[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20140048668A - Baking hardening type galvanized steel sheet having excellent formability and powdering resistance, and method for manufacturing the same - Google Patents

Baking hardening type galvanized steel sheet having excellent formability and powdering resistance, and method for manufacturing the same Download PDF

Info

Publication number
KR20140048668A
KR20140048668A KR1020120114888A KR20120114888A KR20140048668A KR 20140048668 A KR20140048668 A KR 20140048668A KR 1020120114888 A KR1020120114888 A KR 1020120114888A KR 20120114888 A KR20120114888 A KR 20120114888A KR 20140048668 A KR20140048668 A KR 20140048668A
Authority
KR
South Korea
Prior art keywords
steel sheet
hot
dip galvanized
workability
galvanized steel
Prior art date
Application number
KR1020120114888A
Other languages
Korean (ko)
Other versions
KR101449135B1 (en
Inventor
권세웅
김완섭
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to KR1020120114888A priority Critical patent/KR101449135B1/en
Publication of KR20140048668A publication Critical patent/KR20140048668A/en
Application granted granted Critical
Publication of KR101449135B1 publication Critical patent/KR101449135B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0426Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0421Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the working steps
    • C21D8/0436Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/04Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing
    • C21D8/0447Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips to produce plates or strips for deep-drawing characterised by the heat treatment
    • C21D8/0473Final recrystallisation annealing
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C2/00Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor
    • C23C2/04Hot-dipping or immersion processes for applying the coating material in the molten state without affecting the shape; Apparatus therefor characterised by the coating material
    • C23C2/06Zinc or cadmium or alloys based thereon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

The present invention relates to a baking-hardening galvanized steel sheet with a bake hardening (BH) of 30MPa or greater and elongation of 35% or greater, thereby having excellent aging resistance at room temperature, ductility, and powdering resistance. For the same, the component composition contained in ultra-low carbon steel is controlled, while rationalizing the manufacturing condition so as to control the crystal grain and precipitate, at the same time controlling the alloy phase.

Description

가공성 및 내파우더링성이 우수한 소부경화형 합금화 용융아연도금강판 및 이의 제조방법 {BAKING HARDENING TYPE GALVANIZED STEEL SHEET HAVING EXCELLENT FORMABILITY AND POWDERING RESISTANCE, AND METHOD FOR MANUFACTURING THE SAME}BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a galvannealed galvanized steel sheet having excellent workability and resistance to powdering, and a method of manufacturing the galvannealed galvanized steel sheet. 2. The galvanized galvanized steel sheet according to claim 1,

본 발명은 자동차, 가전제품 등의 소재로 사용되는 합금화 용융아연도금강판 및 이의 제조방법에 관한 것이다.
The present invention relates to a galvannealed galvanized steel sheet used as a material for automobiles, home appliances, and the like, and a method of manufacturing the same.

자동차 또는 가전제품 등에 적용되는 용융아연강판은 강도와 더불어 우수한 성형성 및 도금성이 요구된다.
Hot dip galvanized steel sheets applied to automobiles or household appliances are required to have excellent formability and plating ability in addition to strength.

종래에는 자동차 차체의 경량화 및 승객 안정성 확보를 위해 높은 인장강도를 가진 고강도 강판을 적극적으로 채용하였으며, 이러한 고강도 강판은 자동차 안전 규제법, 연비 규제법, 배기가스 규제법 등 자동차 산업을 둘러싼 각종 법률 규제 등과 밀접과 관련을 가지면서 개발되어 왔다. 더욱이, 고유가에 의한 연비 규제가 강화되어 자동차의 경량화가 자동차 업계의 주요 관심사로 부각되면서 연구 개발이 한정 가속화되어 많은 종류의 고강도 강판이 개발되어 왔다.
In the past, high-strength steel plates with high tensile strength were actively employed to lighten the weight of automobile bodies and ensure passenger stability. These high-strength steel plates were used in close cooperation with various legal regulations surrounding the automobile industry such as automobile safety regulation law, fuel efficiency regulation law, Has been developed with relevance. Furthermore, fuel economy regulations due to high oil prices have intensified, and weight reduction of automobiles has become a major concern in the automobile industry. As a result, research and development have been accelerated and many types of high strength steel plates have been developed.

한편, 가공성이 요구되는 강판으로는 P첨가 Al 킬드(killed)강과 심가공용 고장력 강이 개발되었다. 그러나, Al 킬드강은 상소둔을 행하여 제조되므로, 상소둔은 소둔 시간이 길고, 생산성이 낮으며, 부위별로 재질편차가 심하다는 단점이 있다.
On the other hand, P-containing Al killed steels and high tensile steels for deep drawing were developed as steel plates requiring workability. However, the Al-killed steel is manufactured by subjecting the steel sheet to an impregnation, so that the annealing time is long, the productivity is low, and there is a disadvantage that material variation is large in each part.

상기의 문제점을 해결하기 위한 방안으로서, 강력한 탄, 질화물 형성 원소를 첨가하는 연속소둔의 방법이 제안되었으며, 상기 방법으로 가공성을 향상시킨 고장력강인 IF(Interstitial Free Steel)강에 대한 연구 개발이 활발히 진행되었다. 그러나, 이러한 IF강을 제조하기 위해서는 강력한 탄, 질화물 형성원소인 Ti, Nb 등의 원소를 첨가하여야 하는데, 이들 원소는 재결정온도를 상승시키므로 고온에서 소둔을 실시하여야 하며, 이러할 경우 목적하는 인장강도와 연신율의 확보가 곤란하다는 문제가 있다.
As a method for solving the above problems, there has been proposed a continuous annealing method in which a strong carbon and nitride forming elements are added. Research and development of IF (Interstitial Free Steel) steel, which is a high tensile steel having improved processability, . However, in order to produce such an IF steel, it is necessary to add elements such as Ti and Nb, which are strong carbon and nitride forming elements, to increase the recrystallization temperature. Therefore, annealing must be performed at a high temperature. There is a problem that it is difficult to secure the elongation.

상기 방안 이외에도, Ti, Nb 등을 첨가하지 않으면서 MnS, CuS 등의 석출물들을 이용한 극저탄소강도 제안되었으나, 이 또한 시효현상 등에 의한 재질 불량이 다량 발생하는 문제가 있다.
In addition to the above-mentioned measures, extreme low carbon strength using precipitates such as MnS and CuS has been proposed without addition of Ti, Nb, etc. However, this also causes a problem of material failure due to aging phenomenon.

본 발명의 일 측면은, 첨가되는 원소 및 석출물의 제어를 통해 가공성을 향상시킨 소부경화형 합금화 용융아연도금강판 및 이를 제조하는 방법을 제공하고자 하는 것이다.One aspect of the present invention is to provide a bake-curing type alloyed hot-dip galvanized steel sheet in which processability is improved through control of added elements and precipitates, and a method of manufacturing the same.

본 발명의 또 다른 측면은, 내파우더링성이 우수한 소부경화형 합금화 용융아연도금강판을 제공하고자 하는 것이다.
Another aspect of the present invention is to provide a bake-hardening type alloyed hot-dip galvanized steel sheet having excellent resistance to powdering.

본 발명의 일 측면은, 중량%로, 탄소(C): 0.002~0.004%, 망간(Mn): 0.3~0.8%, 인(P): 0.06% 이하, 황(S): 0.008% 이하, 실리콘(Si): 0.001~0.007%, 알루미늄(Al): 0.01~0.04%, 니오븀(Nb): 0.005~0.020%, 구리(Cu): 0.01~0.03%, 질소(N): 0.001~0.005%, 잔부 Fe 및 불가피한 불순물을 포함하고, 상기 C 및 Nb의 성분비(C/Nb)가 0.01~0.50이고,An aspect of the present invention provides a method of manufacturing a semiconductor device, which comprises 0.002 to 0.004% carbon, 0.3 to 0.8% manganese (Mn), 0.06% or less phosphorus (P) , 0.001 to 0.007% of aluminum (Al), 0.01 to 0.04% of niobium (Nb), 0.01 to 0.03% of copper (Cu), 0.001 to 0.005% of nitrogen (N) Fe and unavoidable impurities, wherein the composition ratio of C and Nb (C / Nb) is 0.01 to 0.50,

CuS, MnS 및 CuMnS 중 1종 이상의 석출물을 포함하고, 상기 석출물의 평균 결정입도는 100~400nm이고, 상기 석출물의 평균 밀도는 0.01~0.20개/μm2이고, CuS, comprising the MnS and CuMnS 1 or more kinds of precipitates, the average crystal grain size of the precipitate is 100 ~ 400nm, and the average density of the precipitates from 0.01 to 0.20 piece / μm 2,

강판의 미세조직은 페라이트 단상조직으로 이루어지고, The microstructure of the steel sheet is composed of a ferrite single phase structure,

강판 표면에 합금화 용융아연도금층을 포함하는 가공성 및 내파우더링성이 우수한 소부경화형 합금화 용융아연도금강판을 제공한다.
A bake-hardening type alloyed hot-dip galvanized steel sheet excellent in workability and resistance to powdering including a galvannealed galvanized layer on the surface of a steel sheet.

