[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20130098606A - Food container having improved oxygen barrier properties and the manufacturing method thereof - Google Patents

Food container having improved oxygen barrier properties and the manufacturing method thereof Download PDF

Info

Publication number
KR20130098606A
KR20130098606A KR1020120020243A KR20120020243A KR20130098606A KR 20130098606 A KR20130098606 A KR 20130098606A KR 1020120020243 A KR1020120020243 A KR 1020120020243A KR 20120020243 A KR20120020243 A KR 20120020243A KR 20130098606 A KR20130098606 A KR 20130098606A
Authority
KR
South Korea
Prior art keywords
thin film
oxygen barrier
container
food container
barrier properties
Prior art date
Application number
KR1020120020243A
Other languages
Korean (ko)
Inventor
이광렬
문명운
김성진
송은경
조경식
윤태경
Original Assignee
씨제이제일제당 (주)
한국과학기술연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 씨제이제일제당 (주), 한국과학기술연구원 filed Critical 씨제이제일제당 (주)
Priority to KR1020120020243A priority Critical patent/KR20130098606A/en
Priority to PCT/KR2013/001618 priority patent/WO2013129856A1/en
Priority to JP2014555507A priority patent/JP6110409B2/en
Priority to EP13754954.9A priority patent/EP2819930A4/en
Priority to US14/372,200 priority patent/US20140332437A1/en
Priority to CN201380010654.6A priority patent/CN104136345B/en
Publication of KR20130098606A publication Critical patent/KR20130098606A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D25/00Details of other kinds or types of rigid or semi-rigid containers
    • B65D25/14Linings or internal coatings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65DCONTAINERS FOR STORAGE OR TRANSPORT OF ARTICLES OR MATERIALS, e.g. BAGS, BARRELS, BOTTLES, BOXES, CANS, CARTONS, CRATES, DRUMS, JARS, TANKS, HOPPERS, FORWARDING CONTAINERS; ACCESSORIES, CLOSURES, OR FITTINGS THEREFOR; PACKAGING ELEMENTS; PACKAGES
    • B65D81/00Containers, packaging elements, or packages, for contents presenting particular transport or storage problems, or adapted to be used for non-packaging purposes after removal of contents
    • B65D81/24Adaptations for preventing deterioration or decay of contents; Applications to the container or packaging material of food preservatives, fungicides, pesticides or animal repellants
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/045Coating cavities or hollow spaces, e.g. interior of tubes; Infiltration of porous substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • C23C16/0245Pretreatment of the material to be coated by cleaning or etching by etching with a plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0272Deposition of sub-layers, e.g. to promote the adhesion of the main coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/62Plasma-deposition of organic layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • B05D3/14Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by electrical means
    • B05D3/141Plasma treatment
    • B05D3/142Pretreatment
    • B05D3/144Pretreatment of polymeric substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Inorganic Chemistry (AREA)
  • Food Science & Technology (AREA)
  • Chemical Vapour Deposition (AREA)
  • Details Of Rigid Or Semi-Rigid Containers (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Packages (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE: A method of manufacturing a food container by depositing an oxygen barrier on a plastic container by using a plasma method is provided. CONSTITUTION: A buffer film (20) is formed on a surface of a plastic container and has a thickness of 5 nm to 30 nm. An oxygen barrier (30) is formed on the buffer film. A food container (1) has oxygen barrier properties. The oxygen barrier has a thickness of 25 nm to 50 nm. A surface of the container is plasma pre-treated for improving an adhesion power to the buffer film. The container is formed of polypropylene. The buffer film is formed of hexamethyldisiloxane or silicon. An oxygen barrier is formed of a silicon oxide.

Description

향상된 산소차단성을 갖는 식품용기 및 그의 제조방법{FOOD CONTAINER HAVING IMPROVED OXYGEN BARRIER PROPERTIES AND THE MANUFACTURING METHOD THEREOF}FOOD CONTAINER HAVING IMPROVED OXYGEN BARRIER PROPERTIES AND THE MANUFACTURING METHOD THEREOF

본 발명은 식품용기 및 그의 제조방법에 관한 것으로, 보다 상세하게는 표면에너지가 낮고 다공질인 플라스틱 재질의 용기에 플라즈마 방식을 통하여 산소차단박막을 깨짐없이 증착함으로써, 산소차단성을 크게 높일 수 있는 식품용기 및 그의 제조방법에 관한 것이다. The present invention relates to a food container and a method for manufacturing the same, and more particularly, food that can greatly increase oxygen barrier properties by depositing an oxygen barrier thin film without plasma by a plasma method in a container having a low surface energy and a porous plastic material. A container and a method of manufacturing the same.

상하기 쉬운 식품들을 오래 보관하기 위하여, 식품용기에 산소차단능력을 갖게 하는 것은 매우 중요한 일이다. In order to store perishable foods for a long time, it is very important to make food containers have oxygen blocking ability.

플라스틱 재질의 식품용기는 저렴한 가격과 대량생산의 용이성이란 큰 장점을 가지고 있으나, 플라스틱 특유의 특징인 다공질 구조에 의해 산소차단성이 현격히 떨어지는 단점을 가지고 있다. Food containers made of plastics have great advantages such as low price and ease of mass production, but have a disadvantage in that the oxygen barrier property is significantly lowered due to the porous structure characteristic of plastics.

이를 해결하기 위해 플라즈마 방식을 이용하여 박막을 플라스틱 식품용기에 코팅하는 기술이 연구되어 왔다. In order to solve this problem, a technique of coating a thin film on a plastic food container using a plasma method has been studied.

그러나 이러한 연구의 성과는 폴리에틸렌테레프탈레이트(polyethylene terephthalate, PET)와 같은 비교적 표면에너지(0.031~0.047 N/m, Accu dyne test)가 높은 플라스틱에만 국한되어 있으며, 폴리프로필렌(polypropylene, PP)과 같이 표면에너지(0.023~0.038 N/m, Accu dyne test)가 낮은 플라스틱에는 효과를 보지 못하고 있다. However, the results of these studies are limited to plastics with relatively high surface energy (0.031 ~ 0.047 N / m, Accu dyne test) such as polyethylene terephthalate (PET), and surface such as polypropylene (PP). It has no effect on plastics with low energy (0.023 ~ 0.038 N / m, Accu dyne test).

이러한 점은 폴리에틸렌테레프탈레이트(PET) 보다 더 다공성인 폴리프로필렌(PP)의 특징에 기인한 것으로 알려져 있다. [참고문헌: N. Inagaki, et al., Journal of Applied Polymer Science 78 (2000) 2389-2397.] This is known to be due to the characteristic of polypropylene (PP), which is more porous than polyethylene terephthalate (PET). (N. Inagaki, et al., Journal of Applied Polymer Science 78 (2000) 2389-2397.)

