[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20130096338A - Screening method using mg53-ube2h interaction for the treatment of type 2 diabetes - Google Patents

Screening method using mg53-ube2h interaction for the treatment of type 2 diabetes Download PDF

Info

Publication number
KR20130096338A
KR20130096338A KR1020120016541A KR20120016541A KR20130096338A KR 20130096338 A KR20130096338 A KR 20130096338A KR 1020120016541 A KR1020120016541 A KR 1020120016541A KR 20120016541 A KR20120016541 A KR 20120016541A KR 20130096338 A KR20130096338 A KR 20130096338A
Authority
KR
South Korea
Prior art keywords
ube2h
leu
ala
fluorescent protein
glu
Prior art date
Application number
KR1020120016541A
Other languages
Korean (ko)
Other versions
KR101460737B1 (en
Inventor
고영규
이재성
Original Assignee
고려대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교 산학협력단 filed Critical 고려대학교 산학협력단
Priority to KR1020120016541A priority Critical patent/KR101460737B1/en
Publication of KR20130096338A publication Critical patent/KR20130096338A/en
Application granted granted Critical
Publication of KR101460737B1 publication Critical patent/KR101460737B1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/15Medicinal preparations ; Physical properties thereof, e.g. dissolubility
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/52Use of compounds or compositions for colorimetric, spectrophotometric or fluorometric investigation, e.g. use of reagent paper and including single- and multilayer analytical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2500/00Screening for compounds of potential therapeutic value
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/04Endocrine or metabolic disorders
    • G01N2800/042Disorders of carbohydrate metabolism, e.g. diabetes, glucose metabolism

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Immunology (AREA)
  • Molecular Biology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Urology & Nephrology (AREA)
  • General Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biophysics (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE: A screening method of a treatment medicine for type 2 diabetes using interaction of MG53 and UBE2H is provided to be able to effectively select and develop a treatment medicine for type 2 diabetes by screening materials inhibiting the interaction of UBE2H and MG53. CONSTITUTION: A screening method of a treatment medicine for type 2 diabetes comprises (a) a step of treating a cell expressing mitsugumin 53 (MG53) and ubiquitin-conjugating enzyme E2H (UBE2H) with a candidate compound; and (b) a step of determining whether or not the interaction of MG53 and UBE2H is inhibited in the cell. The interaction of MG53 and UBE2H is detected by using an antibody specific to MG53 and UBE2H. The interaction of MG53 and UBE2H is detected with the immunoblotting, immune precipitation or immunostaining.

Description

MG53-UBE2H 상호작용을 이용한 제2형 당뇨 치료제의 스크리닝 방법 {Screening method using MG53-UBE2H interaction for the treatment of type 2 diabetes}Screening method using MG53-UBE2H interaction for the treatment of type 2 diabetes}

본 발명은 UBE2H (ubiquitin-conjugating enzyme E2H) 및 MG53 (mitsugumin 53) 상호작용을 억제하는 약제를 제2형 당뇨 치료제로 결정함으로써, 제2형 당뇨 치료제를 스크리닝하는 방법에 관한 것이다. MG53 및 UBE2H 의 상호작용을 억제하는 약제는 IRS-1의 양을 증가시켜 인슐린 민감성을 증가시킴으로써 제2형 당뇨를 치료할 수 있다.The present invention relates to a method for screening a type 2 diabetes treatment agent by determining a drug that inhibits ubiquitin-conjugating enzyme E2H (UBE2H) and MG53 (mitsugumin 53) interaction as a type 2 diabetes treatment. Agents that inhibit the interaction of MG53 and UBE2H can treat type 2 diabetes by increasing the amount of IRS-1 and increasing insulin sensitivity.

당뇨병은 고혈당을 특징으로 하는 일련의 대사 질환군으로 만성적인 고혈당은 적절한 치료를 하지 않으면 대혈관합병증, 미세혈관합병증, 당뇨병성 신경병증 및 신장 질환과 같은 합병증을 야기하게 된다. 당뇨병은 크게 두 가지 유형으로 구분되는데, 제1형 당뇨병 (type 1 diabetes mellitus)은 혈액 내의 포도당 조절 호르몬인 인슐린의 분비 결핍으로 야기되며, 주로 10 내지 20대의 젊은 연령층에서 발병되기 때문에 소아 당뇨병 (juvenile diabetes)이라 불리기도 한다. 제2형 당뇨병 (type 2 diabetes mellitus)은 주로 40대 이후에 발병되며, 우리나라 당뇨병 환자의 대부분을 차지한다. 제1형과는 달리 성인형 당뇨병이라 불리며 발병 원인은 아직 명확히 밝혀져 있지 않으나, 유전적인 요인과 환경적 요소가 함께 관여되어 발생하는 것으로 알려져 있다. 제2형 당뇨병의 병인으로 췌장베타세포에서 인슐린 분비의 장애와 표적세포에서 인슐린 작용의 결함 (인슐린 저항성)이 모두 관찰된다.Diabetes is a group of metabolic disorders characterized by hyperglycemia. Chronic hyperglycemia causes complications such as macrovascular complications, microvascular complications, diabetic neuropathy and kidney disease if not treated properly. Diabetes is largely divided into two types. Type 1 diabetes mellitus is caused by a deficiency of insulin, a glucose-regulating hormone in the blood, and is mainly caused by young people in their teens and 20s. It is also called diabetes. Type 2 diabetes mellitus occurs mainly after the age of 40 and accounts for most of the diabetic patients in Korea. Unlike type 1, it is called adult-type diabetes and the cause of the disease is not clear yet, but it is known that it is caused by genetic factors and environmental factors involved. As a etiology of type 2 diabetes, both insulin secretion in pancreatic beta cells and defects in insulin action (insulin resistance) in target cells are observed.

당뇨병의 치료법으로는 일반적으로 약물요법과 식이요법, 운동요법을 병행하는데, 치료 목표는 지속적으로 혈당을 정상치에 가깝게 유지하여 당뇨병성 합병증을 예방하고 지연하는 것이다. 그러나 현재까지 당뇨병의 완치법은 확립되어 있지 않고, 경구용 혈당 강하제는 다양한 부작용이 보고되고 있으므로 보다 안전한 제2형 당뇨병 치료제의 개발에 관심이 모아지고 있다. 제2형 당뇨병은 탄수화물, 지질대사 과정 및 인슐린 신호 전달계에서 발생하는 다양한 문제점으로 인해 발병하므로 새로운 치료제 개발을 위해서는 이러한 신호전달 및 대사 과정을 전반적으로 조절하는 새로운 타겟 단백질의 발굴이 절실하다.The treatment of diabetes is generally combined with medication, diet, and exercise therapy. The goal is to prevent and delay diabetic complications by continuously maintaining blood sugar to normal levels. However, until now, the cure for diabetes has not been established, and oral hypoglycemic agents have been reported in various side effects, and thus, there is an interest in developing safer type 2 diabetes treatment. Type 2 diabetes is caused by a variety of problems in carbohydrates, lipid metabolism, and insulin signaling systems, and therefore, the development of new therapeutics requires the discovery of new target proteins that generally regulate these signaling and metabolic processes.

한편, 본 발명자들은 이전의 연구에서 (국내특허등록 제10-1048316호), MG53 이 근육 분화의 음성적 조절자임을 최초로 규명한 바 있으며, MG53 의 과발현이 근육 형성을 억제시키고 MG53의 발현 억제가 근육 형성을 촉진시키므로, MG53을 타겟으로 하는 약제 또는 유전자 치료가 골격근의 분화 및 비대를 촉진시켜 근육강화제 또는 심장 강화제로 개발될 수 있음을 개시한 바 있다.On the other hand, the present inventors (Korean Patent Registration No. 10-1048316) in the previous study, first identified that MG53 is a negative regulator of muscle differentiation, the overexpression of MG53 inhibits muscle formation and inhibiting the expression of MG53 muscle Since it promotes formation, it has been disclosed that drugs or gene therapies targeting MG53 can be developed as anabolic or cardiac enhancers by promoting differentiation and hypertrophy of skeletal muscle.

이후, 본 발명자들은 MG53 넉아웃 마우스에서 가자미근 (soleus muscle)의 크기가 30% 증가하고, IRS-1의 양이 증가하여 인슐린 신호전달이 증폭되며, 고지방식을 먹여도 인슐린 저항성이 일어나지 않는다는 것을 확인하였으며, MG53 이 근육 분화 및 인슐린 신호 전달에 작용하는 메커니즘을 규명하는 과정에서 UBE2H-MG53-IRS-1 복합체를 발견하였다. 또한, MG53 의 작용에 UBE2H 와의 상호작용이 필수적으로 수반되며, UBE2H 및 MG53 상호작용을 억제하는 약제가 IRS-1의 양을 증가시켜 인슐린 민감성을 증가시킴으로써 제2형 당뇨 치료제로 개발될 수 있음을 확인함으로써 본 발명을 완성하였다.Then, the inventors confirmed that the MG53 knockout mice had a 30% increase in the size of soleus muscle, an increase in the amount of IRS-1, amplified insulin signaling, and no insulin resistance even when fed a high fat diet. In the process of identifying the mechanism by which MG53 acts on muscle differentiation and insulin signaling, the UBE2H-MG53-IRS-1 complex was discovered. In addition, interaction of UBE2H with the action of MG53 is essential, and drugs that inhibit UBE2H and MG53 interaction can be developed as a type 2 diabetes treatment by increasing the amount of IRS-1 and increasing insulin sensitivity. The present invention was completed by confirming.

본 발명의 하나의 목적은 (a) MG53 및 UBE2H 를 발현하는 세포에 후보 화합물을 처리하는 단계; 및 (b) 상기 세포에서 MG53 및 UBE2H 의 상호작용이 저해되는지 여부를 결정하는 단계를 포함하는, 제2형 당뇨 치료제를 스크리닝하는 방법을 제공하는 것이다.One object of the invention is (a) treating a candidate compound to cells expressing MG53 and UBE2H; And (b) determining whether the interaction of MG53 and UBE2H in the cells is inhibited.

본 발명의 또 하나의 목적은 (a') 분리된 MG53 및 분리된 UBE2H 의 혼합물에 후보 화합물을 처리하는 단계; 및 (b') MG53 및 UBE2H 의 상호작용이 저해되는지 여부를 결정하는 단계를 포함하는, 제2형 당뇨 치료제를 스크리닝하는 방법을 제공하는 것이다.Another object of the present invention is to (a ') treating a candidate compound to a mixture of isolated MG53 and isolated UBE2H; And (b ') determining whether the interaction of MG53 and UBE2H is inhibited.

