASC에 대한 키메라 효소의 촉매 활성은 2배 증가하였다. 불용성 다당류 (Avicel 및 필터 페이퍼)에 대한 키메라 효소의 촉매 활성은 천연 효소의 그것에 비하여 7.7-12.0배로 현저하게 증가하였다. 모든 키메라 효소 중, CBM3-Cel9A 키메라 효소가 불용성 다당류에 대하여 가장 높은 촉매 활성을 보였다. 그러나, p-NPC에 대한 키메라 효소의 효소 활성에는 현저한 증가가 없었다. 모든 효소에서 p-NPG에 대하여 검출가능한 활성이 없었다. The catalytic activity of CBM4-Cel9A and CBM30-Cel9A chimeric enzymes on CMC increased 1.7 and 1.8 times compared to that of native Cel9A endoglucanase. Compared to the natural enzyme, the catalytic activity of the chimeric enzyme for PASC was increased by 2 times. The catalytic activity of chimeric enzymes against insoluble polysaccharides (Avicel and filter paper) was significantly increased by 7.7-12.0 times compared to that of natural enzymes. Among all chimeric enzymes, CBM3-Cel9A chimeric enzyme showed the highest catalytic activity against insoluble polysaccharides. However, there was no significant increase in the enzymatic activity of the chimeric enzyme against p-NPC. There was no detectable activity against p- NPG in all enzymes.

CMC 분해의 점도측정 분석 (viscometric assay)을 키메라 단백질의 엔도글루카나제 활성을 조사하기 위하여 수행하였다. CMC 용액 (0.5%, w/v)의 점도는 CBM3-Cel9A 키메라 효소와 인큐베이션한 후 감소하였다. CMC의 점도는 인큐베인션 30분 내에 80 cP에서 10 cP로 감소하였다. CMC 점도의 현저한 감소는 키메라 단백질의 엔도글루카나제 활성을 나타낸다. 키메라 단백질의 Avicel 결합 친화도를 결정하여 불용성 다당류에 대한 그들의 증가된 촉매 활성과의 상관관계를 발견하였다. 천연 Cel9A 엔도글루카나제에 비하여, 키메라 효소가 Avicel에 대한 가장 높은 친화도를 보였다. Cel9A, CBM3-Cel9A, CBM4-Cel9A 및 CBM30-Cel9A의 결합 비율은 각각 5%, 50%, 35% 및 37%이었다.A viscometric assay of CMC degradation was performed to investigate the endoglucanase activity of the chimeric protein. The viscosity of the CMC solution (0.5%, w/v) decreased after incubation with CBM3-Cel9A chimeric enzyme. The viscosity of CMC decreased from 80 cP to 10 cP within 30 minutes of incubation. A significant decrease in CMC viscosity indicates the endoglucanase activity of the chimeric protein. The Avicel binding affinity of chimeric proteins was determined to find a correlation with their increased catalytic activity for insoluble polysaccharides. Compared to the native Cel9A endoglucanase, the chimeric enzyme showed the highest affinity for Avicel. The binding rates of Cel9A, CBM3-Cel9A, CBM4-Cel9A and CBM30-Cel9A were 5%, 50%, 35% and 37%, respectively.

실시예Example 3: 가수분해 산물 및 진행성의 분석 3: Analysis of hydrolysis products and progression

CBM3-Cel9A에 의한 CMC, PASC, 필터 페이퍼, Avicel, 셀로테트라오즈 및 p-NPC의 가수분해 산물을 TLC에 의하여 정성적으로 분석하였다 (도 5). 셀로비오즈 및 셀로테트라오즈를 CMC, PASC, 필터 페이퍼, 및 Avicel의 가수분해 후 검출하였다. PASC 가수분해의 시간에 따른 반응에서 (도 5B), 셀로비오즈 및 셀로테트라오즈 모두 전 시간에 관찰되었다. 키메라 효소는 절단 산물로서 셀로비오즈 및 셀로테트라오즈를 동시에 생성하는 것으로 여겨진다. 시간에 따른 반응에서, TLC 상의 셀로비오즈 스팟의 강도는 반응 시간 30분부터 150분까지의 증가에 따라 증가한 반면, 셀로테트라오즈 스팟 강도의 유의한 변화는 없었다. 이는 키메라 효소에 의하여 셀로테트라오즈가 셀로비오즈로 더 분해된다는 것을 나타낸다. 셀로테트라오즈 및 p-NPC가 기질로서 사용된 경우 (도 5D 및 E), 키메라 효소는 상기 기질을 효율적으로 가수분해시켜 동시에 셀로비오즈를 방출시켰다. 이들 결과는 주요 가수분해 산물로서 셀로덱스트린을 생성하는 엔도글루카나제의 통상적 특성과는 다르게, 키메라 효소는 셀룰로즈를 셀로비오즈로 가수분해하는 경향이 있다는 것을 암시한다. 셀로비오즈의 생산은 진행성 (processivity)의 표시일 수 있다. CBM3-Cel9A 키메라 효소의 진행성을 평가하기 위하여, 가용성 및 불용성 당의 농도를 필터 페이퍼의 가수분해 후에 측정하고, S. degradans 유래의 알려진 진행성 엔도글루카나제 Cel5H와 비교하였다. CBM3-Cel9A 키메라 효소는 필터 페이퍼의 가수분해 2시간 후에 81% 가용성 환원당 및 19% 불용성 환원당을 생성하였다. Cel5H 참조 효소는 80% 가용성 환원당 및 20% 불용성 환원당을 생성하였다. 키메라 효소 및 Cel5H의 진행성은 각각 4.26 및 4.0이었다.Hydrolysis products of CMC, PASC, filter paper, Avicel, cellotetraose, and p- NPC by CBM3-Cel9A were qualitatively analyzed by TLC (FIG. 5). Cellobiose and cellotetraose were detected after hydrolysis of CMC, PASC, filter paper, and Avicel. In the time-dependent reaction of PASC hydrolysis (Fig. 5B), both cellobiose and cellotetraose were observed at all times. It is believed that chimeric enzymes simultaneously produce cellobiose and cellotetraose as cleavage products. In the reaction with time, the intensity of the cellobiose spot on TLC increased with the increase from 30 minutes to 150 minutes of the reaction time, while there was no significant change in the intensity of the cellotetraose spot. This indicates that cellotetraose is further decomposed into cellobiose by the chimeric enzyme. When cellotetraose and p- NPC were used as substrates (Figs. 5D and E), the chimeric enzyme hydrolyzed the substrate efficiently and simultaneously released cellobiose. These results suggest that, unlike the conventional properties of endoglucanase, which produces cellodextrin as the main hydrolysis product, chimeric enzymes tend to hydrolyze cellulose to cellobiose. The production of cellobiose can be an indication of processivity. To evaluate the progression of the CBM3-Cel9A chimeric enzyme, the concentrations of soluble and insoluble sugars were measured after hydrolysis of filter paper, and S. degradans It was compared to the known advanced endoglucanase Cel5H from. CBM3-Cel9A chimeric enzyme produced 81% soluble reducing sugar and 19% insoluble reducing sugar 2 hours after hydrolysis of the filter paper. The Cel5H reference enzyme produced 80% soluble reducing sugar and 20% insoluble reducing sugar. The progression of chimeric enzyme and Cel5H was 4.26 and 4.0, respectively.

