KR20130112762A - High resilient metal o-ring seal - Google Patents
High resilient metal o-ring seal Download PDFInfo
- Publication number
- KR20130112762A KR20130112762A KR1020130035178A KR20130035178A KR20130112762A KR 20130112762 A KR20130112762 A KR 20130112762A KR 1020130035178 A KR1020130035178 A KR 1020130035178A KR 20130035178 A KR20130035178 A KR 20130035178A KR 20130112762 A KR20130112762 A KR 20130112762A
- Authority
- KR
- South Korea
- Prior art keywords
- thickness
- degree direction
- metal
- ring seal
- degrees
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/02—Sealings between relatively-stationary surfaces
- F16J15/06—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
- F16J15/08—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
- F16J15/0887—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing the sealing effect being obtained by elastic deformation of the packing
- F16J15/0893—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing the sealing effect being obtained by elastic deformation of the packing the packing having a hollow profile
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16J—PISTONS; CYLINDERS; SEALINGS
- F16J15/00—Sealings
- F16J15/02—Sealings between relatively-stationary surfaces
- F16J15/06—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
- F16J15/08—Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with exclusively metal packing
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Gasket Seals (AREA)
Abstract
본 발명에 따르면, 내부에 통공(110)이 형성된 원형의 고리형태로 형성되어 외주면(120)의 형상 및 크기는 표준화된 규격을 따르며, 수직단면의 원주방향으로 상기 외주면(120)에서 내주면(130)까지의 두께(t)를 조절하여 탄성복원력을 증대시킨 메탈오링씰에 있어서, 상기 수직단면의 원주방향에서의 양측 위치에서 원주를 따라 상측 및 하측으로 갈수록 상기 두께(t)가 점차적으로 얇아지며, 상기 상측 및 하측의 내주면(130)에는 상기 수직단면의 중심(C) 방향으로 융기된 돌기부(140)가 돌출 형성되면서 상기 돌기부(140)의 양측에 홈부(141)가 형성된 메탈오링씰(100)을 개시한다.According to the present invention, the shape and size of the outer circumferential surface 120 is formed in a circular ring shape having a through hole 110 formed therein, and follows a standardized standard, and the inner circumferential surface 130 from the outer circumferential surface 120 in the circumferential direction of the vertical section. In the metal o-ring seal by adjusting the thickness (t) up to), the thickness (t) gradually becomes thinner toward the upper and lower sides along the circumference at both sides in the circumferential direction of the vertical section. On the inner circumferential surface 130 of the upper side and the lower side, protruding protrusions 140 protruded in the direction of the center C of the vertical cross-section, and grooves 141 are formed on both sides of the protrusions 140. ).
Description
본 발명은 고탄력 메탈오링씰에 관한 것으로, 보다 상세하게는 고무오링씰을 대신하여 초고압, 초고진공, 초저온 등의 열악한 운전조건에 부합되도록 메탈 재질로 이루어져 내부를 기밀시키는 고탄력 메탈오링씰에 관한 것이다.The present invention relates to a high-elastic metal O-ring seal, and more particularly to a high-elastic metal O-ring seal made of a metal material to meet the poor operating conditions such as ultra-high pressure, ultra-high vacuum, ultra-low temperature in place of the rubber o-ring seal .
일반적으로 고무오링씰은 낮은 체결력으로도 쉽게 기밀을 유지할 뿐만 아니라 높은 복원력으로 인해 재사용이 가능하여 압력이나 진공분야 등에서 가장 널리 이용되고 있다. 그러나, 고무는 열에 취약하여 고온에서의 사용이 제한되며, 가스투과성 및 고무의 방출가스로 인해 초고진공 환경에서 이용하기가 적합하지 않다. 따라서 고무재질를 사용할 수 없는 열약한 환경에 적합한 금속재질이 주로 이용되고 있다.In general, rubber o-ring seals are most widely used in pressure and vacuum applications because they can be easily reusable due to high resilience as well as maintain airtightness even with low clamping force. However, rubber is susceptible to heat, which limits its use at high temperatures and is not suitable for use in ultra-high vacuum environments due to its gas permeability and release of rubber. Therefore, a metal material suitable for a poor environment where a rubber material cannot be used is mainly used.
그러나, 금속재질로 이루어진 메탈오링씰의 경우에는 고무오링씰과 비교하여 매우 높은 체결력을 요구하고, 탄성복원력이 현격하게 낮음으로 인한 소성변형으로 일회성으로 이용되거나 잦은 교체 빈도로 인해 운전장치의 정비 및 유지비용이 증대되는 문제점이 있었다.However, metal O-ring seals, which are made of metal, require very high clamping force compared to rubber o-ring seals, and are used only once due to plastic deformation due to the remarkably low elastic restoring force or maintenance of the operating device due to frequent replacement frequency. There was a problem that the maintenance cost is increased.
여기서, 도 1은 일반적인 메탈오링씰이 일정 하중에 의해 압축되는 상태를 나타낸 개략도이며, 도 2는 일반적인 메탈오링씰에 일정 하중이 가해져 압축되었을 때와 상기 일정 하중이 제거되어 복원되었을 때의 상태를 측정하여 압축/복원 특성 곡선으로 나타낸 그래프이다. 상기 도 2에서 'Y0'는 메탈오링씰의 압축시 기밀이 유지되는 시작하는 하중, 'Y2'는 적정압축에 대응되는 하중, 'Y1'은 상기 압축이 해제되었을 때 누설이 시작되는 하중을 의미하며, 'e2'는 최대 압축량을 나타낸다. Here, FIG. 1 is a schematic view showing a state in which a general metal o-ring seal is compressed by a constant load, and FIG. 2 shows a state when the metal o-ring seal is compressed by applying a predetermined load to the general metal o-ring seal and when the predetermined load is removed and restored. This is a graph of the compression / restore characteristic curve measured. In FIG. 2, 'Y 0 ' is a load at which airtightness is maintained during compression of the metal O-ring seal, 'Y 2 ' is a load corresponding to proper compression, and 'Y 1 ' is leakage when the compression is released. It means the load, 'e 2 ' represents the maximum compression amount.
도 1 및 도 2를 참고하면, 일반적인 메탈오링씰은 볼트나 클램프 등의 체결수단에 의해 압축시 탄성복원력이 작용하고, 상기 탄성복원력은 틈새를 좁히면서 기밀을 유지시킨다. 탄성복원력은 메탈오링씰에 저장된 탄성에너지량에 따라 결정되며 기밀성능 및 수명에 영향을 미친다. 1 and 2, a general metal O-ring seal is an elastic restoring force acts upon compression by a fastening means such as bolts or clamps, the elastic restoring force to maintain the airtight while narrowing the gap. The elastic restoring force is determined by the amount of elastic energy stored in the metal O-ring seal and affects the airtight performance and lifespan.