본 발명은 UBE2H 및 MG53 상호작용을 억제하는 약제를 제2형 당뇨 치료제로 결정함으로써, 제2형 당뇨 치료제를 스크리닝하는 방법에 관한 것이다.The present invention relates to a method for screening a type 2 diabetes treatment agent by determining a drug that inhibits UBE2H and MG53 interaction as a type 2 diabetes treatment agent.

본 발명에서는 MG53 이 근육 분화 및 인슐린 신호 전달에 작용하는 메커니즘을 규명하는 과정에서, MG53 의 작용에 UBE2H 와의 상호작용이 필수적으로 수반되며, UBE2H 및 MG53 상호작용을 억제하는 약제가 IRS-1의 양을 증가시켜 인슐린 민감성을 증가시킴으로써 제2형 당뇨 치료제로 개발될 수 있음을 최초로 규명하였다.In the present invention, in the process of identifying the mechanism by which MG53 acts on muscle differentiation and insulin signal transduction, the interaction of MG53 is essential to the interaction with UBE2H, and the agent that inhibits UBE2H and MG53 interaction is the amount of IRS-1. It was found for the first time that it can be developed as a type 2 diabetes treatment by increasing insulin sensitivity.

우선, 본 발명에서는 C2C12 근육모세포 (myoblast) 분화 과정에서 MG53과 함께 UBE2H의 mRNA 및 단백질 발현량이 점차적으로 증가하며 (도 1a-d), 인 비트로 결합 분석을 통해, MG53 이 UBE2H 와 강하게 결합하고 있는 것을 확인하였다 (도 2a). MG53 및 UBE2H 간의 분자적 상호작용은 C2C12 근육대롱세포 (myotube) 에서의 상호 내생적 면역침전분석 (reciprocal endogenous immunoprecipitation)과 MG53 및 UBE2H이 과발현된 HEK 293 세포에서의 외생적 면역침전분석 (exogenous immunoprecipitation) 에 의해 재확인되었다 (도 2b 및 도 3a). 따라서, UBE2H 와 MG53 이 상호작용함을 알 수 있었다.First, in the present invention, mRNA and protein expression levels of UBE2H gradually increase together with MG53 in the process of C2C12 myoblast differentiation (Fig. 1a-d), and through in vitro binding assay, MG53 strongly binds to UBE2H. It was confirmed (Fig. 2a). Molecular interactions between MG53 and UBE2H include reciprocal endogenous immunoprecipitation in C2C12 myotubes and exogenous immunoprecipitation in HEK 293 cells overexpressing MG53 and UBE2H. Reconfirmed by (FIGS. 2B and 3A). Thus, it can be seen that UBE2H and MG53 interact.

또한, UBE2H 를 넉다운한 후 미오신 중사슬 면역형광분석, 근육분화 색인, 및 면역탁본 분석에 의해 C2C12 세포 근육 분화 정도를 조사한 결과, C2C12 근육모세포의 분화가 증가하였고 (도 2c-e), C2C12 근육대롱세포 (myotube) 에서 IRS-1 발현이 증가하고 유비퀴틴화가 저해되었음을 확인하였다 (도 2e, f). 근육 분화 과정에서 MG53 의 저해가 UBE2H 넉다운에 의한 것인지 알아보기 위하여, HA-MG53을 si-control 및 si-UBE2H 와 함께 C2C12 근육모세포에 공동 트랜스펙션한 후 근육대롱세포로 분화시키면서 HA 및 미오신 중사슬로 면역형광분석 및 근육분화 색인을 측정한 결과, MG53에 의해 유도되는 근육 분화가 UBE2H 넉다운에 의해 저해되었다 (도 2g, h). 또한, UBE2H이 과발현된 HEK 293 세포에서 MG53-유도된 IRS 유비퀴틴화가 증가하였다 (도 3b). 이러한 결과는 UBE2H 가 MG53 에 대한 E2 효소이며 IRS-1 을 타겟으로 한다는 것을 뒷받침한다.In addition, the degree of C2C12 cell muscle differentiation was increased by knocking down UBE2H by myosin heavy chain immunofluorescence, muscle differentiation index, and immunotaxel analysis, and the differentiation of C2C12 myoblasts was increased (Fig. 2C-E) and C2C12 muscle. It was confirmed that IRS-1 expression was increased in myotubes and ubiquitination was inhibited (FIGS. 2E and F). To determine whether inhibition of MG53 was caused by UBE2H knockdown during muscle differentiation, HA-MG53 was cotransfected into C2C12 myoblasts with si-control and si-UBE2H, followed by differentiation into HA and myosin metabolism. Slow immunofluorescence and muscle differentiation indices were measured, indicating that muscle differentiation induced by MG53 was inhibited by UBE2H knockdown (FIG. 2G, h). In addition, MG53-induced IRS ubiquitination was increased in HEK 293 cells overexpressed with UBE2H (FIG. 3B). These results support that UBE2H is an E2 enzyme for MG53 and targets IRS-1.

또한, 본 발명자들은 MG53 넉아웃 마우스에서 MG53 이 근섬유 (muscle fiber) 의 크기를 조절하는 효과를 조사해본 결과, MG53 넉아웃 마우스의 가자미근이 야생형 마우스에 비해 약 27% 무게가 증가하였고 (도 4a), 종단면의 면적이 유의적으로 증가하였다 (도 4b, c). In addition, the inventors examined the effect of MG53 to control the size of the muscle fiber in the MG53 knockout mice, the weight of the sole of the MG53 knockout mice is about 27% increased compared to wild-type mice (Fig. 4a) , The area of the longitudinal section was significantly increased (Fig. 4b, c).

또한, MG53이 IGF-1 신호 전달 뿐 아니라, IRS-1 유비퀴틴화 및 분해를 유도하여 인슐린 신호 전달도 저해한다는 것을 입증하기 위하여, MG53-과발현된 C2C12 근육모세포에서 인슐린에 의한 IRS-1, Akt 및 ERK1/2 인산화를 확인한 결과, MG53 과발현에 의하여 인슐린에 의한 IRS-1, Akt 및 ERK1/2 활성이 현저하게 감소하였다 (도 5a). 이러한 결과는 MG53 이 IGF-1 신호 전달 뿐 아니라 인슐린 신호 전달을 음성적으로 조절한다는 것을 나타낸다. 또한, MG53 넉아웃 마우스에 인슐린을 혈관 주사한 후 가자미근, 장딴지근 및 족저근에서의 인슐린 신호 전달을 분석한 결과, 야생형 마우스에 비해 인슐린에 의한 IRS-1, Akt 및 ERK1/2 활성이 증가하고 IRS-1 발현량이 현저하게 증가하였다 (도 5b-d).In addition, to demonstrate that MG53 inhibits insulin signal transduction by inducing IRS-1 ubiquitination and degradation as well as IGF-1 signaling, IRS-1, Akt and insulin induced by insulin in MG53-overexpressed C2C12 myoblasts As a result of confirming ERK1 / 2 phosphorylation, IRS-1, Akt and ERK1 / 2 activity by insulin was markedly decreased by MG53 overexpression (FIG. 5A). These results indicate that MG53 negatively regulates insulin signaling as well as IGF-1 signaling. In addition, after insulin injection into MG53 knockout mice, insulin signal transduction in the sole, calf and plantar muscles of the MG53 knockout mice resulted in increased insulin-induced IRS-1, Akt and ERK1 / 2 activity compared to wild-type mice. The amount of IRS-1 expression was markedly increased (FIGS. 5B-D).

또한, 고설탕 고지방 식이한 MG53 넉아웃 마우스는 당부하 및 인슐린 부하 실험에서 포도당 처리율 (glucose disposal rate)이 증가하였고 (도 6a, b), 고설탕 고지방 식이한 야생형 마우스에 비해 혈중 중성지방, 자유 지방산 및 총 콜레스테롤 함량이 현저하게 감소하였으며 (도 6c-e), 인슐린 및 렙틴의 혈중 농도가 감소하였다 (도 6f, g). 이러한 결과는 MG53 넉아웃에 의해 고설탕 고지방 식이에 의해 유도된 당뇨 표현형이 개선되었음을 나타낸다.In addition, high sugar high fat diet MG53 knockout mice had an increased glucose disposal rate in glucose and insulin load experiments (Figs. 6a, b), and compared to triglycerides in blood and free fat compared to wild type mice fed a high sugar high fat diet. Fatty acid and total cholesterol contents were significantly reduced (FIG. 6C-E), and blood levels of insulin and leptin were decreased (FIG. 6F, g). These results indicate that the diabetic phenotype induced by the high sugar high fat diet was improved by MG53 knockout.

이상의 결과를 종합하였을 때, MG53이 제2형 당뇨 치료를 위한 타겟 단백질이며, 나아가 MG53 의 작용에 반드시 필요한 UBE2H 와의 상호작용을 이용하여 제2형 당뇨 치료제를 효과적으로 선별할 수 있음을 알 수 있다.In summary, it can be seen that MG53 is a target protein for the treatment of type 2 diabetes, and furthermore, the type 2 diabetes treatment agent can be effectively selected using the interaction with UBE2H, which is essential for the action of MG53.

따라서, 하나의 양태로서 본 발명은Thus, in one aspect,

(a) MG53 및 UBE2H 를 발현하는 세포에 후보 화합물을 처리하는 단계; 및(a) treating a candidate compound with a cell expressing MG53 and UBE2H; And

(b) 상기 세포에서 MG53 및 UBE2H 의 상호작용이 저해되는지 여부를 결정하는 단계를 포함하는, (b) determining whether the interaction of MG53 and UBE2H in said cells is inhibited,

제2형 당뇨 치료제를 스크리닝하는 방법에 관한 것이다.The present invention relates to a method for screening a type 2 diabetes treatment.

또 하나의 양태로서, 본 발명은 As another aspect, the present invention

(a') 분리된 MG53 및 분리된 UBE2H 의 혼합물에 후보 화합물을 처리하는 단계; 및(a ') treating the candidate compound with a mixture of isolated MG53 and isolated UBE2H; And

(b') MG53 및 UBE2H 의 상호작용이 저해되는지 여부를 결정하는 단계를 포함하는, (b ') determining whether the interaction of MG53 and UBE2H is inhibited,

제2형 당뇨 치료제를 스크리닝하는 방법에 관한 것이다.The present invention relates to a method for screening a type 2 diabetes treatment.

