[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20140038158A - Method for preparing plga with lactide and glycolide, and plga prepared therefrom - Google Patents

Method for preparing plga with lactide and glycolide, and plga prepared therefrom Download PDF

Info

Publication number
KR20140038158A
KR20140038158A KR1020120104544A KR20120104544A KR20140038158A KR 20140038158 A KR20140038158 A KR 20140038158A KR 1020120104544 A KR1020120104544 A KR 1020120104544A KR 20120104544 A KR20120104544 A KR 20120104544A KR 20140038158 A KR20140038158 A KR 20140038158A
Authority
KR
South Korea
Prior art keywords
plga
molecular weight
glycolide
lactide
stirring
Prior art date
Application number
KR1020120104544A
Other languages
Korean (ko)
Inventor
오상권
김중권
이태호
정구영
박목순
최성욱
Original Assignee
동국제약 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 동국제약 주식회사 filed Critical 동국제약 주식회사
Priority to KR1020120104544A priority Critical patent/KR20140038158A/en
Publication of KR20140038158A publication Critical patent/KR20140038158A/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/30Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/78Preparation processes
    • C08G63/82Preparation processes characterised by the catalyst used
    • C08G63/85Germanium, tin, lead, arsenic, antimony, bismuth, titanium, zirconium, hafnium, vanadium, niobium, tantalum, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/88Post-polymerisation treatment
    • C08G63/90Purification; Drying
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/02Applications for biomedical use

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Epidemiology (AREA)
  • Inorganic Chemistry (AREA)
  • Medicinal Preparation (AREA)
  • Polyesters Or Polycarbonates (AREA)

Abstract

The present invention relates to a production method of PLGA using lactide and glycolide, and PLGA produced by the method. According to the production method of the present invention, the PLGA of which weight-average molecular weight is 8,000-15,000 and the molecular weight distribution is 1.50-2.40 which is narrow is capable of being produced. The PLGA produced by the method remarkably reduces the deviation of the controlled release of drugs, and is capable of uniformly controlling the release of the drug when the PLGA is used in a drug delivery system. [Reference numerals] (AA) Coat a thermosetting resin on an LPM impregnated print sheet; (BB) Coat a UV-curable adhesive on one side of transparent PET film; (CC) Attach a thermosetting resin-coated side and a UV curable adhesive-coated side; (DD) Step of filtering a solution, in which the synthesized PLGA dissolves in methylene chloride by pressure reduction; (EE) Pass a heating apparatus and cure thermosetting resin; (FF) Step of filtering the deposit, obtaining the PLGA, and drying the same

Description

락타이드와 글리콜라이드를 사용한 피엘지에이의 제조방법, 및 이로부터 제조된 피엘지에이{METHOD FOR PREPARING PLGA WITH LACTIDE AND GLYCOLIDE, AND PLGA PREPARED THEREFROM}METHOD FOR PREPARING PLGA WITH LACTIDE AND GLYCOLIDE, AND PLGA PREPARED THEREFROM}

본 발명은 락타이드와 글리콜라이드를 사용한 PLGA, 즉 폴리락타이드글리콜라이드 공중합체(poly(D,L-lactide-co-glycolide))의 제조방법, 및 이 제조방법에 의해 제조된 PLGA에 관한 것이다. 구체적으로는, 특정 평균분자량 및 분자량 분포도(polydispersity)를 가져, 약물전달시스템에서 약물 방출 조절 편차를 줄일 수 있는 PLGA를 제조하는 방법에 관한 것이다.The present invention relates to a method for producing PLGA using lactide and glycolide, that is, a polylactide glycolide copolymer (poly (D, L-lactide-co-glycolide)), and a PLGA prepared by the method. . Specifically, it relates to a method for producing PLGA having a specific average molecular weight and molecular weight distribution (polydispersity), which can reduce the drug release control deviation in the drug delivery system.

약물의 부작용을 줄이고 효능 및 효과를 극대화하기 위한 방법으로 약물을 고분자와 함께 침전시켜 나노 및 마이크로 단위의 크기를 가지는 입자를 제조하여 이용하는 고분자 약물전달시스템(polymeric drug delivery system)에 관한 많은 연구가 진행되고 있다. In order to reduce the side effects of drugs and maximize the efficacy and effects, many researches have been conducted on the polymeric drug delivery system, which uses particles prepared with particles of nano and micro units by precipitating drugs together with polymers. It is becoming.

약물전달시스템은, 약물의 지속적 방출 제제로서 주로 소수성 고분자에 펩타이드 등의 약물을 봉입하여 약물의 방출속도를 제어하는 기술로서, 생체 적합성과 생분해성을 가지는 고분자가 주로 이용되고 있다. 또한, 이러한 고분자로는, PLGA가 인체 내에서 안정한 생체 적합성과 생분해성을 지니고 있어 많이 이용되고 있다. 그 예로서, 한국 등록특허 10-0853309호에 개시된 폴리락타이드글리콜라이드 공중합체를 이용한 서방출 및 생분해성 나노입자 및 그 제조방법에 관한 기술 등을 들 수 있다. The drug delivery system is a technique for controlling the release rate of a drug by enclosing a drug such as a peptide into a hydrophobic polymer as a sustained release agent of the drug, and a polymer having biocompatibility and biodegradability is mainly used. In addition, as such a polymer, PLGA has a stable biocompatibility and biodegradation in the human body and is widely used. Examples thereof include a technique for sustained release and biodegradable nanoparticles using the polylactide glycolide copolymer disclosed in Korean Patent No. 10-0853309 and a method for producing the same.

PLGA는 Poly(lactic acid)(PLA)와 Poly(glycolic acid)(PGA)의 성분 비율에 따라 인체 내에서 분해되는 속도를 좌우하는 특성을 가진 것으로 알려져 있기 때문에, 이러한 전달체가 분해되면서 약물이 방출되는 속도가 조절될 수 있다는 특징을 지니고 있다. PLGA is known to have a characteristic that determines the rate of degradation in the body depending on the ratio of the components of poly (lactic acid) (PLA) and poly (glycolic acid) (PGA), so that the drug is released as these carriers break down. The speed is adjustable.

따라서 이러한 생체적합성과 생분해성을 지니는 고분자를 약물 방출을 조절하기 위한 매트릭스로 이용하면 약물 방출 속도는 약 자체의 성질에 대한 의존성을 줄이고, 단 한 번의 복용 또는 주사로써 수일에서 수개월에 걸쳐 임의의 프로그램화된 약물 방출거동을 가질 수 있다.Therefore, using these biocompatible and biodegradable polymers as a matrix for controlling drug release, drug release rates reduce dependence on the nature of the drug itself, and can be used for any program over days to months with a single dose or injection. Can have a controlled drug release behavior.

현재 각종 주사제의 지지체 및 약물전달물질로 제품화되어 상용되고 있는 PLGA는 생산비용이 높을 뿐만 아니라 넓은 분자량 분포도(polydispersity)로 인하여 제품의 방출조절에 대한 편차를 가지고 있다. 따라서, 생산 원가 절감 및 고 품질의 약제를 생산하기 위해서, 높은 순도의 PLGA 고분자를 합성하고 정제하는 방법에 대한 연구개발이 필요한 실정이다.PLGA, which is currently commercialized as a support and drug delivery material for various injections, has a high production cost and a variation in the release control of the product due to its wide molecular weight distribution (polydispersity). Therefore, in order to reduce production costs and produce high quality drugs, research and development on a method for synthesizing and purifying high purity PLGA polymer is required.