본 발명의 다른 일 측면은, 상술한 성분조성을 만족하는 강 슬라브를 1150~1250℃로 재가열하는 단계; According to another aspect of the present invention, there is provided a method of manufacturing a steel slab, comprising the steps of: reheating a steel slab satisfying the above-described composition of the composition to 1150 to 1250 占 폚;

마무리 압연온도를 Ar3~950℃로 하여 상기 재가열된 강 슬라브를 열간압연하여 열연강판으로 제조하는 단계;Preparing a hot rolled steel sheet by hot rolling the reheated steel slab at a finishing rolling temperature of Ar 3 to 950 캜;

상기 열연강판을 700~750℃에서 권취하는 단계;Winding the hot-rolled steel sheet at 700 to 750 ° C;

상기 권취 후 60~80%의 압하율로 냉간압연하여 냉연강판을 제조하는 단계;Rolling the steel sheet at a reduction ratio of 60 to 80% after the rolling to produce a cold-rolled steel sheet;

상기 냉연강판을 820~880℃에서 소둔하는 단계;Annealing the cold-rolled steel sheet at 820 to 880 ° C;

상기 소둔된 냉연강판에 용융아연도금을 수행하여 용융아연도금강판을 제조하는 단계; 및Performing hot dip galvanizing on the annealed cold rolled steel sheet to produce a hot-dip galvanized steel sheet; And

상기 용융아연도금강판 400~600℃로 가열하여 합금화 용융아연도금강판을 제조하는 단계를 포함하는 가공성 및 내파우더링성이 우수한 소부경화형 합금화 용융아연도금강판의 제조방법을 제공한다.
And a step of heating the hot-dip galvanized steel sheet to a temperature of 400 to 600 ° C to produce an alloyed hot-dip galvanized steel sheet, wherein the hot-dip galvannealed steel sheet has excellent processability and resistance to powdering.

본 발명은 석출물을 형성하는 원소인 Nb 및 Cu를 적정범위로 제한하고, 제조 공정의 제어를 통하여 결정립의 크기 및 분율을 제어하고, 합금상의 분율 및 합금화도를 제어함으로써, 소부경화량(BH)이 30MPa 이상으로 상온 내시효성이 우수하며, 동시에 내파우더링성이 우수한 소부경화형 합금화 용융아연도금강판을 제공할 수 있다.
(BH) by controlling the size and fraction of the crystal grains and controlling the fraction of the alloy phase and the degree of alloying by controlling Nb and Cu, which are elements forming the precipitate, to an appropriate range, A hot-cure type alloyed hot-dip galvanized steel sheet excellent in hygroscopicity at room temperature and above 30 MPa and excellent in anti-powdering property can be provided.

이하, 본 발명에 따른 가공성 및 내파우더링성이 우수한 합금화 용융아연도금강판 및 이를 제조하는 방법에 대한 실시예들을 상세하게 설명하겠지만, 본 발명은 하기의 실시예들에 제한되는 것은 아니다. 따라서, 해당 분야에서 통상의 지식을 가진 자라면 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 본 발명을 다양한 다른 형태로 구현할 수 있을 것이다.
Hereinafter, embodiments of a galvannealed steel sheet excellent in workability and resistance to powdering and a method of manufacturing the same will be described in detail. However, the present invention is not limited to the following embodiments. Therefore, those skilled in the art will appreciate that various modifications, additions and substitutions are possible, without departing from the scope and spirit of the invention as disclosed in the accompanying claims.

이하, 본 발명을 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

먼저, 본 발명에 의한 합금화 용융아연도금강판의 성분 조성 및 함량을 제한하는 이유에 대하여 상세히 설명한다. 이때, 성분원소의 함량은 모두 중량%를 의미한다.
First, the reasons for limiting the composition and content of the galvannealed steel sheet according to the present invention will be described in detail. At this time, the content of the elemental elements means weight%.

C: 0.002~0.004%C: 0.002 to 0.004%

탄소(C)는 고용강화와 소부 경화성을 나타내는 원소로서, 그 함량이 0.002% 미만일 경우에는 결정립 미세화에 의한 상온 내시효성을 향상시키기 위해 첨가되는 Nb 함량에 비해 절대 탄소함량이 낮아 충분한 소부경화성이 얻어지지 않으며, 이에 반면 C의 함량이 0.004%를 초과할 경우에는 강중 고용탄소의 양이 많아 내시효성의 확보가 곤란하고, 소둔판의 결정립이 미세하게 되어 연성이 크게 낮아지는 문제가 있다. 따라서, 본 발명에서 C의 함량은 0.002~0.004%로 제어함이 바람직하다.
When the content is less than 0.002%, the carbon (C) has an absolute carbon content lower than that of Nb added to improve the hygroscopicity at room temperature due to grain refinement, On the other hand, when the content of C is more than 0.004%, the amount of carbon in the steel is large, so that it is difficult to secure endurance, and the crystal grains of the annealed plate become finer and the ductility is greatly lowered. Therefore, the content of C in the present invention is preferably controlled to 0.002 to 0.004%.

Mn: 0.3~0.8%Mn: 0.3 ~ 0.8%

망간(Mn)은 강중 고용 황을 MnS로 석출하여 고용 황에 의한 적열취성(Hpt shortness)을 방지하는 원소이다. 본 발명에서는 Mn과 S의 함량을 제어함으로써 미세한 MnS가 석출되어 내시효성을 기본적으로 확보하면서, 항복강도 및 면내이방성을 개선시키기 위해 Mn을 0.3~0.8%로 제어함이 바람직하다.Manganese (Mn) is an element which prevents the sulfur shortness caused by the sulfur by precipitating solid sulfur in MnS. In the present invention, it is preferable to control Mn to 0.3 to 0.8% in order to improve the yield strength and in-plane anisotropy while fundamentally securing the anti-aging property by controlling the content of Mn and S by precipitating fine MnS.

즉, 미세한 MnS 석출물의 확보를 위해서는 Mn을 0.3% 이상으로 첨가할 필요가 있으며, 다만 그 함량이 0.8%를 초과할 경우에는 Mn의 함량이 높아 조대한 MnS가 석출되어 내시효성이 열악해지는 문제가 있다.
That is, in order to secure fine MnS precipitates, Mn should be added in an amount of 0.3% or more, but if the content is more than 0.8%, the content of Mn is high and coarse MnS precipitates and the endurance is poor have.

P: 0.06% 이하P: not more than 0.06%

인(P)은 고용강화효과가 큰 치환형 합금원소로서 면내 이방성을 개선하고 강도를 향상시키는 역할을 한다.Phosphorus (P) plays a role in improving the in-plane anisotropy and improving the strength as a substitutional alloying element having a large solid solution strengthening effect.

이러한 P의 함량이 0.06%를 초과하는 경우에는 연성 및 성형성이 저하되고 소부경화성도 감소되며, 고용강화에 의한 강도 증가가 급격하게 증가되는 문제가 있다. 따라서, 본 발명에서 P의 함량은 0.06% 이하로 제한함이 바람직하다.
If the content of P exceeds 0.06%, the ductility and formability are lowered, and the hardening of the hardening is also reduced, and there is a problem that the strength increase due to solid solution strengthening is drastically increased. Therefore, the content of P in the present invention is preferably limited to 0.06% or less.

S: 0.008% 이하S: 0.008% or less

황(S)은 고온에서 MnS의 황화물로 석출시켜 FeS에 의한 열간취성을 방지하는 역할을 하는 원소이다.Sulfur (S) precipitates as a sulfide of MnS at a high temperature to prevent hot brittleness due to FeS.

이러한 S의 함량이 0.008%를 초과할 경우에는 고용된 S의 함량이 과도하여 연성 및 성형성이 크게 낮아지며, 적열취성의 우려가 있다. 따라서, 본 발명에서 S의 함량은 0.008% 이하로 제한함이 바람직하다.
If the content of S exceeds 0.008%, the content of S dissolved is excessively excessive, so that ductility and moldability are greatly lowered, and there is a fear of redispersible brittleness. Therefore, the content of S in the present invention is preferably limited to 0.008% or less.

Si: 0.001~0.007%Si: 0.001 to 0.007%

실리콘(Si)은 고용강화 원소로서, 강도 향상 측면에서는 유리하지만, 소둔시 표면에 Si계 산화물이 용출되어 표면특성을 열화시키는 문제가 있으므로, 그 함량을 0.001~0.007%로 제한함이 바람직하다.
Silicon (Si) is a solid solution strengthening element, which is advantageous from the viewpoint of strength improvement. However, there is a problem that the Si-based oxide is eluted on the surface during annealing to deteriorate the surface characteristics, and therefore the content thereof is preferably limited to 0.001 to 0.007%.