결과적으로 폴리에틸렌테레프탈레이트(PET)에서는 표면 위에 증착되는 박막의 두께를 증가시킬수록 산소차단성이 증가되는 특징을 보이는 점에 반해, 폴리프로필렌(PP)에서는 표면 위에 증착된 박막의 두께를 증가시켜도 산소차단성이 향상되지 않는 모습을 보여준다. [참고문헌: D.S. Finch, et al., Packaging Technology and Science 9 (1996) 73-85.] As a result, in polyethylene terephthalate (PET), the oxygen barrier property increases as the thickness of the thin film deposited on the surface increases, whereas in polypropylene (PP), oxygen is increased even if the thickness of the thin film deposited on the surface is increased. It shows no blocking. [Reference: D.S. Finch, et al., Packaging Technology and Science 9 (1996) 73-85.]

이것은 폴리프로필렌(PP)의 표면에 증착된 박막이 폴리프로필렌(PP)의 낮은 표면에너지와 다공질 구조에 의해 폴리프로필렌(PP)의 표면에 잘 붙어있지 못하여, 벗겨지거나 깨지게 되는 것을 의미한다. This means that the thin film deposited on the surface of the polypropylene (PP) is difficult to adhere to the surface of the polypropylene (PP) due to the low surface energy and the porous structure of the polypropylene (PP), and thus peels off or breaks.

이러한 이유로 인하여, 플라즈마 방식에 의해 박막을 폴리프로필렌(PP)에 코팅하여 산소차단성을 부가한 제품은 나올 수 없었다. 하지만 폴리프로필렌(PP)는 폴리에틸렌테레프탈레이트(PET) 등과 같은 다른 플라스틱 소재에 비해 가격 경쟁력, 내열성, 환경호르몬에 대한 안정성과 같은 장점을 가지기에, 향상된 산소차단성을 구비하여 식품용기에 응용되었을 경우 큰 경제적 가치가 예상되는 소재이다.For this reason, a product that adds oxygen barrier property by coating a thin film on polypropylene (PP) by a plasma method could not be obtained. However, polypropylene (PP) has advantages such as price competitiveness, heat resistance, and stability against environmental hormones compared to other plastic materials such as polyethylene terephthalate (PET), and when applied to food containers with improved oxygen barrier properties The material is expected to have great economic value.

상술한 문제점을 해결하기 위해 안출된 본 발명의 목적은 표면에너지가 낮고 다공질인 플라스틱 재질의 용기에 플라즈마 방식을 통하여 산소차단박막을 깨짐없이 증착함으로써, 산소차단성을 크게 높일 수 있는 식품용기 및 그의 제조방법을 제공하기 위한 것이다. An object of the present invention devised to solve the above problems is a food container which can greatly increase the oxygen barrier property by depositing the oxygen barrier thin film in a plastic container of low surface energy and porous material without a break through the plasma method. It is to provide a manufacturing method.

상기한 바와 같은 목적을 달성하기 위한 본 발명의 특징에 따르면, 본 발명의 향상된 산소차단성을 갖는 식품용기는, 플라스틱 재질의 용기, 상기 용기의 표면 상에 형성되며, 5nm 내지 30nm의 두께를 갖는 완충박막 및 상기 완충박막 상에 형성되는 산소차단박막을 포함한다.According to a feature of the present invention for achieving the object as described above, the food container having an improved oxygen barrier property of the present invention is formed on the surface of the container of the plastic material, the container, having a thickness of 5nm to 30nm And a buffer thin film and an oxygen barrier thin film formed on the buffer thin film.

또한, 상기 산소차단박막은, 그 두께가 25nm 내지 50nm 인 것을 특징으로 한다.In addition, the oxygen barrier thin film is characterized in that the thickness of 25nm to 50nm.

또한, 상기 용기의 표면은, 상기 완충박막과의 부착력 향상을 위해, 플라즈마 전처리된 것을 특징으로 한다.In addition, the surface of the container is characterized in that the plasma pre-treatment, in order to improve the adhesion with the buffer thin film.

또한, 상기 용기는, 폴리프로필렌(PP)으로 형성된 것을 특징으로 한다.In addition, the container is characterized in that formed of polypropylene (PP).

또한, 상기 완충박막은, 헥사메틸디실록산(HMDSO) 또는 실리콘(Si)으로 형성된 것을 특징으로 한다.In addition, the buffer thin film is characterized in that formed of hexamethyldisiloxane (HMDSO) or silicon (Si).

또한, 상기 산소차단박막은, 산화실리콘(silicon oxide)으로 형성된 것을 특징으로 한다.In addition, the oxygen barrier thin film is characterized in that formed of silicon oxide (silicon oxide).

또한, 상기 산소차단박막 상에 형성되는 기능성박막을 더 포함한다.The apparatus may further include a functional thin film formed on the oxygen barrier thin film.

또한, 상기 기능성박막은, 헥사메틸디실록산(HMDSO) 또는 F-DLC(Fluorine incorporated Diamond Like Carbon)으로 형성된 것을 특징으로 한다.In addition, the functional thin film is characterized in that formed of hexamethyldisiloxane (HMDSO) or F-DLC (Fluorine incorporated Diamond Like Carbon).

본 발명의 향상된 산소차단성을 갖는 식품용기의 제조방법은, (a) 플라스틱 재질의 용기를 준비하는 단계, (b) 상기 용기의 표면을 산소 플라즈마 처리하는 단계, (c) 상기 용기의 표면 상에 5nm 내지 30nm의 두께를 갖는 완충박막을 증착 형성하는 단계 및 (d) 상기 완충박막 상에 산소차단박막을 증착 형성하는 단계를 포함한다.The method for producing a food container having an improved oxygen barrier property of the present invention comprises the steps of: (a) preparing a container made of plastic, (b) treating the surface of the container with oxygen plasma, and (c) on the surface of the container. Depositing and forming a buffer thin film having a thickness of 5 nm to 30 nm in the (d) depositing and forming an oxygen barrier thin film on the buffer thin film.

또한, 상기 산소차단박막은, 그 두께가 25nm 내지 50nm 인 것을 특징으로 한다.In addition, the oxygen barrier thin film is characterized in that the thickness of 25nm to 50nm.

또한, 상기 용기는, 폴리프로필렌(PP)으로 형성된 것을 특징으로 한다.In addition, the container is characterized in that formed of polypropylene (PP).

또한, 상기 (c) 단계와 상기 (d) 단계는, 플라즈마 화학 기상 증착법(Plasma Chemical Vapor Deposition)을 통해 진행되는 것을 특징으로 한다.In addition, the step (c) and the step (d) is characterized in that the progress through the plasma chemical vapor deposition (Plasma Chemical Vapor Deposition).

또한, 상기 완충박막은, 헥사메틸디실록산(HMDSO) 또는 실리콘(Si)으로 형성된 것을 특징으로 한다.In addition, the buffer thin film is characterized in that formed of hexamethyldisiloxane (HMDSO) or silicon (Si).

또한, 상기 산소차단박막은, 산화실리콘(silicon oxide)으로 형성된 것을 특징으로 한다.In addition, the oxygen barrier thin film is characterized in that formed of silicon oxide (silicon oxide).

또한, (e) 상기 산소차단박막 상에 기능성박막을 증착 형성하는 단계를 더 포함한다.In addition, (e) further comprising depositing and forming a functional thin film on the oxygen barrier thin film.