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명의 스크리닝 방법은 MG53 및 UBE2H 에 후보 화합물을 처리하는 단계를 포함하며, 이 때, 후보 화합물을 MG53 및 UBE2H 를 발현하는 세포에 처리하거나, 분리된 MG53 및 분리된 UBE2H 의 혼합물에 후보 화합물을 직접적으로 처리할 수 있다.The screening method of the present invention comprises the step of treating candidate compounds with MG53 and UBE2H, wherein the candidate compounds are treated with cells expressing MG53 and UBE2H, or the candidate compounds with a mixture of isolated MG53 and isolated UBE2H. You can do it directly.

본 발명에서 용어, "MG53 (mitsugumin 53)"은 근육 분화의 음성적 조절자 역할을 하는 단백질로, TRIM72 (tripartite motif-containing 72)라고도 명명되며, RING 영역, B 박스, Coiled-coil 영역 및 SPRY 영역으로 구성된다. 마우스 MG53 유전자의 염기서열 및 단백질의 아미노산 서열은 NCBI의 등록번호 NM_001079932 및 NP_001073401 에서 얻을 수 있으며, 상기 마우스의 MG53 단백질의 아미노산 서열을 서열번호 1로 나타내었다. 인간 MG53 유전자의 염기서열 및 단백질의 아미노산 서열은 NCBI의 등록번호 NM_001008274 및 NP_001008275 에서 얻을 수 있으며, 상기 인간 MG53 단백질의 아미노산 서열을 서열번호 2로 나타내었다.As used herein, the term "MG53 (mitsugumin 53)" is a protein that acts as a negative regulator of muscle differentiation, also called TRIM72 (tripartite motif-containing 72), RING region, B box, Coiled-coil region and SPRY region It consists of. The base sequence of the mouse MG53 gene and the amino acid sequence of the protein can be obtained from NCBI registration numbers NM_001079932 and NP_001073401, and the amino acid sequence of the mouse MG53 protein is shown by SEQ ID NO: 1. The nucleotide sequence of the human MG53 gene and the amino acid sequence of the protein can be obtained from NCBI registration numbers NM_001008274 and NP_001008275, and the amino acid sequence of the human MG53 protein is shown by SEQ ID NO: 2.

본 발명에서 용어, "UBE2H (ubiquitin-conjugating enzyme E2H)" 는 단백질의 유비퀴틴화에 관여하는 유비퀴틴 결합 효소인 E2 효소의 하나로, 그 유전자의 염기서열 및 단백질의 아미노산 서열은 NCBI의 등록번호 NM_003344 및 NP_003335 에서 얻을 수 있으며, UBE2H 단백질의 아미노산 서열을 서열번호 3으로 나타내었다. In the present invention, the term "UBE2H (ubiquitin-conjugating enzyme E2H)" is one of the ubiquitin binding enzyme E2 enzyme involved in the ubiquitination of the protein, the nucleotide sequence of the gene and amino acid sequence of the protein is NCBI registration number NM_003344 and NP_003335 The amino acid sequence of the UBE2H protein is shown in SEQ ID NO: 3.

본 발명에서 용어, "후보 화합물" 이란 MG53 및 UBE2H 의 상호작용을 저해시킬 것으로 예상되는 후보 물질을 의미한다. 이러한 후보 물질에는 유기 또는 무기 화합물과 같은 단일 화합물뿐만 아니라, 단백질, 탄수화물, 핵산분자 (RNA, DNA 등) 및 지질과 같은 고분자 화합물 및 복수의 화합물의 복합체 등이 포함될 수 있다. As used herein, the term "candidate compound" means a candidate substance that is expected to inhibit the interaction of MG53 and UBE2H. Such candidate substances may include not only a single compound such as an organic or inorganic compound but also a complex of a protein, a carbohydrate, a nucleic acid molecule (RNA, DNA, etc.) and a polymer compound such as lipid and a plurality of compounds.

본 발명에서 용어, "처리" 란 후보 화합물이 MG53 및 UBE2H 중 어느 하나 이상에 직접적으로 접촉하는 것뿐 아니라, 물질이 세포막에 영향을 미치고 그 세포막으로부터 발생한 신호가 MG53 및 UBE2H 중 어느 하나 이상에 접촉하거나 영향을 미치는 경우도 포함한다. 따라서 본 발명에 있어서, 상기 후보 화합물에는 세포막 투과성인 물질 뿐만 아니라, 세포막에 불투과성인 물질도 포함된다. 이 때, 후보 화합물은 유효량의 범위 내에서 처리하도록 한다. "유효량" 이란 반응을 유도하기에 충분한 양을 의미하는 것으로, 유효량 범위 이하에서는, 정확한 결과를 얻을 수 없으므로, 유효량 범위 내에서 억제능을 측정하는 것이 바람직하다.As used herein, the term "treatment" means not only the candidate compound directly contacts any one or more of MG53 and UBE2H, but also the substance affects the cell membrane and the signal generated from the cell membrane contacts any one or more of MG53 and UBE2H. Includes or affects. Thus, in the present invention, the candidate compound includes not only substances that are permeable to cell membranes but also substances that are impermeable to cell membranes. At this time, the candidate compound is treated within the effective amount range. The term "effective amount" means an amount sufficient to induce the reaction. Since the accurate result can not be obtained at an effective amount or less, it is preferable to measure the inhibitory ability within an effective amount range.

후보 화합물을 MG53 및 UBE2H 를 발현하는 세포에 처리하는 경우, 본 발명은 When the candidate compound is treated to cells expressing MG53 and UBE2H, the present invention

(a) MG53 및 UBE2H 를 발현하는 세포에 후보 화합물을 처리하는 단계; 및 (b) 상기 세포에서 MG53 및 UBE2H 의 상호작용이 저해되는지 여부를 결정하는 단계를 포함하는 제2형 당뇨 치료제를 스크리닝하는 방법을 제공한다.(a) treating a candidate compound with a cell expressing MG53 and UBE2H; And (b) determining whether the interaction of MG53 and UBE2H in said cells is inhibited.

MG53 및 UBE2H 를 발현하는 세포는, 본래 MG53 및 UBE2H 를 포함하는 세포이거나, 의도적으로 MG53 및 UBE2H 를 발현하는 벡터를 세포에 트랜스펙션하여 제조한 것일 수 있다. 또한, MG53 및 UBE2H 를 발현하는 벡터의 경우 하나의 벡터에 MG53 및 UBE2H 에 대한 서로 다른 프로모터를 포함하고 있어 하나의 벡터로부터 각각 발현될 수도 있고, MG53 를 발현하는 벡터 및 UBE2H 를 발현하는 벡터를 공동 트랜스펙션하여 제조할 수도 있다.The cells expressing MG53 and UBE2H are originally cells containing MG53 and UBE2H, or may be prepared by transfecting cells with a vector expressing MG53 and UBE2H intentionally. In addition, in the case of the vectors expressing MG53 and UBE2H, one vector contains different promoters for MG53 and UBE2H, which may be expressed from one vector, respectively, and the vector expressing MG53 and the vector expressing UBE2H may be co-expressed. It can also be prepared by transfection.

상기 세포는 인간 또는 소, 염소, 돼지, 생쥐, 토끼, 햄스터, 시궁쥐, 기니피그 등의 동물 기원의 모든 세포를 포함하며, 일차세포, 이차세포, 불멸화된 세포 등을 이용할 수 있다. 또한, MG53 및/또는 UBE2H 유전자를 포함하는 재조합 벡터를 사용하여 세포 내에서 MG53 및/또는 UBE2H 가 세포 내에서 안정적으로 또는 일시적으로 과발현되도록 조작된 세포를 사용할 수 있다.The cells include all cells of animal origin, such as humans or cows, goats, pigs, mice, rabbits, hamsters, rats, guinea pigs, and the like, primary cells, secondary cells, immortalized cells and the like can be used. In addition, recombinant vectors comprising MG53 and / or UBE2H genes can be used to use cells engineered to stably or temporarily overexpress MG53 and / or UBE2H in cells.

나아가, MG53 및 UBE2H 의 상호작용을 저해시키는 물질의 검출은, 세포 수준 뿐만 아니라 생쥐, 토끼, 햄스터, 시궁쥐, 기니피그 등의 실험 동물을 이용하여 생체 내에서 수행할 수 있다.Furthermore, detection of substances that inhibit the interaction of MG53 and UBE2H can be performed in vivo using experimental animals such as mice, rabbits, hamsters, sagittal mice, guinea pigs, as well as at the cellular level.

본 발명의 상기 단계 (b) 에서, MG53 및 UBE2H 의 상호작용이 저해되는지 여부는, 단백질-단백질간 또는 단백질-화합물간의 반응 여부를 확인하기 위하여 당업계에서 통상 사용되는 기술들을 적용하여 확인할 수 있다. 예를 들어, 면역학적 분석법, 형광 분석법, 효모 이중 혼성법 (yeast two-hybrid), MG53 또는 UBE2H에 결합하는 파지 디스플레이 펩티드 클론의 검색, 천연물 및 화학물질 라이브러리 등을 이용한 HTS (high throughput screening), 드럭 히트 HTS 또는 세포 기반 스크리닝 (cell-based screening) 등을 이용하는 스크리닝 방법 등을 사용할 수 있으나, 이러한 방법에 제한되는 것은 아니다.In the step (b) of the present invention, whether the interaction of MG53 and UBE2H is inhibited, it can be confirmed by applying techniques commonly used in the art to determine whether the reaction between protein-protein or protein-compound. . For example, immunological assays, fluorescence assays, yeast two-hybrids, search for phage display peptide clones that bind MG53 or UBE2H, high throughput screening (HTS) using natural and chemical libraries, Screening methods using drug hit HTS or cell-based screening may be used, but the present invention is not limited thereto.

바람직한 하나의 구현예로, MG53 또는 UBE2H 에 특이적인 항체를 이용하여 MG53 및 UBE2H 의 상호작용이 저해되는지 여부를 검출할 수 있다. 예를 들어, 생성된 항원-항체 복합체 형성량을 후보 물질을 처리하지 않은 대조군에서의 항원-항체 복합체 형성량과 비교하여 저해 여부를 결정할 수 있다. 항원-항체 복합체 형성량의 절대적 또는 상대적 차이는 분자생물학적 또는 조직학적 분석으로 확인 가능하며, 이러한 분석법에는 면역탁본, 면역침전 및 면역염색 등이 포함하나, 이에 제한되지 않는다. In one preferred embodiment, antibodies specific for MG53 or UBE2H can be used to detect whether the interaction of MG53 and UBE2H is inhibited. For example, the amount of the formed antigen-antibody complex formed can be compared with the amount of the antigen-antibody complex formed in the control group not treated with the candidate substance to determine the inhibition. Absolute or relative differences in the amount of antigen-antibody complex formation can be ascertained by molecular biology or histological analysis including, but not limited to, immunostaining, immunoprecipitation and immunostaining.