Al: 0.01~0.04%Al: 0.01 ~ 0.04%

알루미늄(Al)은 탈산제로서 첨가되는 원소로서, 강중 질소를 석출하여 고용질소에 의한 시효를 방지하는 역할을 한다. 그 함량이 0.01% 미만일 경우에는 고용질소의 양이 많아 시효 방지 효과가 미흡하고, 반면 0.04%를 초과할 경우에는 고용 상태로 존재하는 Al의 양이 많아 연성이 저하되는 문제가 있다. 따라서, 본 발명에서 Al의 함량은 0.01~0.04%로 제한함이 바람직하다.
Aluminum (Al) is an element to be added as a deoxidizing agent and serves to deposit nitrogen in the steel to prevent aging by solid nitrogen. When the content is less than 0.01%, the effect of preventing aging is insufficient due to the large amount of nitrogen employed. On the other hand, when the content exceeds 0.04%, there is a problem that the amount of Al existing in a solid state is large and ductility is deteriorated. Therefore, the content of Al in the present invention is preferably limited to 0.01 to 0.04%.

Nb: 0.005~0.020%Nb: 0.005 to 0.020%

니오븀(Nb)은 탄, 질화물 형성 원소들 중 결정립 미세화에 가장 큰 영향을 미치는 원소로서, 탄소와 결합하여 NbC 석출물을 형성하여 미세조직의 입계 및 입내에 위치하여 결정립의 성장을 억제하여 결정립을 미세화시켜 가공성을 향상시키는 역할을 하는 원소이다. 이와 같이, Nb은 가공성 확보 측면에서 매우 중요한 원소로서, 가공성 상승효과와 경제적인 측면을 고려하여 0.005~0.020%로 첨가됨이 바람직하다.Niobium (Nb) is an element that has the greatest influence on the grain refinement among the carbon and nitride forming elements. It forms NbC precipitates by binding with carbon and is positioned in the grain boundaries and the mouth of microstructure to suppress the growth of crystal grains, Thereby improving the workability. As described above, Nb is a very important element in terms of ensuring workability, and it is preferable that Nb is added in an amount of 0.005 to 0.020% in consideration of the workability increasing effect and the economical aspect.

상기 Nb의 함량이 0.005% 미만일 경우에는 NbC 석출 효과를 기대하기 어려우며, 반면 그 함량이 0.020%를 초과할 경우에는 경제적으로 불리할 뿐만 아니라, 도금시 도금성을 저해하는 문제점이 있다.
If the content of Nb is less than 0.005%, it is difficult to expect the effect of NbC precipitation. On the other hand, if the content exceeds 0.020%, it is economically disadvantageous and also deteriorates plating performance during plating.

Cu: 0.01~0.03%Cu: 0.01 to 0.03%

구리(Cu)는 고용강화 원소로서, 이러한 효과를 얻기 위해서는 0.01% 이상으로 첨가될 필요가 있다. 다만, 그 함량이 0.03%를 초과하게 되면 열간압연시 저융점상을 형성하여 강판 표면에 결함이 생기는 문제가 있으므로, 그 상한을 0.03%로 제한한다.
Copper (Cu) is a solid solution strengthening element. In order to obtain such an effect, it is necessary to add at least 0.01%. However, if the content exceeds 0.03%, there is a problem that a low melting point phase is formed in the hot rolling and defects are formed on the surface of the steel sheet, so the upper limit is limited to 0.03%.

N: 0.001~0.005%N: 0.001 to 0.005%

질소(N)는 제강중 불가피하게 첨가되는 원소로서, 그 함량이 낮을수록 좋으나, 제강공정을 고려하여 그 함량을 0.001~0.005%로 제한함이 바람직하다. N의 질소가 0.005%를 초과할 경우에는 시효지수가 높아지고, 성형성 및 가공성이 저하되는 문제가 있다.
Nitrogen (N) is an element that is inevitably added during steelmaking. It is preferable that the content is lower, but the content thereof is limited to 0.001 to 0.005% in consideration of the steelmaking process. When the nitrogen content of N exceeds 0.005%, the aging index is increased and the formability and workability are deteriorated.

본 발명은 추가적으로 크롬(Cr): 0.01~0.03%, 몰리브덴(Mo): 0.001~0.005%, 니켈(Ni): 0.001~0.03% 및 바나듐(V): 0.0001~0.010%로 이루어진 그룹에서 선택된 1종 또는 2종 이상을 더 포함할 수 있다.
The present invention further provides a method of manufacturing a copper alloy comprising one kind selected from the group consisting of 0.01 to 0.03% of Cr, 0.001 to 0.005% of molybdenum (Mo), 0.001 to 0.03% of nickel (Ni), and 0.0001 to 0.010% of vanadium (V) Or two or more of them.

Cr: 0.01~0.03% 및 Mo: 0.001~0.005%0.01 to 0.03% of Cr, 0.001 to 0.005% of Mo,

크롬(Cr) 및 몰리브덴(Mo)은 강의 강도를 확보하는데에 유효한 원소로서 첨가되며, 상기의 효과를 얻기 위해서는 Cr의 경우 0.01% 이상, Mo의 경우 0.001% 이상으로 첨가함이 바람직하다. 다만, Cr의 함량이 0.03%를 초과할 경우에는 성형성 및 가공성을 저하시키는 문제가 있으며, Mo의 함량이 0.005%를 초과할 경우에는 열간압연시 오스테나이트 영역에서의 재결정을 지연시켜 압연부하를 증가시키는 문제가 있다. 따라서, 본 발명에서는 Cr의 함량을 0.01~0.03%, Mo의 함량을 0.001~0.005%로 제한함이 바람직하다.
Chromium (Cr) and molybdenum (Mo) are added as effective elements for securing the strength of the steel. In order to obtain the above effect, it is preferable to add Cr at 0.01% or more and Mo at 0.001% or more. However, when the content of Cr exceeds 0.03%, there is a problem that the formability and workability are lowered. When the content of Mo is more than 0.005%, the recrystallization in the austenite region is delayed, . Therefore, in the present invention, it is preferable to limit the content of Cr to 0.01 to 0.03% and the content of Mo to 0.001 to 0.005%.

Ni: 0.001~0.030%Ni: 0.001 to 0.030%

니켈(Ni)은 고용강화 효과를 위해 첨가되는 원소로서, 상기 효과를 얻기 위해 Ni을 0.001% 이상으로 첨가할 필요가 있으나, 다만 그 함량이 0.030%를 초과할 경우에는 변태점이 크게 저하되고, 열간압연시 저온변태상이 나타나는 문제가 있다. 따라서, 본 발명에서 Ni의 함량은 0.001~0.030%로 제한함이 바람직하다.
Nickel (Ni) is an element to be added for the solid solution strengthening effect. To obtain the above effect, it is necessary to add Ni at not less than 0.001%, but if the content is more than 0.030%, the transformation point is greatly lowered, There is a problem that a low-temperature transformation image appears at the time of rolling. Therefore, the content of Ni in the present invention is preferably limited to 0.001 to 0.030%.

V: 0.0001~0.010%V: 0.0001 to 0.010%

바나듐(V)은 고용 C를 석출하여 비시효특성을 확보하는데 유효한 성분으로서, 상술한 효과를 얻기 위해서는 V를 0.0001% 이상으로 첨가할 필요가 있다. 다만, 그 함량이 0.010%를 초과할 경우에는 소성이방성지수가 낮아져 가공성이 저하되는 문제가 있다. 따라서, 본 발명에서는 Ni의 함량을 0.0001~0.010%로 제한함이 바람직하다.
Vanadium (V) is an effective component for securing the non-aging property by precipitating solid solution C, and it is necessary to add V at 0.0001% or more in order to obtain the above-mentioned effect. However, when the content exceeds 0.010%, the plasticity anisotropy index is lowered and the workability is lowered. Therefore, in the present invention, it is preferable to limit the content of Ni to 0.0001 to 0.010%.

본 발명은 상술한 성분들 이외의 잔부로서 Fe 및 불가피한 불순물을 포함하며, 상기 조성 이외에 다른 원소가 첨가되는 것을 배제하는 것은 아니다.
The present invention includes Fe and unavoidable impurities as the remainder other than the above-mentioned components, and does not exclude the addition of other elements in addition to the above-mentioned composition.

본 발명에서는 C와 Nb의 성분비(C/Nb)가 0.01~0.50을 만족함이 바람직하다.In the present invention, the component ratio (C / Nb) of C and Nb is preferably 0.01 to 0.50.