또한, 상기 기능성박막은, 헥사메틸디실록산(HMDSO) 또는 F-DLC(Fluorine incorporated Diamond Like Carbon)으로 형성된 것을 특징으로 한다.In addition, the functional thin film is characterized in that formed of hexamethyldisiloxane (HMDSO) or F-DLC (Fluorine incorporated Diamond Like Carbon).

이상 살펴본 바와 같은 본 발명에 따르면, 표면에너지가 낮고 다공질인 플라스틱 재질의 용기에 플라즈마 방식을 통하여 산소차단박막을 깨짐없이 증착함으로써, 산소차단성을 크게 높일 수 있는 식품용기 및 그의 제조방법을 제공할 수 있다. According to the present invention as described above, by depositing the oxygen barrier thin film in a plastic container having a low surface energy and porous material without plasma, it is possible to provide a food container and a manufacturing method thereof that can greatly increase the oxygen barrier properties. Can be.

도 1은 본 발명의 제1 실시예에 의한 식품용기를 나타낸 도면이다.
도 2는 도 1에 도시된 식품용기의 제조방법을 나타낸 도면이다.
도 3은 플라즈마 전처리를 수행하지 않은 시편과 플라즈마 전처리를 수행한 시편의 산소차단성을 비교한 그래프이다.
도 4는 완충박막과 산소차단박막의 두께를 변화시킴에 따라 변화하는 산소차단성을 나타내는 그래프이다.
도 5는 도 4의 실험 결과 중 산소차단박막의 두께가 30nm 인 경우에 대하여, 완충박막의 두께를 증가시키면서 변화하는 식품용기의 표면 형상을 주사전자현미경(SEM)으로 촬영한 이미지를 나타낸 도면이다.
도 6은 본 발명의 제2 실시예에 의한 식품용기를 나타낸 도면이다.
도 7은 도 6에 도시된 식품용기의 제조방법을 나타낸 도면이다.
1 is a view showing a food container according to a first embodiment of the present invention.
2 is a view showing a manufacturing method of the food container shown in FIG.
3 is a graph comparing oxygen barrier properties of a specimen not subjected to plasma pretreatment and a specimen subjected to plasma pretreatment.
4 is a graph showing oxygen barrier properties that change as the thicknesses of the buffer thin film and the oxygen barrier thin film are changed.
FIG. 5 is a view showing an image of the surface shape of a food container which is changed while increasing the thickness of the buffer thin film using a scanning electron microscope (SEM) for the case where the thickness of the oxygen barrier thin film is 30 nm. .
6 is a view showing a food container according to a second embodiment of the present invention.
7 is a view showing a manufacturing method of the food container shown in FIG.

기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.The details of other embodiments are included in the detailed description and drawings.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.Advantages and features of the present invention and methods for achieving them will be apparent with reference to the embodiments described below in detail with the accompanying drawings. The present invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. To fully disclose the scope of the invention to those skilled in the art, and the invention is only defined by the scope of the claims. Like reference numerals refer to like elements throughout.

이하, 본 발명의 실시예들 및 이를 설명하기 위한 도면들을 참고하여 본 발명인 향상된 산소차단성을 갖는 식품용기 및 그의 제조방법에 대해 설명하도록 한다.Hereinafter, with reference to the embodiments of the present invention and the drawings for explaining the same will be described for the food container having the improved oxygen barrier properties and the manufacturing method thereof.

도 1은 본 발명의 제1 실시예에 의한 식품용기를 나타낸 도면이다.1 is a view showing a food container according to a first embodiment of the present invention.

도 1을 참조하면, 본 발명의 제1 실시예에 의한 향상된 산소차단성을 갖는 식품용기(1, 이하 "식품용기"로 지칭함)는 용기(10), 완충박막(20), 산소차단박막(30)을 포함한다. 1, the food container (1, hereinafter referred to as "food container") having an improved oxygen barrier property according to the first embodiment of the present invention is a container 10, buffer thin film 20, oxygen blocking thin film ( 30).

용기(10)는 내부에 식품이 담기는 소정의 수용 공간을 구비할 수 있으며, 플라스틱 재질로 형성된다. The container 10 may have a predetermined accommodation space in which food is contained, and is formed of a plastic material.

상기 용기(10)가 표면에너지가 낮고 다공질인 폴리프로필렌(polypropylene, PP)과 같은 소재로 형성되는 것이 본 발명의 취지에 부합하는 것이나, 폴리프로필렌(PP) 보다 표면에너지가 더 낮거나 다공질인 다른 플라스틱 소재로 형성될 수도 있으며, 폴리에틸렌테레프탈레이트(polyethylene terephthalate, PET)과 같은 표면에너지가 높은 플라스틱 소재로 형성되어도 무방하다. It is in accordance with the spirit of the present invention that the container 10 is formed of a material such as polypropylene (PP), which has a low surface energy and is porous, but has a lower or porous surface energy than polypropylene (PP). It may be formed of a plastic material, and may be formed of a plastic material having a high surface energy such as polyethylene terephthalate (PET).

완충박막(20)은 용기(10)의 표면(12) 상에 형성되며, 최적의 산소차단성을 구현하기 위해 5nm 내지 30nm의 두께를 갖는 것이 바람직하다. The buffer thin film 20 is formed on the surface 12 of the container 10, and preferably has a thickness of 5 nm to 30 nm in order to realize optimal oxygen barrier properties.

완충박막(20)은 헥사메틸디실록산(hexamethyldisiloxane, HMDSO)로 형성되는 것이 바람직하나, 실리콘(Si)으로도 형성될 수 있다. The buffer thin film 20 is preferably formed of hexamethyldisiloxane (HMDSO), but may also be formed of silicon (Si).

이 때, 완충박막(20)이 형성되는 용기(10)의 표면(12)은 완충박막(20)과의 부착력 향상을 위하여, 완충박막(20)의 형성 전에 플라즈마 전처리되는 것이 바람직하다. At this time, it is preferable that the surface 12 of the container 10 in which the buffer thin film 20 is formed is plasma pretreated before formation of the buffer thin film 20 in order to improve adhesion to the buffer thin film 20.

산소차단박막(30)은 상기 완충박막(20) 상에 형성되며, 최적의 산소차단성을 구현하기 위해 25nm 내지 50nm의 두께를 갖는 것이 바람직하다. Oxygen barrier thin film 30 is formed on the buffer thin film 20, it is preferable to have a thickness of 25nm to 50nm in order to implement the optimum oxygen barrier properties.

또한, 산소차단박막(30)은 산화실리콘(silicon oxide, SiOx)으로 형성되는 것이 바람직하다. In addition, the oxygen barrier thin film 30 is preferably formed of silicon oxide (SiOx).

도 2는 도 1에 도시된 식품용기의 제조방법을 나타낸 도면이다. 2 is a view showing a manufacturing method of the food container shown in FIG.

도 2를 참조하면, 본 발명의 제1 실시예에 의한 식품용기(1)의 제조방법은 용기 준비 단계(S100), 플라즈마 전처리 단계(S200), 완충박막 증착 단계(S300), 산소차단박막 증착 단계(S400)를 포함한다. Referring to Figure 2, the manufacturing method of the food container 1 according to the first embodiment of the present invention is a container preparation step (S100), plasma pretreatment step (S200), buffer thin film deposition step (S300), oxygen barrier thin film deposition Step S400 is included.