<110> INDUSTRY-ACADEMIC COOPERATION FOUNDATION GYENGSANG UNIVERSITY <120> Cellulase fusion protein and method of degrading cellulosic material using the same <130> PN0104715 <160> 21 <170> KopatentIn 2.0 <210> 1 <211> 155 <212> PRT <213> Clostridium thermocellum <400> 1 Asn Leu Lys Val Glu Phe Tyr Asn Ser Asn Pro Ser Asp Thr Thr Asn 1 5 10 15 Ser Ile Asn Pro Gln Phe Lys Val Thr Asn Thr Gly Ser Ser Ala Ile 20 25 30 Asp Leu Ser Lys Leu Thr Leu Arg Tyr Tyr Tyr Thr Val Asp Gly Gln 35 40 45 Lys Asp Gln Thr Phe Trp Cys Asp His Ala Ala Ile Ile Gly Ser Asn 50 55 60 Gly Ser Tyr Asn Gly Ile Thr Ser Asn Val Lys Gly Thr Phe Val Lys 65 70 75 80 Met Ser Ser Ser Thr Asn Asn Ala Asp Thr Tyr Leu Glu Ile Ser Phe 85 90 95 Thr Gly Gly Thr Leu Glu Pro Gly Ala His Val Gln Ile Gln Gly Arg 100 105 110 Phe Ala Lys Asn Asp Trp Ser Asn Tyr Thr Gln Ser Asn Asp Tyr Ser 115 120 125 Phe Lys Ser Arg Ser Gln Phe Val Glu Trp Asp Gln Val Thr Ala Tyr 130 135 140 Leu Asn Gly Val Leu Val Trp Gly Lys Glu Pro 145 150 155 <210> 2 <211> 175 <212> PRT <213> Clostridium thermocellum <400> 2 Met Leu Glu Asp Asn Ser Ser Thr Leu Pro Pro Tyr Lys Asn Asp Leu 1 5 10 15 Leu Tyr Glu Arg Thr Phe Asp Glu Gly Leu Cys Tyr Pro Trp His Thr 20 25 30 Cys Glu Asp Ser Gly Gly Lys Cys Ser Phe Asp Val Val Asp Val Pro 35 40 45 Gly Gln Pro Gly Asn Lys Ala Phe Ala Val Thr Val Leu Asp Lys Gly 50 55 60 Gln Asn Arg Trp Ser Val Gln Met Arg His Arg Gly Leu Thr Leu Glu 65 70 75 80 Gln Gly His Thr Tyr Arg Val Arg Leu Lys Ile Trp Ala Asp Ala Ser 85 90 95 Cys Lys Val Tyr Ile Lys Ile Gly Gln Met Gly Glu Pro Tyr Ala Glu 100 105 110 Tyr Trp Asn Asn Lys Trp Ser Pro Tyr Thr Leu Thr Ala Gly Lys Val 115 120 125 Leu Glu Ile Asp Glu Thr Phe Val Met Asp Lys Pro Thr Asp Asp Thr 130 135 140 Cys Glu Phe Thr Phe His Leu Gly Gly Glu Leu Ala Ala Thr Pro Pro 145 150 155 160 Tyr Thr Val Tyr Leu Asp Asp Val Ser Leu Tyr Asp Pro Glu Tyr 165 170 175 <210> 3 <211> 185 <212> PRT <213> Clostridium thermocellum <400> 3 Ala Pro Glu Gly Tyr Arg Lys Leu Leu Asp Val Gln Ile Phe Lys Asp 1 5 10 15 Ser Pro Val Val Gly Trp Ser Gly Ser Gly Met Gly Glu Leu Glu Thr 20 25 30 Ile Gly Asp Thr Leu Pro Val Asp Thr Thr Val Thr Tyr Asn Gly Leu 35 40 45 Pro Thr Leu Arg Leu Asn Val Gln Thr Thr Val Gln Ser Gly Trp Trp 50 55 60 Ile Ser Leu Leu Thr Leu Arg Gly Trp Asn Thr His Asp Leu Ser Gln 65 70 75 80 Tyr Val Glu Asn Gly Tyr Leu Glu Phe Asp Ile Lys Gly Lys Glu Gly 85 90 95 Gly Glu Asp Phe Val Ile Gly Phe Arg Asp Lys Val Tyr Glu Arg Val 100 105 110 Tyr Gly Leu Glu Ile Asp Val Thr Thr Val Ile Ser Asn Tyr Val Thr 115 120 125 Val Thr Thr Asp Trp Gln His Val Lys Ile Pro Leu Arg Asp Leu Met 130 135 140 Lys Ile Asn Asn Gly Phe Asp Pro Ser Ser Val Thr Cys Leu Val Phe 145 150 155 160 Ser Lys Arg Tyr Ala Asp Pro Phe Thr Val Trp Phe Ser Asp Ile Lys 165 170 175 Ile Thr Ser Glu Asp Asn Glu Lys Ser 180 185 <210> 4 <211> 537 <212> PRT <213> Clostridium thermocellum <400> 4 Met Pro Ser Arg Val Pro Lys Ser Ile Phe Tyr Asn Gln Val Gly Tyr 1 5 10 15 Leu Ile Ser Gly Asp Lys Arg Phe Trp Ile Gln Ala His Glu Pro Gln 20 25 30 Pro Phe Ala Leu Arg Thr Pro Glu Gly Gln Ala Val Phe Ala Gly Met 35 40 45 Thr Lys Pro Val Gly Gly Asn Trp Tyr Val Gly Asp Phe Thr Ala Leu 50 55 60 Arg Val Pro Gly Thr Tyr Thr Leu Thr Val Gly Thr Leu Glu Ala Arg 65 70 75 80 Val Val Ile His Arg Arg Ala Tyr Arg Asp Val Leu Glu Ala Met Leu 85 90 95 Arg Phe Phe Asp Tyr Gln Leu Cys Gly Val Val Leu Pro Glu Asp Glu 100 105 110 Ala Gly Pro Trp Ala His Gly Ala Cys His Thr Ser Asp Ala Lys Val 115 120 125 Phe Gly Thr Glu Arg Ala Leu Ala Cys Pro Gly Gly Trp His Asp Ala 130 135 140 Gly Asp Tyr Gly Lys Tyr Thr Val Pro Ala Ala Lys Ala Val Ala Asp 145 150 155 160 Leu Leu Leu Ala His Glu Tyr Phe Pro Ala Ala Leu Ala His Val Arg 165 170 175 Pro Met Arg Ser Val His Arg Ala Pro His Leu Pro Pro Ala Leu Glu 180 185 190 Val Ala Arg Glu Glu Ile Ala Trp Leu Leu Thr Met Gln Asp Pro Ala 195 200 205 Thr Gly Gly Val Tyr His Lys Val Thr Thr Pro Ser Phe Pro Pro Leu 210 215 220 Asp Thr Arg Pro Glu Asp Asp Asp Ala Pro Leu Val Leu Ser Pro Ile 225 230 235 240 Ser Tyr Ala Ala Thr Ala Thr Phe Cys Ala Ala Met Ala His Ala Ala 245 250 255 Leu Val Tyr Arg Pro Phe Asp Pro Ala Leu Ser Ser Cys Cys Ala Asp 260 265 270 Ala Ala Arg Arg Ala Tyr Ala Trp Leu Gly Ala His Glu Met Gln Pro 275 280 285 Phe His Asn Pro Asp Gly Ile Leu Thr Gly Glu Tyr Gly Asp Ala Glu 290 295 300 Leu Arg Asp Glu Leu Leu Trp Ala Ser Cys Ala Leu Leu Arg Met Thr 305 310 315 320 Gly Asp Ser Ala Trp Ala Arg Val Cys Glu Pro Leu Leu Asp Leu Asp 325 330 335 Leu Pro Trp Glu Leu Gly Trp Ala Asp Val Ala Leu Tyr Gly Val Met 340 345 350 Asp Tyr Leu Arg Thr Pro Arg Ala Ala Val Ser Asp Asp Val Arg Asn 355 360 365 Lys Val Lys Ser Arg Leu Leu Arg Glu Leu Asp Ala Leu Ala Ala Met 370 375 380 Ala Glu Ser His Pro Phe Gly Ile Pro Met Arg Asp Asp Asp Phe Ile 385 390 395 400 Trp Gly Ser Asn Met Val Leu Leu Asn Arg Ala Met Ala Phe Leu Leu 405 410 415 Ala Glu Gly Val Gly Val Leu His Pro Ala Ala His Thr Val Ala Gln 420 425 430 Arg Ala Ala Asp Tyr Leu Phe Gly Ala Asn Pro Leu Gly Gln Cys Tyr 435 440 445 Val Thr Gly Phe Gly Gln Arg Pro Val Arg His Pro His His Arg Pro 450 455 460 Ser Val Ala Asp Asp Val Asp His Pro Val Pro Gly Met Val Val Gly 465 470 475 480 Gly Pro Asn Arg His Leu Gln Asp Glu Ile Ala Arg Ala Gln Leu Ala 485 490 495 Gly Arg Pro Ala Met Glu Ala Tyr Ile Asp His Gln Asp Ser Tyr Ser 500 505 510 Thr Asn Glu Val Ala Val Tyr Trp Asn Ser Pro Ala Val Phe Val Ile 515 520 525 Ala Ala Leu Leu Glu Ala Arg Gly Arg 530 535 <210> 5 <211> 692 <212> PRT <213> Artificial Sequence <220> <223> CBM3-Cel9A cellulase fusion protein <400> 5 Asn Leu Lys Val Glu Phe Tyr Asn Ser Asn Pro Ser Asp Thr Thr Asn 1 5 10 15 Ser Ile Asn Pro Gln Phe Lys Val Thr Asn Thr Gly Ser Ser Ala Ile 20 25 30 Asp Leu Ser Lys Leu Thr Leu Arg Tyr Tyr Tyr Thr Val Asp Gly Gln 35 40 45 Lys Asp Gln Thr Phe Trp Cys Asp His Ala Ala Ile Ile Gly Ser Asn 50 55 60 Gly Ser Tyr Asn Gly Ile Thr Ser Asn Val Lys Gly Thr Phe Val Lys 65 70 75 80 Met Ser Ser Ser Thr Asn Asn Ala Asp Thr Tyr Leu Glu Ile Ser Phe 85 90 95 Thr Gly Gly Thr Leu Glu Pro Gly Ala His Val Gln Ile Gln Gly Arg 100 105 110 Phe Ala Lys Asn Asp Trp Ser Asn Tyr Thr Gln Ser Asn Asp Tyr Ser 115 120 125 Phe Lys Ser Arg Ser Gln Phe Val Glu Trp Asp Gln Val Thr Ala Tyr 130 135 140 Leu Asn Gly Val Leu Val Trp Gly Lys Glu Pro Met Pro Ser Arg Val 145 150 155 160 Pro Lys Ser Ile Phe Tyr Asn Gln Val Gly Tyr Leu Ile Ser Gly Asp 165 170 175 Lys Arg Phe Trp Ile Gln Ala His Glu Pro Gln Pro Phe Ala Leu Arg 180 185 190 Thr Pro Glu Gly Gln Ala Val Phe Ala Gly Met Thr Lys Pro Val Gly 195 200 205 Gly Asn Trp Tyr Val Gly Asp Phe Thr Ala Leu Arg Val Pro Gly Thr 210 215 220 Tyr Thr Leu Thr Val Gly Thr Leu Glu Ala Arg Val Val Ile His Arg 225 230 235 240 Arg Ala Tyr Arg Asp Val Leu Glu Ala Met Leu Arg Phe Phe Asp Tyr 245 250 255 Gln Leu Cys Gly Val Val Leu Pro Glu Asp Glu Ala Gly Pro Trp Ala 260 265 270 His Gly Ala Cys His Thr Ser Asp Ala Lys Val Phe Gly Thr Glu Arg 275 280 285 Ala Leu Ala Cys Pro Gly Gly Trp His Asp Ala Gly Asp Tyr Gly Lys 290 295 300 Tyr Thr Val Pro Ala Ala Lys Ala Val Ala Asp Leu Leu Leu Ala His 305 310 315 320 Glu Tyr