이에, 본 발명자들은, 제제공정분야에서 약물전달시스템에 최적화된 평균분자량 및 분자량 분포도(polydispersity)를 갖는 PLGA를 제조하는 방법을 예의 연구한 결과, 본 발명을 완성하게 되었다.Accordingly, the present inventors have completed the present invention as a result of intensively studying a method for producing PLGA having an average molecular weight and a molecular weight distribution (polydispersity) optimized for drug delivery systems in the formulation process field.

한국등록특허 제10-0853309호(2008. 8. 20. 공고, 시프로플록사신이 담지된 폴리락타이드글리콜라이드공중합체의 서방출 및 생분해성 나노입자 및 그 제조방법)Korean Patent No. 10-0853309 (2008. 8. 20. Announcement, Sustained-Release and Biodegradable Nanoparticles of Polylactide Glycolide Copolymer Supported with Ciprofloxacin and Manufacturing Method Thereof)

본 발명의 목적은, 중량평균분자량이 8,000~15,000이고, 분자량 분포도가 1.50~2.40인 PLGA를 제조하는 방법을 제공하는 것이다. An object of the present invention is to provide a method for producing PLGA having a weight average molecular weight of 8,000 to 15,000 and a molecular weight distribution of 1.50 to 2.40.

본 발명의 또 다른 목적은, 중량평균분자량이 8,000~15,000이고, 분자량 분포도가 1.50~2.40인 PLGA로서, 약물전달시스템에서 약물 방출 조절에 유용한 PLGA를 제공하는 것이다. It is still another object of the present invention to provide a PLGA having a weight average molecular weight of 8,000 to 15,000 and a molecular weight distribution of 1.50 to 2.40, which is useful for controlling drug release in a drug delivery system.

이러한 목적을 달성하기 위하여, 본 발명은 중량평균분자량이 8,000~15,000이고, 분자량 분포도가 1.50~2.40인 PLGA를 제조하는 방법으로서, In order to achieve this object, the present invention is a method for producing a PLGA having a weight average molecular weight of 8,000 ~ 15,000, molecular weight distribution of 1.50 ~ 2.40,

D,L-락타이드 및 글리콜라이드를 교반용해하는 단계; Stirring dissolving D, L-lactide and glycolide;

상기 교반용해 후, 개시제인 D,L-락트산을 첨가하고 나서, 촉매를 첨가하여 교반하는 단계; After the stirring dissolution, adding D, L-lactic acid as an initiator, and then adding and stirring a catalyst;

상기 교반 후 정치하여 합성된 PLGA를 수득하는 단계; Standing after the stirring to obtain a synthesized PLGA;

상기 합성된 PLGA를 메틸렌클로라이드에 용해한 용액을 감압 여과하는 단계; Filtering the solution of the synthesized PLGA in methylene chloride under reduced pressure;

상기 감압 여과로 얻은 여과액을 메탄올에 주입하면서 균질기를 이용하여 침전물을 얻는 단계; 및Injecting the filtrate obtained by the vacuum under reduced pressure to obtain a precipitate using a homogenizer; And

상기 침전물을 여과하여 PLGA를 수득한 후 건조하는 단계;를 포함한다. It comprises; filtering the precipitate to obtain a PLGA and dried.

상기 PLGA를 제조하는 방법에 있어서, D,L-락타이드 및 글리콜라이드를 교반용해하는 단계는, 질소로 치환된 용기 내에서, 110~150℃의 온도로 진행된다. In the method for preparing the PLGA, the step of stirring and dissolving the D, L- lactide and glycolide is carried out at a temperature of 110 ~ 150 ℃ in a vessel substituted with nitrogen.

또한, 상기 PLGA를 제조하는 방법에 있어서, 촉매는 주석(II)2-에틸헥사노에이트인 것이 바람직하다. In the method for producing the PLGA, the catalyst is preferably tin (II) 2 -ethylhexanoate.

본 발명의 또 다른 양태에 따르면, 상기 PLGA를 제조하는 방법에 있어서, 상기 D,L-락타이드, 글리콜라이드, 및 D,L-락트산은, 각각 1:0.8~1.2:0.01~0.06의 몰비로 사용되는 것이 바람직하다According to still another aspect of the present invention, in the method for producing the PLGA, the D, L-lactide, glycolide, and D, L-lactic acid are each in a molar ratio of 1: 0.8 to 1.2: 0.01 to 0.06. It is preferable to be used

또한, 상기 PLGA를 제조하는 방법에 있어서, 상기 D,L-락트산은 순도 90% 이상인 것이 바람직하다. In the method for producing the PLGA, the D, L-lactic acid is preferably at least 90% purity.

본 발명의 또 다른 양태에 따르면, 상기 메틸렌클로라이드 및 메탄올의 사용량은, 부피비로, 메틸렌클로라이드:메탄올이 1:1~25인 것이 바람직하다. According to another embodiment of the present invention, the amount of methylene chloride and methanol used is preferably methylene chloride: methanol 1: 1 to 25 by volume.

본 발명의 또 다른 양태에 따르면, 상기 PLGA를 제조하는 방법에 의해, 중량평균분자량이 8,000~15,000이고, 분자량 분포도가 1.50~2.40인 PLGA를 제공하며, 보다 바람직하게는 중량평균분자량이 8,000~15,000이고, 분자량 분포도가 1.50~2.00인 PLGA를 제공한다. According to another aspect of the present invention, by the method for producing the PLGA, a PLGA having a weight average molecular weight of 8,000 to 15,000, a molecular weight distribution of 1.50 to 2.40, more preferably a weight average molecular weight of 8,000 to 15,000 And PLGA having a molecular weight distribution of 1.50 to 2.00.

이하, 본 발명을 더 상세하게 설명한다. Hereinafter, the present invention will be described in more detail.

본 발명에서는, 하기 [반응식 I]에서 확인되는 바와 같이, 단량체인 D,L-락타이드 및 글리콜라이드가 각각 녹는점에 이르면 개환이 되면서, 촉매의 존재 하에, 개시제인 D,L-락트산에 의해 중합이 개시되어 폴리락타이드글리콜라이드 공중합체(poly(D,L-lactide-co-glycolide); PLGA)가 합성된다.In the present invention, as shown in the following [Scheme I], the monomers D, L- lactide and glycolide are each ring-opened when it reaches the melting point, in the presence of a catalyst, D, L- lactic acid in the presence of a catalyst The polymerization is initiated to synthesize a polylactide glycolide copolymer (poly (D, L-lactide-co-glycolide); PLGA).

[반응식 I][Reaction Scheme I]

Figure pat00001
Figure pat00001

본 발명의 제조 방법에 따르면, 먼저, D,L-락타이드 및 글리콜라이드를 교반하여 용해하는 단계를 거친다. 이 때, D,L-락타이드 및 글리콜라이드를 넣은 용기에 질소가스를 충진한 후 봉입한다. 그리고 나서, 온도를 110~150℃, 보다 바람직하게는 135~145℃로 조절한 후, D,L-락타이드 및 글리콜라이드를 교반하면서 용해시킨다. 여기서, 온도 조절은 히팅 맨틀(heatig mantle), 또는 오일 배스 등에 용기를 넣어 온도를 조절하는 방법을 이용하는 것이 바람직하다. According to the preparation method of the present invention, first, D, L-lactide and glycolide are stirred to dissolve. At this time, the container containing D, L-lactide and glycolide is filled with nitrogen gas and then sealed. Then, after adjusting the temperature to 110-150 ° C, more preferably 135-145 ° C, D, L-lactide and glycolide are dissolved while stirring. Here, the temperature control is preferably a method of controlling the temperature by putting a container in a heating mantle, or an oil bath.