즉, 메탈오링씰의 압축, 탄성복원 특성은 메탈오링씰의 기밀성능과 수명시간에 영향을 미치는 매우 중요한 인자이며, 고무와 같이 유연하고 탄성복원력이 우수한 재료가 씰링 메커니즘에 가장 적합하나, 고무오링씰을 적용할 수 없는 환경에서 사용되는 메탈오링씰은 고무재질에 비하여 탄성복원력이 매우 떨어지므로 탄성복원력을 개선하기 위해서는 보다 유연한 구조로 변경하는 것이 필요한 실정이다.In other words, the compression and elasticity recovery characteristics of the metal O-ring seal are very important factors affecting the airtight performance and life time of the metal o-ring seals. Although flexible and elastically resilient materials such as rubber are most suitable for the sealing mechanism, rubber O-rings Metal O-ring seals used in an environment in which seals cannot be applied have a very low elastic restoring force as compared to rubber materials, so it is necessary to change the structure to a more flexible structure to improve elastic restoring force.
이러한 문제점을 해결하기 위해 최근에는 메탈오링씰의 외피 내부에 그라파이트(Graphite)를 삽입하여 탄성복원력을 향상시킨 구조가 개발되고 있으나, 구조가 매우 복잡하고 크며 제작비가 고가이기 때문에 그 사용에 제한이 있었다.In order to solve this problem, a structure in which elastic resilience is improved by inserting graphite into the inside of a metal O-ring seal is recently developed, but its use is limited because the structure is very complicated, large, and expensive to manufacture. .
본 발명은 상술한 문제점을 해결하기 위하여 창출된 것으로, 본 발명의 목적은 구조체의 유연성이 증대되도록 형상을 최적화함으로써, 원형으로 형성되어 외주면에서 내주면까지의 두께가 일정한 기존품에 비해 탄성복원력을 획기적으로 증대시켜, 성능 및 수명시간을 향상시키는 고탄력 메탈오링씰을 제공하는 것에 있다.The present invention was created to solve the above problems, the object of the present invention by optimizing the shape to increase the flexibility of the structure, it is formed in a circular shape, the elastic resilience is significantly reduced compared to the existing product having a constant thickness from the outer peripheral surface to the inner peripheral surface It is to provide a high-elasticity metal O-ring seal to increase, and to improve the performance and life time.
상기의 목적을 달성하기 위한 본 발명에 따른 메탈오링씰은, 내부에 통공(110)이 형성된 원형의 고리형태로 형성되어 외주면(120)의 형상 및 크기는 기존품 규격을 따르며, 수직단면의 원주방향으로 상기 외주면(120)에서 내주면(130)까지의 두께(t)를 조절하여 탄성복원력을 증대시킨 메탈오링씰에 있어서, 상기 수직단면의 원주방향에서의 양측 위치에서 원주를 따라 상측 및 하측으로 갈수록 상기 두께(t)가 점차적으로 얇아지며, 상기 상측 및 하측의 내주면(130)에는 상기 수직단면의 중심(C) 방향으로 융기된 돌기부(140)가 돌출 형성되면서 상기 돌기부(140)의 양측에 홈부(141)가 형성된다.The metal O-ring seal according to the present invention for achieving the above object is formed in the shape of a circular ring having a through-
한편, 상기의 목적으로 달성하기 위한 본 발명에 따른 메탈오링씰은, 내부에 통공(110)이 형성된 원형의 고리형태로 형성되어 외주면(120)의 형상 및 크기는 기존품 규격을 따르며, 수직단면의 원주방향으로 상기 외주면(120)에서 내주면(130)까지의 두께(t)를 조절하여 탄성복원력을 증대시킨 메탈오링씰에 있어서, 상기 수직단면의 원주방향에서의 양측 위치에서 원주를 따라 상측 및 하측으로 갈수록 상기 두께(t)가 점차적으로 얇아지되, 상기 수직단면의 원주방향에서의 양측위치는 각각 0도와 180도 방향이고, 상기 상측과 하측은 각각 90도와 270도 방향이며, 원형으로 형성되어 외주면에서 내주면까지의 두께가 일정한 기존품의 단면직경이 1D일 경우, 상기 0도 방향의 두께(t)는 0.071 내지 0.197D, 10도 방향의 두께(t)는 0.071 내지 0.195D, 20도 방향의 두께(t)는 0.070 내지 0.191D, 30도 방향의 두께(t)는 0.066 내지 0.183D, 40도 방향의 두께(t)는 0.062 내지 0.171D, 50도 방향의 두께(t)는 0.055 내지 0.155D, 60도 방향의 두께(t)는 0.041 내지 0.136D, 70도 방향의 두께(t)는 0.026 내지 0.108D, 80도 방향의 두께(t)는 0.017 내지 0.086D, 90도 방향의 두께(t)는 0.016 내지 0.118D 내에서 정해지며, 상기 90도 방향에서 180도 방향, 상기 180도 방향에서 270도 방향 및, 270도에서 0도까지의 각각의 두께(t)는 상기 0도 방향 내지 90도 방향의 각 각도별 두께(t)와 대응되는 두께(t)로 형성될 수 있다.On the other hand, the metal O-ring seal according to the present invention for achieving the above object is formed in the shape of a circular ring having a through-
또한, 75도 방향의 두께(t)는 0.016 내지 0.048D, 85도 방향의 두께(t)는 0.016 내지 0.109D 내에서 정해짐에 따라, 상기 상측 및 하측의 내주면(130)에는 상기 수직단면의 중심(C) 방향으로 융기된 돌기부(140)가 형성되면서, 상기 돌기부(140)의 양측에는 홈부(141)가 형성될 수 있다.In addition, the thickness t in the 75-degree direction is set to 0.016 to 0.048D, and the thickness t in the 85-degree direction is set to 0.016 to 0.109D. As the
또한, 상기 75도 방향의 두께(t)는 0.048D, 85도 방향의 두께(t)는 0.025D 일 수 있다.In addition, the thickness t in the 75-degree direction may be 0.048D, and the thickness t in the 85-degree direction may be 0.025D.
또한, 상기 0도 방향의 두께(t)는 0.134D, 10도 방향의 두께(t)는 0.133D, 20도 방향의 두께(t)는 0.129D, 30도 방향의 두께(t)는 0.123D, 40도 방향의 두께(t)는 0.114D, 50도 방향의 두께(t)는 0.101D, 60도 방향의 두께(t)는 0.086D, 70도 방향의 두께(t)는 0.063D, 80도 방향의 두께(t)는 0.034D, 90도 방향의 두께(t)는 0.059D 일 수 있다.The thickness t in the 0 degree direction is 0.134D, the thickness t in the 10 degree direction is 0.133D, the thickness t in the 20 degree direction is 0.129D, and the thickness t in the 30 degree direction is 0.123D. , The thickness t in the 40 degree direction is 0.114D, the thickness t in the 50 degree direction is 0.101D, the thickness t in the 60 degree direction is 0.086D, and the thickness t in the 70 degree direction is 0.063D, 80 The thickness t in the FIG. Direction may be 0.034D, and the thickness t in the 90 degree direction may be 0.059D.