용기 준비 단계(S100)에서는 플라스틱 재질의 용기(10)를 준비한다. In the container preparation step (S100) to prepare a container 10 of plastic material.

이 때, 용기(10)는 표면에너지가 낮고, 다공질 특성이 커 박막의 부착이 어려운 폴리프로필렌(PP)으로 형성된 것이 바람직하다. At this time, it is preferable that the container 10 is formed of polypropylene (PP) having low surface energy, large porous properties, and difficult to attach a thin film.

플라즈마 전처리 단계(S200)에서는 완충박막(20)을 증착하기 이전에 용기(10)의 표면에너지를 증가시키기 위해, 용기(10)의 표면(12)을 산소 플라즈마 처리한다. In the plasma pretreatment step (S200), the surface 12 of the container 10 is oxygen plasma treated to increase the surface energy of the container 10 before the buffer thin film 20 is deposited.

구체적으로 플라즈마 전처리 단계(S200)를 살펴보면, 먼저 폴리프로필렌(PP) 재질의 용기(10)를 RF-CVD(Radio Frequency-Chemical Vapor Deposition) 장비(미도시)의 챔버 내에 위치시키고, 펌프 등을 통하여 챔버 내 진공 상태를 형성해준다.Specifically, referring to the plasma pretreatment step (S200), first, the vessel 10 made of polypropylene (PP) is placed in a chamber of a Radio Frequency-Chemical Vapor Deposition (RF-CVD) device (not shown), and a pump is used. It builds up a vacuum in the chamber.

그 후, 일정한 유량으로 산소 기체를 챔버 내에 유입시키고, RF-power를 인가하여 플라즈마 상태를 발생시킴으로써 플라즈마 전처리 공정을 수행한다. Thereafter, oxygen gas is introduced into the chamber at a constant flow rate, and the plasma pretreatment process is performed by applying RF-power to generate a plasma state.

플라즈마 상태가 형성됨에 따라 챔버 내에 자체적인 전압 차이(self-bias voltage)가 발생하게 되고, 이에 따라 산소 입자가 에너지를 가지고 용기(10)의 표면(12)과 반응하게 된다. As the plasma state is formed, a self-bias voltage occurs in the chamber, whereby the oxygen particles react with the surface 12 of the vessel 10 with energy.

이러한 산소와 용기 표면(12)의 화학적 반응에 의해 용기(10)의 표면에너지가 상승하게 된다. The surface energy of the container 10 is increased by the chemical reaction of oxygen and the container surface 12.

따라서, 추후 완충박막 증착 단계(S300)에서 형성될 완충박막(20)과 용기(10) 사이의 부착력이 증가될 수 있으며, 산소차단성 역시 증가될 수 있다. Therefore, the adhesion between the buffer thin film 20 and the container 10 to be formed in the buffer thin film deposition step S300 later may be increased, and the oxygen barrier property may also be increased.

플라즈마 전처리를 수행하지 않은 시편(HMDSO(100nm)/SiOx(50nm))과 플라즈마 전처리를 수행한 시편(O2/HMDSO(100nm)/SiOx(50nm))의 산소차단성을 비교한 도 3을 참조하면, 플라즈마 전처리를 수행한 시편의 산소차단성이 그렇지 않은 시편보다 높은 것을 알 수 있다. (플라즈마 전처리를 수행한 시편의 산소투과도(Oxygen Transmission Rate, OTR)가 그렇지 않은 시편보다 낮음)Refer to FIG. 3 comparing the oxygen barrier properties of the specimen (HMDSO (100 nm) / SiOx (50 nm)) without the plasma pretreatment and the specimen (O 2 / HMDSO (100 nm) / SiOx (50 nm)) without the plasma pretreatment. In other words, it can be seen that the oxygen barrier property of the specimen subjected to plasma pretreatment is higher than that of the other specimen. (Oxygen Transmission Rate (OTR) of the specimen subjected to plasma pretreatment is lower than that of the other specimen)

이는 용기 표면(12)에 대한 플라즈마 전처리를 하지 않을 경우, 그 후의 박막이 잘 증착되지 않기에 박막의 질이 나빠지고, 산소차단성이 떨어지기 때문이다. This is because, if the plasma surface pretreatment is not performed on the container surface 12, since the subsequent thin films are not deposited well, the quality of the thin films is poor and the oxygen barrier property is inferior.

완충박막 증착 단계(S300)에서는 플라즈마 처리된 용기(10)의 표면(12) 상에 완충박막(20)을 증착 형성한다. In the buffer thin film deposition step (S300), the buffer thin film 20 is deposited on the surface 12 of the plasma-treated container 10.

완충박막(20)은 플라스틱 용기(10)의 기계적 변형을 상기 완충박막(20) 상에 증착될 산소차단박막(30)에 바로 전달하지 않고 흡수하는 역할을 수행한다. The buffer thin film 20 serves to absorb the mechanical deformation of the plastic container 10 without transferring it directly to the oxygen barrier thin film 30 to be deposited on the buffer thin film 20.

완충박막(20)은 영률(Young's modulus)이 낮아 상대적으로 변형이 잘되는 박막으로서, 헥사메틸디실록산(HMDSO) 또는 실리콘(Si)과 같은 물질들로 형성될 수 있다. The buffer thin film 20 is a thin film having a relatively low Young's modulus and is relatively deformed, and may be formed of materials such as hexamethyldisiloxane (HMDSO) or silicon (Si).

구체적으로 완충박막 증착 단계(S300)를 살펴보면, 플라즈마 전처리 단계(S200) 진행 후 헥사메틸디실록산(HMDSO) 기체를 RF-CVD 장비의 챔버 내에 투입시켜 플라즈마 상태를 형성한다. Specifically, referring to the buffer thin film deposition step (S300), after the plasma pretreatment step (S200), hexamethyldisiloxane (HMDSO) gas is introduced into the chamber of the RF-CVD apparatus to form a plasma state.

헥사메틸디실록산(HMDSO) 기체의 플라즈마 반응에 의하여, 용기(10)의 표면(12) 상에는 플라즈마 중합된 헥사메틸디실록산(plasma polymerized HMDSO, pp-HMDSO) 재질의 완충박막(20)이 형성될 수 있다. By the plasma reaction of hexamethyldisiloxane (HMDSO) gas, a buffer thin film 20 made of plasma polymerized HMDSO (pp-HMDSO) is formed on the surface 12 of the container 10. Can be.

도 4는 완충박막과 산소차단박막의 두께를 변화시킴에 따라 변화하는 산소차단성을 나타내는 그래프로서, 우수한 산소차단성을 얻기 위한 완충박막(20)과 산소차단박막(30)의 '최적 두께'가 존재함을 나타내고 있다. FIG. 4 is a graph showing oxygen barrier properties as the thicknesses of the buffer thin film and the oxygen barrier thin film change, and the 'optimum thickness' of the buffer thin film 20 and the oxygen barrier thin film 30 for obtaining excellent oxygen barrier properties. Indicates the presence of.