이후, 개시제인 D,L-락트산을, 촉매와 함께, 상기 용기에 넣고 교반하면서 반응시킨 후, 점도로 인해 교반이 멈춘 시점부터 1일~3일 동안 정치(定置)시킨다. Thereafter, D, L-lactic acid, which is an initiator, is reacted with the catalyst in the above vessel while being stirred, and then allowed to stand for 1 to 3 days from the time when the stirring stops due to the viscosity.

본 발명에서는, PLGA의 합성반응시 D,L-락트산을 개시제로 사용함으로써, 합성된 PLGA의 중량평균분자량을 8,000~15,000으로 조절함과 동시에, 분자량 분포도(polydispersity)를 좁게 조절하여, PLGA를 약물전달시스템에 사용했을 때, 약물의 방출 속도가 일정하게 조절될 수 있는 효과가 있다. In the present invention, by using D, L-lactic acid as an initiator in the synthesis of PLGA, PLGA is controlled by controlling the weight average molecular weight of the synthesized PLGA to 8,000 to 15,000 and narrowly controlling the molecular weight distribution (polydispersity). When used in a delivery system, there is an effect that the rate of release of the drug can be constantly controlled.

상기 개시제인 D,L-락트산은, D,L-락타이드, 및 글리콜라이드에 대비했을 때 특정 비율, 즉, D,L-락타이드:글리콜라이드:D,L-락트산이 1:0.8~1.2: 0.01~0.06의 몰비로 사용되는 것이 바람직하며, 이와 같은 비율로 개시제가 사용될 때, 중량평균분자량이 8,000~15,000이고, 분자량 분포도가 1.50~2.40로 좁은 범위 내에 있는 PLGA를 얻을 수 있다. D, L-lactic acid as the initiator has a specific ratio when compared to D, L-lactide and glycolide, that is, D, L-lactide: glycolide: D, L-lactic acid is 1: 0.8-1.2 It is preferable to use in a molar ratio of 0.01 to 0.06, and when the initiator is used in such a ratio, PLGA having a weight average molecular weight of 8,000 to 15,000 and a molecular weight distribution of 1.50 to 2.40 can be obtained.

또, 본 발명에서는 개시제인 D,L-락트산이, 바람직하게는 순도가 90% 이상인 것, 보다 바람직하게는 95% 이상인 것을 사용한다. In the present invention, D, L-lactic acid as an initiator is preferably one having a purity of 90% or more, more preferably 95% or more.

상기 촉매로는, 주석(II)2-에틸헥사노에이트를 사용하며, 주석(II)2-에틸헥사노에이트를 용기 내로 주입할 때에는 충진된 질소가 새어나가지 않고, 기벽에 닿지 않도록 주의하면서 천천히 떨어뜨린다. As the catalyst, tin (II) 2 -ethylhexanoate is used. When injecting tin (II) 2 -ethylhexanoate into the container, the charged nitrogen does not leak and is slowly taken care not to touch the base wall. Drop it.

상기 교반 후 정치하여, 합성된 PLGA를 수득하고 나서, PLGA를 정제하고 분말화하는 단계를 거친다. After stirring, the mixture is allowed to stand to obtain a synthesized PLGA, followed by purification and powdering of the PLGA.

PLGA를 정제하고 분말화하는 단계로는, 상기 합성된 PLGA를 메틸렌클로라이드에 용해한 용액을 감압 여과하는 단계; 생성된 여과액을 메탄올에 주입하면서 균질기를 이용하여 침전물을 얻는 단계; 및 이 침전물들을 여과하여 PLGA를 수득한 후 건조하는 단계를 포함한다. Purifying and powdering PLGA, the step of filtering the solution of the synthesized PLGA in methylene chloride under reduced pressure; Injecting the resulting filtrate into methanol to obtain a precipitate using a homogenizer; And filtering these precipitates to obtain PLGA and then drying.

본 발명에서는, 합성된 PLGA를 정제하는 용매로서 메틸렌클로라이드 및 메탄올을 공용매로 사용함으로써, 중량평균분자량이 8,000~15,000이고, 분자량 분포도가 1.50~2.40로 좁은 범위 내에 있는 PLGA를 얻을 수 있다.In the present invention, by using methylene chloride and methanol as cosolvents as a solvent for purifying the synthesized PLGA, PLGA having a weight average molecular weight of 8,000 to 15,000 and a molecular weight distribution of 1.50 to 2.40 can be obtained.

특히, 메틸렌콜로라이드 및 메탄올을, 1:1~25의 부피비로 사용하는 것이 바람직하다. 메탄올의 사용량이 메틸렌클로라이드를 기준으로 했을 때 부피비로 25배를 초과하는 경우에는, 최종 생성물이 PLGA의 분말 형태가 아니라 덩어리 형태로 얻어지는 문제가 있다. In particular, it is preferable to use methylene colloid and methanol by volume ratio of 1: 1-25. If the amount of methanol is more than 25 times in volume ratio based on methylene chloride, there is a problem that the final product is obtained in the form of agglomerate rather than the powder form of PLGA.

또한, 보다 바람직하게는, 부피비로 1:10~20 비율로 사용함으로써, 고순도의 PLGA를 얻을 수 있으며, 이러한 PLGA는 약물전달시스템에 사용되었을 때, 약물의 방출 속도를 일정하게 조절할 수 있는 효과가 있다. In addition, more preferably, by using a volume ratio of 1:10 to 20, it is possible to obtain a high purity PLGA, when used in the drug delivery system, it has the effect of controlling the release rate of the drug constantly have.

상기 합성된 PLGA를 메틸렌클로라이드에 용해하여 용액을 생성할 때에는 초음파를 이용하여 PLGA를 완전히 용해하는 것이 바람직하다. 이렇게 얻어진 용액을 멤브레인 필터 및 진공펌프를 이용하여 감압 여과한다. When dissolving the synthesized PLGA in methylene chloride, it is preferable to completely dissolve the PLGA using ultrasonic waves. The solution thus obtained is filtered under reduced pressure using a membrane filter and a vacuum pump.

그리고 나서, 감압 여과에 의해 생성된 여과액을 메탄올에 주입할 때는, 균질기(homogenizer)를 이용하여 균질화하면서, 시린지를 이용하여 천천히 주입하는 것이 바람직하다. Then, when injecting the filtrate produced by vacuum filtration into methanol, it is preferable to inject slowly using a syringe while homogenizing using a homogenizer.

상기 침전물들은, 필터로 여과하고 나서, 필터에 남아 있는 생성물들인 PLGA를 30~60℃에서, 12시간 이상 건열 건조시킴으로써, PLGA를 흰색의 분말 형태로 수득하게 된다. The precipitates are filtered through a filter and then dry-dried PLGA, the products remaining in the filter, at 30-60 ° C. for at least 12 hours to obtain PLGA in the form of a white powder.

본 발명에 따르면, 중량평균분자량이 8,000~15,000이고, 분자량 분포도가 1.50~2.40으로 좁은 PLGA를 제조하는 방법을 제공할 수 있다. According to the present invention, it is possible to provide a method for producing PLGA having a weight average molecular weight of 8,000 to 15,000 and a narrow molecular weight distribution of 1.50 to 2.40.