또한, 상기 메탈오링씰은, Stainless steel, Inconel, Inconel X, Carbon steel, Aluminum, Monel, Copper, Tantalum의 금속 재질 중 어느 하나의 금속재질로 이루어질 수 있다.In addition, the metal o-ring seal, stainless steel, Inconel, Inconel X, Carbon steel, Aluminum, Monel, Copper, Tantalum may be made of any one metal material.
본 발명에 따른 메탈오링씰에 의하면, 첫째, 구조체의 유연성이 증대되도록 형상을 최적화함으로써 원형으로 형성되어 외주면에서 내주면까지의 두께가 일정한 기존품과 비교하여 탄성복원력이 증대되므로, 수명시간 및 기밀성능이 우수하다.According to the metal O-ring seal according to the present invention, first, it is formed in a circular shape by optimizing the shape to increase the flexibility of the structure, the elastic restoring force is increased compared to the existing product having a constant thickness from the outer peripheral surface to the inner peripheral surface, life time and airtight performance This is excellent.
둘째, 비교적 간단한 구조로 이루어져 있기 때문에 기존품과 제조방법이 동일하여, 기존품을 대체할 수 있으며, 성능 및 수명시간이 상대적으로 증대되므로 메탈오링씰의 정기적인 교체주기를 연장시킬 수 있다. Second, because it is made of a relatively simple structure, the existing product and the manufacturing method is the same, it is possible to replace the existing product, and the performance and life time is relatively increased, it is possible to extend the regular replacement cycle of the metal O-ring seal.
셋째, 메탈오링씰의 외주면의 형상 및 크기는 기존품 규격을 따르며, 기존품 규격과는 무관한 내주면의 두께를 조절에 따른 내주면의 형상을 변형한 구조로 구비되기 때문에 다양한 분야에 범용적으로 사용이 가능한 장점이 있다.Third, the shape and size of the outer circumferential surface of the metal O-ring seal follows the existing product standard, and it is used in various fields because it has a structure modified from the shape of the inner circumferential surface by adjusting the thickness of the inner circumferential surface irrelevant to the existing product standard. This has a possible advantage.
도 1은 일반적인 메탈오링씰이 일정 하중에 의해 압축되는 상태를 나타낸 개략도,
도 2는 일반적인 메탈오링씰의 압축/복원 특성 곡선으로 나타낸 그래프,
도 3은 본 발명의 바람직한 실시예에 따른 메탈오링씰의 구성을 나타낸 사시도 및 부분확대도,
도 4는 본 발명의 바람직한 실시예에 따른 메탈오링씰의 수직단면을 절단한 형태를 나타내 단면도,
도 5는 본 발명의 바람직한 실시예에 따른 메탈오링씰의 각도(a)별 두께(t)를 설명하기 위한 개념도,
도 6a 내지 도 6d는 본 발명의 바람직한 실시예에 따른 기존품의 탄소성 해석을 통해 획득된 데이터를 시뮬레이션한 데이터, 압축/복원 특성 곡선을 나타낸 그래프 및 데이터표,
도 7a 내지 도 7b는 본 발명의 바람직한 실시예에 따른 형상최적화를 적용한 유(有)돌기 메탈오링씰의 압축/복원에 따른 시뮬레이션,
도 7c는 본 발명의 바람직한 실시예에 따른 형상최적화를 적용한 유돌기 메탈오링씰의 압축/복원 특성, 및 기존품과 본 발명의 바람직한 실시예에 따른 유돌기 메탈오링씰간의 안착하중값, 소성변형값, 및 탄성복원력값(탄성에너지)을 상호 비교한 테이블,
도 8a 내지 도 8b는 본 발명의 바람직한 실시예에 따른 형상최적화를 적용한 무(無)돌기 메탈오링씰의 압축/복원에 따른 시뮬레이션,
도 8c는 본 발명의 바람직한 실시예에 따른 형상최적화를 적용한 무돌기 메탈오링씰의 압축/복원 특성, 및 기존품과 본 발명의 바람직한 실시예에 따른 무돌기 메탈오링씰간의 안착하중값, 소성변형값, 및 탄성복원력값(탄성에너지)을 상호 비교한 테이블, 및
도 9는 본 발명의 바람직한 실시예에 따른 형상최적화를 적용한 유(有)돌기 및 무(無)돌기 메탈오링씰의 압축/복원에 따른 특성 곡선을 나타낸 그래프 이다1 is a schematic view showing a state in which a general metal O-ring seal is compressed by a certain load,
Figure 2 is a graph showing the compression / restoration characteristic curve of a typical metal O-ring seal,
Figure 3 is a perspective view and a partially enlarged view showing the configuration of the metal O-ring seal according to a preferred embodiment of the present invention,
Figure 4 is a cross-sectional view showing a form cut in a vertical section of the metal O-ring seal according to an embodiment of the present invention,
5 is a conceptual diagram for explaining the thickness (t) for each angle (a) of the metal O-ring seal according to an embodiment of the present invention,
6a to 6d are graphs and data tables showing simulation data, compression / restoration characteristic curves, and data obtained through elasto-plastic analysis of existing products according to a preferred embodiment of the present invention.
7a to 7b is a simulation according to the compression / restoration of the metal projection ring (oil) having a shape optimization applied according to a preferred embodiment of the present invention,
7c shows the compression / restoration characteristics of the protruding metal O-ring seal applying the shape optimization according to the preferred embodiment of the present invention, and the seating load value between the existing product and the protruding metal o-ring seal according to the preferred embodiment of the present invention, plastic deformation. Table, and the elastic restoring force value (elastic energy)
8a to 8b is a simulation according to the compression / restoration of the projection-free metal O-ring seal applying the shape optimization according to a preferred embodiment of the present invention,
Figure 8c is the compression / restoration characteristics of the projection-free metal O-ring seal applying the shape optimization according to the preferred embodiment of the present invention, and the seating load value, plastic deformation between the existing product and the projection-free metal O-ring seal according to the preferred embodiment of the present invention Values, and a table comparing the elastic restoring force value (elastic energy), and
9 is a graph showing a characteristic curve according to compression / restoration of the metal protrusions having no protrusions and no protrusions to which shape optimization is applied according to a preferred embodiment of the present invention.
이하 첨부된 도면을 참조하면서 본 발명에 따른 바람직한 실시예를 상세히 설명하기로 한다. 이에 앞서, 본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. Prior to this, terms and words used in the present specification and claims should not be construed as limited to ordinary or dictionary terms, and the inventor should appropriately interpret the concepts of the terms appropriately The present invention should be construed in accordance with the meaning and concept consistent with the technical idea of the present invention.