본 발명에서 C와 Nb은 NbC로 석출되어 인장강도를 확보하는데 중요한 파라미터로서, 이들 성분비(C/Nb)가 0.01 미만이면 NbC 석출이 충분하지 못하고, 반면 0.50을 초과할 경우에는 NbC 석출이 과도하여 가공성을 저해하는 문제가 있다.
In the present invention, C and Nb are important parameters for securing the tensile strength by precipitating NbC. When the component ratio (C / Nb) is less than 0.01, NbC precipitation is not sufficient. On the other hand, when C / Nb exceeds 0.50, NbC precipitation is excessive There is a problem that workability is deteriorated.

이하, 본 발명에 의한 합금화 용융아연도금강판의 미세조직 및 석출물에 대하여 상세히 설명한다.
Hereinafter, the microstructure and precipitates of the galvannealed steel sheet according to the present invention will be described in detail.

본 발명에 의한 합금화 용융아연도금강판의 미세조직은 페라이트 단상조직인 것이 바람직하다. 본 발명은 C의 함량이 20~40ppm인 극저탄소(ultra low carbon)강에 해당되므로, 미세조직은 페라이트 단상조직으로 이루어진다.
The microstructure of the galvannealed steel sheet according to the present invention is preferably a ferrite single-phase structure. Since the present invention corresponds to an ultra low carbon steel having a content of C of 20 to 40 ppm, the microstructure is composed of a ferrite single phase structure.

CuS, MnS 및 CuMnS 중 1종 이상의 석출물의 평균 결정입도는 100~400nm이고, 상기 석출물의 평균 밀도는 0.01~0.20개/μm2로 형성됨이 바람직하다.It is preferable that the average crystal grain size of at least one precipitate of CuS, MnS and CuMnS is 100 to 400 nm and the average density of the precipitates is 0.01 to 0.20 / μm 2 .

석출물의 크기는 소부경화특성과 2차가공취성, 소성이방성지수, 면내이방성지수 등에 직접직인 영향을 미치는데, 본 발명에서 CuS, MnS 및 CuMnS 중 1종 이상의 석출물의 평균입도가 400nm를 초과하게 되면 상기 특성들을 우수하게 확보하기 어렵고, 특히 소부경화특성 확보가 매우 어렵다. 따라서, 상술한 효과들을 얻기 위해서는 평균입도가 100~400nm인 CuS, MnS 및 CuMnS 중 1종 이상의 석출물을 0.01~0.20개/μm2로 포함함이 바람직하다.
The size of the precipitate directly affects the sintering property, the secondary process brittleness, the plastic anisotropy index and the in-plane anisotropy index. In the present invention, when the average particle size of at least one precipitate among CuS, MnS and CuMnS exceeds 400 nm It is difficult to obtain the above characteristics excellently, and it is particularly difficult to secure the curing properties of the resin. Therefore, in order to obtain the above-mentioned effects, it is preferable that at least one precipitate of CuS, MnS and CuMnS having an average particle size of 100 to 400 nm is contained in the range of 0.01 to 0.20 / μm 2 .

이하, 본 발명에 의한 합금화 용융아연도금강판의 합금화 용융아연도금층에 대하여 상세히 설명한다.
Hereinafter, an alloyed hot-dip galvanized layer of the galvannealed steel sheet according to the present invention will be described in detail.

본 발명에 의한 합금화 용융아연도금강판의 합금화 용융아연도금층은 델타(δ)상을 면적분율로 80% 이상 포함함이 바람직하다. The alloyed hot-dip galvanized layer of the galvannealed steel sheet according to the present invention preferably contains a delta (delta) phase in an area fraction of 80% or more.

상기 도금층 내 조직 중 델타상이 80% 미만일 경우, 파우더링성이 취약해지는 문제가 있다.
If the delta phase of the structure in the plating layer is less than 80%, there is a problem that the powdering property becomes weak.

또한, 상기 합금화 용융아연도금층의 합금화도는 13 이하인 것이 바람직하다. 도금층의 합금화도는 가공성뿐만 아니라, 내파우더링성과 같은 도금특성과 밀접한 연관이 있으므로 이를 제어할 필요가 있다. The alloying degree of the galvannealing layer is preferably 13 or less. It is necessary to control the degree of alloying of the plating layer because it is closely related to the plating characteristics such as resistance to workability and resistance to powdering.

상기 합금화도가 13을 초과하여 너무 높을 경우, 소지강판으로의 Fe 확산이 과다하게 발생하여 도금층의 내파우더링성과 같은 도금 밀착성이 저하되는 문제가 있다. 따라서, 본 발명에서는 합금화 용융아연도금층의 합금화도를 13 이하로 제어함이 바람직하며, 보다 바람직하게 9~13%로 제어함이 우수한 도금특성의 확보에 효과적이다.
If the degree of alloying is too high to exceed 13, there is a problem that the diffusion of Fe into the steel sheet excessively occurs and the plating adhesion of the plated layer, such as the anti-powdering property, deteriorates. Therefore, in the present invention, it is preferable to control the degree of alloying of the galvannealed galvanized layer to 13 or less, more preferably 9 to 13%, which is effective in securing excellent plating characteristics.

상술한 조건들을 만족하는 합금화 용융아연도금강판을 제조하기 위하여 본 발명자들에 의해 도출된 가장 바람직한 방법에 대하여 하기에 구체적으로 설명한다.
The most preferable method derived by the present inventors for producing an alloyed hot-dip galvanized steel sheet satisfying the above-mentioned conditions will be specifically described below.

먼저, 상술한 성분 조성을 갖는 강 슬라브를 1150~1250℃에서 재가열한 후, 상기 재가열된 강 슬라브를 열간압연하여 열연강판을 제조한다.First, the steel slab having the above-mentioned composition is reheated at 1150 to 1250 DEG C, and then the reheated steel slab is hot-rolled to produce a hot-rolled steel sheet.

이때, 마무리 압연은 Ar3~950℃의 온도범위에서 행하는 것이 바람직하다. 마무리 압연이 Ar3 미만의 온도에서 행해질 경우, 열간 변형 저항이 급격히 증가될 가능성이 높으며, 고온취성에 따른 미세크랙이 발생할 가능성이 높은 문제가 있다. 반면, 마무리 압연이 950℃를 초과하는 높은 온도에서 행해질 경우, 이상역 열간압연으로 인해 혼립조직이 발생하므로 결함이 생기기 쉬운 문제가 있다.
At this time, the finish rolling is preferably performed in a temperature range of Ar 3 to 950 ° C. When the finish rolling is performed at a temperature less than Ar3, there is a high possibility that the hot deformation resistance is rapidly increased, and there is a high possibility that micro cracks occur due to high temperature brittleness. On the other hand, when the finish rolling is carried out at a high temperature exceeding 950 占 폚, there is a problem that defective is likely to occur due to the occurrence of a mixed grain structure due to an anomalous hot rolling.

상기 제조된 열연강판을 700~750℃의 온도범위에서 권취함이 바람직하다.It is preferable that the hot rolled steel sheet is rolled in a temperature range of 700 to 750 ° C.

권취시 온도가 700℃ 미만이면 열연강판의 결정립이 권취 후의 냉각과정에서 충분히 성장하지 않기 때문에 강의 가공성을 저하시키는 요인이 되며, 반면 권취온도가 750℃를 초과하는 경우에는 석출물이 너무 조대하게 성장하여 가공성을 저하시키고, 강판 표면에 다량의 스케일이 발생되어 산세과정에서 산세 불량의 요인이되는 문제가 있다.
If the temperature at the time of coiling is less than 700 캜, the crystal grains of the hot-rolled steel sheet do not sufficiently grow during the cooling process after the coiling, resulting in a deterioration in the workability of the steel. On the other hand, when the coiling temperature exceeds 750 캜, There is a problem that the workability is reduced and a large scale is generated on the surface of the steel sheet, which is a cause of poor pickling in the pickling process.

상기 권취된 열연강판을 60~80%의 압하율로 냉간압연하여 냉연강판을 제조함이 바람직하다.The rolled hot-rolled steel sheet is preferably cold-rolled at a reduction ratio of 60 to 80% to produce a cold-rolled steel sheet.

냉간압연시 냉간압하율이 60% 미만일 경우에는 소둔재결정 핵생성이 적은 양으로 형성되어 소둔시 결정립이 너무 크게 성장하여 소둔 재결정립의 조대화로 강도 및 가공성이 저하되는 문제가 있으며, 이에 반면 냉간압하율이 80%를 초과할 경우에는 가공성은 향상되지만 핵생성의 양이 너무 많아 소둔 재결정립이 오히려 너무 미세하게 되어 연성이 저하되는 문제가 있다.
When the cold rolling reduction rate is less than 60% in the cold rolling, the annealing recrystallization nuclei are formed in a small amount so that the crystal grains grow too large during the annealing and the strength and the workability are lowered due to the coarsening of the annealed recrystallized grain. If the reduction rate exceeds 80%, the workability is improved, but the amount of nucleation is too large, so that the recrystallization annealing is too fine and the ductility is deteriorated.