본 발명의 제조방법에 의해 제조된 PLGA는 중량평균분자량이 8,000~15,000이고, 분자량 분포도가 1.50~2.40으로 좁아, 약물전달시스템에 사용될 때, 약물의 방출 조절에 대한 편차를 현저히 줄이고, 약물 방출을 일정하게 조절할 수 있는 효과가 있다. PLGA produced by the production method of the present invention has a weight average molecular weight of 8,000 ~ 15,000, the molecular weight distribution is narrow to 1.50 ~ 2.40, when used in the drug delivery system, significantly reduces the deviation in the controlled release of drugs, drug release There is a constant adjustable effect.

또한, 본 발명의 제조방법에 따르면, 고순도 및 고수율의 PLGA를 얻을 수 있으며, 낮은 비용으로 생산이 가능하여, 약제의 제조원가를 절감할 수 있는 효과가 있다. In addition, according to the manufacturing method of the present invention, it is possible to obtain a high purity and high yield PLGA, it is possible to produce at a low cost, there is an effect that can reduce the manufacturing cost of the drug.

도 1은 본 발명의 PLGA의 제조방법을 나타내는 순서도이다. 1 is a flow chart showing a method for producing a PLGA of the present invention.

이하, 본 발명을, 바람직한 실시예를 통하여 상세히 설명하기로 한다. 그러나, 본 발명은 여기서 설명되는 실시예에 한정되지 않고 다른 형태로 구체화될 수도 있다. 오히려, 여기서 소개되는 내용이 철저하고 완전해질 수 있도록 그리고 당업자에게 본 발명의 사상이 충분히 전달될 수 있도록 하기 위해 제공되는 것이다. Hereinafter, the present invention will be described in detail with reference to preferred embodiments. However, the present invention is not limited to the embodiments described herein but may be embodied in other forms. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art.

1. 본 발명에 따른 PLGA의 제조1. Preparation of PLGA in accordance with the present invention

1-1. PLGA의 합성1-1. Synthesis of PLGA

<실시예 1>&Lt; Example 1 >

D,L-락타이드 3.1g(제조원: 다이와카세이)과 글리콜라이드 2.0g(제조원:다이와카세이)을 유리용기에 넣고 질소로 치환시켜 오일 배스(oil bath)에 넣어 130℃에서 교반용해시킨다. 그 다음 개시제로서 D,L-락트산(순도 95%, 제조원: 시그마알드리치) 36ul과 촉매로서 주석(II)2-에틸헥사노에이트(Tin(II)2-ehtylhexanoate, 제조원: 시그마알드리치) 5ul를 주입하여 교반하여 반응시킨다. 점도로 인해 교반이 멈춘 시점부터 2일간 정치시킨다.3.1 g of D, L-lactide (manufactured by Daiwa Kasei) and 2.0 g of glycolide (manufactured by Daiwa Kasei) are placed in a glass container, replaced with nitrogen, and placed in an oil bath to dissolve at 130 ° C. Next, 36ul of D, L-lactic acid (purity: 95%, manufactured by Sigma Aldrich) and 5ul of tin (II) 2-ethylhexanoate (Tin (II) 2-ehtylhexanoate, manufactured by Sigma Aldrich) as an initiator were injected. Stirred to react. The mixture is allowed to stand for 2 days from the point when stirring stops.

<실시예 2><Example 2>

D,L-락타이드 3.1g과 글리콜라이드 2.0g를 유리용기에 넣고 질소로 치환시켜 오일 배스에 넣어 130℃에서 교반용해시킨다. 그 다음 개시제로서 D,L-락트산(순도 95%) 18ul와, 촉매로서 주석(II)2-에틸헥사노에이트 5ul를 주입하고 교반하여 반응시킨다. 점도로 인해 교반이 멈춘 시점부터 2일간 정치시킨다.3.1 g of D, L-lactide and 2.0 g of glycolide are placed in a glass container, replaced with nitrogen, and placed in an oil bath to be stirred and dissolved at 130 ° C. Next, 18ul of D, L-lactic acid (purity 95%) as an initiator and 5ul of tin (II) 2-ethylhexanoate as a catalyst are injected and stirred. The mixture is allowed to stand for 2 days from the point when stirring stops.

<실시예 3>&Lt; Example 3 >

D,L-락타이드 3.1g과 글리콜라이드 2.0g를 유리용기에 넣고 질소로 치환시켜 오일 배스에 넣어 130℃에서 교반용해시킨다. 그 다음 개시제로서 D,L-락트산 (순도 95%) 72ul와, 촉매로서 주석(II)2-에틸헥사노에이트 5ul를 주입하고 교반하여 반응시킨다. 점도로 인해 교반이 멈춘 시점부터 2일간 정치시킨다.3.1 g of D, L-lactide and 2.0 g of glycolide are placed in a glass container, replaced with nitrogen, and placed in an oil bath to be stirred and dissolved at 130 ° C. Next, 72ul of D, L-lactic acid (purity 95%) as an initiator and 5ul of tin (II) 2-ethylhexanoate as a catalyst are added and stirred to react. The mixture is allowed to stand for 2 days from the point when stirring stops.

<실시예 4><Example 4>

D,L-락타이드 3.1g과 글리콜라이드 2.0g을 유리용기에 넣고 질소로 치환시켜 오일 배스에 넣어 130℃에서 교반용해시킨다. 그 다음 개시제로서 D,L-락트산(순도 90%, 제조원: 플루카) 36ul와, 촉매로서 주석(II)2-에틸헥사노에이트 5ul를 주입하여 교반하여 반응시킨다. 점도로 인해 교반이 멈춘 시점부터 2일간 정치시킨다.3.1 g of D, L-lactide and 2.0 g of glycolide are placed in a glass container, replaced with nitrogen, and placed in an oil bath to be stirred and dissolved at 130 ° C. Then, 36ul of D, L-lactic acid (purity: 90%, Fluka) as an initiator and 5ul of tin (II) 2-ethylhexanoate as a catalyst are injected and reacted with stirring. The mixture is allowed to stand for 2 days from the point when stirring stops.

<실시예 5>&Lt; Example 5 >

D,L-락타이드 3.1g과 글리콜라이드 2.0g을 유리용기에 넣고 질소로 치환시켜 오일 배스에 넣어 130℃에서 교반용해시킨다. 그 다음 개시제로서 D,L-락트산(순도 99%, 제조원: 시그마알드리치) 36ul와, 촉매로서 주석(II)2-에틸헥사노에이트 5ul를 주입하여 교반하여 반응시킨다. 점도로 인해 교반이 멈춘 시점부터 2일간 정치시킨다. 3.1 g of D, L-lactide and 2.0 g of glycolide are placed in a glass container, replaced with nitrogen, and placed in an oil bath to be stirred and dissolved at 130 ° C. Then, 36ul of D, L-lactic acid (purity: 99%, manufactured by Sigma Aldrich) as an initiator, and 5ul of tin (II) 2-ethylhexanoate as a catalyst are reacted by stirring. The mixture is allowed to stand for 2 days from the point when stirring stops.

<비교예 1>&Lt; Comparative Example 1 &

D,L-락타이드 3.1g과 글리콜라이드 2.0g을 유리용기에 넣고 질소로 치환시켜 오일 배스에 넣어 130℃에서 교반용해시킨다. 그 다음 촉매로서 주석(II)2-에틸헥사노에이트 5ul를 주입하여 교반하여 반응시킨다. 점도로 인해 교반이 멈추면 교반이 멈춘 시점부터 2일간 정치시킨다.3.1 g of D, L-lactide and 2.0 g of glycolide are placed in a glass container, replaced with nitrogen, and placed in an oil bath to be stirred and dissolved at 130 ° C. Next, 5ul of tin (II) 2-ethylhexanoate is injected as a catalyst, followed by stirring. If the stirring stops due to the viscosity, it is allowed to stand for two days from the time when the stirring stops.