따라서, 본 명세서에 기재된 실시예와 도면에 도시된 구성은 본 발명의 가장 바람직한 일 실시예에 불과할 뿐이고 본 발명의 기술적 사상을 모두 대변하는 것은 아니므로, 본 출원시점에 있어서 이들을 대체할 수 있는 다양한 균등물과 변형예들이 있을 수 있음을 이해하여야 한다.Therefore, the embodiments described in this specification and the configurations shown in the drawings are merely the most preferred embodiments of the present invention and do not represent all the technical ideas of the present invention. Therefore, It is to be understood that equivalents and modifications are possible.
먼저, 도 3 내지 도 5를 참고하여 본 발명의 바람직한 실시예에 따른 메탈오링씰의 구성 및 기능을 설명하기로 한다.First, with reference to Figures 3 to 5 will be described the configuration and function of the metal O-ring seal according to a preferred embodiment of the present invention.
본 발명의 바람직한 실시예에 따른 메탈오링씰(100)은, 형상최적화를 적용함으로써 높은 탄성복원력을 갖는 메탈오링씰(100)이며, 다음과 같은 구조적 특징을 갖는다.The metal o-
본 발명의 바람직한 실시예에 따른 메탈오링씰(100)은 내부에 통공(110)이 형성된 원형의 고리형태로 형성되어 외주면(120)의 형상 및 크기는 기존품 규격을 따르며, 수직단면의 원주방향으로 상기 외주면(120)에서 내주면(130)까지의 두께(t) 즉, 내주면(130)의 형상을 조절하여 탄성복원력을 증대시킨 메탈오링씰(100)로서, 도 3 내지 도 5에 도시된 바와 같이, 상기 수직단면의 원주방향에서의 양측 위치에서 원주를 따라 상측 및 하측으로 갈수록 상기 두께(t)가 점차적으로 얇아지며, 상기 상측 및 하측의 내주면(130)에는 상기 수직단면의 중심(C) 방향으로 융기된 돌기부(140)가 돌출 형성되면서 상기 돌기부(140)의 양측에 홈부(141)가 형성되는 것을 기술적 특징으로 한다.The metal O-
즉, 본 발명의 바람직한 실시예에 따른 메탈오링씰(100)은 상기와 같이 외주면(120)에서 내주면(130)까지의 두께(t)를 조절하는 방식으로 내주면(130)의 형상을 유연성이 증대되는 구조로 형성하여 탄성복원력을 향상시킬 수 있다. 따라서, 기존품의 외주형태를 유지하여 범용성(적용가능성)을 가지면서도 메탈오링씰(100)의 기밀성능 및 수명시간을 증대시킬 수 있는 것이다.That is, the metal o-
이하에서는, 구조체의 유연성이 증대되도록 형상을 최적화함으로써 메탈오링씰(100)이 외주면에서 내주면까지의 두께가 일정한 기존품에 비해 획기적으로 향상된 탄성복원력을 갖는다는 것을 증명하는 과정을 설명하기로 한다.Hereinafter, by optimizing the shape to increase the flexibility of the structure will be described a process to demonstrate that the metal O-
먼저, 실제 사용되고 있는 기존품에 대하여 유한요소법(Finite Elements Method)을 이용한 탄소성 해석을 수행하여 압축/복원 특성 데이터를 산출하고 제작사의 카탈로그에서 제시하고 있는 상기 기존품의 주요 성능값과 비교함으로써 탄소성 해석의 신뢰성을 검증한다.First, elasticity analysis is performed on the existing products that are actually used using finite elements method to calculate compression / restoration characteristics data and compare them with the main performance values of the existing products presented in the manufacturer's catalog. Verify the reliability of the analysis.
여기서, 상기 기존품은 본 발명이 속하는 기술 분야에서 메탈오링씰에 대한 기존품으로서, 외주면과 내주면이 동심원을 형성함으로써 두께가 균일한 메탈오링씰을 의미한다.Here, the existing product is an existing product for the metal O-ring seal in the technical field to which the present invention belongs, the outer circumferential surface and the inner circumferential surface by forming a concentric circle means a metal O-ring seal uniform thickness.
여기서, 도 6a는 상기 기존품에 일정 하중이 가해져 압축되었을 때의 상태를 측정한 시뮬레이션 데이터이고, 도 6b는 상기 일정 하중을 제거하여 복원되었을 때의 상태를 측정한 시뮬레이션 데이터이며, 도 6a 및 도 6b에서 실선으로 표시한 원은 하중이 가해지지 않은 상태의 기존품의 형상을 나타낸다.6A is simulation data measuring a state when a predetermined load is applied to the existing product and compressed. FIG. 6B is simulation data measuring a state when the state is restored by removing the predetermined load. The circle indicated by solid line in 6b shows the shape of the existing product without load applied.
또한, 도 6c 및 도 6d는 각각 상기 시뮬레이션 결과에 따른 기존품의 압축/복원 특성곡선 및 기존품의 안착하중(Seating Load)값 및 영구변형(Permanent Deformation)값을 나타낸 그래프와 테이블이다. 6C and 6D are graphs and tables showing compression / restore characteristic curves of existing products, seating load values, and permanent deformation values of existing products according to the simulation results, respectively.
도 6a 내지 도 6d에 도시된 바와 같이, 상기 제작사의 카탈로그에서 제시하고 있는 기존품의 안착하중(Seating Load)값은 420이며, 본 발명의 바람직한 실시예에 따른 탄소성 해석을 수행하여 산출된 안착하중 값은 427이며, 각각의 영구변형값은 0.84와 0.86으로 각각의 데이터의 편차는 1.64% 및 2.33%와 같이 근소한 차이를 보임을 확인할 수 있다. 즉, 이를 통해 본 발명의 바람직한 실시예에 따른 탄소성 해석의 신뢰성을 검증할 수 있는 것이다.As shown in Figure 6a to 6d, the seating load value (Seating Load) value of the existing product presented in the catalog of the manufacturer is 420, the seating load calculated by performing an elasticity analysis according to a preferred embodiment of the present invention The value is 427, and the permanent strain values are 0.84 and 0.86, respectively, showing slight differences such as 1.64% and 2.33%. That is, through this it is possible to verify the reliability of the elasto-plastic analysis according to the preferred embodiment of the present invention.