Phe Pro Ala Ala Leu Ala His Val Arg Pro Met Arg Ser Val 325 330 335 His Arg Ala Pro His Leu Pro Pro Ala Leu Glu Val Ala Arg Glu Glu 340 345 350 Ile Ala Trp Leu Leu Thr Met Gln Asp Pro Ala Thr Gly Gly Val Tyr 355 360 365 His Lys Val Thr Thr Pro Ser Phe Pro Pro Leu Asp Thr Arg Pro Glu 370 375 380 Asp Asp Asp Ala Pro Leu Val Leu Ser Pro Ile Ser Tyr Ala Ala Thr 385 390 395 400 Ala Thr Phe Cys Ala Ala Met Ala His Ala Ala Leu Val Tyr Arg Pro 405 410 415 Phe Asp Pro Ala Leu Ser Ser Cys Cys Ala Asp Ala Ala Arg Arg Ala 420 425 430 Tyr Ala Trp Leu Gly Ala His Glu Met Gln Pro Phe His Asn Pro Asp 435 440 445 Gly Ile Leu Thr Gly Glu Tyr Gly Asp Ala Glu Leu Arg Asp Glu Leu 450 455 460 Leu Trp Ala Ser Cys Ala Leu Leu Arg Met Thr Gly Asp Ser Ala Trp 465 470 475 480 Ala Arg Val Cys Glu Pro Leu Leu Asp Leu Asp Leu Pro Trp Glu Leu 485 490 495 Gly Trp Ala Asp Val Ala Leu Tyr Gly Val Met Asp Tyr Leu Arg Thr 500 505 510 Pro Arg Ala Ala Val Ser Asp Asp Val Arg Asn Lys Val Lys Ser Arg 515 520 525 Leu Leu Arg Glu Leu Asp Ala Leu Ala Ala Met Ala Glu Ser His Pro 530 535 540 Phe Gly Ile Pro Met Arg Asp Asp Asp Phe Ile Trp Gly Ser Asn Met 545 550 555 560 Val Leu Leu Asn Arg Ala Met Ala Phe Leu Leu Ala Glu Gly Val Gly 565 570 575 Val Leu His Pro Ala Ala His Thr Val Ala Gln Arg Ala Ala Asp Tyr 580 585 590 Leu Phe Gly Ala Asn Pro Leu Gly Gln Cys Tyr Val Thr Gly Phe Gly 595 600 605 Gln Arg Pro Val Arg His Pro His His Arg Pro Ser Val Ala Asp Asp 610 615 620 Val Asp His Pro Val Pro Gly Met Val Val Gly Gly Pro Asn Arg His 625 630 635 640 Leu Gln Asp Glu Ile Ala Arg Ala Gln Leu Ala Gly Arg Pro Ala Met 645 650 655 Glu Ala Tyr Ile Asp His Gln Asp Ser Tyr Ser Thr Asn Glu Val Ala 660 665 670 Val Tyr Trp Asn Ser Pro Ala Val Phe Val Ile Ala Ala Leu Leu Glu 675 680 685 Ala Arg Gly Arg 690 <210> 6 <211> 712 <212> PRT <213> Artificial Sequence <220> <223> CBM4-Cel9A cellulase fusion protein <400> 6 Met Leu Glu Asp Asn Ser Ser Thr Leu Pro Pro Tyr Lys Asn Asp Leu 1 5 10 15 Leu Tyr Glu Arg Thr Phe Asp Glu Gly Leu Cys Tyr Pro Trp His Thr 20 25 30 Cys Glu Asp Ser Gly Gly Lys Cys Ser Phe Asp Val Val Asp Val Pro 35 40 45 Gly Gln Pro Gly Asn Lys Ala Phe Ala Val Thr Val Leu Asp Lys Gly 50 55 60 Gln Asn Arg Trp Ser Val Gln Met Arg His Arg Gly Leu Thr Leu Glu 65 70 75 80 Gln Gly His Thr Tyr Arg Val Arg Leu Lys Ile Trp Ala Asp Ala Ser 85 90 95 Cys Lys Val Tyr Ile Lys Ile Gly Gln Met Gly Glu Pro Tyr Ala Glu 100 105 110 Tyr Trp Asn Asn Lys Trp Ser Pro Tyr Thr Leu Thr Ala Gly Lys Val 115 120 125 Leu Glu Ile Asp Glu Thr Phe Val Met Asp Lys Pro Thr Asp Asp Thr 130 135 140 Cys Glu Phe Thr Phe His Leu Gly Gly Glu Leu Ala Ala Thr Pro Pro 145 150 155 160 Tyr Thr Val Tyr Leu Asp Asp Val Ser Leu Tyr Asp Pro Glu Tyr Met 165 170 175 Pro Ser Arg Val Pro Lys Ser Ile Phe Tyr Asn Gln Val Gly Tyr Leu 180 185 190 Ile Ser Gly Asp Lys Arg Phe Trp Ile Gln Ala His Glu Pro Gln Pro 195 200 205 Phe Ala Leu Arg Thr Pro Glu Gly Gln Ala Val Phe Ala Gly Met Thr 210 215 220 Lys Pro Val Gly Gly Asn Trp Tyr Val Gly Asp Phe Thr Ala Leu Arg 225 230 235 240 Val Pro Gly Thr Tyr Thr Leu Thr Val Gly Thr Leu Glu Ala Arg Val 245 250 255 Val Ile His Arg Arg Ala Tyr Arg Asp Val Leu Glu Ala Met Leu Arg 260 265 270 Phe Phe Asp Tyr Gln Leu Cys Gly Val Val Leu Pro Glu Asp Glu Ala 275 280 285 Gly Pro Trp Ala His Gly Ala Cys His Thr Ser Asp Ala Lys Val Phe 290 295 300 Gly Thr Glu Arg Ala Leu Ala Cys Pro Gly Gly Trp His Asp Ala Gly 305 310 315 320 Asp Tyr Gly Lys Tyr Thr Val Pro Ala Ala Lys Ala Val Ala Asp Leu 325 330 335 Leu Leu Ala His Glu Tyr Phe Pro Ala Ala Leu Ala His Val Arg Pro 340 345 350 Met Arg Ser Val His Arg Ala Pro His Leu Pro Pro Ala Leu Glu Val 355 360 365 Ala Arg Glu Glu Ile Ala Trp Leu Leu Thr Met Gln Asp Pro Ala Thr 370 375 380 Gly Gly Val Tyr His Lys Val Thr Thr Pro Ser Phe Pro Pro Leu Asp 385 390 395 400 Thr Arg Pro Glu Asp Asp Asp Ala Pro Leu Val Leu Ser Pro Ile Ser 405 410 415 Tyr Ala Ala Thr Ala Thr Phe Cys Ala Ala Met Ala His Ala Ala Leu 420 425 430 Val Tyr Arg Pro Phe Asp Pro Ala Leu Ser Ser Cys Cys Ala Asp Ala 435 440 445 Ala Arg Arg Ala Tyr Ala Trp Leu Gly Ala His Glu Met Gln Pro Phe 450 455 460 His Asn Pro Asp Gly Ile Leu Thr Gly Glu Tyr Gly Asp Ala Glu Leu 465 470 475 480 Arg Asp Glu Leu Leu Trp Ala Ser Cys Ala Leu Leu Arg Met Thr Gly 485 490 495 Asp Ser Ala Trp Ala Arg Val Cys Glu Pro Leu Leu Asp Leu Asp Leu 500 505 510 Pro Trp Glu Leu Gly Trp Ala Asp Val Ala Leu Tyr Gly Val Met Asp 515 520 525 Tyr Leu Arg Thr Pro Arg Ala Ala Val Ser Asp Asp Val Arg Asn Lys 530 535 540 Val Lys Ser Arg Leu Leu Arg Glu Leu Asp Ala Leu Ala Ala Met Ala 545 550 555 560 Glu Ser His Pro Phe Gly Ile Pro Met Arg Asp Asp Asp Phe Ile Trp 565 570 575 Gly Ser Asn Met Val Leu Leu Asn Arg Ala Met Ala Phe Leu Leu Ala 580 585 590 Glu Gly Val Gly Val Leu His Pro Ala Ala His Thr Val Ala Gln Arg 595 600 605 Ala Ala Asp Tyr Leu Phe Gly Ala Asn Pro Leu Gly Gln Cys Tyr Val 610 615 620 Thr Gly Phe Gly Gln Arg Pro Val Arg His Pro His His Arg Pro Ser 625 630 635 640 Val Ala Asp Asp Val Asp His Pro Val Pro Gly Met Val Val Gly Gly 645 650 655 Pro Asn Arg His Leu Gln Asp Glu Ile Ala Arg Ala Gln Leu Ala Gly 660 665 670 Arg Pro Ala Met Glu Ala Tyr Ile Asp His Gln Asp Ser Tyr Ser Thr 675 680 685 Asn Glu Val Ala Val Tyr Trp Asn Ser Pro Ala Val Phe Val Ile Ala 690 695 700 Ala Leu Leu Glu Ala Arg Gly Arg 705 710 <210> 7 <211> 722 <212> PRT <213> Artificial Sequence <220> <223> CBM30-Cel9A cellulase fusion protein <400> 7 Ala Pro Glu Gly Tyr Arg Lys Leu Leu Asp Val Gln Ile Phe Lys Asp 1 5 10 15 Ser Pro Val Val Gly Trp Ser Gly Ser Gly Met Gly Glu Leu Glu Thr 20 25 30 Ile Gly Asp Thr Leu Pro Val Asp Thr Thr Val Thr Tyr Asn Gly Leu 35 40 45 Pro Thr Leu Arg Leu Asn Val Gln Thr Thr Val Gln Ser Gly Trp Trp 50 55 60 Ile Ser Leu Leu Thr Leu Arg Gly Trp Asn Thr His Asp Leu Ser Gln 65 70 75 80 Tyr Val Glu Asn Gly Tyr Leu Glu Phe Asp Ile Lys Gly Lys Glu Gly 85 90 95 Gly Glu Asp Phe Val Ile Gly Phe Arg Asp Lys Val Tyr Glu Arg Val 100 105 110 Tyr Gly Leu Glu Ile Asp Val Thr Thr Val Ile Ser Asn Tyr Val Thr 115 120 125 Val Thr Thr Asp Trp Gln His Val Lys Ile Pro Leu Arg Asp Leu Met 130 135 140 Lys Ile Asn Asn Gly Phe Asp Pro Ser Ser Val Thr Cys Leu Val Phe 145 150 155 160 Ser Lys Arg Tyr Ala Asp Pro Phe Thr Val Trp Phe Ser Asp Ile Lys 165 170 175 Ile Thr Ser Glu Asp Asn Glu Lys Ser Met Pro Ser Arg Val Pro Lys 180 185 190 Ser Ile Phe Tyr Asn Gln Val Gly Tyr Leu Ile Ser Gly Asp Lys Arg 195 200 205 Phe Trp Ile Gln Ala His Glu Pro Gln Pro Phe Ala Leu Arg Thr Pro 210 215 220 Glu Gly Gln Ala Val Phe Ala Gly Met Thr Lys Pro Val Gly Gly Asn 225 230 235 240 Trp Tyr Val Gly Asp Phe Thr Ala Leu Arg Val Pro Gly Thr Tyr Thr 245 250 255 Leu Thr Val Gly Thr Leu Glu Ala Arg Val Val Ile His Arg Arg Ala 260 265 270 Tyr Arg Asp Val Leu Glu Ala Met Leu Arg Phe Phe Asp Tyr Gln Leu 275 280 285 Cys Gly Val Val Leu Pro Glu Asp Glu Ala Gly Pro Trp Ala His Gly 290 295 300 Ala Cys His Thr Ser Asp Ala Lys Val Phe Gly Thr Glu Arg Ala Leu 305 310 315 320 Ala Cys Pro Gly Gly Trp His Asp Ala Gly Asp Tyr Gly Lys Tyr Thr 325 330 335 Val Pro Ala Ala Lys Ala Val Ala Asp Leu Leu Leu Ala His Glu Tyr 340 345 350 Phe Pro Ala Ala