상기 항원-항체 반응을 이용한 검출 방법에서 항원-항체 복합체의 형성량은 검출 라벨 (detection label)의 시그널의 크기를 통해서 정량적으로 측정 가능하다. 본 발명에서 용어, "검출 라벨"은 분광분석적 (spectroscopic), 광화학적 (photochemical), 생화학적 (biochemical), 면역화학적 (immunochemical), 화학적 (chemical), 다른 물리화학적 (physical) 수단에 의해 검출될 수 있는 조성물을 말한다. 이러한 검출 표지체에는 효소, 형광물, 리간드, 발광물, 미소입자 (microparticle), 레독스 분자 및 방사선 동위원소 등이 있으며, 이로 제한되는 것은 아니다.In the detection method using the antigen-antibody reaction, the formation amount of the antigen-antibody complex can be quantitatively measured through the signal label of the detection label. In the present invention, the term "detection label" is to be detected by means of spectroscopic, photochemical, biochemical, immunochemical, chemical or other physicochemical means ≪ / RTI > Such detection labels include, but are not limited to, enzymes, minerals, ligands, luminescent materials, microparticles, redox molecules, and radioactive isotopes.

바람직한 또 하나의 구현예로, MG53 또는 UBE2H 에 각각 리포터 단백질과 연결한 후 상기 리포터 단백질의 신호 크기에 의하여 MG53 및 UBE2H 의 상호작용이 저해되는지 여부를 검출할 수 있다.In another preferred embodiment, after connecting the reporter protein to MG53 or UBE2H, respectively, it is possible to detect whether the interaction of MG53 and UBE2H is inhibited by the signal size of the reporter protein.

상기 리포터 단백질은 루시퍼라제, 클로람페니콜아세틸트랜스퍼라제, 베타-글루쿠로니다제, 베타-갈락토시다제, 알칼라인 포스파타아제, 또는 형광 단백질일 수 있으며, 이 때 형광 단백질은 녹색 형광 단백질 (green fluorescent protein), 적색 형광 단백질 (red fluorescent protein), 청색 형광 단백질 (blue fluorescent protein), 황색 형광 단백질 (yellow fluorescent protein), 남색 형광 단백질 (cyan fluorescent protein), 증강된 녹색 형광 단백질 (enhanced green fluorescent protein), 증강된 적색 형광 단백질, 증강된 청색 형광 단백질, 증강된 황색 형광 단백질 또는 증강된 남색 형광 단백질일 수 있다.The reporter protein may be a luciferase, a chloramphenicol acetyltransferase, a beta-glucuronidase, a beta-galactosidase, an alkaline phosphatase, or a fluorescent protein, wherein the fluorescent protein is a green fluorescent a fluorescent protein, a red fluorescent protein, a blue fluorescent protein, a yellow fluorescent protein, a cyan fluorescent protein, an enhanced green fluorescent protein, , An enhanced red fluorescent protein, an enhanced blue fluorescent protein, an enhanced yellow fluorescent protein, or an enhanced blue fluorescent protein.

상기 리포터 단백질을 MG53 및 UBE2H 과 각각 연결된 형태로 발현시키기 위하여, MG53 를 코딩하는 유전자 및 리포터 유전자가 작동가능하게 연결된 발현 벡터, 그리고 UBE2H 를 코딩하는 유전자 및 리포터 유전자가 작동가능하게 연결된 발현 벡터를 세포에 공동 트랜스펙션할 수 있다.To express the reporter protein in a form linked to MG53 and UBE2H, respectively, an expression vector operably linked with a gene encoding MG53 and a reporter gene, and an expression vector operably linked with a gene encoding UBE2H and a reporter gene Co-transfection.

리포터 단백질이 형광 단백질일 경우 형광 현미경을 이용하여 리포터 단백질의 형광 크기를 측정함으로써 MG53 및 UBE2H 의 상호작용이 저해되는지 여부를 확인할 수 있으며, 리포터 단백질로 루시퍼라제와 같은 발광 효소를 사용하는 경우 공지된 루시퍼라제 활성 측정법 내지는 루시퍼라제 발광에 따라 MG53 및 UBE2H 의 상호작용이 저해되는지 여부를 확인할 수 있다. 또한, 리포터 단백질로 클로람페니콜아세틸트랜스퍼라제, 베타-글루쿠로니다제, 베타-갈락토시다제, 알칼라인 포스파타아제 등과 같이 기질을 검출 가능한 광을 발광하는 발색 산물로 전환시킬 수 있는 효소를 사용하는 경우 발색 기질을 이용한 효소 반응에 의하여 얻어지는 광 신호에 의해 MG53 및 UBE2H 의 상호작용이 저해되는지 여부를 확인할 수 있다.When the reporter protein is a fluorescent protein, it is possible to determine whether the interaction of MG53 and UBE2H is inhibited by measuring the fluorescence size of the reporter protein using a fluorescence microscope, and it is known when a luminescent enzyme such as luciferase is used as the reporter protein. Luciferase activity measurement or luciferase luminescence can determine whether the interaction of MG53 and UBE2H is inhibited. In addition, as a reporter protein, an enzyme that uses a chloramphenicol acetyltransferase, beta-glucuronidase, beta-galactosidase, alkaline phosphatase and the like to convert a substrate into a detectable light emitting product In this case, it can be confirmed whether the interaction between MG53 and UBE2H is inhibited by the optical signal obtained by the enzymatic reaction using the chromogenic substrate.

한편, 후보 화합물을 분리된 MG53 및 분리된 UBE2H 의 혼합물에 처리하는 경우,본 발명은 On the other hand, when the candidate compound is treated with a mixture of separated MG53 and separated UBE2H, the present invention

(a') 분리된 MG53 및 분리된 UBE2H 의 혼합물에 후보 화합물을 처리하는 단계; 및 (b') MG53 및 UBE2H 의 상호작용이 저해되는지 여부를 결정하는 단계를 포함하는, 제2형 당뇨 치료제를 스크리닝하는 방법을 제공한다.(a ') treating the candidate compound with a mixture of isolated MG53 and isolated UBE2H; And (b ') determining whether the interaction of MG53 and UBE2H is inhibited.

본 발명에서 용어, "분리된 (isolated)"이란 세포에서 발현되어 분리된 단백질을 의미하고, 당업계에서 공지된 일반적인 분리 기술을 적용하여 분리 가능하다. 세포에서 발현된 단백질을 분리 정제하는 방법은 특별히 제한되지 않는다. 분리된 MG53 및 분리된 UBE2H 은 세포 내가 아니라 시험관 내에서 후보 화합물과 직접적으로 작용하여 반응할 수 있다.In the present invention, the term "isolated" means a protein expressed and isolated in a cell, and is separable by applying common separation techniques known in the art. A method for separating and purifying a protein expressed in a cell is not particularly limited. Isolated MG53 and isolated UBE2H can react directly with the candidate compound in vitro and not in cells.

MG53 및 UBE2H 의 상호작용이 저해되는지 여부를 확인하는 방법은 상술한 바와 같다.The method of checking whether the interaction of MG53 and UBE2H is inhibited is as described above.

본 발명의 스크리닝 방법으로 획득된 MG53 및 UBE2H 의 상호작용을 억제하는 약제는 IRS-1의 양을 증가시켜 인슐린 민감성을 증가시킴으로써 제2형 당뇨를 치료할 수 있다.Agents that inhibit the interaction of MG53 and UBE2H obtained by the screening method of the present invention can treat type 2 diabetes by increasing the amount of IRS-1 and increasing insulin sensitivity.

본 발명은 UBE2H 및 MG53 상호작용을 저해시키는 물질을 스크리닝함으로써 제2형 당뇨 치료제를 효과적으로 선별 및 개발할 수 있다.The present invention can effectively screen and develop Type 2 diabetes therapeutics by screening for substances that inhibit UBE2H and MG53 interactions.