특히, 도 4의 그래프는 플라즈마 중합된 헥사메틸디실록산(pp-HMDSO) 재질의 완충박막(20)과 산화실리콘(SiOx) 재질의 산소차단박막(30)을 형성하여 실험한 결과를 나타내었다. In particular, the graph of FIG. 4 shows the results of experiments by forming a plasma polymerized hexamethyldisiloxane (pp-HMDSO) buffer thin film 20 and a silicon oxide (SiOx) oxygen blocking thin film 30.

도 4를 참조하면, 본 발명의 완충박막(20)은 5nm 내지 30nm의 두께를 갖는 것이 바람직하다. 4, the buffer thin film 20 of the present invention preferably has a thickness of 5nm to 30nm.

완충박막(20)을 너무 얇은 두께로 형성할 경우 완충 역할을 충분히 소화해내지 못하며, 완충박막(20)을 너무 두꺼운 두께로 형성할 경우 완충박막(20)의 압축에너지에 의해 산소차단박막(30)의 깨짐을 초래하게 되어 산소차단성이 저해될 수 있기 때문이다. When the buffer thin film 20 is formed to be too thin, the buffer role is not sufficiently digested, and when the buffer thin film 20 is formed to be too thick, the oxygen barrier thin film 30 by the compression energy of the buffer thin film 20 This is because the breakage of the oxygen blocking property may be inhibited.

또한, 도 4에 도시된 바와 같이 완충박막(20)이 5nm 내지 30nm의 두께로 형성된 경우, 그 이외의 두께에 비하여 우수한 산소차단성을 가지는 것을 알 수 있다. In addition, when the buffer thin film 20 is formed to a thickness of 5nm to 30nm as shown in Figure 4, it can be seen that it has excellent oxygen barrier properties compared to the other thickness.

특히, 산화실리콘(SiOx) 재질의 산소차단박막(30)이 30nm의 두께로 형성된 경우, 완충박막(20)이 8nm 내지 10nm 정도의 두께로 형성된다면 0.03 cc/pkg라는 현저히 낮은 산소투과도를 가지게 되어 높은 산소차단성을 구현할 수 있게 된다. Particularly, when the oxygen barrier thin film 30 made of silicon oxide (SiOx) is formed with a thickness of 30 nm, if the buffer thin film 20 is formed with a thickness of about 8 nm to 10 nm, it has a significantly low oxygen permeability of 0.03 cc / pkg. High oxygen barrier properties can be realized.

또한, 산화실리콘(SiOx) 재질의 산소차단박막(30)이 50nm의 두께로 형성된 경우에도, 완충박막(20)이 8nm 내지 10nm 정도의 두께로 형성된다면 0.07 cc/pkg라는 낮은 산소투과도를 가지게 되어 높은 산소차단성을 구현할 수 있게 된다.In addition, even when the oxygen barrier thin film 30 made of silicon oxide (SiOx) is formed to a thickness of 50 nm, if the buffer thin film 20 is formed to a thickness of about 8 nm to 10 nm, it has a low oxygen permeability of 0.07 cc / pkg. High oxygen barrier properties can be realized.

도 5는 도 4의 실험 결과 중 산소차단박막의 두께가 30nm 인 경우에 대하여, 완충박막의 두께를 증가시키면서 변화하는 식품용기의 표면 형상을 주사전자현미경(SEM)으로 촬영한 이미지를 나타낸 도면이다. FIG. 5 is a view showing an image of the surface shape of a food container which is changed while increasing the thickness of the buffer thin film using a scanning electron microscope (SEM) for the case where the thickness of the oxygen barrier thin film is 30 nm. .

또한, 도 5를 참조하면 플라즈마 중합된 헥사메틸디실록산(pp-HMDSO) 재질의 완충박막(20)이 8nm 내지 10nm 인 경우에는 산소차단박막(30)의 균열이 최소화되어 가장 우수한 산소차단성을 나타내었고, 완충박막(20)의 두께를 30nm 로 증가시킨 경우에는 산소차단박막(30)에 미미한 균열이 발생하여 산소차단성이 다소 떨어지는 현상을 보였다. In addition, referring to FIG. 5, when the buffer thin film 20 made of plasma-polymerized hexamethyldisiloxane (pp-HMDSO) is 8 nm to 10 nm, the crack of the oxygen barrier thin film 30 is minimized to provide the best oxygen barrier property. In the case where the thickness of the buffer thin film 20 was increased to 30 nm, a slight crack occurred in the oxygen barrier thin film 30, and the oxygen barrier property was slightly decreased.

그러나, 완충박막(20)의 두께를 50nm 로 증가시킨 경우에는 완충박막(20)의 압축에너지에 의하여 산소차단박막(30)이 균열이 심해지고, 이에 따라 산소차단성이 급격히 감소하는 현상을 보였다. However, when the thickness of the buffer thin film 20 was increased to 50 nm, the oxygen barrier thin film 30 was severely cracked due to the compressive energy of the buffer thin film 20, and thus, the oxygen barrier property rapidly decreased. .

산소차단박막 증착 단계(S400)에서는 완충박막(20) 상에 산소차단박막(30)을 증착 형성한다. In the oxygen barrier thin film deposition step (S400), an oxygen barrier thin film 30 is deposited on the buffer thin film 20.

산소차단박막(30)은 밀도가 높은 박막으로 산소 분자가 식품용기(1)에 출입하지 못하게 하는 역할을 수행한다. The oxygen barrier thin film 30 is a thin film having a high density and serves to prevent oxygen molecules from entering and exiting the food container 1.

일반적으로 폴리에틸렌테레프탈레이트(PET)와 같은 플라스틱 소재 상에서는 산소차단박막(30)의 두께가 증가할수록 산소차단성이 향상된다고 알려져 있으나, 폴리프로필렌(PP)과 같은 소재 위에서는 그렇지가 않다. Generally, on the plastic material such as polyethylene terephthalate (PET), it is known that the oxygen barrier property is improved as the thickness of the oxygen barrier thin film 30 increases, but not on the material such as polypropylene (PP).

그 이유는 산소차단박막(30)이 너무 두껍게 폴리프로필렌(PP) 상에서 증착될 경우 접착이 우수하지 않아 깨짐 현상이 발생하기 때문이다. The reason is that when the oxygen barrier thin film 30 is deposited too thick on the polypropylene (PP), adhesion is not excellent and cracking occurs.

또한, 산소차단박막(30)이 너무 얇은 두께로 형성되는 경우에는 충분한 산소차단성을 구현하지 못하게 된다. In addition, in the case where the oxygen barrier thin film 30 is formed to be too thin, sufficient oxygen barrier properties may not be realized.

상기와 같은 조건을 만족하기 위해서는 도 4에 도시된 바에서 알 수 있듯이, 산소차단박막(30)의 두께를 25nm 내지 50nm로 설정하는 것이 바람직하다. In order to satisfy the above conditions, as shown in FIG. 4, it is preferable to set the thickness of the oxygen barrier thin film 30 to 25 nm to 50 nm.