Leu Ala His Val Arg Pro Met Arg Ser Val His Arg 355 360 365 Ala Pro His Leu Pro Pro Ala Leu Glu Val Ala Arg Glu Glu Ile Ala 370 375 380 Trp Leu Leu Thr Met Gln Asp Pro Ala Thr Gly Gly Val Tyr His Lys 385 390 395 400 Val Thr Thr Pro Ser Phe Pro Pro Leu Asp Thr Arg Pro Glu Asp Asp 405 410 415 Asp Ala Pro Leu Val Leu Ser Pro Ile Ser Tyr Ala Ala Thr Ala Thr 420 425 430 Phe Cys Ala Ala Met Ala His Ala Ala Leu Val Tyr Arg Pro Phe Asp 435 440 445 Pro Ala Leu Ser Ser Cys Cys Ala Asp Ala Ala Arg Arg Ala Tyr Ala 450 455 460 Trp Leu Gly Ala His Glu Met Gln Pro Phe His Asn Pro Asp Gly Ile 465 470 475 480 Leu Thr Gly Glu Tyr Gly Asp Ala Glu Leu Arg Asp Glu Leu Leu Trp 485 490 495 Ala Ser Cys Ala Leu Leu Arg Met Thr Gly Asp Ser Ala Trp Ala Arg 500 505 510 Val Cys Glu Pro Leu Leu Asp Leu Asp Leu Pro Trp Glu Leu Gly Trp 515 520 525 Ala Asp Val Ala Leu Tyr Gly Val Met Asp Tyr Leu Arg Thr Pro Arg 530 535 540 Ala Ala Val Ser Asp Asp Val Arg Asn Lys Val Lys Ser Arg Leu Leu 545 550 555 560 Arg Glu Leu Asp Ala Leu Ala Ala Met Ala Glu Ser His Pro Phe Gly 565 570 575 Ile Pro Met Arg Asp Asp Asp Phe Ile Trp Gly Ser Asn Met Val Leu 580 585 590 Leu Asn Arg Ala Met Ala Phe Leu Leu Ala Glu Gly Val Gly Val Leu 595 600 605 His Pro Ala Ala His Thr Val Ala Gln Arg Ala Ala Asp Tyr Leu Phe 610 615 620 Gly Ala Asn Pro Leu Gly Gln Cys Tyr Val Thr Gly Phe Gly Gln Arg 625 630 635 640 Pro Val Arg His Pro His His Arg Pro Ser Val Ala Asp Asp Val Asp 645 650 655 His Pro Val Pro Gly Met Val Val Gly Gly Pro Asn Arg His Leu Gln 660 665 670 Asp Glu Ile Ala Arg Ala Gln Leu Ala Gly Arg Pro Ala Met Glu Ala 675 680 685 Tyr Ile Asp His Gln Asp Ser Tyr Ser Thr Asn Glu Val Ala Val Tyr 690 695 700 Trp Asn Ser Pro Ala Val Phe Val Ile Ala Ala Leu Leu Glu Ala Arg 705 710 715 720 Gly Arg <210> 8 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> P1 primer <400> 8 ttgtcatatg aatttgaagg ttgaattcta caacagcaat c 41 <210> 9 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> P2 primer <400> 9 gatttaggca cacggctcgg gggttcttta ccccatacaa g 41 <210> 10 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> P3 primer <400> 10 gggtaaagaa cccccgagcc gtgtgcctaa atc 33 <210> 11 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> P1' primer <400> 11 atgttcatat gttagaagat aattcttcga c 31 <210> 12 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> P2' primer <400> 12 gatttaggca cacggctcgg aggctgcgga agtatatatt 40 <210> 13 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> P3' primer <400> 13 aatatatact tccgcagcct ccgagccgtg tgcctaaatc 40 <210> 14 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> P1'' primer <400> 14 attgtcatat ggctcctgaa ggctacagga agc 33 <210> 15 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> P2'' primer <400> 15 gatttaggca cacggctcgg gattgcagga gcggactttt c 41 <210> 16 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> P3'' primer <400> 16 ccgctcctgc aatcccgagc cgtgtgccta aatc 34 <210> 17 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> P4 primer <400> 17 ccgatctcga gttaacggcc acgagcctcc ag 32 <210> 18 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Cel5H-F primer <400> 18 cccggatcca attcttagcg gtggccagca a 31 <210> 19 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Cel5H-R primer <400> 19 cccgctcgag ccagctacca aattgcaggg tgt 33 <210> 20 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> CbhA-F primer <400> 20 ctagctagct atacttccgc agcctgat 28 <210> 21 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> CbhA-R primer <400> 21 tatataagct taaccgcccg gcggcgttcc cca 33 <110> INDUSTRY-ACADEMIC COOPERATION FOUNDATION GYENGSANG UNIVERSITY <120> Cellulase fusion protein and method of degrading cellulosic material using the same <130> PN0104715 <160> 21 <170> KopatentIn 2.0 <210> 1 <211> 155 <212> PRT <213> Clostridium thermocellum <400> 1 Asn Leu Lys Val Glu Phe Tyr Asn Ser Asn Pro Ser Asp Thr Thr Asn 1 5 10 15 Ser Ile Asn Pro Gln Phe Lys Val Thr Asn Thr Gly Ser Ser Ala Ile 20 25 30 Asp Leu Ser Lys Leu Thr Leu Arg Tyr Tyr Tyr Thr Val Asp Gly Gln 35 40 45 Lys Asp Gln Thr Phe Trp Cys Asp His Ala Ala Ile Ile Gly Ser Asn 50 55 60 Gly Ser Tyr Asn Gly Ile Thr Ser Asn Val Lys Gly Thr Phe Val Lys 65 70 75 80 Met Ser Ser Ser Thr Asn Asn Ala Asp Thr Tyr Leu Glu Ile Ser Phe 85 90 95 Thr Gly Gly Thr Leu Glu Pro Gly Ala His Val Gln Ile Gln Gly Arg 100 105 110 Phe Ala Lys Asn Asp Trp Ser Asn Tyr Thr Gln Ser Asn Asp Tyr Ser 115 120 125 Phe Lys Ser Arg Ser Gln Phe Val Glu Trp Asp Gln Val Thr Ala Tyr 130 135 140 Leu Asn Gly Val Leu Val Trp Gly Lys Glu Pro 145 150 155 <210> 2 <211> 175 <212> PRT <213> Clostridium thermocellum <400> 2 Met Leu Glu Asp Asn Ser Ser Thr Leu Pro Pro Tyr Lys Asn Asp Leu 1 5 10 15 Leu Tyr Glu Arg Thr Phe Asp Glu Gly Leu Cys Tyr Pro Trp His Thr 20 25 30 Cys Glu Asp Ser Gly Gly Lys Cys Ser Phe Asp Val Val Asp Val Pro 35 40 45 Gly Gln Pro Gly Asn Lys Ala Phe Ala Val Thr Val Leu Asp Lys Gly 50 55 60 Gln Asn Arg Trp Ser Val Gln Met Arg His Arg Gly Leu Thr Leu Glu 65 70 75 80 Gln Gly His Thr Tyr Arg Val Arg Leu Lys Ile Trp Ala Asp Ala Ser 85 90 95 Cys Lys Val Tyr Ile Lys Ile Gly Gln Met Gly Glu Pro Tyr Ala Glu 100 105 110 Tyr Trp Asn Asn Lys Trp Ser Pro Tyr Thr Leu Thr Ala Gly Lys Val 115 120 125 Leu Glu Ile Asp Glu Thr Phe Val Met Asp Lys Pro Thr Asp Asp Thr 130 135 140 Cys Glu Phe Thr Phe His Leu Gly Gly Glu Leu Ala Ala Thr Pro Pro 145 150 155 160 Tyr Thr Val Tyr Leu Asp Asp Val Ser Leu Tyr Asp Pro Glu Tyr 165 170 175 <210> 3 <211> 185 <212> PRT <213> Clostridium thermocellum <400> 3 Ala Pro Glu Gly Tyr Arg Lys Leu Leu Asp Val Gln Ile Phe Lys Asp 1 5 10 15 Ser Pro Val Val Gly Trp Ser Gly Ser Gly Met Gly Glu Leu Glu Thr 20 25 30 Ile Gly Asp Thr Leu Pro Val Asp Thr Thr Val Thr Tyr Asn Gly Leu 35 40 45 Pro Thr Leu Arg Leu Asn Val Gln Thr Thr Val Gln Ser Gly Trp Trp 50 55 60 Ile Ser Leu Leu Thr Leu Arg Gly Trp Asn Thr His Asp Leu Ser Gln 65 70 75 80 Tyr Val Glu Asn Gly Tyr Leu Glu Phe Asp Ile Lys Gly Lys Glu Gly 85 90 95 Gly Glu Asp Phe Val Ile Gly Phe Arg Asp Lys Val Tyr Glu Arg Val 100 105 110 Tyr Gly Leu Glu Ile Asp Val Thr Thr Val Ile Ser Asn Tyr Val Thr 115 120 125 Val Thr Thr Asp Trp Gln His Val Lys Ile Pro Leu Arg Asp Leu Met 130 135 140 Lys Ile Asn Asn Gly Phe Asp Pro Ser Ser Val Thr Cys Leu Val Phe 145 150 155 160 Ser Lys Arg Tyr Ala Asp Pro Phe Thr Val Trp Phe Ser Asp Ile Lys 165 170 175 Ile Thr Ser Glu Asp Asn Glu Lys Ser 180 185 <210> 4 <211> 537 <212> PRT <213> Clostridium thermocellum <400> 4 Met Pro Ser Arg Val Pro Lys Ser Ile Phe Tyr Asn Gln Val Gly Tyr 1 5 10 15 Leu Ile Ser Gly Asp Lys Arg Phe Trp Ile Gln Ala His Glu Pro Gln 20 25 30 Pro Phe Ala Leu Arg Thr Pro Glu Gly Gln Ala Val Phe Ala Gly Met 35 40 45 Thr Lys Pro Val Gly Gly Asn Trp Tyr Val Gly Asp Phe Thr Ala Leu 50 55 60 Arg Val Pro Gly Thr Tyr Thr Leu Thr Val Gly Thr Leu Glu Ala Arg 65 70 75 80 Val Val Ile His Arg Arg Ala Tyr Arg Asp Val Leu Glu Ala Met Leu 85 90 95 Arg Phe Phe Asp Tyr Gln Leu Cys Gly Val Val Leu Pro Glu Asp Glu 100 105 110 Ala Gly Pro Trp Ala His Gly Ala Cys His Thr Ser Asp Ala Lys Val 115 120 125 Phe Gly Thr Glu Arg Ala Leu Ala Cys Pro Gly Gly Trp His Asp Ala 130 