도 1a 는 C2C12 세포의 근육 분화 과정에서 MBP-MG53, UBE2H, UBE2R1, UBE2D2, UBE2E1, UBE2C, UBE2M 및 UBE2N 의 발현량을 SDS-PAGE 로 확인한 결과를 나타낸다.
도 1b 는 C2C12 세포의 근육 분화 시작일로부터 5일 동안 UBE2H, UBE2R1, UBE2D2, UBE2E1, UBE2L3, UBE2L6, UBE2C, UBE2M, UBE2N, Cav-3, MyHC, MyoD 및 GAPDH 의 mRNA 발현량을 실시간 정량적 PCR로 측정한 결과를 나타낸다. GAPDH는 로딩 대조군을 나타낸다.
도 1c 는 C2C12 세포의 근육 분화 시작일로부터 5일 동안 UBE2H mRNA 에 대한 실시간 정량적 PCR 결과를 GAPDH mRNA 결과에 대하여 표준화한 결과를 나타낸다 (*p<0.01, **p<0.05).
도 1d는 C2C12 세포의 근육 분화 시작일로부터 5일 동안 UBE2H, MG53, Mgn, IRS-1 및 Cav-3 의 발현을 면역탁본법으로 확인한 결과를 나타낸다. 액틴은 로딩 대조군을 나타낸다.
도 2a는 MG53 및 다양한 E2 효소 (UBE2H, UBE2R1, UBE2D2, UBE2E1, UBE2C, UBE2M 및 UBE2N) 와의 생체 외 단백질 결합 어세이 결과를 나타낸다.
도 2b는 분화 시작 4일째의 C2C12 세포에서 상호 내생적 면역침전법 (reciprocal endogenous immunoprecipitation)에 의하여 MG53와 UBE2H 간의 분자적 결합을 확인한 결과를 나타낸다.
도 2c-e는 C2C12 근육모세포에서 siRNA를 이용하여 UBE2H의 발현을 억제시킨 후, 근육분화 정도를 면역형광법 (c), 근육 분화 색인 (d), 분화 표지 단백질에 대한 면역탁본법으로 확인한 결과를 나타낸다.
도 2f 는 C2C12 근육모세포에서 siRNA를 이용하여 UBE2H의 발현을 억제시킨 후, MG132를 처리하여 IRS-1의 유비퀴틴화를 면역침전법으로 확인한 결과를 나타낸다.
도 2g-h는 C2C12 근육모세포에 UBE2H siRNA 및 MG53를 과발현시킨 후, 분화정도를 면역형광법 (g) 및 HA-양성 세포 내 핵 (nuclei)의 수 (h)를 통해 확인한 결과를 나타낸다.
도 3a 는 Myc-Mg53 및 Flag-UBE2H이 공동 트랜스펙션된 HEK293 세포에서, MG53 및 UBE2H 간의 분자적 상호작용을 상호 면역침전법 (reciprocal immunoprecipitation)으로 확인한 결과를 나타낸다.
도 3b 은 Flag-IRS-1, HA-MG53 WT, Myc-UBE2H 및 His-Ubiquitin 이 공동 트랜스펙션된 HEK293 세포에 MG132 을 12시간 처리한 경우, 항-Flag 항체를 이용한 면역침전 및 항-His 항체를 이용한 면역탁본법에 의하여 IRS-1 유비퀴틴화를 확인한 결과를 나타낸다.
도 4a 는 야생형 마우스 및 MG53 넉아웃 마우스에서 가자미근 무게를 비교한 결과를 나타낸다.
도 4b 및 c는 MG53 넉아웃 마우스의 가자미근의 종단면의 모양과 종단면적의 분포를 면역형광법에 의하여 확인한 결과를 나타낸다.
도 5a는 MG53를 과발현시킨 C2C12 근육모세포에 인슐린을 처리한 후, 신호전달물질들의 인산화를 면역탁본법으로 확인한 결과를 나타낸다.
도 5b는 야생형 마우스 및 MG53 넉아웃 마우스에 인슐린을 혈관 주사 후, 장딴지근 (gastrocnemius muscle) 및 족저근 (plantaris muscle)에서 인슐린 신호전달물질의 단백질 양 및 및 IRS-1 의 타이로신 인산화를 면역탁본법으로 확인한 결과를 나타낸다.
도 5c 및 d 는 야생형 마우스 및 MG53 넉아웃 마우스의 가자미근, 장딴지근 및 족저근에서 IRS-1 발현, IRS-1 인산화 및 Akt 인산화를 통계적으로 분석한 결과를 나타낸다 (*p<0.01 및 **p<0.05).
도 6a 및 b는 10주 동안 고설탕-고지방 사료를 섭취한 MG53 넉아웃 마우스에서 당부하검사 (a) 및 인슐린부하검사 (b)를 수행한 결과를 나타낸다. AUC는 곡선 아래의 면적을 나타낸다.
도 6c 부터 g는 상기 비만 및 당뇨를 유도시킨 MG53 넉아웃 마우스의 혈액 내 중성지방 (c), 자유 지방산 (d), 전체 콜레스테롤 (e), 인슐린 (f) 및 렙틴 (g)의 농도를 정량분석한 결과를 나타낸다 (* p<0.01 및 ** p<0.05).
도 7을 MG53 이 근육 분화 및 인슐린 신호 전달을 조절하는 기작을 설명한 그림이다.
Figure 1a shows the results of confirming the expression level of MBP-MG53, UBE2H, UBE2R1, UBE2D2, UBE2E1, UBE2C, UBE2M and UBE2N in the process of muscle differentiation of C2C12 cells by SDS-PAGE.
FIG. 1B shows mRNA expression levels of UBE2H, UBE2R1, UBE2D2, UBE2E1, UBE2L3, UBE2L6, UBE2C, UBE2M, UBE2N, Cav-3, MyHC, MyoD and GAPDH for 5 days from the start of muscle differentiation of C2C12 cells One result is shown. GAPDH represents the loading control.
1C shows the results of standardizing the real-time quantitative PCR results for UBE2H mRNA for GAPDH mRNA results for 5 days from the start of muscle differentiation of C2C12 cells (* p <0.01, ** p <0.05).
FIG. 1D shows the results of confirming the expression of UBE2H, MG53, Mgn, IRS-1 and Cav-3 by immunoassay for 5 days from the start of muscle differentiation of C2C12 cells. Actin represents the loading control.
2A shows the results of in vitro protein binding assays with MG53 and various E2 enzymes (UBE2H, UBE2R1, UBE2D2, UBE2E1, UBE2C, UBE2M and UBE2N).
Figure 2b shows the results confirming the molecular binding between MG53 and UBE2H by reciprocal endogenous immunoprecipitation in C2C12 cells on the 4th day of differentiation start.
Figure 2c-e after suppressing the expression of UBE2H using siRNA in C2C12 myoblasts, the degree of muscle differentiation was confirmed by immunofluorescence (c), muscle differentiation index (d), immunosampling method for differentiation marker protein Indicates.
FIG. 2F shows the results of confirming the ubiquitination of IRS-1 by immunoprecipitation by treating MG132 after suppressing the expression of UBE2H using siRNA in C2C12 myoblasts.
Figure 2g-h shows the results of overexpressing UBE2H siRNA and MG53 in C2C12 myoblasts, the degree of differentiation through immunofluorescence (g) and the number of nuclei in HA-positive cells (h).
FIG. 3A shows the results of confirming the molecular interaction between MG53 and UBE2H by reciprocal immunoprecipitation in HEK293 cells co-transfected with Myc-Mg53 and Flag-UBE2H.
3b shows immunoprecipitation and anti-His using anti-Flag antibody when MG132 was treated for 12 hours with HEK293 cells co-transfected with Flag-IRS-1, HA-MG53 WT, Myc-UBE2H and His-Ubiquitin. The result of confirming IRS-1 ubiquitination by the immunotaxine method using an antibody is shown.
FIG. 4A shows the results of a comparison of soleus muscle weight in wild type mice and MG53 knockout mice.
Figures 4b and c show the results of confirming the shape of the longitudinal section and the distribution of the longitudinal area of the sole of the MG53 knockout mouse by immunofluorescence.
Figure 5a shows the result of confirming the phosphorylation of the signaling substances by immuno-tax method after insulin treatment of C2C12 myoblasts overexpressing MG53.
FIG. 5B shows the immunoassay method for the protein amount of insulin signaling material and tyrosine phosphorylation of IRS-1 in gastrocnemius muscle and plantaris muscle after vascular injection of wild type mice and MG53 knockout mice. The result confirmed is shown.
5C and D show the results of statistical analysis of IRS-1 expression, IRS-1 phosphorylation and Akt phosphorylation in soleus, calf and plantar muscles of wild type mice and MG53 knockout mice (* p <0.01 and ** p). <0.05).
Figures 6a and b show the results of the glucose load test (a) and insulin load test (b) in MG53 knockout mice fed high sugar-high fat diet for 10 weeks. AUC represents the area under the curve.
Figure 6c to g quantify the concentration of triglycerides (c), free fatty acids (d), total cholesterol (e), insulin (f) and leptin (g) in the blood of the MG53 knockout mice inducing obesity and diabetes The analyzed results are shown (* p <0.01 and ** p <0.05).
Figure 7 illustrates the mechanism by which MG53 regulates muscle differentiation and insulin signaling.

이하, 본 발명을 실시예에 의해 상세히 설명한다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
Hereinafter, the present invention will be described in detail by way of examples. However, the following examples are illustrative of the present invention, and the present invention is not limited by the following examples.

실시예Example 1. 동물 실험 준비 1. Preparation for Animal Experiments

MG53-/- 마우스는 이전에 기술된 바에 따라 제조하였다 (Lee, C. S. et al., Cell Death Differ 17, 1254-65, 2010). 역교배 (backcross)를 위하여, MG53+/- 마우스를 C57BL/6 마우스와 7 세대 동안 번식시키고, 물과 음식 공급이 자유로운 플라스틱 케이지에서 12:12h light-dark photoperiod 조건으로 배양하였다. 10주간 고설탕-고지방 식이 (Research diet, D12330)로 제2형 당뇨를 유도하였고, 당부하 (Glucose tolerance) 및 인슐린부하 (insulin tolerance) 검사를 이전에 기술된 바에 따라 수행하였다 (Yadav, H. et al., Cell Metab 14, 67-79, 2011). Biovision 에서 얻은 비색분석 키트 (colorimetric assay kit)를 사용하여 중성지방, 자유 지방산, 및 총 콜레스테롤양을 측정하였다. Bio-Plex ProTM 마우스 당뇨 분석 키트 (Bio-Rad)를 사용하여 인슐린 및 렙틴의 혈중 수준을 결정하였다. 실험 동물은 실험동물 보호 원칙 (NIH Publication No. 85-23, revised 1985)에 따라 취급하였고, 고려대학교 동물실험윤리위원회에서 승인된 프로토콜을 준수하였다.
MG53 -/- mice were prepared as previously described (Lee, CS et al., Cell Death Differ 17, 1254-65, 2010). For backcross, MG53 +/− mice were bred for 7 generations with C57BL / 6 mice and incubated in a 12: 12h light-dark photoperiod condition in a plastic cage free of water and food. Type 2 diabetes was induced with a 10-week high sugar-high-fat diet (Research diet, D12330), and glucose tolerance and insulin tolerance tests were performed as previously described (Yadav, H. et al., Cell Metab 14, 67-79, 2011). Triglycerides, free fatty acids, and total cholesterol were measured using a colorimetric assay kit obtained from Biovision. Blood levels of insulin and leptin were determined using the Bio-Plex Pro Mouse Diabetes Assay Kit (Bio-Rad). The experimental animals were treated according to the Principles of Laboratory Animal Protection (NIH Publication No. 85-23, revised 1985) and followed the protocol approved by Korea University Animal Experiment Ethics Committee.