즉, 산소차단박막(30)의 두께를 25nm 내지 50nm로 설정하는 경우에 0.1 cc/pkg 이하의 산소투과도를 달성할 수 있기 때문이다. 0.1 cc/pkg 이하의 산소투과도는 폴리프로필렌(PP) 자체의 산소투과도와 비교하여 10배 정도 감축된 것으로서, 충분히 용기(10) 내부에 담긴 식품의 장기 보관을 가능케 할 수 있는 산소차단성을 나타낸다. That is, when the thickness of the oxygen barrier thin film 30 is set to 25 nm to 50 nm, an oxygen transmittance of 0.1 cc / pkg or less can be achieved. Oxygen permeability of 0.1 cc / pkg or less is 10 times reduced compared to the oxygen permeability of polypropylene (PP) itself, and exhibits an oxygen barrier property that can allow long-term storage of food contained in the container 10 sufficiently. .

특히, 도 4에서 볼 수 있듯이 최저의 산소투과도를 달성하기 위해서, 산소차단박막(30)의 두께가 30nm 정도, 바람직하게는 25nm 내지 35nm로도 설정될 수 있다. In particular, as shown in FIG. 4, in order to achieve the lowest oxygen permeability, the thickness of the oxygen barrier thin film 30 may be set to about 30 nm, preferably 25 nm to 35 nm.

산소차단박막(30)에 사용될 수 있는 소재로는 산화실리콘(SiOx)이 바람직하다. Silicon oxide (SiOx) is preferable as a material that can be used for the oxygen barrier thin film 30.

구체적으로 산소차단박막 증착 단계(S400)를 살펴보면, 완충박막 증착 단계(S300) 진행 후 소량의 산소 기체와 다량의 헥사메틸디실록산(HMDSO) 기체를 RF-CVD 장비의 챔버 내에 투입시키고, 플라즈마 반응을 진행하여 완충박막(20) 상에 산화실리콘(SiOx) 재질의 산소차단박막(30)을 형성할 수 있다. Specifically, the oxygen barrier thin film deposition step (S400), after the buffer thin film deposition step (S300) proceeds a small amount of oxygen gas and a large amount of hexamethyldisiloxane (HMDSO) gas in the chamber of the RF-CVD equipment, plasma reaction By proceeding to form an oxygen barrier thin film 30 of the silicon oxide (SiOx) material on the buffer thin film (20).

기존에는 고가의 에틸렌비닐알코올(Ethylene Vinyl Alcohol, EVOH)을 폴리프로필렌(PP)에 혼합 또는 접착함으로써 산소차단성을 높이는 방식을 사용하였으나, 상술한 본 발명에서는 에틸렌비닐알코올(EVOH)을 사용하지 않음으로써 비용을 줄여 가격 경쟁력을 확보할 수 있다. Conventionally, a method of increasing oxygen barrier property by mixing or bonding expensive ethylene vinyl alcohol (EVOH) to polypropylene (PP) is used. However, the present invention does not use ethylene vinyl alcohol (EVOH). As a result, cost can be reduced and price competitiveness can be achieved.

또한, 에틸렌비닐알코올(EVOH)을 이용하는 방식에서는 식품용기에 폴리프로필렌(PP) 이외의 물질이 다량 함유되어 있어 재활용에 어려움이 있으나, 플라즈마 방식을 활용한 본 발명은 재활용이 용이한 장점이 있다. In addition, in the method using ethylene vinyl alcohol (EVOH), it is difficult to recycle because a large amount of materials other than polypropylene (PP) is contained in the food container, but the present invention using the plasma method has the advantage of easy recycling.

도 6은 본 발명의 제2 실시예에 의한 식품용기를 나타낸 도면이다. 6 is a view showing a food container according to a second embodiment of the present invention.

도 6을 참조하면, 본 발명의 제2 실시예에 의한 식품용기(1')는 본 발명의 제1 실시예에 의한 식품용기(1)에 비해 기능성박막(40)을 더 포함한다. Referring to FIG. 6, the food container 1 ′ according to the second embodiment of the present invention further includes a functional thin film 40 as compared to the food container 1 according to the first embodiment of the present invention.

기능성박막(40)은 산소차단박막(30) 위에 원하는 표면 특성을 부가하기 위한 것으로서, 산소차단박막(30) 상에 형성될 수 있다. The functional thin film 40 is to add desired surface properties on the oxygen barrier thin film 30 and may be formed on the oxygen barrier thin film 30.

여기서, 기능성박막(40)은 소수성, 저마찰 특성 등과 같은 표면 특성을 가질 수 있으며, 기능성박막(40) 역시 압축에너지를 포함하고 있으므로 최적 두께로 형성되는 것이 바람직하다. Here, the functional thin film 40 may have surface properties such as hydrophobicity, low friction characteristics, and the like, and the functional thin film 40 also includes compressive energy, and thus, is preferably formed to an optimal thickness.

소수성을 갖는 기능성박막(40)으로는 표면에너지가 낮은 헥사메틸디실록산(HMDSO) 또는 F-DLC(Fluorine incorporated Diamond Like Carbon) 등이 이용될 수 있다. As the hydrophobic functional thin film 40, hexamethyldisiloxane (HMDSO) or Fluorine incorporated Diamond Like Carbon (F-DLC) having low surface energy may be used.

도 7은 도 6에 도시된 식품용기의 제조방법을 나타낸 도면이다. 7 is a view showing a manufacturing method of the food container shown in FIG.

도 7을 참조하면, 본 발명의 제2 실시예에 의한 식품용기(1')의 제조방법은 본 발명의 제1 실시예에 의한 식품용기(1)의 제조방법에 비해 기능성박막 증착 단계(S500)를 더 포함한다. Referring to FIG. 7, the method for manufacturing the food container 1 ′ according to the second embodiment of the present invention is a functional thin film deposition step (S500) compared to the method for manufacturing the food container 1 according to the first embodiment of the present invention. More).

기능성박막 증착 단계(S500)는 산소차단박막 증착 단계(S400) 이후에 진행되며, 기능성박막 증착 단계(S500)에서는 산소차단박막(30) 상에 기능성박막(40)을 증착 형성한다. The functional thin film deposition step (S500) is performed after the oxygen barrier thin film deposition step (S400), and in the functional thin film deposition step (S500), the functional thin film 40 is deposited on the oxygen barrier thin film 30.

기능성박막(40)의 증착 형성은 완충박막 증착 단계(S300) 및 산소차단박막 증착 단계(S400)와 마찬가지로 플라즈마 화학 기상 증착법(Plasma CVD)에 의해 수행될 수 있다. The deposition formation of the functional thin film 40 may be performed by plasma chemical vapor deposition (Plasma CVD) similarly to the buffer thin film deposition step (S300) and the oxygen barrier thin film deposition step (S400).

따라서, RF-CVD 장비의 챔버 내에 헥사메틸디실록산(HMDSO) 기체를 투입시켜 플라즈마 상태를 형성하는 경우에는 플라즈마 중합된 헥사메틸디실록산(pp-HMDSO) 재질의 기능성박막(40)이 산소차단박막(30) 상에 형성될 수 있다. Therefore, when hexamethyldisiloxane (HMDSO) gas is introduced into the chamber of the RF-CVD apparatus to form a plasma state, the functional thin film 40 made of plasma-polymerized hexamethyldisiloxane (pp-HMDSO) material is an oxygen barrier thin film. 30 can be formed on.