<비교예 2>&Lt; Comparative Example 2 &

D,L-락타이드 3.1g과 글리콜라이드 2.0g을 유리용기에 넣고 질소로 치환시켜 오일 배스에 넣어 130℃에서 교반용해시킨다. 그 다음 촉매로서 주석(II)2-에틸헥사노에이트 50ul를 주입하여 교반하여 반응시킨다. 점도로 인해 교반이 멈추면 교반이 멈춘 시점부터 2일간 정치시킨다. 3.1 g of D, L-lactide and 2.0 g of glycolide are placed in a glass container, replaced with nitrogen, and placed in an oil bath to be stirred and dissolved at 130 ° C. Next, 50ul of tin (II) 2-ethylhexanoate is injected as a catalyst, followed by stirring. If the stirring stops due to the viscosity, it is allowed to stand for two days from the time when the stirring stops.

<비교예 3>&Lt; Comparative Example 3 &

D,L-락타이드 3.1g과 글리콜라이드 2.0g을 유리용기에 넣고 질소로 치환시켜 오일 배스에 넣어 130℃에서 교반용해시킨다. 그 다음 개시제로서 글리콜산(순도 99%, 제조원: 시그마알드리치) 36ul와, 촉매로서 주석(II)2-에틸헥사노에이트(제조원: 시그마알드리치) 5ul를 주입하여 교반하여 반응시킨다. 점도로 인해 교반이 멈춘 시점부터 2일간 정치시킨다.3.1 g of D, L-lactide and 2.0 g of glycolide are placed in a glass container, replaced with nitrogen, and placed in an oil bath to be stirred and dissolved at 130 ° C. Next, 36ul of glycolic acid (purity: 99%, manufactured by Sigma Aldrich) as an initiator, and 5ul of tin (II) 2-ethylhexanoate (manufactured by Sigma Aldrich) as a catalyst are added and stirred to react. The mixture is allowed to stand for 2 days from the point when stirring stops.

<비교예 4>&Lt; Comparative Example 4 &

D,L-락타이드 3.1g과 글리콜라이드 2.0g을 유리용기에 넣고 질소로 치환시켜 오일 배스에 넣어 130℃에서 교반용해시킨다. 그 다음 개시제로서 벤질알코올(순도 99.8%, 제조원: 시그마알드리치) 36ul와, 촉매로서 주석(II)2-에틸헥사노에이트(제조원: 시그마알드리치) 5ul를 주입하여 교반하여 반응시킨다. 점도로 인해 교반이 멈춘 시점부터 2일간 정치시킨다. 3.1 g of D, L-lactide and 2.0 g of glycolide are placed in a glass container, replaced with nitrogen, and placed in an oil bath to be stirred and dissolved at 130 ° C. Then, 36ul of benzyl alcohol (purity 99.8%, manufactured by Sigma Aldrich) as an initiator and 5ul of tin (II) 2-ethylhexanoate (manufactured by Sigma Aldrich) as a catalyst were added and stirred to react. The mixture is allowed to stand for 2 days from the point when stirring stops.

1-2. 합성된 1-2. Synthesized PLGAPLGA 의 정제 및 Tablets and 분말화Powdered

D,L-락타이드 12.4g와 글리콜라이드 8.0g를 유리용기에 넣고 질소로 치환시켜 오일 배스에 넣에 130℃에서 교반용해시킨다. 그 다음 개시제로서 D,L-락트산(순도 99%, 제조원:시그마알드리치) 144ul와, 촉매로서 주석(II)2-에틸헥사노에이트20ul를 주입하여 교반하여 반응시킨다. 점도로 인해 교반이 멈춘 시점부터 2일간 정치시켜 반응시킨다. 그리고 나서, 이 반응산물을 사용하여 아래의 실시예에 따라 정제 및 분말화 과정을 진행한다.12.4 g of D, L-lactide and 8.0 g of glycolide are placed in a glass container, replaced with nitrogen, and dissolved in an oil bath at 130 ° C. Then, 144ul of D, L-lactic acid (purity: 99%, manufactured by Sigma Aldrich) as an initiator, and 20ul of tin (II) 2-ethylhexanoate as a catalyst are reacted by stirring. Due to the viscosity, the mixture was allowed to stand for 2 days from the time when the stirring was stopped and allowed to react. This reaction product is then used for the purification and powdering process according to the examples below.

<실시예 6>&Lt; Example 6 >

상기 반응산물에 메틸렌클로라이드 100ml(제조원: 머크)을 첨가하여 소니케이터를 이용하여 완전히 용해시킨다. 그 다음 맴브래인 필터(5um)를 이용하여 감압 여과하고 이것을 메탄올(100ml)에서 호모믹서를 이용하여 8000rpm에서 천천히 주입하면서 침전시켜 20um필터로 여과한다. 여과된 생성물들은 40℃에서 12시간 이상 건열 건조한다.100 ml (Merck) of methylene chloride was added to the reaction product and completely dissolved by using a sonicator. Then, the membrane was filtered under reduced pressure using a membrane filter (5 μm), and the precipitate was slowly injected at 8000 rpm using a homomixer in methanol (100 ml) and filtered through a 20 μm filter. The filtered products are dry heat dried at 40 ° C. for at least 12 hours.

<실시예 7>&Lt; Example 7 >

상기 반응산물에 메틸렌클로라이드 100ml을 첨가하여 소니케이터를 이용하여 완전히 용해시킨다. 그 다음 맴브래인 필터(5um)를 이용하여 감압 여과하고 이것을 메탄올(200ml)에서 호모믹서를 이용하여 8000rpm에서 천천히 주입하면서 침전시켜 20um필터로 여과한다. 여과된 생성물들은 40℃에서 12시간 이상 건열 건조한다.100 ml of methylene chloride is added to the reaction product and completely dissolved by using a sonicator. Then, the membrane was filtered under reduced pressure using a membrane filter (5 um), and the precipitate was slowly injected at 8000 rpm using a homomixer in methanol (200 ml) and filtered through a 20 um filter. The filtered products are dry heat dried at 40 ° C. for at least 12 hours.

<실시예 8>&Lt; Example 8 >

상기 반응산물에 메틸렌클로라이드 100ml을 첨가하여 소니케이터를 이용하여 완전히 용해시킨다. 그 다음 맴브래인 필터(5um)를 이용하여 감압 여과하고 이것을 메탄올(1000ml)에서 호모믹서를 이용하여 8000rpm에서 천천히 주입하면서 침전시켜 20um필터로 여과한다. 여과된 생성물들은 40℃에서 12시간 이상 건열 건조한다.100 ml of methylene chloride is added to the reaction product and completely dissolved by using a sonicator. Then, the membrane was filtered under reduced pressure using a membrane filter (5 μm), and the precipitate was slowly injected at 8000 rpm using a homomixer in methanol (1000 ml) and filtered through a 20 μm filter. The filtered products are dry heat dried at 40 ° C. for at least 12 hours.