실시예Example 2. 세포배양 2. Cell culture

C2C12 세포를 ATCC에서 구입한 후, 2% (v/v) 페니실린/스트렙토마이신과 10% (v/v) 우태아혈청이 보충된 DMEM 배지 (Dulbecco's modified Eagle's medium)에서 37℃, 5% (v/v) CO2 인큐베이터 내 배양하였다. Confluent C2C12 근육모세포 (myoblasts)를 상기 항생제와 2% (v/v) 말 혈청이 보충된 DMEM 배지에서 배양하여 근육대롱세포 (microtubes)로 분화시켰다. 48시간 경과 시 마다 근육대롱세포에 2%의 말 혈청을 포함하는 신선한 DMEM을 공급하였다. 발생 12.5 일째 MG53+/+ 및 MG53-/- 배아로부터 마우스 배아 섬유아세포 (mouse embryonic fibroblasts, MEFs) 를 수득하였다. 배아로부터 머리 및 내부 장기를 분리하고, 남은 부위는 갈아서 트립신/EDTA 에 37℃ 에서 30분간 분산시켰다. 트립신 처리된 조직은 100 μM 세포 여과기 (cell strainer) 를 통과시키고 여과물을 1000 x g 로 원심분리하였다. 세포 펠렛은 성장 배지에 재현탁하였다.
After C2C12 cells were purchased from ATCC, 37 ° C., 5% (v) in DMEM medium (Dulbecco's modified Eagle's medium) supplemented with 2% (v / v) penicillin / streptomycin and 10% (v / v) fetal calf serum. / v) incubated in a CO 2 incubator. Confluent C2C12 myoblasts were cultured in DMEM medium supplemented with these antibiotics and 2% (v / v) horse serum to differentiate into myotubes (microtubes). Every 48 hours, fresh muscle cells were supplied with fresh DMEM containing 2% of horse serum. Mouse embryonic fibroblasts (MEFs) were obtained from MG53 + / + and MG53 − / − embryos at day 12.5 of development. The head and internal organs were separated from the embryos and the remaining sites were ground and dispersed in trypsin / EDTA at 37 ° C. for 30 minutes. Trypsinized tissue was passed through a 100 μM cell strainer and the filtrate was centrifuged at 1000 × g. Cell pellets were resuspended in growth medium.

실시예Example 3. 면역탁본 ( 3. Immunotaxine immunoblottingimmunoblotting , , IBIB ), 면역침전 (), Immunoprecipitation ( immunoprecipitationimmunoprecipitation , , IPIP ) 및 ) And 면역형광Immunofluorescence ( ( immunofluorescenceimmunofluorescence assayassay , , IFAIFA ))

면역탁본 및 면역형광법은 이전에 기술된 바와 같이 수행하였다 (Kim, K. B. et al. Proteomics 6, 2444-53, 2006). 면역침전반응을 위해서, 세포를 20 mM Tris-HCl (pH 7.4), 137 mM NaCl, 1 mM MgCl2, 1 mM CaCl2, 20 mM NaF, 10 mM Na4P2O7, 1 mM Na3VO4, 1% (v/v) NP-40, 1 mM PMSF 및 protease inhibitor cocktail (Roche) 가 포함된 버퍼에 용해시켰다. 총 세포 용해물 (50 μl protein)을 90분간 특이적 항체들로 인큐베이트한 후 90분 동안 50 μl의 Protein A-세파로스 또는 G-아가로스 비드 (50%) slurry로 인큐베이트하였다. 이 후 면역침전물을 면역탁본법으로 분석하였다. 골격근 단백질의 면역탁본법을 위하여, 근육 섬유를 10 mM KH2PO4 (pH 7.4), 프로테아제 저해제 혼합물 (protease inhibitor cocktail) 을 포함하는 저염버퍼로 용해시켰다. 면역탁본법, 면역침전 및 면역형광에 사용한 항체를 표 1 및 표 2에 기재하였다.Immunotaxin and immunofluorescence were performed as previously described (Kim, KB et al. Proteomics 6, 2444-53, 2006). For immunoprecipitation, cells were treated with 20 mM Tris-HCl (pH 7.4), 137 mM NaCl, 1 mM MgCl 2 , 1 mM CaCl 2 , 20 mM NaF, 10 mM Na 4 P 2 O 7 , 1 mM Na 3 VO 4 , 1% (v / v) was dissolved in a buffer containing NP-40, 1 mM PMSF and protease inhibitor cocktail (Roche). Total cell lysates (50 μl protein) were incubated with specific antibodies for 90 minutes and then incubated with 50 μl of Protein A-Sepharose or G-Agarose beads (50%) slurry for 90 minutes. Thereafter, immunoprecipitates were analyzed by immunoassay method. For immunosampling of skeletal muscle protein, muscle fibers were dissolved in a low salt buffer containing 10 mM KH 2 PO 4 (pH 7.4), a protease inhibitor cocktail. The antibodies used for immunotaxine, immunoprecipitation and immunofluorescence are listed in Tables 1 and 2.

단백질protein 제조사manufacturer 숙주 (클론 넘버)Host (clone number) 실험방법 (희석률)Experimental Method (Dilution Rate) FlagFlag SigmaSigma Mouse Monoclonal (M2)Mouse Monoclonal (M2) IB (1:1,000), IFA (1:100)IB (1: 1,000), IFA (1: 100) Santa Cruz
Biotechnology
Santa cruz
Biotechnology
Rabbit PolyclonalRabbit Polyclonal IP (1:100), IB (1:1,000)IP (1: 100), IB (1: 1,000)
MyHCMyhc Developmental Studies Hybridoma BankDevelopmental Studies Hybridoma Bank Mouse Monoclonal (MF-20)Mouse Monoclonal (MF-20) IB (1:1,000), IFA (1:100)IB (1: 1,000), IFA (1: 100) IRS-1IRS-1 MilliporeMillipore Rabbit PolyclonalRabbit Polyclonal IP (1:200), IB (1:1,000)IP (1: 200), IB (1: 1,000) Transduction laboratoriesTransduction laboratories Mouse, Monoclonal (6/IRS-1)Mouse, Monoclonal (6 / IRS-1) IB (1:1,000)IB (1: 1,000) Actin (beta)Actin (beta) Santa Cruz
Biotechnology
Santa cruz
Biotechnology
Mouse Monoclonal (C4)Mouse Monoclonal (C4) IB (1:1,000)IB (1: 1,000)
Actin (alpha)Actin (alpha) Santa Cruz
Biotechnology
Santa cruz
Biotechnology
Mouse Monoclonal (?-SR1)Mouse Monoclonal (? -SR1) IB (1:1,000)IB (1: 1,000)
pAkt (T308)pAkt (T308) Cell SignalingCell signaling Rabbit PolyclonalRabbit Polyclonal IB (1:1,000)IB (1: 1,000) AktAkt MilliporeMillipore Mouse Monoclonal (skb1)Mouse Monoclonal (skb1) IB (1:1,000)IB (1: 1,000) pY
(Tyrosine phosphorylation)
pY
(Tyrosine phosphorylation)
Transduction laboratoriesTransduction laboratories Mouse Monoclonal (PY20)Mouse Monoclonal (PY20) IB (1:1,000)IB (1: 1,000)
MycMyc Santa Cruz
Biotechnology
Santa cruz
Biotechnology
Mouse Monoclonal
(Clone 90000000000)
Mouse monoclonal
(Clone 90000000000)
IB (1:1,000)IB (1: 1,000)
Rabbit PolyclonalRabbit Polyclonal IP (1:100), IB (1:1,000)IP (1: 100), IB (1: 1,000) HisHis Santa Cruz
Biotechnology
Santa cruz
Biotechnology
Mouse Monoclonal (AD1.1.10)Mouse Monoclonal (AD1.1.10) IP (1:100), IB (1:1,000)IP (1: 100), IB (1: 1,000)
UbiquitinUbiquitin Cell SignalingCell signaling Mouse Monoclonal (P4D1)Mouse Monoclonal (P4D1) IB (1:1,000)IB (1: 1,000) HAHA Santa Cruz
Biotechnology
Santa cruz
Biotechnology
Rabbit PolyclonalRabbit Polyclonal IP (1:100), IFA (1:100)IP (1: 100), IFA (1: 100)
Mouse Monoclonal (F-7)Mouse Monoclonal (F-7) IB (1:1,000)IB (1: 1,000) MyoDMyod Santa Cruz
Biotechnology
Santa cruz
Biotechnology
Mouse Monoclonal (5.8A)Mouse Monoclonal (5.8A) IB (1:1,000)IB (1: 1,000)
ERKERK Santa Cruz
Biotechnology
Santa cruz
Biotechnology
Rabbit PolyclonalRabbit Polyclonal IB (1:1,000)IB (1: 1,000)
pERKpERK Santa Cruz
Biotechnology
Santa cruz
Biotechnology
Mouse Monoclonal (E-4)Mouse Monoclonal (E-4) IB (1:1,000)IB (1: 1,000)
β-Dystroglycanβ-Dystroglycan Santa Cruz
Biotechnology
Santa cruz
Biotechnology
Mouse Monoclonal (4F7)Mouse Monoclonal (4F7) IFA (1:100)IFA (1: 100)
MBPMBP NEBNEB Mouse MonoclonalMouse monoclonal IB (1:5,000)IB (1: 5,000)

항체명Antibody name 제조사manufacturer 숙주host 실험방법 (희석률)Experimental Method (Dilution Rate) HRP-conjugated Anti-mouse IgGHRP-conjugated Anti-mouse IgG PiercePierce Goat polyclonalGoat polyclonal IB (1:20,000~40,000)IB (1: 20,000-40,000) HRP-conjugated Anti-mouse IgMHRP-conjugated Anti-mouse IgM PiercePierce Goat polyclonalGoat polyclonal IB (1:20,000)IB (1: 20,000) HRP-conjugated Anti-Rabbit IgGHRP-conjugated Anti-Rabbit IgG PiercePierce Goat polyclonalGoat polyclonal IB (1:20,000~40,000)IB (1: 20,000-40,000) Alexa Fluor 488-conjugated Anti-mouse IgGAlexa Fluor 488-conjugated Anti-mouse IgG InvitrogenInvitrogen Goat polyclonalGoat polyclonal IFA (1:100)IFA (1: 100) FITC-conjugated Anti-mouse IgGFITC-conjugated Anti-mouse IgG AbcamAbcam Rabbit polyclonalRabbit polyclonal IFA (1:100)IFA (1: 100) Rhodamine-conjugated Anti-Rabbit IgGRhodamine-conjugated Anti-Rabbit IgG AbcamAbcam Goat polyclonalGoat polyclonal IFA (1:100)IFA (1: 100)

실시예Example 4. 조직학 ( 4. Histology ( histologyhistology ))

골격근을 4% 파라포름알데히드에 고정시키고, 냉동된 2-메틸부탄 내에 동결시킨 후, cryomicrotome 으로 절단하였다. 골격근 절편을 근섬유막 (sarcolemma)에 대한 항-β-디스트로글리칸 항체 및 핵에 대한 DAPI 로 염색하였다. 근육 섬유에서 근섬유의 단면적을 Multigauge software (Fuji Photo Film Co.) 로 결정하였다. 각 그룹에서 6 마리 동물로부터 9개의 분리된 슬라이드를 사용하였다.
Skeletal muscle was fixed in 4% paraformaldehyde, frozen in frozen 2-methylbutane and then cleaved with cryomicrotome. Skeletal muscle sections were stained with anti-β-distoglycan antibody to the muscle fiber membrane (sarcolemma) and DAPI to the nucleus. The cross-sectional area of muscle fibers in muscle fibers was determined by Multigauge software (Fuji Photo Film Co.). Nine separate slides from six animals in each group were used.