여기서, 도 7a는 최적화된 유돌기 메탈오링씰(100) 형상에 대하여 일정변위하중으로 압축하여 얻은 시뮬레이션 결과(응력 및 변형 분포)이며, 도 7b는 상기 일정 하중이 제거되어 복원되었을 때의 상태를 측정한 시뮬레이션 데이터이며, 도 7a 및 도 7b에서 실선으로 표시한 원은 하중이 가해지지 않은 상태의 형상이 최적화된 유돌기 메탈오링씰(100)의 형상을 나타낸다.Here, Figure 7a is a simulation result (stress and strain distribution) obtained by compressing a fixed displacement load with respect to the shape of the optimized projection metal O-
또한, 도 7c는 기존품과, 본 발명의 바람직한 실시예에 따른 유돌기 메탈오링씰(100)간의 안착하중(Seating Load), 소성변형값(Plastic Deformation), 그리고 탄성복원력값(Elastic energy)을 상호 비교한 테이블이다.7C also shows This table compares the existing load and the seating load, plastic deformation, and elastic energy between the protruding metal O-
도 7a 내지 도 7c, 및 도 9에 도시된 바와 같이, 탄소성 해석을 수행하여 산출된 기존품의 압축/복원 특성 데이터에 따른 안착하중값은 427인데 반하여, 본 발명의 바람직한 실시예에 따른 최적화 형상의 메탈오링씰(100)의 압축/복원 특성 데이터에 따른 안착하중값은 431으로 거의 유사한 반발력을 나타내고 있고 상기 기존품의 소성변형값과 탄성복원력값(탄성에너지)은 0.86 및 85.3인데 반하여, 본 발명의 바람직한 실시예에 따른 최적화 설계를 적용함으로써 획득된 형상으로 제조된 본 발명의 바람직한 실시예에 따른 메탈오링씰(100)의 소성변형값 및 탄성복원력값(탄성에너지)은 0.56 및 129.2 이며, 각각의 데이터의 편차는 0.3과 43.9로 상기 기존품과 대비하여 소성변형 정도는 35%, 탄성복원력(탄성에너지)은 34%가 개선되었다. 즉, 기밀성능과 사용수명이 대폭 개선될 수 있음을 검증할 수 있는 것이다.As shown in FIGS. 7A to 7C and 9, the seating load value according to the compression / restoration characteristic data of the existing product calculated by performing the elastoplastic analysis is 427, whereas the optimized shape according to the preferred embodiment of the present invention. The seating load value according to the compression / restoration characteristic data of the metal O-
여기서, 도 9는 본 발명의 바람직한 실시예에 따른 형상최적화를 적용한 유(有)돌기 및 무(無)돌기 메탈오링씰의 압축/복원에 따른 특성 곡선을 나타낸 그래프이다.Here, Figure 9 is a graph showing a characteristic curve according to the compression / restoration of the metal projection (oil) and the projection-free metal O-ring seal applying the shape optimization according to a preferred embodiment of the present invention.
이와 같이, 본 발명의 바람직한 실시예에 따른 메탈오링씰(100)의 외주면(120)의 형상 및 크기는 기존품 규격을 따르며, 수직단면의 원주방향으로 상기 외주면(120)에서 내주면(130)까지의 두께(t)를 조절하여 각 규격별로 소성변형을 최소화하고 탄성복원력을 최대화할 수 있는 최적화된 형상 데이터를 획득할 수 있는데 이러한 최적화된 형상 데이터에 따르면, 도 3을 참고하면, 상기 수직단면의 원주방향에서의 양측 위치에서 원주를 따라 상측 및 하측으로 갈수록 상기 두께(t)가 점차적으로 얇아지되, 상기 수직단면의 원주방향에서의 양측위치는 각각 0도와 180도 방향이고, 상기 상측과 하측은 각각 90도와 270도 방향이며, 원형으로 형성되어 외주면에서 내주면까지의 두께가 일정한 기존품의 단면직경이 1D일 경우, 아래의 [표 1]과 같이, 0도 방향의 두께(t)는 0.071 내지 0.197D, 10도 방향의 두께(t)는 0.071 내지 0.195D, 20도 방향의 두께(t)는 0.070 내지 0.191D, 30도 방향의 두께(t)는 0.066 내지 0.183D, 40도 방향의 두께(t)는 0.062 내지 0.171D, 50도 방향의 두께(t)는 0.055 내지 0.155D, 60도 방향의 두께(t)는 0.041 내지 0.136D, 70도 방향의 두께(t)는 0.026 내지 0.108D, 75도 방향의 두께(t)는 0.016 내지 0.048D, 80도 방향의 두께(t)는 0.017 내지 0.086D, 85도 방향의 두께(t)는 0.016 내지 0.109D, 90도 방향의 두께(t)는 0.016 내지 0.118D 내에서 정해지며, 상기 90도 방향에서 180도 방향, 상기 90도 방향에서 180도 방향, 상기 180도 방향에서 270도 방향 및, 270도에서 0도까지의 각각의 두께(t)는 상기 0도 방향 내지 90도 방향의 각 각도별 두께(t)와 대응되는 두께(t)로 형성되는 것이 바람직하다.As such, the shape and size of the outer
또한, 더욱 바람직하게는, 상기 0도 방향의 두께(t)는 0.134D, 10도 방향의 두께(t)는 0.133D, 20도 방향의 두께(t)는 0.129D, 30도 방향의 두께(t)는 0.123D, 40도 방향의 두께(t)는 0.114D, 50도 방향의 두께(t)는 0.101D, 60도 방향의 두께(t)는 0.086D, 70도 방향의 두께(t)는 0.063D, 75도 방향의 두께(t)는 0.048D, 80도 방향의 두께(t)는 0.034D, 85도 방향의 두께(t)는 0.025D, 90도 방향의 두께(t)는 0.059D 일 수 있다.More preferably, the thickness t in the 0 degree direction is 0.134D, the thickness t in the 10 degree direction is 0.133D, and the thickness t in the 20 degree direction is 0.129D, the thickness in the 30 degree direction ( t) is 0.123D, the thickness t in the 40 degree direction is 0.114D, the thickness t in the 50 degree direction is 0.101D, and the thickness t in the 60 degree direction is 0.086D, the thickness t in the 70 degree direction Is 0.063D, the thickness t in the 75 degree direction is 0.048D, the thickness t in the 80 degree direction is 0.034D, the thickness t in the 85 degree direction is 0.025D, and the thickness t in the 90 degree direction is 0.059 Can be D.