상기 냉간압연을 실시하기 전, 제조된 열연강판을 통상의 방법으로 산세를 실시할 수 있다.
Before the cold rolling, the produced hot-rolled steel sheet can be pickled by a conventional method.

상기 냉연강판을 820~880℃의 온도범위에서 소둔을 실시함이 바람직하다.It is preferable that the cold-rolled steel sheet is subjected to annealing in a temperature range of 820 to 880 캜.

소둔시 소둔온도가 820℃ 미만일 경우에는 재결정이 완료되지 못하여 목표로 하는 연성값을 확보하기 어려우며, 반면 소둔온도가 880℃를 초과하는 경우에는 재결정립의 조대화로 강도가 저하되는 문제가 있다.When the annealing temperature is less than 820 DEG C, recrystallization is not completed and it is difficult to secure a desired ductility value. On the other hand, when the annealing temperature exceeds 880 DEG C, there is a problem that strength is lowered due to coarsening of recrystallized grains.

이때, 상기 소둔은 연속소둔방법으로 행해짐이 바람직하며, 소둔시간은 재결정이 완료되도록 유지함이 필요하므로 약 10초 이상으로 행해짐이 바람직하다. 보담 바람직하게는 10초 이상 30분 이내로 행해짐이 바람직하다.
At this time, it is preferable that the annealing is performed by the continuous annealing method, and it is preferable that the annealing time is performed for about 10 seconds or more since it is necessary to keep the annealing time to complete the recrystallization. Preferably 10 seconds or more and 30 minutes or less.

상기 소둔이 완료된 냉연강판을 용융아연도금처리하여 용융아연도금강판으로 제조할 수 있다.The annealed cold rolled steel sheet may be subjected to hot dip galvanizing treatment to produce a hot dip galvanized steel sheet.

이때, 상기 용융아연도금처리는 통상의 용융아연도금방법에 의할 수 있으며, 예컨대 아연도금욕에 상기 소둔된 냉연강판을 침지시킴으로써 행하는 것이 바람직하다.
At this time, the hot-dip galvanizing treatment can be carried out by a conventional hot-dip galvanizing method, for example, preferably by immersing the cold-rolled steel sheet annealed in a galvanizing bath.

이후, 상기 제조된 용융아연도금강판을 450~550℃로 가열하여 합금화 열처리를 실시함으로써 합금화 용융아연도금강판으로 제조할 수 있다.Thereafter, the produced hot-dip galvanized steel sheet is heated to 450 to 550 ° C and then subjected to alloying heat treatment, whereby the hot-dip galvanized steel sheet can be manufactured.

이때, 상기 합금화 열처리 온도가 450℃ 미만일 경우에는 합금화 온도가 너무 낮아 적절한 합금화도 및 도금층의 안정적인 성장을 확보하기 어려우며, 반면 온도가 550℃를 초과하는 경우에는 강판의 재질이 저하되는 문제가 발생할 수 있다.
At this time, if the alloying heat treatment temperature is lower than 450 ° C, the alloying temperature is too low to ensure proper alloying degree and stable growth of the plating layer. On the other hand, when the temperature exceeds 550 ° C, have.

이하, 실시예를 통하여 본 발명을 보다 구체적으로 설명하고자 한다. 다만, 하기의 실시예는 본 발명을 예시하여 보다 상세하게 설명하기 위한 것일 뿐, 본 발명의 권리범위를 한정하기 위한 것이 아니라는 점에 유의할 필요가 있다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의해 결정되는 것이기 때문이다.
Hereinafter, the present invention will be described more specifically by way of examples. It should be noted, however, that the following examples are intended to illustrate the invention in more detail and not to limit the scope of the invention. The scope of the present invention is determined by the matters set forth in the claims and the matters reasonably inferred therefrom.

(( 실시예Example ))

하기 표 1의 조성을 갖는 강 슬라브를 제조하고, 상기 강 슬라브를 1200℃로 재가열하여 Ar3~950℃에서 마무리 압연하고, 700℃로 권취한 후, 70%로 냉간압연을 행하고, 850℃에서 연속 소둔을 실시하여 냉연강판을 제조하였다.A steel slab having the composition shown in the following Table 1 was prepared, and the steel slab was reheated at 1200 ° C and finishing rolled at Ar 3 to 950 ° C, rolled at 700 ° C, cold rolled at 70% To prepare a cold-rolled steel sheet.

이후, 상기 제조된 냉연강판에 용융아연도금을 행하여 용융아연도금강판을 제조한 후, 상기 용융아연도금강판을 500℃로 가열하여 합금화 열처리를 실시하여 합금화 용융아연도금강판을 제조하였다.
Thereafter, the cold-rolled steel sheet thus prepared was subjected to hot-dip galvannealing to produce a hot-dip galvanized steel sheet, and then the hot-dip galvanized steel sheet was heated to 500 ° C to conduct alloying heat treatment to produce a galvannealed steel sheet.

상기 제조된 냉연강판에 대하여, 인장강도(tensile strength), 연신율 및 소부경화량을 측정하고, 미세조직을 관찰하여 그 결과를 하기 표 2에 나타내었다. 또한, 상기 제조된 합금화 용융아연도금강판에 대해, 델타상 분율 및 합금화도를 측정하였으며, 가공성과 도금특성을 나타내는 내파우더링성을 평가하여 그 결과들을 하기 표 2에 함께 나타내었다.The tensile strength, elongation and curing amount of the prepared cold-rolled steel sheet were measured, and the microstructure was observed. The results are shown in Table 2 below. The thus-prepared galvannealed steel sheet was measured for delta phase fraction and degree of alloying, and resistance to corrosion resistance, which was evaluated for workability and plating characteristics, was evaluated. The results are shown in Table 2 below.

소부경화량은 인장시편과 동일한 시편방향 및 호수로 시편을 제작하여 170℃에서 20분간 소부처리(Baking)하여 그 전후의 항복강도차이를 측정하여 나타내었다.The amount of hardening was determined by baking the specimen at 170 ℃ for 20 minutes and measuring the yield strength before and after.

이때 결과는, 인장강도가 300~370MPa, 연신율이 35% 이상, 소부경화량 값이 30MPa 이상 중 세 가지 항목을 모두 만족하는 경우에는 ○, 두 가지 항목을 만족하는 경우에는 △, 한 가지 항목만을 만족하거나 모두 만족하지 않는 경우에는 ×로 표기하였다.The results are shown as ○ when the tensile strength is 300 to 370 MPa, the elongation is 35% or more, and the hardening amount is 30 MPa or more, satisfies all three items, △ when two items are satisfied, And when it is not satisfactory or not satisfactory, it is marked with X.

또한, 내파우더링성은 시험편에 셀로판 데이프를 부착하여 굽힘 가공한 후 시편으로부터 셀로판 테이프를 제거하여 셀로판 테이프 상에 부착된 도금량으로 도금 부착성을 판정하였다. 이때, 박리 및 크랙이 발생이 발생하지 않은 경우에는 ○, 파우더가 일부 발생한 경우에는 △, 박리 및 크랙이 다수 발생한 경우에는 ×로 표기하였다.
In addition, the cellulosic tape was removed from the test piece after bending the cellophane tape attached to the test piece, and the adhesion of the plating was judged by the amount of plating adhered on the cellophane tape. In this case, when no peeling or cracking occurred, the symbol was marked as?, When the powder was partially generated,?, When the peeling and cracking occurred many times.