실시예Example 5. 근육분화 색인 ( 5. Muscle differentiation index ( myogenicmyogenic indexindex ) 측정) Measure

분화된 C2C12 세포 또는 MEF 를 항- 미오신 중사슬 항체 및 DAPI 로 염색하고, 세포 영상을 형광 현미경 (Olympus)으로 관찰하였다. 염색된 부위에서 총 핵 (nuclear)의 수에 대한 미오신 중사슬-양성 근육대롱세포 내 핵의 수의 비율을 근육분화 색인으로 나타내었다.
Differentiated C2C12 cells or MEFs were stained with anti-myosin heavy chain antibody and DAPI, and cell images were observed with fluorescence microscopy (Olympus). The ratio of the number of nuclei in myosin heavy chain-positive myoblasts to the total number of nuclei at the stained sites is indicated by the muscle differentiation index.

실시예Example 6.  6. RNARNA 간섭 ( Interference ( RNARNA interferenceinterference ))

MG53 을 표적으로 하는 siRNA 올리고머 (si-MG53) 또는 UBE2H 를 표적으로 하는 siRNA 올리고머 (si-UBE2H), 및 스크램블 올리고머 (si-control) 을 Ambion 에서 제작하였다. MG53 의 표적 서열은 5'-AAGCACGCCUCAAGACACAGCtt-3' (서열번호 4)이고, UBE2H 의 표적 서열은 5'-CUAUGAUCUUACCAAUAUAtt-3' (서열번호 5)이다. si-control, si-MG53 또는 si-UBE2H 을 전기천공법을 사용하여 제조자 (Digital Bio) 의 프로토콜에 따라 C2C12 myoblasts에 트랜스펙션하였다.
SiRNA oligomers that target MG53 (si-MG53) or siRNA oligomers that target UBE2H (si-UBE2H), and scrambled oligomers (si-control) were prepared in Ambion. The target sequence of MG53 is 5'-AAGCACGCCUCAAGACACAGCtt-3 '(SEQ ID NO: 4) and the target sequence of UBE2H is 5'-CUAUGAUCUUACCAAUAUAtt-3' (SEQ ID NO: 5). si-control, si-MG53 or si-UBE2H were transfected into C2C12 myoblasts using electroporation according to the manufacturer's (Digital Bio) protocol.

실시예Example 7. 인 비트로 결합 분석 ( 7. In vitro binding analysis ( InIn vitrovitro bindingbinding assayassay ))

인간 MG53 유전자 (잔기 7-470) 를 pMAL-c2x 벡터 (NEB)에 클로닝하였다. E. coli C41 (DE3) 를 MBP-MG53 발현을 위한 숙주로 사용하였다. 발현된 단백질을 PBS (phosphate-buffered saline) 버퍼로 미리 평형화된 아밀로스 레진에 인큐베이트하였다. 레진을 PBS 로 세척하고, MBP-융합된 단백질을 용출 버퍼 (50 mM Tris-HCl, pH 8.0, 100 mM NaCl, 1 mM DTT 및 10 mM 말토오스)를 사용하여 레진으로부터 용출시켰다. 추가 정제를 위해, 용출된 단백질을 버퍼 (50 mM Tris-HCl, pH 8.0 and 1 mM DTT)로 평형화된 HiTrap Q Fast Flow 칼럼에 로딩하였다. MBP-MG53 를 150-250 mM NaCl 로 용출하였다. 정제된 단백질은 사용할 때까지 -80℃ 에 보관하였다. 20 μl의 아밀로스 레진, 50 μg의 MBP-MG53 및 100 μg 의 히스티딘-태그된 E2 효소를 함유하는 1ml 의 분석 버퍼 (1X PBS and 1 mM DTT)를 사용하여 4℃ 에서 1시간 동안 Pull-down assay 를 수행하였다. 히스티딘-태그된 E2 효소는 Boston Biochem 및 LifeSensors 에서 구입하였다. 결합하지 않은 E2 효소를 제거하기 위하여, 레진을 최소한 5회 이상 분석 버퍼로 세척하였다. 결합된 MBP-MG53:E2 효소 복합체를 용출하기 위하여, 35 μl의 용출 버퍼 (50 mM Tris-HCl, pH 8.0, 100 mM NaCl, 1 mM DTT 및 10 mM 말토오스) 를 1분간 레진에서 인큐베이트하였다. 원심분리 후에, 30 μl의 각 용리액을 5 X SDS 샘플 버퍼와 혼합하고 3분간 가열하였다. 항-히스티딘 및 항-MBP 항체를 사용한 면역탁본법으로 MG53 및 E2 효소 간의 상호작용을 측정하였다.
Human MG53 gene (residues 7-470) was cloned into pMAL-c2x vector (NEB). E. coli C41 (DE3) was used as a host for MBP-MG53 expression. Expressed proteins were incubated in amylose resin previously equilibrated with phosphate-buffered saline (PBS) buffer. Resin was washed with PBS and MBP-fused protein was eluted from resin using elution buffer (50 mM Tris-HCl, pH 8.0, 100 mM NaCl, 1 mM DTT and 10 mM maltose). For further purification, the eluted protein was loaded on a HiTrap Q Fast Flow column equilibrated with buffer (50 mM Tris-HCl, pH 8.0 and 1 mM DTT). MBP-MG53 was eluted with 150-250 mM NaCl. Purified protein was stored at -80 ° C until use. Pull-down assay for 1 hour at 4 ° C. using 1 ml of assay buffer (1X PBS and 1 mM DTT) containing 20 μl of amylose resin, 50 μg of MBP-MG53 and 100 μg of histidine-tagged E2 enzyme. Was performed. Histidine-tagged E2 enzyme was purchased from Boston Biochem and LifeSensors. To remove unbound E2 enzyme, the resin was washed with assay buffer at least five times. To elute the bound MBP-MG53: E2 enzyme complex, 35 μl of elution buffer (50 mM Tris-HCl, pH 8.0, 100 mM NaCl, 1 mM DTT and 10 mM maltose) was incubated in the resin for 1 minute. After centrifugation, 30 μl of each eluate was mixed with 5 × SDS sample buffer and heated for 3 minutes. The interaction between MG53 and E2 enzymes was measured by immunotaxon method with anti-histidine and anti-MBP antibodies.

실시예Example 8.  8. RTRT -- PCRPCR

랜덤 헥사머 프라이머 및 M-MLV 역전사효소 (Invitrogen)를 사용한 역전사 반응에 의하여, DNase1 이 처리된 RNA (1μg) 로부터 cDNA 을 합성하였다. PCR 은 처음에는 24-38 사이클 범위로 수행하고, 28-36 사이클 수행된 2 μl 의 1:4-희석된 cDNA (12.5 ng/50 μl PCR reaction) 를 획득하였다. RT-PCR 반응에 사용한 프라이머는 다음과 같다.CDNA was synthesized from DNase1 treated RNA (1 μg) by reverse transcription using a random hexamer primer and M-MLV reverse transcriptase (Invitrogen). PCR was initially performed in the 24-38 cycle range and 2 μl of 1: 4-diluted cDNA (12.5 ng / 50 μl PCR reaction) performed 28-36 cycles. Primers used for the RT-PCR reaction are as follows.

유전자gene 정방향 (5'->3')Forward (5 '-> 3') 역방향 (5'->3')Reverse (5 '-> 3') 서열번호SEQ ID NO: MG53MG53 TCCCTGTTGTCAGGCATCTACTCCCTGTTGTCAGGCATCTAC TTCTTCCACACCTGGAATTTGTTCTTCCACACCTGGAATTTG 6,76,7 MyoDMyod CTCCTTTGAGACAGCAGACGACTTCTCCTTTGAGACAGCAGACGACTT AAATCGCATTGGGGTTTGAGCCTGAAATCGCATTGGGGTTTGAGCCTG 8,98,9 MyHCMyhc AGAAGGAGGAGGCAACTTCTGAGAAGGAGGAGGCAACTTCTG ACATACTCATTGCCGACCTTGACATACTCATTGCCGACCTTG 10,1110,11 α-actinα-actin GAAGAGCTATGAGCTGCCTGAGAAGAGCTATGAGCTGCCTGA CTCATCGTACTCCTGCTTGCTCTCATCGTACTCCTGCTTGCT 12,1312,13 UBE2HUBE2H AAGGAACACCATATGAAGGCGAAGGAACACCATATGAAGGCG GCGTACTTCTGGATGTACTCTTTAAGCGTACTTCTGGATGTACTCTTTAA 14,1514,15 UBE2R1UBE2R1 TGCCAAGCTCGCAGAAGGCGTGCCAAGCTCGCAGAAGGCG CCACCGCTCTGAGGGCAGCTCCACCGCTCTGAGGGCAGCT 16,1716,17 UBE2D2UBE2D2 GCCCTCAGCTCGTCTGATCCGGCCCTCAGCTCGTCTGATCCG TGATAGGGGCTGTCATTTGGCCCTGATAGGGGCTGTCATTTGGCCC 18,1918,19 UBE2E1UBE2E1 TGCCTGGTTAATAGTTGCTGTTGCTTGCCTGGTTAATAGTTGCTGTTGCT CACTGCAGTTTGGCGGAGGGTCACTGCAGTTTGGCGGAGGGT 20,2120,21 UBE2L3UBE2L3 AAGGGGCAGGTCTGTCTGCCAAGGGGCAGGTCTGTCTGCC CCTGCTTTGCGGGGTGTCTGACCTGCTTTGCGGGGTGTCTGA 22,2322,23 UBE2L6UBE2L6 AGCTGCCGCCATACCTTCGCAGCTGCCGCCATACCTTCGC GCAAGTTCCAGACGCACAGGCTGCAAGTTCCAGACGCACAGGCT 24,2524,25 UBE2CUBE2C AAACCGCGACCCAGCTGCTGAAACCGCGACCCAGCTGCTG GCCCTGGGTGTCCACGTTGGGCCCTGGGTGTCCACGTTGG 26,2726,27 UBE2MUBE2M AGGGCAGCAGCAAGAAGGCGAGGGCAGCAGCAAGAAGGCG GGCAGACGTTGCCCTCGAGGGGCAGACGTTGCCCTCGAGG 28,2928,29 UBE2NUBE2N ATGTGGTCATTGCTGGCCCCCATGTGGTCATTGCTGGCCCCC GCAGAACAGGAGAAGTGGTGTACACGCAGAACAGGAGAAGTGGTGTACAC 30,3130,31 GAPDHGAPDH TGGCAAATTCCATGGCACCTGGCAAATTCCATGGCACC AGAGATGATGACCCTTTTGAGAGATGATGACCCTTTTG 32,3332,33