<실시예 9>&Lt; Example 9 >

상기 반응산물에 메틸렌클로라이드 100ml을 첨가하여 소니케이터를 이용하여 완전히 용해시킨다. 그다음 맴브래인 필터(5um)를 이용하여 감압 여과하고 이것을 메탄올(2000ml)에서 호모믹서를 이용하여 8000rpm에서 천천히 주입하면서 침전시켜 20um필터로 여과한다. 여과된 생성물들은 40℃에서 12시간 이상 건열 건조한다. 100 ml of methylene chloride is added to the reaction product and completely dissolved by using a sonicator. Then, the membrane was filtered under reduced pressure using a membrane filter (5 μm), and the precipitate was slowly injected at 8000 rpm using a homomixer in methanol (2000 ml) and filtered through a 20 μm filter. The filtered products are dry heat dried at 40 ° C. for at least 12 hours.

<비교예 5>&Lt; Comparative Example 5 &

반응이 종결되면 아세톤 100ml(제조원: 덕산)을 첨가하여 소니케이터를 이용하여 완전히 용해시킨다. 그다음 맴브래인 필터(5um)를 이용하여 감압 여과하고 이것을 수용액상에서(1000ml) 호모믹서를 이용하여 8000rpm에서 천천히 주입하면서 침전시켜 20um필터로 여과한다. 여과된 생성물들은 40℃에서 12시간 이상 건열 건At the end of the reaction, 100 ml of acetone (Duksan) was added and dissolved completely using a sonicator. Then, the membrane was filtered under reduced pressure using a membrane filter (5 μm), and the precipitate was slowly injected at 8000 rpm using a homomixer in an aqueous solution (1000 ml) and precipitated and filtered through a 20 μm filter. The filtered products were dried over 12 hours at 40 ℃

조한다.Joe.

<비교예 6>&Lt; Comparative Example 6 >

반응이 종결되면 아세톤 100ml을 첨가하여 소니케이터를 이용하여 완전히 용해시킨다. 그다음 맴브래인 필터(5um)를 이용하여 감압 여과하고 이것을 수용액상에서(2000ml) 호모믹서를 이용하여 8000rpm에서 천천히 주입하면서 침전시켜 20um필터로 여과한다. 여과된 생성물들은 40℃에서 12시간 이상 건열 건조한다.At the end of the reaction, 100 ml of acetone is added and completely dissolved using a sonicator. Then, the membrane was filtered under reduced pressure using a membrane filter (5 μm), and the precipitate was slowly injected at 8000 rpm using a homomixer in an aqueous solution (2000 ml) and filtered through a 20 μm filter. The filtered products are dry heat dried at 40 ° C. for at least 12 hours.

2. 제제 평가 시험 방법2. Formulation Evaluation Test Method

2-1. 고분자 조성 확인2-1. Polymer composition check

위에서 합성된 고분자 조성을 확인하기 위하여 각각의 합성물 약 3mg를 클로로포름(CDCl3)(제조원: 시그마알드리치) 0.5ml에 용해시켜 NMR(nuclear magnetic resonance. 핵자기공명)(Noesy1D)을 이용하여 mixing time 0.1초와 relaxation delay 2.0초를 반복하며 25℃에서 분석하고, 하기 계산식 1로 몰비를 계산하였다. To confirm the polymer composition synthesized above, about 3 mg of each compound was dissolved in 0.5 ml of chloroform (CDCl3) manufactured by Sigma Aldrich, and the mixing time was 0.1 seconds using NMR (nuclear magnetic resonance) (Noesy1D). The relaxation delay was repeated at 2.0 ° C. for 2.0 seconds, and the molar ratio was calculated by the following Equation 1.

[계산식 1][Equation 1]

락타이드 몰비(%) = ( 2 X L ) / ( 2 X L + G ) X 100Lactide molar ratio (%) = (2 X L) / (2 X L + G) X 100

글리콜라이드 몰비(%) = G / (2 X L + G ) X 100Glycolide molar ratio (%) = G / (2 X L + G) X 100

(L = 5.2ppm부근 다중선 signal 강도, G = 4.8ppm 부근 다중선 signal 강도)(Multi-line signal strength near L = 5.2 ppm, G = 4.8 ppm multi-line signal strength)

고분자 조성 분석 결과, 실시예 1~9 및 비교예 1~6에서 합성된 PLGA는 락타이드와 글리콜라이드의 조성비가 50:50인 것으로 확인되었다. As a result of the polymer composition analysis, PLGA synthesized in Examples 1 to 9 and Comparative Examples 1 to 6 was found that the composition ratio of lactide and glycolide is 50:50.

2-2. 극한점도 측정 2-2. Extreme viscosity measurement

각각의 합성물 0.25g을 정밀히 달아 클로로포름(제조원: 머크)에 녹여 정확히 25 ml로 하여 검액으로 하고 검액과 클로로포름을 공 시험액으로 하여 25℃에서 모세관 점도계(CT-72, 동진)를 이용하여 점도를 측정하고, 하기 계산식으로 극한점도를 계산하였다. 0.25 g of each compound is precisely weighed and dissolved in chloroform (Merck) to make exactly 25 ml. The sample solution is used as a test solution. The viscosity is measured using a capillary viscometer (CT-72, Dongjin) at 25 ° C. In addition, the intrinsic viscosity was calculated by the following formula.

[계산식 2][Equation 2]

극한점도 = (In (검액의 점도측정값/공시험액의 점도측정값)/검체의 농도(g/100ml))Intrinsic Viscosity = (In (Viscosity Measurement of Test Solution / Viscosity Measurement of Public Test Solution) / Concentration of Sample (g / 100ml))

상기 평가방법으로 측정한 점도측정값을 이용하여 극한점도를 구한 결과, 실시예 1~9, 및 비교예 1~6에서 제조된 PLGA의 극한점도는 다음과 같았다. As a result of determining the intrinsic viscosity using the viscosity measurement value measured by the above evaluation method, the intrinsic viscosity of PLGA prepared in Examples 1 to 9 and Comparative Examples 1 to 6 was as follows.

구분division 극한점도(dl/g)   Intrinsic viscosity (dl / g) 구분       division 극한점도(dl/g) Intrinsic viscosity (dl / g) 실시예 1Example 1 0.210.21 실시예 9   Example 9 0.190.19 실시예 2Example 2 0.170.17 비교예 1   Comparative Example 1 0.420.42 실시예 3Example 3 0.160.16 비교예 2   Comparative Example 2 0.400.40 실시예 4 Example 4 0.210.21 비교예 3   Comparative Example 3 0.210.21 실시예 5Example 5 0.200.20 비교예 4   Comparative Example 4 0.190.19 실시예 6Example 6 0.200.20 비교예 5   Comparative Example 5 0.170.17 실시예 7Example 7 0.210.21 비교예 6   Comparative Example 6 0.17 0.17 실시예 8Example 8 0.200.20

2-3. 분자량 측정2-3. Molecular weight measurement

각각의 합성물들의 평균분자량 및 분자량 분포도를 알아보기 위해 10mg씩을 정밀 칭량하여 100ml 부피플라스크에 넣고 클로로포름(제조원: 머크)으로 100ml로 표선을 맞춘 후 소니케이터를 이용하여 완전히 용해한다. 그 다음 GPC(Gel Permeation Chromatography)(Agilent Technologies 1200 series)를 이용하여 25℃에서 100ul부피로 RI 디텍터로 분석하였다.In order to determine the average molecular weight and molecular weight distribution of each compound, 10 mg each was precisely weighed and placed in a 100 ml volumetric flask. It was then analyzed by RI detector at 100ul volume at 25 ° C using Gel Permeation Chromatography (GPC) (Agilent Technologies 1200 series).