구분division CC MnMn PP SS SiSi AlAl NbNb CuCu CrCr MoMo NN NiNi 발명강1Inventive Steel 1 0.00220.0022 0.350.35 0.0590.059 0.00210.0021 0.0040.004 0.0370.037 0.0050.005 0.0150.015 0.0140.014 -- 0.00210.0021   발명강2Invention river 2 0.00330.0033 0.340.34 0.0570.057 0.00340.0034 0.00680.0068 0.0290.029 0.0130.013 0.0130.013 0.0170.017 -- 0.00320.0032   발명강3Invention steel 3 0.00370.0037 0.380.38 0.0560.056 0.00510.0051 0.00390.0039 0.0390.039 0.0110.011 0.0260.026 0.0210.021 -- 0.00230.0023   발명강4Inventive Steel 4 0.00240.0024 0.440.44 0.0490.049 0.00290.0029 0.00380.0038 0.0270.027 0.0090.009 0.0170.017 0.0290.029 -- 0.00190.0019   발명강5Invention steel 5 0.00270.0027 0.50.5 0.0310.031 0.00760.0076 0.00210.0021 0.0210.021 0.0180.018 0.0140.014 0.0110.011 -- 0.00320.0032   발명강6Invention steel 6 0.00310.0031 0.780.78 0.0540.054 0.00790.0079 0.00620.0062 0.0320.032 0.0150.015 0.0210.021 -- 0.0040.004 0.00250.0025   발명강7Invention steel 7 0.00390.0039 0.490.49 0.0450.045 0.00670.0067 0.00470.0047 0.0390.039 0.010.01 0.020 0.020 -- 0.0020.002 0.00280.0028   발명강8Inventive Steel 8 0.00240.0024 0.510.51 0.0340.034 0.00540.0054 0.00420.0042 0.0390.039 0.0060.006 0.0150.015 -- 0.0010.001 0.00260.0026   발명강9Invention river 9 0.00270.0027 0.630.63 0.0320.032 0.00720.0072 0.00120.0012 0.0260.026 0.0090.009 0.0110.011 -- 0.0050.005 0.00230.0023   발명강10Invented Steel 10 0.00290.0029 0.760.76 0.0390.039 0.00670.0067 0.00290.0029 0.0290.029 0.0180.018 0.0180.018 -- 0.0030.003 0.00280.0028   발명강11Invention steel 11 0.00310.0031 0.490.49 0.0420.042 0.00610.0061 0.00530.0053 0.0310.031 0.0120.012 0.0290.029 -- -- 0.00180.0018 0.0120.012 발명강12Invention steel 12 0.00250.0025 0.540.54 0.0490.049 0.00570.0057 0.00510.0051 0.0290.029 0.0140.014 0.0180.018 -- -- 0.00250.0025 0.0290.029 발명강13Invention steel 13 0.00220.0022 0.610.61 0.0590.059 0.00540.0054 0.00480.0048 0.0120.012 0.0110.011 0.0260.026 -- -- 0.00340.0034 0.0210.021 발명강14Invented Steel 14 0.00230.0023 0.760.76 0.0470.047 0.00450.0045 0.00370.0037 0.0130.013 0.0070.007 0.0220.022 -- -- 0.00320.0032 0.0170.017 발명강15Invented Steel 15 0.00210.0021 0.450.45 0.0320.032 0.00610.0061 0.00150.0015 0.0170.017 0.020.02 0.0260.026 -- -- 0.00220.0022 0.0210.021 비교강1Comparative River 1 0.00190.0019 0.090.09 0.00880.0088 0.00590.0059 0.00380.0038 0.0330.033 0.00430.0043 -- -- -- 0.00220.0022   비교강2Comparative River 2 0.00170.0017 0.10.1 0.00910.0091 0.00670.0067 0.0040.004 0.0350.035 0.00680.0068 -- -- -- 0.00240.0024   비교강3Comparative Steel 3 0.00150.0015 0.050.05 0.00760.0076 0.00610.0061 0.00620.0062 0.0280.028 0.00440.0044 -- -- -- 0.00250.0025   비교강4Comparative Steel 4 0.00180.0018 0.140.14 0.00610.0061 0.00790.0079 0.00580.0058 0.0290.029 0.00670.0067 -- -- -- 0.00340.0034   비교강5Comparative Steel 5 0.00140.0014 0.130.13 0.00980.0098 0.00610.0061 0.00620.0062 0.0330.033 0.00930.0093 -- -- -- 0.00210.0021   비교강6Comparative Steel 6 0.00190.0019 0.150.15 0.01120.0112 0.00720.0072 0.00380.0038 0.0390.039 0.00900.0090 -- -- -- 0.00280.0028   비교강7Comparative Steel 7 0.00190.0019 0.140.14 0.00970.0097 0.00610.0061 0.00480.0048 0.0290.029 0.00490.0049 -- -- -- 0.00390.0039   비교강8Comparative Steel 8 0.00550.0055 0.050.05 0.01020.0102 0.00540.0054 0.00490.0049 0.0340.034 0.01380.0138 -- -- -- 0.00190.0019   비교강9Comparative Steel 9 0.00540.0054 0.090.09 0.00970.0097 0.00450.0045 0.00380.0038 0.0230.023 0.0180.018 -- -- -- 0.00230.0023   비교강10Comparative Steel 10 0.00520.0052 0.090.09 0.00870.0087 0.00620.0062 0.00520.0052 0.0210.021 0.03250.0325 -- -- -- 0.00260.0026   비교강11Comparative Steel 11 0.00510.0051 0.10.1 0.00510.0051 0.00570.0057 0.00530.0053 0.0260.026 0.01960.0196 -- -- -- 0.00320.0032   비교강12Comparative Steel 12 0.0050.005 0.150.15 0.01060.0106 0.00760.0076 0.00510.0051 0.0240.024 0.02780.0278 -- -- -- 0.00320.0032   비교강13Comparative Steel 13 0.00450.0045 0.130.13 0.00780.0078 0.00760.0076 0.00490.0049 0.0280.028 0.02250.0225 -- -- -- 0.00290.0029   비교강14Comparative Steel 14 0.00420.0042 0.050.05 0.00990.0099 0.00770.0077 0.00620.0062 0.0370.037 0.01270.0127 -- -- -- 0.00390.0039   비교강15Comparative Steel 15 0.00410.0041 0.050.05 0.00610.0061 0.00790.0079 0.00380.0038 0.0340.034 0.03720.0372 -- -- -- 0.00260.0026  

구분division C/NbC / Nb TS
(MPa)
TS
(MPa)
El
(%)
Hand
(%)
BH
(Mpa)
BH
(Mpa)
석출물
(nm)
Precipitate
(nm)
석출물
개/μm2
Precipitate
/ Μm 2
TS,El,BH
평가
TS, El, BH
evaluation
델타상
(%)
Delta phase
(%)
합금화도
(%)
Alloying degree
(%)
내파우더링My powder ring
발명예1Inventory 1 0.44 0.44 321321 3737 3737 197197 0.010 0.010 9696 12.912.9 발명예2Inventive Example 2 0.25 0.25 337337 3535 3737 236236 0.200 0.200 8181 11.011.0 발명예3Inventory 3 0.34 0.34 358358 3232 3333 110110 0.140 0.140 9494 11.311.3 발명예4Honorable 4 0.27 0.27 352352 4343 4343 299299 0.070 0.070 9191 10.210.2 발명예5Inventory 5 0.15 0.15 337337 3434 4646 392392 0.080 0.080 8686 10.910.9 발명예6Inventory 6 0.21 0.21 332332 3333 4242 361361 0.050 0.050 9393 12.712.7 발명예7Honorable 7 0.39 0.39 349349 3232 5757 330330 0.090 0.090 9191 12.512.5 발명예8Honors 8 0.40 0.40 312312 4242 4949 144144 0.080 0.080 8383 12.812.8 발명예9Proposition 9 0.30 0.30 347347 4343 5959 268268 0.130 0.130 8585 11.311.3 발명예10Inventory 10 0.16 0.16 364364 4444 4747 237237 0.030 0.030 8787 12.812.8 발명예11Exhibit 11 0.26 0.26 352352 4141 4242 206206 0.060 0.060 8282 11.811.8 발명예12Inventory 12 0.18 0.18 343343 3838 5151 175175 0.110 0.110 9292 11.211.2 발명예13Inventory 13 0.20 0.20 367367 3737 4949 144144 0.070 0.070 9191 10.610.6 발명예14Inventory 14 0.33 0.33 331331 3636 3939 113113 0.020 0.020 9595 10.910.9 발명예15Honorable Mention 15 0.11 0.11 367367 3333 5454 330330 0.090 0.090 8989 12.912.9 비교예1Comparative Example 1 0.44 0.44 271271 3636 3737 501501 0.001 0.001 7171 10.510.5 비교예2Comparative Example 2 0.25 0.25 276276 3535 3636 567567 0.004 0.004 7878 11.411.4 ×× 비교예3Comparative Example 3 0.34 0.34 267267 3535 3535 541541 0.002 0.002 7272 11.911.9 ×× 비교예4Comparative Example 4 0.27 0.27 297297 3636 3737 601601 0.001 0.001 6767 11.711.7 ×× 비교예5Comparative Example 5 0.15 0.15 496496 3434 1717 6767 0.001 0.001 ×× 7474 10.110.1 비교예6Comparative Example 6 0.21 0.21 401401 3333 99 4343 0.003 0.003 ×× 7171 12.612.6 비교예7Comparative Example 7 0.39 0.39 411411 2727 1111 2727 0.002 0.002 ×× 8888 13.913.9 비교예8Comparative Example 8 0.40 0.40 389389 2828 1414 6262 0.002 0.002 ×× 8787 13.713.7 비교예9Comparative Example 9 0.30 0.30 379379 3939 1717 7777 0.004 0.004 ×× 9191 14.514.5 비교예10Comparative Example 10 0.16 0.16 381381 3434 1010 9292 0.001 0.001 ×× 9393 14.214.2 비교예11Comparative Example 11 0.26 0.26 277277 3333 2121 192192 0.002 0.002 ×× 7777 10.710.7 비교예12Comparative Example 12 0.18 0.18 291291 3232 2323 202202 0.001 0.001 ×× 8484 14.214.2 ×× 비교예13Comparative Example 13 0.20 0.20 284284 3636 1717 8383 0.002 0.002 ×× 9191 14.714.7 ×× 비교예14Comparative Example 14 0.33 0.33 290290 3535 1111 222222 0.002 0.002 ×× 8787 14.114.1 ×× 비교예15Comparative Example 15 0.11 0.11 265265 4747 1414 232232 0.005 0.005 7272 11.911.9

(상기 표 2에서 석출물은 CuS, MnS 및 CuMnS 중 1종 이상의 석출물을 의미한다.)
(In Table 2, the precipitate means at least one precipitate of CuS, MnS and CuMnS.)