135 140 Gly Asp Tyr Gly Lys Tyr Thr Val Pro Ala Ala Lys Ala Val Ala Asp 145 150 155 160 Leu Leu Leu Ala His Glu Tyr Phe Pro Ala Ala Leu Ala His Val Arg 165 170 175 Pro Met Arg Ser Val His Arg Ala Pro His Leu Pro Pro Ala Leu Glu 180 185 190 Val Ala Arg Glu Glu Ile Ala Trp Leu Leu Thr Met Gln Asp Pro Ala 195 200 205 Thr Gly Gly Val Tyr His Lys Val Thr Thr Pro Ser Phe Pro Pro Leu 210 215 220 Asp Thr Arg Pro Glu Asp Asp Asp Ala Pro Leu Val Leu Ser Pro Ile 225 230 235 240 Ser Tyr Ala Ala Thr Ala Thr Phe Cys Ala Ala Met Ala His Ala Ala 245 250 255 Leu Val Tyr Arg Pro Phe Asp Pro Ala Leu Ser Ser Cys Cys Ala Asp 260 265 270 Ala Ala Arg Arg Ala Tyr Ala Trp Leu Gly Ala His Glu Met Gln Pro 275 280 285 Phe His Asn Pro Asp Gly Ile Leu Thr Gly Glu Tyr Gly Asp Ala Glu 290 295 300 Leu Arg Asp Glu Leu Leu Trp Ala Ser Cys Ala Leu Leu Arg Met Thr 305 310 315 320 Gly Asp Ser Ala Trp Ala Arg Val Cys Glu Pro Leu Leu Asp Leu Asp 325 330 335 Leu Pro Trp Glu Leu Gly Trp Ala Asp Val Ala Leu Tyr Gly Val Met 340 345 350 Asp Tyr Leu Arg Thr Pro Arg Ala Ala Val Ser Asp Asp Val Arg Asn 355 360 365 Lys Val Lys Ser Arg Leu Leu Arg Glu Leu Asp Ala Leu Ala Ala Met 370 375 380 Ala Glu Ser His Pro Phe Gly Ile Pro Met Arg Asp Asp Asp Phe Ile 385 390 395 400 Trp Gly Ser Asn Met Val Leu Leu Asn Arg Ala Met Ala Phe Leu Leu 405 410 415 Ala Glu Gly Val Gly Val Leu His Pro Ala Ala His Thr Val Ala Gln 420 425 430 Arg Ala Ala Asp Tyr Leu Phe Gly Ala Asn Pro Leu Gly Gln Cys Tyr 435 440 445 Val Thr Gly Phe Gly Gln Arg Pro Val Arg His Pro His His Arg Pro 450 455 460 Ser Val Ala Asp Asp Val Asp His Pro Val Pro Gly Met Val Val Gly 465 470 475 480 Gly Pro Asn Arg His Leu Gln Asp Glu Ile Ala Arg Ala Gln Leu Ala 485 490 495 Gly Arg Pro Ala Met Glu Ala Tyr Ile Asp His Gln Asp Ser Tyr Ser 500 505 510 Thr Asn Glu Val Ala Val Tyr Trp Asn Ser Pro Ala Val Phe Val Ile 515 520 525 Ala Ala Leu Leu Glu Ala Arg Gly Arg 530 535 <210> 5 <211> 692 <212> PRT <213> Artificial Sequence <220> <223> CBM3-Cel9A cellulase fusion protein <400> 5 Asn Leu Lys Val Glu Phe Tyr Asn Ser Asn Pro Ser Asp Thr Thr Asn 1 5 10 15 Ser Ile Asn Pro Gln Phe Lys Val Thr Asn Thr Gly Ser Ser Ala Ile 20 25 30 Asp Leu Ser Lys Leu Thr Leu Arg Tyr Tyr Tyr Thr Val Asp Gly Gln 35 40 45 Lys Asp Gln Thr Phe Trp Cys Asp His Ala Ala Ile Ile Gly Ser Asn 50 55 60 Gly Ser Tyr Asn Gly Ile Thr Ser Asn Val Lys Gly Thr Phe Val Lys 65 70 75 80 Met Ser Ser Ser Thr Asn Asn Ala Asp Thr Tyr Leu Glu Ile Ser Phe 85 90 95 Thr Gly Gly Thr Leu Glu Pro Gly Ala His Val Gln Ile Gln Gly Arg 100 105 110 Phe Ala Lys Asn Asp Trp Ser Asn Tyr Thr Gln Ser Asn Asp Tyr Ser 115 120 125 Phe Lys Ser Arg Ser Gln Phe Val Glu Trp Asp Gln Val Thr Ala Tyr 130 135 140 Leu Asn Gly Val Leu Val Trp Gly Lys Glu Pro Met Pro Ser Arg Val 145 150 155 160 Pro Lys Ser Ile Phe Tyr Asn Gln Val Gly Tyr Leu Ile Ser Gly Asp 165 170 175 Lys Arg Phe Trp Ile Gln Ala His Glu Pro Gln Pro Phe Ala Leu Arg 180 185 190 Thr Pro Glu Gly Gln Ala Val Phe Ala Gly Met Thr Lys Pro Val Gly 195 200 205 Gly Asn Trp Tyr Val Gly Asp Phe Thr Ala Leu Arg Val Pro Gly Thr 210 215 220 Tyr Thr Leu Thr Val Gly Thr Leu Glu Ala Arg Val Val Ile His Arg 225 230 235 240 Arg Ala Tyr Arg Asp Val Leu Glu Ala Met Leu Arg Phe Phe Asp Tyr 245 250 255 Gln Leu Cys Gly Val Val Leu Pro Glu Asp Glu Ala Gly Pro Trp Ala 260 265 270 His Gly Ala Cys His Thr Ser Asp Ala Lys Val Phe Gly Thr Glu Arg 275 280 285 Ala Leu Ala Cys Pro Gly Gly Trp His Asp Ala Gly Asp Tyr Gly Lys 290 295 300 Tyr Thr Val Pro Ala Ala Lys Ala Val Ala Asp Leu Leu Leu Ala His 305 310 315 320 Glu Tyr Phe Pro Ala Ala Leu Ala His Val Arg Pro Met Arg Ser Val 325 330 335 His Arg Ala Pro His Leu Pro Pro Ala Leu Glu Val Ala Arg Glu Glu 340 345 350 Ile Ala Trp Leu Leu Thr Met Gln Asp Pro Ala Thr Gly Gly Val Tyr 355 360 365 His Lys Val Thr Thr Pro Ser Phe Pro Pro Leu Asp Thr Arg Pro Glu 370 375 380 Asp Asp Asp Ala Pro Leu Val Leu Ser Pro Ile Ser Tyr Ala Ala Thr 385 390 395 400 Ala Thr Phe Cys Ala Ala Met Ala His Ala Ala Leu Val Tyr Arg Pro 405 410 415 Phe Asp Pro Ala Leu Ser Ser Cys Cys Ala Asp Ala Ala Arg Arg Ala 420 425 430 Tyr Ala Trp Leu Gly Ala His Glu Met Gln Pro Phe His Asn Pro Asp 435 440 445 Gly Ile Leu Thr Gly Glu Tyr Gly Asp Ala Glu Leu Arg Asp Glu Leu 450 455 460 Leu Trp Ala Ser Cys Ala Leu Leu Arg Met Thr Gly Asp Ser Ala Trp 465 470 475 480 Ala Arg Val Cys Glu Pro Leu Leu Asp Leu Asp Leu Pro Trp Glu Leu 485 490 495 Gly Trp Ala Asp Val Ala Leu Tyr Gly Val Met Asp Tyr Leu Arg Thr 500 505 510 Pro Arg Ala Ala Val Ser Asp Asp Val Arg Asn Lys Val Lys Ser Arg 515 520 525 Leu Leu Arg Glu Leu Asp Ala Leu Ala Ala Met Ala Glu Ser His Pro 530 535 540 Phe Gly Ile Pro Met Arg Asp Asp Asp Phe Ile Trp Gly Ser Asn Met 545 550 555 560 Val Leu Leu Asn Arg Ala Met Ala Phe Leu Leu Ala Glu Gly Val Gly 565 570 575 Val Leu His Pro Ala Ala His Thr Val Ala Gln Arg Ala Ala Asp Tyr 580 585 590 Leu Phe Gly Ala Asn Pro Leu Gly Gln Cys Tyr Val Thr Gly Phe Gly 595 600 605 Gln Arg Pro Val Arg His Pro His His Arg Pro Ser Val Ala Asp Asp 610 615 620 Val Asp His Pro Val Pro Gly Met Val Val Gly Gly Pro Asn Arg His 625 630 635 640 Leu Gln Asp Glu Ile Ala Arg Ala Gln Leu Ala Gly Arg Pro Ala Met 645 650 655 Glu Ala Tyr Ile Asp His Gln Asp Ser Tyr Ser Thr Asn Glu Val Ala 660 665 670 Val Tyr Trp Asn Ser Pro Ala Val Phe Val Ile Ala Ala Leu Leu Glu 675 680 685 Ala Arg Gly Arg 690 <210> 6 <211> 712 <212> PRT <213> Artificial Sequence <220> <223> CBM4-Cel9A cellulase fusion protein <400> 6 Met Leu Glu Asp Asn Ser Ser Thr Leu Pro Pro Tyr Lys Asn Asp Leu 1 5 10 15 Leu Tyr Glu Arg Thr Phe Asp Glu Gly Leu Cys Tyr Pro Trp His Thr 20 25 30 Cys Glu Asp Ser Gly Gly Lys Cys Ser Phe Asp Val Val Asp Val Pro 35 40 45 Gly Gln Pro Gly Asn Lys Ala Phe Ala Val Thr Val Leu Asp Lys Gly 50 55 60 Gln Asn Arg Trp Ser Val Gln Met Arg His Arg Gly Leu Thr Leu Glu 65 70 75 80 Gln Gly His Thr Tyr Arg Val Arg Leu Lys Ile Trp Ala Asp Ala Ser 85 90 95 Cys Lys Val Tyr Ile Lys Ile Gly Gln Met Gly Glu Pro Tyr Ala Glu 100 105 110 Tyr Trp Asn Asn Lys Trp Ser Pro Tyr Thr Leu Thr Ala Gly Lys Val 115 120 125 Leu Glu Ile Asp Glu Thr Phe Val Met Asp Lys Pro Thr Asp Asp Thr 130 135 140 Cys Glu Phe Thr Phe His Leu Gly Gly Glu Leu Ala Ala Thr Pro Pro 145 150 155 160 Tyr Thr Val Tyr Leu Asp Asp Val Ser Leu Tyr Asp Pro Glu Tyr Met 165 170 175 Pro Ser Arg Val Pro Lys Ser Ile Phe Tyr Asn Gln Val Gly Tyr Leu 180 185 190 Ile Ser Gly Asp Lys Arg Phe Trp Ile Gln Ala His Glu Pro Gln Pro 195 200 205 Phe Ala Leu Arg Thr Pro Glu Gly Gln Ala Val Phe Ala Gly Met Thr 210 215 220 Lys Pro Val Gly Gly Asn Trp Tyr Val Gly Asp Phe Thr Ala Leu Arg 225 230 235 240 Val Pro Gly Thr Tyr Thr Leu Thr Val Gly Thr Leu Glu Ala Arg Val 245 250 255 Val Ile His Arg Arg Ala Tyr Arg Asp Val Leu Glu Ala Met Leu Arg 260 265 270 Phe Phe Asp Tyr Gln Leu Cys Gly Val Val Leu Pro Glu Asp Glu Ala 275 280 285 Gly Pro Trp Ala His Gly Ala Cys His Thr Ser Asp Ala Lys Val Phe 290 295 300 Gly Thr Glu Arg Ala Leu Ala Cys Pro Gly Gly Trp His Asp Ala Gly 305 310 315 320 Asp Tyr Gly Lys Tyr Thr Val Pro Ala Ala Lys Ala Val Ala Asp Leu 325 330 335 Leu Leu Ala His Glu Tyr Phe Pro Ala Ala Leu Ala His Val Arg Pro 340 