상기 실시예 1~6 및 비교예 1~5의 단계에 따라 합성된 PLGA는 하기와 같은 중량평균분자량 및 분자량 분포도를 나타내었다. PLGA synthesized according to the steps of Examples 1 to 6 and Comparative Examples 1 to 5 showed a weight average molecular weight and a molecular weight distribution as follows.

반응조건(각 몰비율임) Reaction condition (each molar ratio) 시험결과Test result
D,L-락타이드

D, L-Lactide

글리콜라이드

Glycolide

개시제

Initiator
촉매
(주석(II)2-에틸헥사노에이트)
catalyst
(Tin (II) 2-ethylhexanoate)

중량평균
분자량

Weight average
Molecular Weight

분자량
분포도

Molecular Weight
Distribution
실시예 1Example 1 1 eq1 eq 1 eq1 eq D,L-락트산 0.02eq
(95%)
D, L-lactic acid 0.02eq
(95%)
0.0005eq0.0005eq 15,00015,000 1.771.77
실시예 2Example 2 1 eq1 eq 1 eq1 eq D,L-락트산 0.01eq
(95%)
D, L-lactic acid 0.01eq
(95%)
0.0005eq0.0005eq 10,00010,000 1.811.81
실시예 3Example 3 1 eq1 eq 1 eq1 eq D,L-락트산 0.04eq
(95%)
D, L-lactic acid 0.04eq
(95%)
0.0005eq0.0005eq 8,0008,000 1.891.89
실시예 4Example 4 1 eq1 eq 1 eq1 eq D,L-락트산 0.02eq
(90%)
D, L-lactic acid 0.02eq
(90%)
0.0005eq0.0005eq 14,00014,000 2.402.40
실시예 5Example 5 1 eq1 eq 1 eq1 eq D,L-락트산 0.02eq
(99%)
D, L-lactic acid 0.02eq
(99%)
0.0005eq0.0005eq 15,00015,000 1.531.53
비교예 1Comparative Example 1 1 eq1 eq 1 eq1 eq -- 0.0005eq0.0005eq 63,00063,000 2.952.95 비교예 2Comparative Example 2 1 eq1 eq 1 eq1 eq -- 0.005eq0.005eq 57,00057,000 3.123.12 비교예 3Comparative Example 3 1 eq1 eq 1 eq1 eq 글리콜산 0.02eq
(99%)
Glycolic acid 0.02eq
(99%)
0.0005eq0.0005eq 15,00015,000 2.832.83
비교예 4Comparative Example 4 1 eq1 eq 1 eq1 eq 벤질알코올 0.02eq
(99.8%)
Benzyl alcohol 0.02eq
(99.8%)
0.0005eq0.0005eq 18,00018,000 3.013.01

상기 [표 2]에서 확인되는 바와 같이, 본 발명의 제조방법에 따른 실시예 1~5의 경우, 개시제로서 D,L-락트산을 사용함으로써, 개시제를 사용하지 않거나(비교예 1 및 2) 및 개시제로서 글리콜산, 또는 벤질알코올(비교예 3 또는 4)을 사용하는 경우에 비하여, 분자량 분포도가 1.50~2.40의 범위 내로, 좁은 분자량 분포도를 나타내었다. As confirmed in Table 2, in Examples 1 to 5 according to the preparation method of the present invention, by using D, L-lactic acid as an initiator, no initiator was used (Comparative Examples 1 and 2) and As compared with the case where glycolic acid or benzyl alcohol (comparative example 3 or 4) is used as an initiator, the molecular weight distribution degree showed the narrow molecular weight distribution map in the range of 1.50-2.40.

상기 실시예 6~9 및 비교예 5 및 6에 따라 합성된 PLGA는 하기와 같은 중량평균분자량 및 분자량 분포도를 나타내었다. PLGA synthesized according to Examples 6 to 9 and Comparative Examples 5 and 6 showed a weight average molecular weight and a molecular weight distribution as follows.

반응조건Reaction conditions 시험결과Test result
구분

division
공용매(부피비 v/v)Cosolvent (volume ratio v / v)
수율

yield
중량평균
분자량
Weight average
Molecular Weight
분자량
분포도
Molecular Weight
Distribution

성상

Appearance
메틸렌
클로라이드
Methylene
Chloride
메탄올Methanol
실시예 6Example 6 1One 1One 63.3%63.3% 11,00011,000 1.911.91 흰색의 분말White powder 실시예 7Example 7 1One 22 64.0%64.0% 12,00012,000 1.851.85 흰색의 분말White powder 실시예 8Example 8 1One 1010 68.0%68.0% 12,00012,000 1.711.71 흰색의 분말White powder 실시예 9Example 9 1One 2020 68.4%68.4% 11,00011,000 1.991.99 흰색의 분말White powder 구분division 공용매(부피비 v/v)Cosolvent (volume ratio v / v) 수율yield 중량평균
분자량
Weight average
Molecular Weight
분자량
분포도
Molecular Weight
Distribution
성상Appearance
아세톤 Acetone 물(D.I.Water)D.I.Water 비교예 5Comparative Example 5 1 One 1010 59.2%59.2% 12,00012,000 2.612.61 흰색의 분말White powder 비교예 6Comparative Example 6 1One 2020 59.8%59.8% 12,00012,000 2.652.65 흰색의 분말White powder

상기 [표 3]의 시험결과에서 확인되는 바와 같이, 본 발명의 제조방법인 실시예 6~9에 따라 공용매로 메틸렌클로라이드와 메탄올을 사용하여 정제된 PLGA는, 8,000~15,000범위의 중량평균분자량 및 1.50~2.40 범위 내의 좁은 분자량 분포도를 나타내며, 흰색의 분말 성상이었다. As confirmed in the test results of [Table 3], PLGA purified using methylene chloride and methanol as co-solvents according to Examples 6 to 9, which is a manufacturing method of the present invention, has a weight average molecular weight in the range of 8,000 to 15,000. And a narrow molecular weight distribution in the range of 1.50 to 2.40, which was a white powder.

반면, 비교예 5 및 6과 같이, 공용매로서, 아세톤과 물을 사용하여 수득한 PLGA는 본 발명의 실시예 6~9 보다 넓은 분자량 분포도를 나타내었다. On the other hand, as in Comparative Examples 5 and 6, PLGA obtained using acetone and water as a co-solvent showed a broader molecular weight distribution than Examples 6 to 9 of the present invention.

따라서, 상기 [표 2] 및 [표 3]의 시험결과를 참조할 때, 본 발명의 제조방법에 의하면, 중량평균분자량이 8,000~15,000이면서, 분자량 분포도가 1.50~2.40으로 분포도가 좁은 PLGA를 제조할 수 있음을 확인할 수 있다. Therefore, referring to the test results of [Table 2] and [Table 3], according to the production method of the present invention, a PLGA having a weight average molecular weight of 8,000 to 15,000 and a molecular weight distribution of 1.50 to 2.40 has a narrow distribution. You can see that you can.