다음으로, 돌기부(140)가 형성되지 않은 경우, 즉 무(無)돌기 메탈오링씰 형상(100)에 대해서 설명하면, 도 8a는 최적화된 무돌기 메탈오링씰(100)의 형상에 대하여 일정변위하중으로 압축하여 얻은 시뮬레이션 결과(응력 및 변형 분포)이며, 도 8b는 상기 일정 하중이 제거되어 복원되었을 때의 상태를 측정한 시뮬레이션 데이터이며, 도 8a 및 도 8b에서 실선으로 표시한 원은 하중이 가해지지 않은 상태의 형상이 최적화된 무돌기 메탈오링씰(100)의 형상을 나타낸다.Next, in the case where the
또한, 도 8c는 기존품과, 본 발명의 바람직한 실시예에 따른 무돌기 메탈오링씰(100)간의 안착하중(Seating Load), 소성변형값(Plastic Deformation), 그리고 탄성복원력값(Elastic energy)을 상호 비교한 테이블이다.8C also shows It is a table comparing the existing load, the seating load, the plastic deformation, and the elastic energy between the non-protruding metal O-
도 8a 내지 도 8c, 및 도 9에 도시된 바와 같이, 탄소성 해석을 수행하여 산출된 기존품의 압축/복원 특성 데이터에 따른 안착하중값은 427인데 반하여, 본 발명의 바람직한 실시예에 따른 최적화 형상의 메탈오링씰(100)의 압축/복원 특성 데이터에 따른 안착하중값은 420으로 거의 유사한 반발력을 나타내고 있고, 상기 기존품의 소성변형값과 탄성복원력값(탄성에너지)은 0.86 및 85.3인데 반하여, 본 발명의 바람직한 실시예에 따른 컴플라이언트 메커니즘 위상최적화 및 형상최적화를 통하여 획득된 형상으로 제조된 본 발명의 바람직한 실시예에 따른 메탈오링씰(100)의 소성변형값 및 탄성복원력값(탄성에너지)은 0.61 및 125.7 이며, 각각의 데이터의 편차는 0.25과 40.4로 상기 기존품과 대비하여 소성변형 정도는 29%, 탄성복원력(탄성에너지)은 32%가 개선되었다. 즉, 기밀성능과 사용수명이 대폭 개선될 수 있음을 검증할 수 있는 것이다.As shown in FIGS. 8A to 8C and 9, the seating load value according to the compression / restore characteristic data of the existing product calculated by performing the elasto-plastic analysis is 427, whereas the optimized shape according to the preferred embodiment of the present invention. According to the compression / restoration characteristic data of the metal O-
이와 같이, 본 발명의 바람직한 실시예에 따른 무(無)돌기 메탈오링씰(100)의 외주면(120)의 형상 및 크기는 기존품 규격을 따르며, 수직단면의 원주방향으로 상기 외주면(120)에서 내주면(130)까지의 두께(t)를 조절하여 각 규격별로 소성변형을 최소화하고 탄성복원력을 최대화할 수 있는 최적화된 형상 데이터를 획득할 수 있는데 이러한 최적화된 형상 데이터에 따르면, 도 3을 참고하면, 상기 수직단면의 원주방향에서의 양측 위치에서 원주를 따라 상측 및 하측으로 갈수록 상기 두께(t)가 점차적으로 얇아지되, 상기 수직단면의 원주방향에서의 양측위치는 각각 0도와 180도 방향이고, 상기 상측과 하측은 각각 90도와 270도 방향이며, 원형으로 형성되어 외주면에서 내주면까지의 두께가 일정한 기존품의 단면직경이 1D일 경우, 0.071 내지 0.197D, 10도 방향의 두께(t)는 0.071 내지 0.195D, 20도 방향의 두께(t)는 0.070 내지 0.191D, 30도 방향의 두께(t)는 0.066 내지 0.183D, 40도 방향의 두께(t)는 0.062 내지 0.171D, 50도 방향의 두께(t)는 0.055 내지 0.155D, 60도 방향의 두께(t)는 0.041 내지 0.136D, 70도 방향의 두께(t)는 0.026 내지 0.108D, 75도 방향의 두께(t)는 0.016 내지 0.048D, 80도 방향의 두께(t)는 0.017 내지 0.086D, 85도 방향의 두께(t)는 0.016 내지 0.109D, 90도 방향의 두께(t)는 0.016 내지 0.118D 내에서 정해지며, 상기 90도 방향에서 180도 방향, 상기 180도 방향에서 270도 방향 및, 270도에서 0도까지의 각각의 두께(t)는 상기 0도 방향 내지 90도 방향의 각 각도별 두께(t)와 대응되는 두께(t)로 형성되는 것이 바람직하다.As such, the shape and size of the outer
또한, 더욱 바람직하게는, 상기 0도 방향의 두께(t)는 0.134D, 10도 방향의 두께(t)는 0.133D, 20도 방향의 두께(t)는 0.129D, 30도 방향의 두께(t)는 0.123D, 40도 방향의 두께(t)는 0.114D, 50도 방향의 두께(t)는 0.101D, 60도 방향의 두께(t)는 0.086D, 70도 방향의 두께(t)는 0.063D, 75도 방향의 두께(t)는 0.048D, 80도 방향의 두께(t)는 0.034D, 85도 방향의 두께(t)는 0.025D, 90도 방향의 두께(t)는 0.025D 일 수 있다.More preferably, the thickness t in the 0 degree direction is 0.134D, the thickness t in the 10 degree direction is 0.133D, and the thickness t in the 20 degree direction is 0.129D, the thickness in the 30 degree direction ( t) is 0.123D, the thickness t in the 40 degree direction is 0.114D, the thickness t in the 50 degree direction is 0.101D, and the thickness t in the 60 degree direction is 0.086D, the thickness t in the 70 degree direction 0.063D, thickness t in the 75 degree direction is 0.048D, thickness t in the 80 degree direction is 0.034D, thickness t in the 85 degree direction is 0.025D, thickness t in the 90 degree direction is 0.025 Can be D.
한편, 본 발명의 바람직한 실시예에 따른 메탈오링씰(100)은 Stainless steel, Inconel, Inconel X, Carbon steel, Aluminum, Monel, Copper, Tantalum의 금속재질 중 어느 하나의 금속재질로 이루어지거나, 또는 SS304, SS316, SS321, SS347, Alloy600, Alloy718, AlloyX-750 또는 Monel 400의 금속재질 중 어느 하나의 금속재질로 이루어질 수 있다. 즉, 본 발명의 바람직한 실시예에 따른 메탈오링씰(100)은 외주형상이 원으로 된 메탈오링씰을 적용대상으로 할 수 있는 것이다.On the other hand, the metal O-
상술한 바와 같은 본 발명의 바람직한 실시예에 따른 메탈오링씰(100)의 각 구성 및 기능에 의해, 구조체의 유연성이 증대되도록 형상을 최적화함으로써 기존품과 비교하여 소성변형은 최소화되고 탄성복원력이 획기적으로 증대되므로, 수명시간 및 기밀성능이 우수해진다.By the configuration and function of the metal O-
또한, 비교적 간단한 구조로 이루어져 있기 때문에 기존품 제작방식과 유사한 방법으로 제조가능 하며, 메탈오링씰의 빈번한 교체가 요구되는 경우는 물론, 수명시간이 상대적으로 증대되므로 메탈오링씰의 정기적인 교체주기를 증가시킬 수 있음은 물론, 상기 메탈오링씰(100)의 외주면(120)의 형상 및 크기는 기존품 규격을 따르며, 상기 기존품 규격과는 무관한 내주면(130)의 두께를 조절에 따른 내주면(130)의 형상이 최적화한 구조로 구비되기 때문에 다양한 분야에 범용적으로 사용이 가능한 장점이 있다.In addition, since the structure is relatively simple, it can be manufactured by a method similar to the existing production method, and the frequent replacement of the metal o-ring seal is required, as well as the life time is relatively increased, so the regular replacement cycle of the metal o-ring seal is performed. Of course, the shape and size of the outer
이상과 같이, 본 발명은 비록 한정된 실시예와 도면에 의해 설명되었으나, 본 발명은 이것에 의해 한정되지 않으며 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의해 본 발명의 기술 사상과 아래에 기재될 청구범위의 균등 범위 내에서 다양한 수정 및 변형이 가능함은 물론이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is to be understood that the invention is not limited to the disclosed exemplary embodiments. It is to be understood that various modifications and changes may be made without departing from the scope of the appended claims.