345 350 Met Arg Ser Val His Arg Ala Pro His Leu Pro Pro Ala Leu Glu Val 355 360 365 Ala Arg Glu Glu Ile Ala Trp Leu Leu Thr Met Gln Asp Pro Ala Thr 370 375 380 Gly Gly Val Tyr His Lys Val Thr Thr Pro Ser Phe Pro Pro Leu Asp 385 390 395 400 Thr Arg Pro Glu Asp Asp Asp Ala Pro Leu Val Leu Ser Pro Ile Ser 405 410 415 Tyr Ala Ala Thr Ala Thr Phe Cys Ala Ala Met Ala His Ala Ala Leu 420 425 430 Val Tyr Arg Pro Phe Asp Pro Ala Leu Ser Ser Cys Cys Ala Asp Ala 435 440 445 Ala Arg Arg Ala Tyr Ala Trp Leu Gly Ala His Glu Met Gln Pro Phe 450 455 460 His Asn Pro Asp Gly Ile Leu Thr Gly Glu Tyr Gly Asp Ala Glu Leu 465 470 475 480 Arg Asp Glu Leu Leu Trp Ala Ser Cys Ala Leu Leu Arg Met Thr Gly 485 490 495 Asp Ser Ala Trp Ala Arg Val Cys Glu Pro Leu Leu Asp Leu Asp Leu 500 505 510 Pro Trp Glu Leu Gly Trp Ala Asp Val Ala Leu Tyr Gly Val Met Asp 515 520 525 Tyr Leu Arg Thr Pro Arg Ala Ala Val Ser Asp Asp Val Arg Asn Lys 530 535 540 Val Lys Ser Arg Leu Leu Arg Glu Leu Asp Ala Leu Ala Ala Met Ala 545 550 555 560 Glu Ser His Pro Phe Gly Ile Pro Met Arg Asp Asp Asp Phe Ile Trp 565 570 575 Gly Ser Asn Met Val Leu Leu Asn Arg Ala Met Ala Phe Leu Leu Ala 580 585 590 Glu Gly Val Gly Val Leu His Pro Ala Ala His Thr Val Ala Gln Arg 595 600 605 Ala Ala Asp Tyr Leu Phe Gly Ala Asn Pro Leu Gly Gln Cys Tyr Val 610 615 620 Thr Gly Phe Gly Gln Arg Pro Val Arg His Pro His His Arg Pro Ser 625 630 635 640 Val Ala Asp Asp Val Asp His Pro Val Pro Gly Met Val Val Gly Gly 645 650 655 Pro Asn Arg His Leu Gln Asp Glu Ile Ala Arg Ala Gln Leu Ala Gly 660 665 670 Arg Pro Ala Met Glu Ala Tyr Ile Asp His Gln Asp Ser Tyr Ser Thr 675 680 685 Asn Glu Val Ala Val Tyr Trp Asn Ser Pro Ala Val Phe Val Ile Ala 690 695 700 Ala Leu Leu Glu Ala Arg Gly Arg 705 710 <210> 7 <211> 722 <212> PRT <213> Artificial Sequence <220> <223> CBM30-Cel9A cellulase fusion protein <400> 7 Ala Pro Glu Gly Tyr Arg Lys Leu Leu Asp Val Gln Ile Phe Lys Asp 1 5 10 15 Ser Pro Val Val Gly Trp Ser Gly Ser Gly Met Gly Glu Leu Glu Thr 20 25 30 Ile Gly Asp Thr Leu Pro Val Asp Thr Thr Val Thr Tyr Asn Gly Leu 35 40 45 Pro Thr Leu Arg Leu Asn Val Gln Thr Thr Val Gln Ser Gly Trp Trp 50 55 60 Ile Ser Leu Leu Thr Leu Arg Gly Trp Asn Thr His Asp Leu Ser Gln 65 70 75 80 Tyr Val Glu Asn Gly Tyr Leu Glu Phe Asp Ile Lys Gly Lys Glu Gly 85 90 95 Gly Glu Asp Phe Val Ile Gly Phe Arg Asp Lys Val Tyr Glu Arg Val 100 105 110 Tyr Gly Leu Glu Ile Asp Val Thr Thr Val Ile Ser Asn Tyr Val Thr 115 120 125 Val Thr Thr Asp Trp Gln His Val Lys Ile Pro Leu Arg Asp Leu Met 130 135 140 Lys Ile Asn Asn Gly Phe Asp Pro Ser Ser Val Thr Cys Leu Val Phe 145 150 155 160 Ser Lys Arg Tyr Ala Asp Pro Phe Thr Val Trp Phe Ser Asp Ile Lys 165 170 175 Ile Thr Ser Glu Asp Asn Glu Lys Ser Met Pro Ser Arg Val Pro Lys 180 185 190 Ser Ile Phe Tyr Asn Gln Val Gly Tyr Leu Ile Ser Gly Asp Lys Arg 195 200 205 Phe Trp Ile Gln Ala His Glu Pro Gln Pro Phe Ala Leu Arg Thr Pro 210 215 220 Glu Gly Gln Ala Val Phe Ala Gly Met Thr Lys Pro Val Gly Gly Asn 225 230 235 240 Trp Tyr Val Gly Asp Phe Thr Ala Leu Arg Val Pro Gly Thr Tyr Thr 245 250 255 Leu Thr Val Gly Thr Leu Glu Ala Arg Val Val Ile His Arg Arg Ala 260 265 270 Tyr Arg Asp Val Leu Glu Ala Met Leu Arg Phe Phe Asp Tyr Gln Leu 275 280 285 Cys Gly Val Val Leu Pro Glu Asp Glu Ala Gly Pro Trp Ala His Gly 290 295 300 Ala Cys His Thr Ser Asp Ala Lys Val Phe Gly Thr Glu Arg Ala Leu 305 310 315 320 Ala Cys Pro Gly Gly Trp His Asp Ala Gly Asp Tyr Gly Lys Tyr Thr 325 330 335 Val Pro Ala Ala Lys Ala Val Ala Asp Leu Leu Leu Ala His Glu Tyr 340 345 350 Phe Pro Ala Ala Leu Ala His Val Arg Pro Met Arg Ser Val His Arg 355 360 365 Ala Pro His Leu Pro Pro Ala Leu Glu Val Ala Arg Glu Glu Ile Ala 370 375 380 Trp Leu Leu Thr Met Gln Asp Pro Ala Thr Gly Gly Val Tyr His Lys 385 390 395 400 Val Thr Thr Pro Ser Phe Pro Pro Leu Asp Thr Arg Pro Glu Asp Asp 405 410 415 Asp Ala Pro Leu Val Leu Ser Pro Ile Ser Tyr Ala Ala Thr Ala Thr 420 425 430 Phe Cys Ala Ala Met Ala His Ala Ala Leu Val Tyr Arg Pro Phe Asp 435 440 445 Pro Ala Leu Ser Ser Cys Cys Ala Asp Ala Ala Arg Arg Ala Tyr Ala 450 455 460 Trp Leu Gly Ala His Glu Met Gln Pro Phe His Asn Pro Asp Gly Ile 465 470 475 480 Leu Thr Gly Glu Tyr Gly Asp Ala Glu Leu Arg Asp Glu Leu Leu Trp 485 490 495 Ala Ser Cys Ala Leu Leu Arg Met Thr Gly Asp Ser Ala Trp Ala Arg 500 505 510 Val Cys Glu Pro Leu Leu Asp Leu Asp Leu Pro Trp Glu Leu Gly Trp 515 520 525 Ala Asp Val Ala Leu Tyr Gly Val Met Asp Tyr Leu Arg Thr Pro Arg 530 535 540 Ala Ala Val Ser Asp Asp Val Arg Asn Lys Val Lys Ser Arg Leu Leu 545 550 555 560 Arg Glu Leu Asp Ala Leu Ala Ala Met Ala Glu Ser His Pro Phe Gly 565 570 575 Ile Pro Met Arg Asp Asp Asp Phe Ile Trp Gly Ser Asn Met Val Leu 580 585 590 Leu Asn Arg Ala Met Ala Phe Leu Leu Ala Glu Gly Val Gly Val Leu 595 600 605 His Pro Ala Ala His Thr Val Ala Gln Arg Ala Ala Asp Tyr Leu Phe 610 615 620 Gly Ala Asn Pro Leu Gly Gln Cys Tyr Val Thr Gly Phe Gly Gln Arg 625 630 635 640 Pro Val Arg His Pro His His Arg Pro Ser Val Ala Asp Asp Val Asp 645 650 655 His Pro Val Pro Gly Met Val Val Gly Gly Pro Asn Arg His Leu Gln 660 665 670 Asp Glu Ile Ala Arg Ala Gln Leu Ala Gly Arg Pro Ala Met Glu Ala 675 680 685 Tyr Ile Asp His Gln Asp Ser Tyr Ser Thr Asn Glu Val Ala Val Tyr 690 695 700 Trp Asn Ser Pro Ala Val Phe Val Ile Ala Ala Leu Leu Glu Ala Arg 705 710 715 720 Gly Arg <210> 8 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> P1 primer <400> 8 ttgtcatatg aatttgaagg ttgaattcta caacagcaat c 41 <210> 9 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> P2 primer <400> 9 gatttaggca cacggctcgg gggttcttta ccccatacaa g 41 <210> 10 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> P3 primer <400> 10 gggtaaagaa cccccgagcc gtgtgcctaa atc 33 <210> 11 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> P1' primer <400> 11 atgttcatat gttagaagat aattcttcga c 31 <210> 12 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> P2' primer <400> 12 gatttaggca cacggctcgg aggctgcgga agtatatatt 40 <210> 13 <211> 40 <212> DNA <213> Artificial Sequence <220> <223> P3' primer <400> 13 aatatatact tccgcagcct ccgagccgtg tgcctaaatc 40 <210> 14 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> P1'' primer <400> 14 attgtcatat ggctcctgaa ggctacagga agc 33 <210> 15 <211> 41 <212> DNA <213> Artificial Sequence <220> <223> P2'' primer <400> 15 gatttaggca cacggctcgg gattgcagga gcggactttt c 41 <210> 16 <211> 34 <212> DNA <213> Artificial Sequence <220> <223> P3'' primer <400> 16 ccgctcctgc aatcccgagc cgtgtgccta aatc 34 <210> 17 <211> 32 <212> DNA <213> Artificial Sequence <220> <223> P4 primer <400> 17 ccgatctcga gttaacggcc acgagcctcc ag 32 <210> 18 <211> 31 <212> DNA <213> Artificial Sequence <220> <223> Cel5H-F primer <400> 18 cccggatcca attcttagcg gtggccagca a 31 <210> 19 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> Cel5H-R primer <400> 19 cccgctcgag ccagctacca aattgcaggg tgt 33 <210> 20 <211> 28 <212> DNA <213> Artificial Sequence <220> <223> CbhA-F primer <400> 20 ctagctagct atacttccgc agcctgat 28 <210> 21 <211> 33 <212> DNA <213> Artificial Sequence <220> <223> CbhA-R primer <400> 21 tatataagct taaccgcccg gcggcgttcc cca 33