Claims (8)

중량평균분자량이 8,000~15,000이고, 분자량 분포도가 1.50~2.40인 PLGA를 제조하는 방법으로서,
D,L-락타이드 및 글리콜라이드를 교반용해하는 단계;
상기 교반용해 후, 개시제인 D,L-락트산을 첨가하고 나서, 촉매를 첨가하여 교반하는 단계;
상기 교반 후 정치하여 합성된 PLGA를 수득하는 단계;
상기 합성된 PLGA를 메틸렌클로라이드에 용해한 용액을 감압 여과하는 단계;
상기 감압 여과로 얻은 여과액을 메탄올에 주입하면서 균질기를 이용하여 침전물을 얻는 단계; 및
상기 침전물을 여과하여 PLGA를 수득한 후 건조하는 단계;
를 포함하는 것을 특징으로 하는 PLGA의 제조방법.
As a method for producing PLGA having a weight average molecular weight of 8,000 to 15,000 and a molecular weight distribution of 1.50 to 2.40,
Stirring dissolving D, L-lactide and glycolide;
After the stirring dissolution, adding D, L-lactic acid as an initiator, and then adding and stirring a catalyst;
Standing after the stirring to obtain a synthesized PLGA;
Filtering the solution of the synthesized PLGA in methylene chloride under reduced pressure;
Injecting the filtrate obtained by the vacuum under reduced pressure to obtain a precipitate using a homogenizer; And
Filtering the precipitate to obtain PLGA and drying it;
PLGA manufacturing method comprising a.
제 1 항에 있어서,
상기 D,L-락타이드 및 글리콜라이드를 교반용해하는 단계는, 질소로 치환된 용기 내에서, 110~150℃의 온도로 진행되는 것을 특징으로 하는 PLGA의 제조방법.
The method according to claim 1,
The step of stirring and dissolving the D, L- lactide and glycolide, in a vessel substituted with nitrogen, the production method of PLGA, characterized in that proceeds to a temperature of 110 ~ 150 ℃.
제 1 항에 있어서,
상기 촉매는 주석(II)2-에틸헥사노에이트인 것을 특징으로 하는 PLGA의 제조방법.
The method according to claim 1,
The catalyst is a method for producing PLGA, characterized in that the tin (II) 2-ethylhexanoate.
제 1 항에 있어서,
상기 D,L-락타이드, 글리콜라이드, 및 D,L-락트산은, 각각 1:0.8~1.2: 0.01~0.06의 몰비로 사용되는 것을 특징으로 하는 PLGA의 제조방법.
The method according to claim 1,
Said D, L-lactide, glycolide, and D, L-lactic acid are each used in the molar ratio of 1: 0.8-1.2: 0.01-0.06, The manufacturing method of PLGA.
제 1 항에 있어서,
상기 D,L-락트산은 순도 90% 이상인 것을 특징으로 하는 PLGA의 제조방법.
The method according to claim 1,
The D, L-lactic acid is a method of producing PLGA, characterized in that more than 90% purity.
제 1 항에 있어서,
상기 메틸렌클로라이드 및 메탄올의 사용량은, 부피비로, 메틸렌클로라이드:메탄올이 1:1~25인 것을 특징으로 하는 PLGA의 제조방법.
The method according to claim 1,
The use amount of the methylene chloride and methanol, the volume ratio, methylene chloride: methanol production method of PLGA, characterized in that 1: 1 to 25.
제 1 항에 있어서,
상기 PLGA의 제조방법은, 중량평균분자량이 8,000~15,000이고, 분자량 분포도가 1.50~2.00인 PLGA를 제조하는 것을 특징으로 하는 PLGA의 제조방법.
The method according to claim 1,
The method for producing PLGA is a method for producing PLGA, characterized in that the PLGA having a weight average molecular weight of 8,000 to 15,000 and a molecular weight distribution of 1.50 to 2.00.
제 1 항 내지 제 6 항 중 어느 한 항에 기재된 제조방법으로 제조된 PLGA로서, 중량평균분자량이 8,000~15,000이고, 분자량 분포도가 1.50~2.40인 것을 특징으로 하는 PLGA. PLGA manufactured by the manufacturing method in any one of Claims 1-6, The weight average molecular weight is 8,000-15,000, The molecular weight distribution is 1.50-2.40, The PLGA characterized by the above-mentioned.
KR1020120104544A 2012-09-20 2012-09-20 Method for preparing plga with lactide and glycolide, and plga prepared therefrom KR20140038158A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120104544A KR20140038158A (en) 2012-09-20 2012-09-20 Method for preparing plga with lactide and glycolide, and plga prepared therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120104544A KR20140038158A (en) 2012-09-20 2012-09-20 Method for preparing plga with lactide and glycolide, and plga prepared therefrom

Publications (1)

Publication Number Publication Date
KR20140038158A true KR20140038158A (en) 2014-03-28

Family

ID=50646647

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120104544A KR20140038158A (en) 2012-09-20 2012-09-20 Method for preparing plga with lactide and glycolide, and plga prepared therefrom

Country Status (1)

Country Link
KR (1) KR20140038158A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240118975A (en) 2023-01-27 2024-08-06 주식회사 스킨메드 Micro particles comprising acetylcholine receptor binding peptide and polylactide-co-glycolide polymers and using thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20240118975A (en) 2023-01-27 2024-08-06 주식회사 스킨메드 Micro particles comprising acetylcholine receptor binding peptide and polylactide-co-glycolide polymers and using thereof

Similar Documents

Publication Publication Date Title
TWI412384B (en) Resorbable polyetheresters and their use for preparing of medicinal implants
Hu et al. Novel bioresorbable hydrogels prepared from chitosan‐graft‐polylactide copolymers
Lu et al. An injectable and biodegradable hydrogel based on poly (α, β‐aspartic acid) derivatives for localized drug delivery
KR101964222B1 (en) Composition of amphiphilic block copolymer with improved micelle stability and pharmaceutical composition comprising the same
EP2201053B1 (en) Graft copolymers as drug delivery systems
CN101288782B (en) Preparation method of high intensity biodegradable supramolecule hydrogel
CN103159959B (en) Star-like amphipathic multipolymer of a kind of M-PLGA-TPGS and preparation method thereof and application
CN101880381B (en) Segmented copolymer modified by polyethylene glycol 1000 vitamin E succinic acid ester, preparation method and applications thereof
JP6147664B2 (en) Compositions comprising polymers prepared from 2-hydroxyalkyl acids
CN102247602A (en) Super-molecular hydrogel double-medicament carrier and preparation method as well as application thereof
KR20140038158A (en) Method for preparing plga with lactide and glycolide, and plga prepared therefrom
Arıcan et al. Synthesis and properties of novel diisopropyl-functionalized polyglycolide–PEG copolymers
CN106866978B (en) self-catalytic-destruction block polymer and preparation method thereof
JP2012515837A (en) Polymer mixture comprising polymers having different non-repeating units and methods for making and using the same
CN104945630B (en) The preparation method of biodegradable supermolecule block copolymer and copolymer micelle
CN102846539A (en) Antineoplastic injectable hydrogel, preparation method and application thereof
KR100953170B1 (en) Stereocomplexed polyethylene oxide-polypropylene oxide-poly ethylene oxide multi-block copolymers, hydrogel for sustained delivery of macromolecular drugs using the same, and method of fabricating thereof
Tamer et al. Biodegradable and stimuli sensitive amphiphilic graft copolymers and their sol–gel phase transition behavior
KR101429477B1 (en) Drug carrier manufactured by using ink-jet printing process and preparation method thereof
CN113289062B (en) Solvent precipitation type in-situ gel injection implant and application
CN105669987A (en) Preparation method for polyvinyl alcohol-poly(lactide-glycolide) graft copolymer
CN105670006A (en) Preparation method of polyvinyl alcohol-poly(lactide-glycolide) graft copolymer micelle
CN105670007A (en) Method for preparing polyvinyl alcohol-poly trimethylene carbonate-poly lactic acid-glycolic acid double-grafted copolymer micelle
Liu et al. Synthesis, Characterization and Self-assembly Behavior of Chitosan-graftpolylactide Copolymers
US7879353B2 (en) Controlled or sustained-release formulation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right