100...메탈오링씰 110...통공
120...외주면 130...내주면
140...돌기부 141...홈부100.Metal O-
140
Claims (9)
상기 수직단면의 원주방향에서의 양측 위치에서 원주를 따라 상측 및 하측으로 갈수록 상기 두께(t)가 점차적으로 얇아지는 것을 특징으로 하는 메탈오링씰.The shape and size of the outer circumferential surface 120 is formed in the shape of a circular ring having a through-hole 110 formed therein, according to the existing standard, the thickness from the outer circumferential surface 120 to the inner circumferential surface 130 in the circumferential direction of the vertical section ( In the metal o-ring seal that adjusts t) to increase elastic restoring force,
The metal O-ring seal, characterized in that the thickness (t) gradually becomes thinner toward the upper and lower sides along the circumference at both sides in the circumferential direction of the vertical section.
상기 상측 및 하측의 내주면(130)에는 상기 수직단면의 중심(C) 방향으로 융기된 돌기부(140)가 돌출 형성되면서 상기 돌기부(140)의 양측에 홈부(141)가 형성된 메탈오링씰.The method of claim 1,
The upper and lower inner circumferential surface 130 has a metal ring formed with grooves 141 formed on both sides of the protrusion 140 while the protrusions 140 protruded toward the center C of the vertical section.
상기 수직단면의 원주방향에서의 양측 위치에서 원주를 따라 상측 및 하측으로 갈수록 상기 두께(t)가 점차적으로 얇아지되,
상기 수직단면의 원주방향에서의 양측위치는 각각 0도와 180도 방향이고, 상기 상측과 하측은 각각 90도와 270도 방향이며, 원형으로 형성되어 외주면에서 내주면까지의 두께가 일정한 기존품의 단면직경이 1D일 경우, 상기 0도 방향의 두께(t)는 0.071 내지 0.197D, 10도 방향의 두께(t)는 0.071 내지 0.195D, 20도 방향의 두께(t)는 0.070 내지 0.191D, 30도 방향의 두께(t)는 0.066 내지 0.183D, 40도 방향의 두께(t)는 0.062 내지 0.171D, 50도 방향의 두께(t)는 0.055 내지 0.155D, 60도 방향의 두께(t)는 0.041 내지 0.136D, 70도 방향의 두께(t)는 0.026 내지 0.108D, 80도 방향의 두께(t)는 0.017 내지 0.086D, 90도 방향의 두께(t)는 0.016 내지 0.118D 내에서 정해지며, 상기 90도 방향에서 180도 방향, 상기 180도 방향에서 270도 방향 및, 270도에서 0도까지의 각각의 두께(t)는 상기 0도 방향 내지 90도 방향의 각 각도별 두께(t)와 대응되는 두께(t)로 형성된 메탈오링씰.3. The method according to claim 1 or 2,
In the circumferential direction of the vertical cross-section, the thickness t gradually becomes thinner toward the upper and lower sides along the circumference,
Both sides of the vertical section in the circumferential direction are 0 degrees and 180 degrees, respectively, and the upper and lower sides are 90 degrees and 270 degrees, respectively. In this case, the thickness t in the 0 degree direction is 0.071 to 0.197 D, the thickness t in the 10 degree direction is 0.071 to 0.195 D, and the thickness t in the 20 degree direction is 0.070 to 0.191 D and 30 degrees. The thickness t is 0.066 to 0.183 D, the thickness t in the 40 degree direction is 0.062 to 0.171 D, the thickness t in the 50 degree direction is 0.055 to 0.155 D, and the thickness t in the 60 degree direction is 0.041 to 0.136. D, the thickness t in the 70-degree direction is 0.026 to 0.108D, the thickness t in the 80-degree direction is 0.017 to 0.086D, and the thickness t in the 90-degree direction is determined within 0.016 to 0.118D. The thickness t of 180 degrees in the direction of directions, 270 degrees in the direction of 180 degrees, and 270 degrees to 0 degrees, respectively, is in the directions of 0 degrees to 90 degrees. A metal O-ring seal formed with a thickness t corresponding to the thickness t.
또한, 75도 방향의 두께(t)는 0.016 내지 0.091D, 85도 방향의 두께(t)는 0.016 내지 0.109D 내에서 정해짐에 따라, 상기 상측 및 하측의 내주면(130)에는 상기 수직단면의 중심(C) 방향으로 융기된 돌기부(140)가 형성되면서, 상기 돌기부(140)의 양측에는 홈부(141)가 형성되는 것을 특징으로 하는 메탈오링씰.The method of claim 3, wherein
In addition, the thickness t in the 75-degree direction is determined to be 0.016 to 0.091D, and the thickness t in the 85-degree direction is set to 0.016 to 0.109D. Thus, the upper and lower inner circumferential surfaces 130 of the vertical section A metal o-ring seal, characterized in that the grooves 141 are formed on both sides of the protrusions 140 while the protrusions 140 are raised in the center (C) direction.
상기 75도 방향의 두께(t)는 0.048D, 85도 방향의 두께(t)는 0.025D 인 것을 특징으로 하는 메탈오링씰.5. The method of claim 4,
The thickness (t) of the 75 degree direction is 0.048D, the thickness (t) of the 85 degree direction is a metal O-ring seal, characterized in that 0.025D.
상기 0도 방향의 두께(t)는 0.134D, 10도 방향의 두께(t)는 0.133D, 20도 방향의 두께(t)는 0.129D, 30도 방향의 두께(t)는 0.123D, 40도 방향의 두께(t)는 0.114D, 50도 방향의 두께(t)는 0.101D, 60도 방향의 두께(t)는 0.086D, 70도 방향의 두께(t)는 0.063D, 80도 방향의 두께(t)는 0.034D, 90도 방향의 두께(t)는 0.059D인 것을 특징으로 하는 메탈오링씰. 6. The method of claim 5,
The thickness t in the 0 degree direction is 0.134D, the thickness t in the 10 degree direction is 0.133D, the thickness t in the 20 degree direction is 0.129D, and the thickness t in the 30 degree direction is 0.123D, 40 The thickness t of the degree direction is 0.114D, the thickness t of the 50 degree direction is 0.101D, the thickness t of the 60 degree direction is 0.086D, and the thickness t of the 70 degree direction is 0.063D, the 80 degree direction The thickness (t) is 0.034D, the thickness of the 90 ° direction (t) is a metal O-ring seal, characterized in that 0.059D.