Claims (10)

클로스트리듐 터모셀룸 35319 유래의 패밀리 3 셀룰로즈결합모듈 (cellulose binding domain: CBM), 4 CBM, 및 30 CBM으로 이루어진 군으로부터 선택된 하나이상의 CBM의 C 말단과 글리코실 히드롤라제 패밀리 9 (glycosyl hydrolase family 9: GH9)의 N 말단이 융합된 융합 셀룰라제.Glycosyl hydrolase family of the C-terminus and glycosyl hydrolase family of at least one CBM selected from the group consisting of Family 3 cellulose binding domain (CBM), 4 CBM, and 30 CBM from Clostridium termocelum 35319 9: fused cellulase fused to the N terminus of GH9). 청구항 1에 있어서, 패밀리 3 CBM, 패밀리 4 CBM, 패밀리 30 CBM 및 GH9는 각각 서열번호 1, 2, 3, 및 4의 아미노산 서열을 갖는 것인 셀룰라제.The cellulase of claim 1, wherein family 3 CBM, family 4 CBM, family 30 CBM, and GH9 have amino acid sequences of SEQ ID NOs: 1, 2, 3, and 4, respectively. 청구항 1에 있어서, 서열번호 5 내지 7 중 어느 하나의 아미노산 서열을 갖는 것인 셀룰라제.The cellulase according to claim 1, having an amino acid sequence of any one of SEQ ID NOS: 5 to 7. 청구항 1 내지 3 중 어느 하나에 있어서, 말단에 His6 태그 서열을 더 포함하는 것인 셀룰라제.The cellulase according to any one of claims 1 to 3, further comprising a His 6 tag sequence at the end. 청구항 1 내지 3 중 어느 하나의 셀룰라제와 셀룰로즈 물질을 접촉시키는 단계를 포함하는, 셀룰로즈 물질을 분해시키는 방법.A method of decomposing a cellulosic material, comprising contacting the cellulase of any one of claims 1 to 3 with the cellulosic material. 청구항 5에 있어서, 셀룰로즈 물질은 섬유 물질, 동물 사료로 사용되는 식물, 목재 유래 펄프 또는 2차 섬유인 것인 방법. The method according to claim 5, wherein the cellulose material is a fiber material, a plant used as animal feed, a wood-derived pulp or a secondary fiber. 청구항 5에 있어서, 상기 접촉은 다른 당 분해 효소의 존재하에서 수행되는 것인 방법.The method according to claim 5, wherein the contacting is carried out in the presence of another saccharide degrading enzyme. 청구항 7에 있어서, 상기 효소는 셀로비오히드롤라제, 엔도글루카나제, 셀로덱스트리나제, β-글루코시다제 및 이들의 조합으로부터 선택되는 것인 방법. 8. The method of claim 7, wherein the enzyme is selected from cellobiose hydrolase, endoglucanase, cellodextrinase, beta -glucosidase, and combinations thereof. 청구항 5에 있어서, 상기 접촉은 50℃ 내지 90℃의 온도에서 수행되는 것인 방법.The method according to claim 5, wherein the contacting is performed at a temperature of 50 ° C to 90 ° C. 청구항 5에 있어서, 상기 셀룰라제는 말단에 His6 태그 서열을 더 포함하는 것인 방법.The method according to claim 5, wherein the cellulase further comprises a His 6 tag sequence at its end.
KR1020140023718A 2014-02-27 2014-02-27 Cellulase fusion protein and method of degrading cellulosic material using the same KR20140048904A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020140023718A KR20140048904A (en) 2014-02-27 2014-02-27 Cellulase fusion protein and method of degrading cellulosic material using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020140023718A KR20140048904A (en) 2014-02-27 2014-02-27 Cellulase fusion protein and method of degrading cellulosic material using the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
KR1020120026203A Division KR101450074B1 (en) 2012-03-14 2012-03-14 Cellulase fusion protein and method of degrading cellulosic material using the same