상기 표 2에 나타낸 바와 같이, 본 발명에서 제안하는 바를 모두 만족하는 발명예 1 내지 15의 경우 강도, 연신율 및 소부경화성 평가가 모두 양호하게 나타났으며, 뿐만 아니라 내파우더링성과 같은 도금특성이 우수한 것을 확인할 수 있다.
As shown in Table 2, in Examples 1 to 15, which satisfied all of the suggestions of the present invention, both strength, elongation, and hardening curability were all good, and the plating properties such as resistance to powdering .

비교예 1 내지 15는 성분조성 중 C 및 Mn의 함량이 본 발명에서 제안하는 바를 만족하지 않는 경우이다.In Comparative Examples 1 to 15, the contents of C and Mn in the composition do not satisfy the requirements of the present invention.

비교예 1 내지 4의 냉연강판은 매우 조대한 결정립이 다수 생성되고 결정립 분포가 적절하지 못하여 강도가 낮은 것을 확인할 수 있다. 비교예 5 내지 10의 냉연강판은 결정립이 미세하여 강도는 우수하였지만 목적하는 바에 비해 너무 미세하고 결정립 분포도 적절하지 못하여 연신율이 낮거나 소부경화량(BH)이 낮은 것을 확인할 수 있다. 또한, 비교예 11 내지 15의 냉연강판은 결정립의 분포가 적절하지 못하였고, 소부경화량도 낮게 나타났다.It can be confirmed that the cold-rolled steel sheets of Comparative Examples 1 to 4 produced very coarse crystal grains and the grains were not distributed appropriately and had low strength. The cold-rolled steel sheets of Comparative Examples 5 to 10 had fine grains and excellent strength, but were too fine as compared with the aimed grains and the grain size distribution was not appropriate, so that it was confirmed that the elongation was low or the cemented amount (BH) was small. In addition, the cold-rolled steel sheets of Comparative Examples 11 to 15 did not have an appropriate distribution of crystal grains, and the amount of hardened sintering was also low.

뿐만 아니라, 비교예 1 내지 6, 11 및 15의 합금화 용융도금강판은 델타상 분율이 81% 미만으로 나타났으며, 비교예 7 내지 10 및 비교예 12 내지 14의 합금화 용융도금강판은 합금화도가 너무 높게 나타난 것을 확인할 수 있다. 이로 인해, 상기 비교예1 내지 15의 합금화 용융도금강판들의 파우더링성이 취약해진 결과를 보였다.In addition, the alloyed hot-dip coated steel sheets of Comparative Examples 1 to 6, 11 and 15 had a delta phase fraction of less than 81%, and the alloying hot-dip coated steel sheets of Comparative Examples 7 to 10 and Comparative Examples 12 to 14 had alloyability Which is too high. As a result, the powdering properties of the galvannealed steel sheets of Comparative Examples 1 to 15 were weakened.

Claims (7)

중량%로, 탄소(C): 0.002~0.004%, 망간(Mn): 0.3~0.8%, 인(P): 0.06% 이하, 황(S): 0.008% 이하, 실리콘(Si): 0.001~0.007%, 알루미늄(Al): 0.01~0.04%, 니오븀(Nb): 0.005~0.020%, 구리(Cu): 0.01~0.03%, 질소(N): 0.001~0.005%, 잔부 Fe 및 불가피한 불순물을 포함하고, 상기 C 및 Nb의 성분비(C/Nb)가 0.01~0.50이고,
CuS, MnS 및 CuMnS 중 1종 이상의 석출물을 포함하고, 상기 석출물의 평균 결정입도는 100~400nm이고, 상기 석출물의 평균 밀도는 0.01~0.20개/μm2이고,
강판의 미세조직은 페라이트 단상조직으로 이루어지고,
강판 표면에 합금화 용융아연도금층을 포함하는 가공성 및 내파우더링성이 우수한 소부경화형 합금화 용융아연도금강판.
By weight%, carbon (C): 0.002 to 0.004%, manganese (Mn): 0.3 to 0.8%, phosphorus (P): 0.06% or less, sulfur (S): 0.008% or less, silicon (Si): 0.001 to 0.007 %, Aluminum (Al): 0.01 to 0.04%, niobium (Nb): 0.005 to 0.020%, copper (Cu): 0.01 to 0.03%, nitrogen (N): 0.001 to 0.005%, balance Fe and inevitable impurities , Component ratio (C / Nb) of C and Nb is 0.01 to 0.50,
CuS, comprising the MnS and CuMnS 1 or more kinds of precipitates, the average crystal grain size of the precipitate is 100 ~ 400nm, and the average density of the precipitates from 0.01 to 0.20 piece / μm 2,
The microstructure of the steel sheet is composed of a ferrite single phase structure,
A hardening type alloyed hot-dip galvanized steel sheet having excellent workability and powder resistance including an alloyed hot-dip galvanized layer on the surface of a steel sheet.
제 1항에 있어서,
상기 합금화 용융아연도금강판은 크롬(Cr): 0.01~0.03%, 몰리브덴(Mo): 0.001~0.005%, 니켈(Ni): 0.001~0.030% 및 바나듐(V): 0.0001~0.010%로 이루어진 그룹에서 선택된 1종 또는 2종 이상을 더 포함하는 가공성 및 내파우더링성이 우수한 소부경화형 합금화 용융아연도금강판.
The method of claim 1,
The galvanized hot-dip galvanized steel sheet according to claim 1, wherein the galvannealed steel sheet comprises at least one member selected from the group consisting of 0.01 to 0.03% of chromium (Cr), 0.001 to 0.005% of molybdenum (Mo), 0.001 to 0.030% of nickel (Ni) and 0.0001 to 0.010% of vanadium A hot-curing type alloyed hot-dip galvanized steel sheet excellent in workability and resistance to powdering, further comprising one or more selected ones.
제 1항에 있어서,
상기 합금화 용융아연도금층의 델타상 분율이 81% 이상이고, 합금화도가 9~13%인 것을 특징으로 하는 가공성 및 내파우더링성이 우수한 소부경화형 용융아연도금강판.
The method of claim 1,
The delta-phase fraction of the alloyed hot-dip galvanized layer is 81% or more, alloying degree is 9 ~ 13% characterized in that the hardening-type hot-dip galvanized steel sheet excellent in workability and powder resistance.
제 1항 내지 제 3항 중 어느 한 항에 있어서,
상기 합금화 용융아연도금강판은 인장강도가 300~370MPa이고, 연신율이 35% 이상이고, 소부경화(BH) 값이 30MPa 이상인 것을 특징으로 하는 가공성 및 내파우더링성이 우수한 소부경화형 합금화 용융아연도금강판.
4. The method according to any one of claims 1 to 3,
The galvannealed steel sheet of claim 1, wherein the galvannealed steel sheet has a tensile strength of 300 to 370 MPa, an elongation of 35% or more, and a bending hardening (BH) value of 30 MPa or more.
중량%로, 탄소(C): 0.002~0.004%, 망간(Mn): 0.3~0.8%, 인(P): 0.06% 이하, 황(S): 0.008% 이하, 실리콘(Si): 0.001~0.007%, 알루미늄(Al): 0.01~0.04%, 니오븀(Nb): 0.005~0.020%, 구리(Cu): 0.01~0.03%, 질소(N): 0.001~0.005%, 잔부 Fe 및 불가피한 불순물을 포함하고, 상기 C 및 Nb의 성분비(C/Nb)가 0.01~0.50인 강 슬라브를 1150~1250℃로 재가열하는 단계;
마무리 압연온도를 Ar3~950℃로 하여 상기 재가열된 강 슬라브를 열간압연하여 열연강판으로 제조하는 단계;
상기 열연강판을 700~750℃에서 권취하는 단계;
상기 권취 후 60~80%의 압하율로 냉간압연하여 냉연강판을 제조하는 단계;
상기 냉연강판을 820~880℃에서 소둔하는 단계;
상기 소둔된 냉연강판에 용융아연도금을 수행하여 용융아연도금강판을 제조하는 단계; 및
상기 용융아연도금강판 400~600℃로 가열하여 합금화 용융아연도금강판을 제조하는 단계
를 포함하는 가공성 및 내파우더링성이 우수한 소부경화형 합금화 용융아연도금강판의 제조방법.
By weight%, carbon (C): 0.002 to 0.004%, manganese (Mn): 0.3 to 0.8%, phosphorus (P): 0.06% or less, sulfur (S): 0.008% or less, silicon (Si): 0.001 to 0.007 %, Aluminum (Al): 0.01 to 0.04%, niobium (Nb): 0.005 to 0.020%, copper (Cu): 0.01 to 0.03%, nitrogen (N): 0.001 to 0.005%, balance Fe and inevitable impurities Reheating the steel slab having a component ratio (C / Nb) of C and Nb of 0.01 to 0.50 to 1150 to 1250 ° C .;
Preparing a hot rolled steel sheet by hot rolling the reheated steel slab at a finishing rolling temperature of Ar 3 to 950 캜;
Winding the hot-rolled steel sheet at 700 to 750 ° C;
Rolling the steel sheet at a reduction ratio of 60 to 80% after the rolling to produce a cold-rolled steel sheet;
Annealing the cold-rolled steel sheet at 820 to 880 ° C;
Performing hot dip galvanizing on the annealed cold rolled steel sheet to produce a hot-dip galvanized steel sheet; And
The hot dip galvanized steel sheet is heated to 400 to 600 ° C to produce a galvannealed steel sheet
Wherein the galvannealed steel sheet has excellent workability and resistance to powdering.
제 5항에 있어서,
상기 강 슬라브에 크롬(Cr): 0.01~0.03%, 몰리브덴(Mo): 0.001~0.005%, 니켈(Ni): 0.001~0.030% 및 바나듐(V): 0.0001~0.010%로 이루어진 그룹에서 선택된 1종 또는 2종 이상을 더 포함하는 가공성 및 내파우더링성이 우수한 소부경화형 합금화 용융아연도금강판의 제조방법.
6. The method of claim 5,
Wherein the steel slab is made of one selected from the group consisting of 0.01 to 0.03% of Cr, 0.001 to 0.005% of molybdenum (Mo), 0.001 to 0.030% of nickel (Ni), and 0.0001 to 0.010% of vanadium (V) Or two or more of the above-mentioned hot-dip galvannealed steel sheet and hot-dip galvanized steel sheet.
제 5항 또는 제 6항에 있어서,
상기 소둔 단계는 연속소둔 방법으로 행하고, 10초 내지 30분 동안 실시하는 것을 특징으로 하는 가공성 및 내파우더링성이 우수한 소부경화형 합금화 용융아연도금강판의 제조방법.
The method according to claim 5 or 6,
Wherein the annealing step is carried out by a continuous annealing method and is carried out for 10 seconds to 30 minutes, wherein the annealing step is carried out by a continuous annealing method and is excellent in workability and resistance to powdering.
KR1020120114888A 2012-10-16 2012-10-16 Baking hardening type galvanized steel sheet having excellent formability and powdering resistance, and method for manufacturing the same KR101449135B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120114888A KR101449135B1 (en) 2012-10-16 2012-10-16 Baking hardening type galvanized steel sheet having excellent formability and powdering resistance, and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120114888A KR101449135B1 (en) 2012-10-16 2012-10-16 Baking hardening type galvanized steel sheet having excellent formability and powdering resistance, and method for manufacturing the same