상기 돌기부(140)가 형성되지 않은 경우, 상기 90도 방향의 두께가 85도 방향의 두께 0.025D와 동일한 것을 특징으로 메탈오링씰.The method according to claim 6,
When the protrusion 140 is not formed, the metal o-ring seal, wherein the thickness in the 90-degree direction is the same as the thickness of 0.025D in the 85-degree direction.
상기 메탈오링씰은,
Stainless steel, Inconel, Inconel X, Carbon steel, Aluminum, Monel, Copper, Tantalum의 금속재질 중 어느 하나의 금속재질로 이루어진 것을 특징으로 하는 메탈오링씰.6. The method of claim 5,
The metal o-ring seal,
Metal O-ring seal, characterized in that made of any one metal material of stainless steel, Inconel, Inconel X, Carbon steel, Aluminum, Monel, Copper, Tantalum.
상기 메탈오링씰은,
SS304, SS316, SS321, SS347, Alloy600, Alloy718, AlloyX-750 또는 Monel 400의 금속재질 중 어느 하나의 금속재질로 이루어진 것을 특징으로 하는 메탈오링씰.
6. The method of claim 5,
The metal o-ring seal,
Metal O-ring seal, characterized in that made of any one of the metal material of SS304, SS316, SS321, SS347, Alloy600, Alloy718, AlloyX-750 or Monel 400.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/KR2013/002822 WO2013151358A1 (en) | 2012-04-04 | 2013-04-04 | Highly resilient metal o-ring seal |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020120034721 | 2012-04-04 | ||
KR20120034721 | 2012-04-04 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130112762A true KR20130112762A (en) | 2013-10-14 |
KR101503262B1 KR101503262B1 (en) | 2015-03-18 |
Family
ID=49300669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020130035178A Active KR101503262B1 (en) | 2012-04-04 | 2013-04-01 | High Resilient Metal O-Ring Seal |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR101503262B1 (en) |
WO (1) | WO2013151199A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN110232247B (en) * | 2019-06-14 | 2022-10-25 | 合肥哈工热气球数字科技有限公司 | Valve sealing ring optimization design method based on finite element analysis |
KR102491891B1 (en) | 2022-06-03 | 2023-01-26 | 박영복 | Metal O-ring manufacturing method with joint finish processing structure |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3110307B2 (en) * | 1996-03-28 | 2000-11-20 | 日本バルカー工業株式会社 | Metal gasket |
KR20060076828A (en) * | 2004-12-29 | 2006-07-05 | 동부일렉트로닉스 주식회사 | O-ring for sealing pressure equipment |
KR200409621Y1 (en) * | 2005-11-25 | 2006-02-24 | 평화오일씰공업주식회사 | O-ring |
JP2008190675A (en) | 2007-02-07 | 2008-08-21 | Hitachi Metals Ltd | Metal o-ring |
DE102007019330A1 (en) * | 2007-04-24 | 2008-10-30 | Reinz-Dichtungs-Gmbh | Three-dimensional flat gasket |
JP2008298246A (en) * | 2007-06-04 | 2008-12-11 | Kayaba Ind Co Ltd | Flat seal ring |
-
2012
- 2012-04-09 WO PCT/KR2012/002693 patent/WO2013151199A1/en active Application Filing
-
2013
- 2013-04-01 KR KR1020130035178A patent/KR101503262B1/en active Active
Also Published As
Publication number | Publication date |
---|---|
WO2013151199A1 (en) | 2013-10-10 |
KR101503262B1 (en) | 2015-03-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102927273B (en) | Sealing and the seal arrangement obtained thus | |
US11384838B2 (en) | Seal member | |
US8485534B2 (en) | Metal gasket | |
JP2007092904A (en) | Sheet-like gasket and manufacturing method thereof | |
US9845875B2 (en) | Ring seal with sealing surface extension | |
KR20130067176A (en) | An insulated gasket for high temperature and pressure | |
TWI750305B (en) | Pump assemblies with stator joint seals | |
US8807573B2 (en) | Metal gasket | |
KR20130112762A (en) | High resilient metal o-ring seal | |
JP6082715B2 (en) | Rubber gasket for fuel cell | |
WO2014091930A1 (en) | Seal structure | |
CN202532073U (en) | Elastic composite seal gasket | |
WO2013151358A1 (en) | Highly resilient metal o-ring seal | |
CN201891842U (en) | Mechanical seal device of metal corrugated pipe | |
KR20120017545A (en) | Power module device of inverter | |
KR20130109538A (en) | Multi-layer composite seals with multiple contacts | |
CN106702345A (en) | High-temperature CVD (Chemical Vapor Deposition) device | |
JP2017096332A (en) | Seal member | |
Durn et al. | Surface modification of elastomeric seals to reduce stiction force on various surfaces | |
CN203822482U (en) | Sealing gasket | |
CN207406760U (en) | Flange gasket | |
CN213744811U (en) | Spliced metal-coated rubber gasket | |
CN207814416U (en) | A kind of sealing element that energy self-adaptive pressure is adjusted | |
CN209762227U (en) | Expanded graphite packing ring | |
JP6895357B2 (en) | Sealing device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20130401 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20140314 Patent event code: PE09021S01D |
|
E601 | Decision to refuse application | ||
PE0601 | Decision on rejection of patent |
Patent event date: 20140924 Comment text: Decision to Refuse Application Patent event code: PE06012S01D Patent event date: 20140314 Comment text: Notification of reason for refusal Patent event code: PE06011S01I |
|
AMND | Amendment | ||
PX0901 | Re-examination |
Patent event code: PX09011S01I Patent event date: 20140924 Comment text: Decision to Refuse Application |
|
PX0701 | Decision of registration after re-examination |
Patent event date: 20141218 Comment text: Decision to Grant Registration Patent event code: PX07013S01D Patent event date: 20141024 Comment text: Amendment to Specification, etc. Patent event code: PX07012R01I Patent event date: 20140924 Comment text: Decision to Refuse Application Patent event code: PX07011S01I |
|
X701 | Decision to grant (after re-examination) | ||
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20150311 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20150311 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20171219 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20171219 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20181226 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20181226 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20200225 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20200225 Start annual number: 6 End annual number: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20201221 Start annual number: 7 End annual number: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20220221 Start annual number: 8 End annual number: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20221226 Start annual number: 9 End annual number: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20231227 Start annual number: 10 End annual number: 10 |
|
PR1001 | Payment of annual fee |
Payment date: 20241223 Start annual number: 11 End annual number: 11 |