Publications (1)

Publication Number Publication Date
KR20140048904A true KR20140048904A (en) 2014-04-24

Family

ID=50654752

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020140023718A KR20140048904A (en) 2014-02-27 2014-02-27 Cellulase fusion protein and method of degrading cellulosic material using the same

Country Status (1)

Country Link
KR (1) KR20140048904A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110734901A (en) * 2019-10-29 2020-01-31 深圳大学 enzyme fusion proteins and application thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110734901A (en) * 2019-10-29 2020-01-31 深圳大学 enzyme fusion proteins and application thereof
CN110734901B (en) * 2019-10-29 2021-07-09 深圳大学 Enzyme fusion protein and application thereof

Similar Documents

Publication Publication Date Title
US11530428B2 (en) Nucleic acids encoding fungal cellobiohydrolases for expression in yeast
US8906689B2 (en) Endoglucanase variants
CA2891417A1 (en) Recombinant fungal polypeptides
US10196622B2 (en) Heterologous expression of fungal cellobiohydrolase 2 genes in yeast
EP2970861A2 (en) Expression of beta-glucosidases for hydrolysis of lignocellulose and associated oligomers
JP2014509836A (en) C. bescii thermostable enzyme
JP2012510262A (en) Cellulase Cel5H related reagents and their use in microorganisms
US8431371B2 (en) Expression system for producing multi-enzyme complexes and uses thereof
US8715996B2 (en) Beta-glucosidase variant enzymes and related polynucleotides
US11286508B2 (en) Ancestral cellulases and uses thereof
JP2011223962A (en) New cellulase
US8993276B2 (en) Chimeric enzymes with improved cellulase activities
WO2010118007A9 (en) Enhanced cellulase expression in s. degradans
CN113430217B (en) Continuous endo-cellulase and coding gene and application thereof
KR20140048904A (en) Cellulase fusion protein and method of degrading cellulosic material using the same
KR101450074B1 (en) Cellulase fusion protein and method of degrading cellulosic material using the same
JP6364661B2 (en) β-glucosidase
JP2015033379A (en) β-GLUCOSIDASE
KR20140146856A (en) METHOD FOR PREPARING CELLULOSE COMPLEX USING ENDO-β-1,4-GLUCANASE E, XYLANASE B AND MINI CELLULOSE BINDING PROTEIN A FROM CLOSTRIDIUM SP.
JP2015033377A (en) β-GLUCOSIDASE
JP2015033378A (en) β-GLUCOSIDASE
KR101132396B1 (en) Novel Endoglucanase Derived from Xanthomonas
Cellulolytic et al. Incorporation of Fungal Cellulases in

Legal Events

Date Code Title Description
A107 Divisional application of patent
WITN Withdrawal due to no request for examination