Publications (2)

Publication Number Publication Date
KR20140048668A true KR20140048668A (en) 2014-04-24
KR101449135B1 KR101449135B1 (en) 2014-10-08

Family

ID=50654642

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120114888A KR101449135B1 (en) 2012-10-16 2012-10-16 Baking hardening type galvanized steel sheet having excellent formability and powdering resistance, and method for manufacturing the same

Country Status (1)

Country Link
KR (1) KR101449135B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022103058A1 (en) 2020-11-12 2022-05-19 주식회사 포스코 Bake-hardened hot-dip galvanized steel sheet with excellent powdering resistance, and manufacturing method therefor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102484978B1 (en) * 2020-12-11 2023-01-05 주식회사 포스코 High strength galvannealed steel sheet having excellent powdering resistance and manufacturing method for the same
KR102451002B1 (en) * 2020-12-15 2022-10-11 주식회사 포스코 Plated steel sheet having excellent strength, formability and surface property and method for manufacturing the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008231447A (en) * 2007-03-16 2008-10-02 Nippon Steel Corp Galvannealed steel sheet superior in appearance quality, and manufacturing method therefor
JP5471837B2 (en) * 2010-05-27 2014-04-16 新日鐵住金株式会社 Bake-hardening cold-rolled steel sheet and method for producing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022103058A1 (en) 2020-11-12 2022-05-19 주식회사 포스코 Bake-hardened hot-dip galvanized steel sheet with excellent powdering resistance, and manufacturing method therefor
KR20220064622A (en) 2020-11-12 2022-05-19 주식회사 포스코 Bake hardening hot-dip galvannealed steel sheet having excellent powdering and method for manufacturing the same
CN116457486A (en) * 2020-11-12 2023-07-18 浦项股份有限公司 Bake-hardening type hot-dip galvanized steel sheet excellent in powdering resistance and method for producing same

Also Published As

Publication number Publication date
KR101449135B1 (en) 2014-10-08

Similar Documents

Publication Publication Date Title
KR100985286B1 (en) High Manganese Steel Having High Strength and Excellent Delayed Fracture Resistance and Manufacturing Method Thereof
JP2018536764A (en) Ultra-high-strength steel sheet excellent in formability and hole expansibility and manufacturing method thereof
KR101747034B1 (en) Ultra high strength and high ductility steel sheet having excellent yield ratio, and method for manufacturing the same
KR20160078840A (en) High manganese steel sheet having superior yield strength and fromability, and method for manufacturing the same
KR101839235B1 (en) Ultra high strength steel sheet having excellent hole expansion ratio and yield ratio, and method for manufacturing the same
CN110088347B (en) Hot-dip galvanized steel sheet having excellent bake hardenability and room-temperature aging resistance, and method for producing same
KR102020404B1 (en) Steel sheet having ultra high strength and superior ductility and method of manufacturing the same
KR101166995B1 (en) Method for Manufacturing of High Strength and High Formability Galvanized Steel Sheet with Dual Phase
KR101449135B1 (en) Baking hardening type galvanized steel sheet having excellent formability and powdering resistance, and method for manufacturing the same
JP2021508772A (en) Zinc-based plated steel sheet with excellent room temperature aging resistance and shrink hardening property and its manufacturing method
KR102312511B1 (en) Cold rolled steel sheet having excellent bake hardenability and anti-aging properties at room temperature and method for manufacturing the same
KR101560900B1 (en) Composition structure steel sheet with superior bake hardenability and method for manufacturing the same
CN111315909B (en) Ultra-high strength and high ductility steel sheet having excellent cold formability and method for producing same
KR101452052B1 (en) High strength alloyed galvanized steel sheet with excellent coating adhesion and method for manufacturing the same
JP2023507801A (en) Cold-rolled steel sheet with excellent heat resistance and formability and its manufacturing method
KR20120137931A (en) Galvannealed steel sheet having excellent workability and coating property and method for manufacturing the same
KR102403647B1 (en) Bake hardening hot-dip galvannealed steel sheet having excellent powdering and method for manufacturing the same
KR102327931B1 (en) Cold rolled steel sheet and metal plated steel sheet having excellent bake hardenability and aging property at room temperature, and manufacturing method thereof
KR102381829B1 (en) Cold rolled steel sheet and metal plated steel sheet having excellent bake hardenability and anti-aging properties at room temperature and manufacturing method thereof
KR101360559B1 (en) Ultra low carbon cold rolled steel sheet and method for manufacturing the same
KR101053345B1 (en) High strength cold rolled steel sheet with excellent surface and hardening properties and its manufacturing method
KR20220168836A (en) Bake hardening hot-dip galvannealed steel sheet having excellent coated surface quality and method for manufacturing the same
KR102031452B1 (en) Cold rolled steel sheet and hot dip zinc-based plated steel sheet having excellent bake hardenability and plating adhesion, and method for manufaturing the same
KR101329948B1 (en) Galvannealed steel sheet having excellent workability and coating property and method for manufacturing the same
KR101439609B1 (en) Baking hardening type cold rolled steel sheet having excellent formability and process for producing the same

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20191001

Year of fee payment: 6