본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명이 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구의 범위에 의하여 나타내어지며, 특허청구의 범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.It will be understood by those skilled in the art that the present invention may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive. The scope of the present invention is defined by the appended claims rather than the foregoing detailed description, and all changes or modifications derived from the meaning and scope of the claims and the equivalents thereof are included in the scope of the present invention Should be interpreted.

1, 1': 식품용기
10: 용기 20: 완충박막
30: 산소차단박막 40: 기능성박막
1, 1 ': food container
10: container 20: buffer thin film
30: oxygen blocking thin film 40: functional thin film

Claims (16)

플라스틱 재질의 용기;
상기 용기의 표면 상에 형성되며, 5nm 내지 30nm의 두께를 갖는 완충박막; 및
상기 완충박막 상에 형성되는 산소차단박막; 을 포함하는 향상된 산소차단성을 갖는 식품용기.
Plastic containers;
A buffer thin film formed on the surface of the container and having a thickness of 5 nm to 30 nm; And
An oxygen barrier thin film formed on the buffer thin film; Food container having an improved oxygen barrier properties, including.
제2항에 있어서, 상기 산소차단박막은,
그 두께가 25nm 내지 50nm 인 것을 특징으로 하는 향상된 산소차단성을 갖는 식품용기.
The method of claim 2, wherein the oxygen barrier thin film,
Food container having improved oxygen barrier properties, characterized in that the thickness of 25nm to 50nm.
제1항에 있어서, 상기 용기의 표면은,
상기 완충박막과의 부착력 향상을 위해, 플라즈마 전처리된 것을 특징으로 하는 향상된 산소차단성을 갖는 식품용기.
The method of claim 1, wherein the surface of the container,
Food container having improved oxygen barrier properties, characterized in that the plasma pre-treatment, to improve the adhesion to the buffer thin film.
제1항에 있어서, 상기 용기는,
폴리프로필렌(PP)으로 형성된 것을 특징으로 하는 향상된 산소차단성을 갖는 식품용기.
The container according to claim 1,
Characterized in that it is formed of polypropylene (PP).
제1항에 있어서, 상기 완충박막은,
헥사메틸디실록산(HMDSO) 또는 실리콘(Si)으로 형성된 것을 특징으로 하는 향상된 산소차단성을 갖는 식품용기.
The method of claim 1, wherein the buffer thin film,
Food container having improved oxygen barrier properties, characterized in that formed of hexamethyldisiloxane (HMDSO) or silicon (Si).
제1항에 있어서, 상기 산소차단박막은,
산화실리콘(silicon oxide)으로 형성된 것을 특징으로 하는 향상된 산소차단성을 갖는 식품용기.
The oxygen-barrier thin film according to claim 1,
Characterized in that it is formed of silicon oxide.
제1항에 있어서,
상기 산소차단박막 상에 형성되는 기능성박막; 을 더 포함하는 향상된 산소차단성을 갖는 식품용기.
The method of claim 1,
A functional thin film formed on the oxygen barrier thin film; Food container having an improved oxygen barrier properties further comprising.
제7항에 있어서, 상기 기능성박막은,
헥사메틸디실록산(HMDSO) 또는 F-DLC(Fluorine incorporated Diamond Like Carbon)으로 형성된 것을 특징으로 하는 향상된 산소차단성을 갖는 식품용기.
The method of claim 7, wherein the functional thin film,
Food container having improved oxygen barrier properties, characterized in that formed by hexamethyldisiloxane (HMDSO) or F-DLC (Fluorine incorporated Diamond Like Carbon).
(a) 플라스틱 재질의 용기를 준비하는 단계;
(b) 상기 용기의 표면을 산소 플라즈마 처리하는 단계;
(c) 상기 용기의 표면 상에 5nm 내지 30nm의 두께를 갖는 완충박막을 증착 형성하는 단계; 및
(d) 상기 완충박막 상에 산소차단박막을 증착 형성하는 단계; 를 포함하는 향상된 산소차단성을 갖는 식품용기의 제조방법.
(a) preparing a plastic container;
(b) oxygen plasma treating the surface of the vessel;
(c) depositing a buffer thin film having a thickness of 5 nm to 30 nm on the surface of the container; And
(d) depositing an oxygen barrier thin film on the buffer thin film; Method of producing a food container having an improved oxygen barrier properties comprising a.
제9항에 있어서, 상기 산소차단박막은,
그 두께가 25nm 내지 50nm 인 것을 특징으로 하는 향상된 산소차단성을 갖는 식품용기의 제조방법.
The method of claim 9, wherein the oxygen barrier thin film,
A method for producing a food container having improved oxygen barrier properties, characterized in that the thickness of 25nm to 50nm.
제9항에 있어서, 상기 용기는,
폴리프로필렌(PP)으로 형성된 것을 특징으로 하는 향상된 산소차단성을 갖는 식품용기의 제조방법.
The method of claim 9, wherein the container,
Wherein the container is formed of polypropylene (PP).
제9항에 있어서, 상기 (c) 단계와 상기 (d) 단계는,
플라즈마 화학 기상 증착법(Plasma Chemical Vapor Deposition)을 통해 진행되는 것을 특징으로 하는 향상된 산소차단성을 갖는 식품용기의 제조방법.
The method of claim 9, wherein step (c) and step (d)
A method for producing a food container having improved oxygen barrier properties, characterized in that it is carried out through plasma chemical vapor deposition (Plasma Chemical Vapor Deposition).
제9항에 있어서, 상기 완충박막은,
헥사메틸디실록산(HMDSO) 또는 실리콘(Si)으로 형성된 것을 특징으로 하는 향상된 산소차단성을 갖는 식품용기의 제조방법.
The method of claim 9, wherein the buffer thin film,
A method for producing a food container having improved oxygen barrier properties, characterized in that formed from hexamethyldisiloxane (HMDSO) or silicon (Si).
제9항에 있어서, 상기 산소차단박막은,
산화실리콘(silicon oxide)으로 형성된 것을 특징으로 하는 향상된 산소차단성을 갖는 식품용기의 제조방법.
The method of claim 9, wherein the oxygen barrier thin film,
Wherein the food container is formed of silicon oxide.
제9항에 있어서,
(e) 상기 산소차단박막 상에 기능성박막을 증착 형성하는 단계; 를 더 포함하는 향상된 산소차단성을 갖는 식품용기의 제조방법.
10. The method of claim 9,
(e) depositing a functional thin film on the oxygen barrier thin film; Method of producing a food container having an improved oxygen barrier properties further comprising.
제16항에 있어서, 상기 기능성박막은,
헥사메틸디실록산(HMDSO) 또는 F-DLC(Fluorine incorporated Diamond Like Carbon)으로 형성된 것을 특징으로 하는 향상된 산소차단성을 갖는 식품용기의 제조방법.
The method of claim 16, wherein the functional thin film,
Method for producing a food container having improved oxygen barrier properties, characterized in that formed with hexamethyldisiloxane (HMDSO) or F-DLC (Fluorine incorporated Diamond Like Carbon).
KR1020120020243A 2012-02-28 2012-02-28 Food container having improved oxygen barrier properties and the manufacturing method thereof KR20130098606A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020120020243A KR20130098606A (en) 2012-02-28 2012-02-28 Food container having improved oxygen barrier properties and the manufacturing method thereof
PCT/KR2013/001618 WO2013129856A1 (en) 2012-02-28 2013-02-28 Food container having improved oxygen barrier properties and manufacturing method thereof
JP2014555507A JP6110409B2 (en) 2012-02-28 2013-02-28 Food container having improved oxygen barrier properties and method for producing the same
EP13754954.9A EP2819930A4 (en) 2012-02-28 2013-02-28 Food container having improved oxygen barrier properties and manufacturing method thereof
US14/372,200 US20140332437A1 (en) 2012-02-28 2013-02-28 Food container having improved oxygen barrier properties and manufacturing methed thereof
CN201380010654.6A CN104136345B (en) 2012-02-28 2013-02-28 There is food containers and the manufacture method thereof of the oxygen barrier performance matter of improvement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120020243A KR20130098606A (en) 2012-02-28 2012-02-28 Food container having improved oxygen barrier properties and the manufacturing method thereof

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020140058932A Division KR101516526B1 (en) 2014-05-16 2014-05-16 Food container having improved oxygen barrier properties and the manufacturing method thereof

Publications (1)

Publication Number Publication Date
KR20130098606A true KR20130098606A (en) 2013-09-05

Family

ID=49082983

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120020243A KR20130098606A (en) 2012-02-28 2012-02-28 Food container having improved oxygen barrier properties and the manufacturing method thereof

Country Status (6)

Country Link
US (1) US20140332437A1 (en)
EP (1) EP2819930A4 (en)
JP (1) JP6110409B2 (en)
KR (1) KR20130098606A (en)
CN (1) CN104136345B (en)
WO (1) WO2013129856A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104386918B (en) * 2014-10-22 2017-07-07 宁波正力药品包装有限公司 A kind of preparation method of vial inwall barrier film
US10731016B2 (en) 2016-07-18 2020-08-04 Conopco, Inc. Method of modifying the dispensing properties of a container
JP7360821B2 (en) * 2019-06-07 2023-10-13 サーモス株式会社 Insulated container and its manufacturing method

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4438359C2 (en) 1994-10-27 2001-10-04 Schott Glas Plastic container with a barrier coating
US6696157B1 (en) * 2000-03-05 2004-02-24 3M Innovative Properties Company Diamond-like glass thin films
US20020022144A1 (en) * 2000-05-19 2002-02-21 Hu Yang Enhanced oxygen barrier performance from modification of ethylene vinyl alcohol copolymers (EVOH)
FR2812568B1 (en) * 2000-08-01 2003-08-08 Sidel Sa BARRIER COATING DEPOSITED BY PLASMA COMPRISING AN INTERFACE LAYER, METHOD FOR OBTAINING SUCH A COATING AND CONTAINER COATED WITH SUCH A COATING
JP2005256061A (en) * 2004-03-10 2005-09-22 Dainippon Printing Co Ltd Laminate
JP4268545B2 (en) * 2004-03-24 2009-05-27 大日本印刷株式会社 Plastic container
DE102004017241B4 (en) * 2004-04-05 2012-09-27 Schott Ag Composite material and method for its production
MX2007004481A (en) * 2004-10-13 2007-05-09 Dow Global Technologies Inc Process for plasma coating.
US20090202762A1 (en) * 2006-07-28 2009-08-13 Toyo Seikan Kaisha, Ltd. Plastic formed article having a vapor-deposited film by a plasma cvd method
CN101568490B (en) * 2006-11-22 2016-04-13 安格斯公司 The diamond like carbon coating of substrate housing
JP5237654B2 (en) * 2007-07-06 2013-07-17 出光ユニテック株式会社 Multi-layer sheet, container and package
FR2918301B1 (en) * 2007-07-06 2011-06-24 Sidel Participations PLASMA REMOVABLE BARRIER COATING COMPRISING AT LEAST THREE LAYERS, PROCESS FOR OBTAINING SUCH COATING AND CONTAINER COATED WITH SUCH COATING
JP5256765B2 (en) * 2008-02-13 2013-08-07 凸版印刷株式会社 Thin film coated plastic container
JP5521360B2 (en) * 2009-03-06 2014-06-11 凸版印刷株式会社 Method for producing gas barrier film
EP2593286B1 (en) * 2010-07-16 2015-03-04 SiO2 Medical Products, Inc. Injection molding process

Also Published As

Publication number Publication date
EP2819930A4 (en) 2015-08-26
CN104136345B (en) 2016-12-14
CN104136345A (en) 2014-11-05
WO2013129856A1 (en) 2013-09-06
JP6110409B2 (en) 2017-04-05
US20140332437A1 (en) 2014-11-13
JP2015513500A (en) 2015-05-14
EP2819930A1 (en) 2015-01-07

Similar Documents

Publication Publication Date Title
JP2008516089A (en) Plasma coating method
KR101660557B1 (en) Process to deposit diamond like carbon as protective coating on inner surface of a shaped object
US7488683B2 (en) Chemical vapor deposited film based on a plasma CVD method and method of forming the film
KR101871009B1 (en) Formed body, production method thereof, electronic device member and electronic device
CN100347229C (en) Process and apparatus for depositing plasma coating onto a container
Tashiro et al. Enhancement of the gas barrier property of polymers by DLC coating with organosilane interlayer
KR20130098606A (en) Food container having improved oxygen barrier properties and the manufacturing method thereof
KR101741955B1 (en) Food Container Having Si-Incorporated Diamond Like Carbon Film and The Manufacturing Method Thereof
JP4148759B2 (en) Method for producing gas barrier film
WO2013118718A1 (en) Vapour deposition foam
Meshkova et al. The role of the gradient film properties in silica moisture barriers synthesized in a roll‐to‐roll atmospheric pressure plasma enhanced CVD reactor
Kim et al. Composite oxygen-barrier coating on a polypropylene food container
Wang et al. Investigation of microwave surface-wave plasma deposited SiOx coatings on polymeric substrates
KR101516526B1 (en) Food container having improved oxygen barrier properties and the manufacturing method thereof
Tsuji et al. Enhancement of the gas barrier property of polypropylene by introducing plasma-treated silane coating with SiOx-modified top-surface
US20150203270A1 (en) Food container having si-dlc layer and manufacturing method thereof
Hall et al. Hydroxyl Radical Etching Improves Adhesion of Plasma‐Deposited a‐SiOxCyHz Films on Poly (Methylmethacrylate)
CN110214080A (en) Gas barrier film
Mei-Li et al. Deposition of SiOx barrier films by O2/TMDSO RF-PECVD
JP4506326B2 (en) Barrier container
KR102594211B1 (en) Transparent nut packaging film and manufacturing method with excellent gas barrier properties using organic and inorganic hybrid coating process and crosslinking process
JP7005256B2 (en) Gas barrier container
JP2020158127A (en) Gas barrier container and manufacturing method of gas barrier container
CN101039993A (en) Process for plasma coating
Körner et al. Multilayer diffusion barrier coatings on poly (propylene) with improved temperature durability

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
A107 Divisional application of patent