실시예Example 9. 실시간 정량적  9. Real time quantitative PCRPCR ( ( QuantitativeQuantitative realreal -- timetime PCRPCR ))

단일 가닥 cDNA 및 유전자-특이적 올리고뉴클레오티드를 사용하여 Lightcycler 480 SYBR Green I Master Mix (Roche Diagnostics GmbH) 의 존재 하에서 실시간 정량적 PCR 분석을 수행하였다. Lightcycler PCR 조건은 다음과 같다: 초기 변성 95℃ 에서 10분에 이어서, 변성 95℃ 에서 10초, 어닐링 57℃ 에서 10초 및 신장 72℃ 에서 30초를 35-45 사이클 수행. quality control 을 위하여 각 PCR 산물에 대하여 용해 곡선 (melting curve) 을 분석하였다.
Real-time quantitative PCR analysis was performed in the presence of Lightcycler 480 SYBR Green I Master Mix (Roche Diagnostics GmbH) using single stranded cDNA and gene-specific oligonucleotides. Lightcycler PCR conditions were as follows: 35-45 cycles of initial denaturation at 95 ° C. for 10 minutes, followed by denaturation at 95 ° C. for 10 seconds, annealing at 57 ° C. for 10 seconds and extension at 72 ° C. for 30 seconds. Melting curves were analyzed for each PCR product for quality control.

실시예Example 10. 화학적 가교 결합 ( 10. Chemical crosslinking ( ChemicalChemical crosscross -- linkinglinking ))

HEK 293 세포를 PBS 내에서 옥틸-β-D-글루코피라노시드로 수집하였다. 전체 세포 용해물을 글루타르알데히드와 혼합하고 37℃ 에서 20분간 배양하였다. 1.5 M Tris-HCl (pH 7.4) 를 처리하여 가교결합 반응을 정지시키고 SDS-PAGE 상에서 단백질을 분리하였다.
HEK 293 cells were collected with octyl-β-D-glucopyranoside in PBS. Total cell lysates were mixed with glutaraldehyde and incubated at 37 ° C. for 20 minutes. Treatment with 1.5 M Tris-HCl (pH 7.4) stopped the crosslinking reaction and separated the protein on SDS-PAGE.

실시예Example 11. 통계 분석 ( 11. Statistical Analysis StatisticalStatistical analysisanalysis ))

통계치는 평균±SEM (standard error of the mean) 으로 나타내었다. p 값을 계산하기 위하여 two-tailed Student' s test 를 사용하였다.
Statistics are expressed as standard error of the mean (SEM). Two-tailed Student's test was used to calculate p values.

결과 1. Result 1. MG53MG53 에 의한 On by IRSIRS -1 -One 유비퀴틴화에Ubiquitination UBE2HUBE2H 가 필요함Is required

MG53를 통한 IRS-1 유비퀴틴화에 어떤 E2 연결효소가 필요한지 확인하기 위하여, C2C12 근육모세포의 분화 과정에서 다양한 E2 효소의 mRNA 및 단백질량 증가 여부를 알아보았다. 먼저, 도 2a에서 사용되는 MBP (maltose binding protein) 태그된 MG53와, His (histidine) 태그된 E2 효소 UBE2H, UBE2R1, UBE2D2, UBE2E1, UBE2C, UBE2M 및 UBE2N 단백질을 SDS-PAGE 젤 상에서 쿠마시-염색하여 확인하였다 (도1a). 그 결과, UBE2H 의 발현량이 증가함을 확인할 수 있었다. C2C12 근육모세포의 근육 분화 시작일로부터 5일 동안 UBE2H, UBE2R1, UBE2D2, UBE2E1, UBE2L3, UBE2L6, UBE2C, UBE2M, UBE2N, Cav-3, MyHC 및 MyoD 의 mRNA 증가량을 실시간 정량적 PCR로 측정한 결과, 근육 분화가 진행될수록 UBE2H 의 mRNA 발현량이 점차 증가된다는 것을 확인할 수 있었으며 (도 1b), 이 중 UBE2H mRNA 에 대한 실시간 정량적 PCR 결과를 GAPDH mRNA 결과에 대하여 표준화한 결과 UBE2H 의 mRNA 발현량이 점차 증가된다는 것을 재확인할 수 있었다 (도 1c). 또한, C2C12 세포의 근육 분화 시작일로부터 5일 동안 UBE2H, MG53, Mgn, IRS-1 및 Cav-3 의 발현을 면역탁본법으로 확인한 결과, 근육 분화가 진행될수록 UBE2H 단백질 발현량이 점차 증가된다는 것을 확인할 수 있었다 (도 1d).In order to determine what E2 ligase is required for IRS-1 ubiquitination via MG53, the mRNA and protein levels of various E2 enzymes were examined during differentiation of C2C12 myoblasts. First, the maltose binding protein (MBP) tagged MG53 and His (histidine) tagged E2 enzymes UBE2H, UBE2R1, UBE2D2, UBE2E1, UBE2C, UBE2M and UBE2N proteins used in FIG. 2A were coomassie-stained on an SDS-PAGE gel. Confirmed by (Fig. 1a). As a result, it was confirmed that the expression level of UBE2H increased. MRNA differentiation of UBE2H, UBE2R1, UBE2D2, UBE2E1, UBE2L3, UBE2L6, UBE2C, UBE2M, UBE2N, Cav-3, MyHC and MyoD for 5 days from the beginning of muscle differentiation of C2C12 myoblasts was determined by real-time quantitative PCR It was confirmed that the mRNA expression level of UBE2H gradually increased as the progression was performed (FIG. 1B). Among these, UBE2H mRNA expression was normalized based on real-time quantitative PCR results for GAPDH mRNA results. Could be (FIG. 1C). In addition, as a result of confirming the expression of UBE2H, MG53, Mgn, IRS-1 and Cav-3 for 5 days from the start of muscle differentiation of C2C12 cells by immunotaxy method, it was confirmed that UBE2H protein expression level gradually increased as muscle differentiation progressed. (FIG. 1D).

또한, UBE2H와 MG53이 직접적으로 상호작용한다는 것을 입증하기 위하여, MG53 및 다양한 E2 효소 (UBE2H, UBE2R1, UBE2D2, UBE2E1, UBE2C, UBE2M 및 UBE2N) 와의 생체 외 단백질 결합 분석을 수행하였다. 이를 위하여, MBP-MG53 및 His-E2 효소들을 혼합하여 아밀로스 레진 상에 고정시킨 후 면역탁본법으로 그 상호작용을 분석한 결과, UBE2H와 MG53가 단백질-단백질 결합을 하고 있음을 확인할 수 있었다 (도 2a). 또한, 분화 시작 4일째의 C2C12 세포에서 상호 내생적 면역침전법 (reciprocal endogenous immunoprecipitation)에 의하여 MG53와 UBE2H 간의 분자적 상호작용을 재확인하였다 (도 2b).In addition, in vitro protein binding assays with MG53 and various E2 enzymes (UBE2H, UBE2R1, UBE2D2, UBE2E1, UBE2C, UBE2M and UBE2N) were performed to demonstrate that UBE2H and MG53 directly interact. To this end, MBP-MG53 and His-E2 enzymes were mixed, immobilized on amylose resin, and analyzed by immunotaxy. As a result, it was confirmed that UBE2H and MG53 had protein-protein binding (FIG. 2a). In addition, molecular interactions between MG53 and UBE2H were reconfirmed by reciprocal endogenous immunoprecipitation in C2C12 cells at day 4 of differentiation (FIG. 2B).

또한, C2C12 세포에 si-control 및 si-UBE2H를 각 50 nM씩 24시간 처리하여 UBE2H 를 넉다운시키고 48시간 분화시킨 후, 근육세포 분화 양상을 DAPI 염색을 통한 미오신 중사슬 면역형광 (도 2c), 근육분화 색인 (도 2d) 및 면역탁본법을 통한 근육분화마커 단백질의 발현량 (도 2e)으로 조사한 결과, UBE2H 넉다운으로 인해 근육 분화가 강화되었으며 특히 IRS-1의 발현량이 증가되었음을 확인할 수 있었다. 이는 UBE2H가 IRS-1의 분해에 관여하고 있음을 보여주는 것이다. 또한, si-UBE2H를 처리하여 UBE2H를 넉다운시킨 C2C12 근육모세포에 MG132를 12시간 처리하여 IRS-1의 유비퀴틴화를 내생적 (endogenous) 면역침전법으로 확인한 결과, UBE2H 넉다운으로 인해 IRS-1의 유비퀴틴화를 저해되었음을 확인하였다 (도 2f). In addition, C2C12 cells were treated with si-control and si-UBE2H for 24 hours at 50 nM for 24 hours to knock down UBE2H and differentiate for 48 hours. Myocyte differentiation pattern was analyzed by DACI staining for myosin heavy chain immunoblot (FIG. 2C) The expression of muscle differentiation marker protein (FIG. 2d) and the expression level of muscle differentiation marker protein (FIG. 2e) through the immunostocking method showed that the muscle differentiation was enhanced by UBE2H knockdown and the expression level of IRS-1 was increased in particular. This shows that UBE2H is involved in the degradation of IRS-1. In addition, the ubiquitinization of IRS-1 was confirmed by endogenous immunoprecipitation by treating MG132 for 12 hours in C2C12 myoblasts treated with si-UBE2H and knocking down UBE2H. As a result, UBE2H knockdown resulted in ubiquitin of IRS-1. Confirmation was inhibited (FIG. 2F).

또한, C2C12 근육모세포에 si-UBE2H 또는 si-control을, HA-MG53과 동시에 처리하고 48시간 동안 분화시킨 후, 근육 분화 정도를 조사하기 위하여 DAPI 를 이용하여 HA 및 MyHC 면역형광법으로 분석하고 (도 2g), HA-양성 세포 내 핵 (nuclei)의 수를 세 개의 독립적인 현미경 사진으로 확인한 결과 (도 2h), MG53이 존재하여도 UBE2H가 존재하지 않으면 IRS-1의 유비퀴틴화가 일어나지 않고 근육분화가 잘 일어난다는 것을 확인할 수 있었다.In addition, si-UBE2H or si-control on C2C12 myoblasts were treated simultaneously with HA-MG53 and differentiated for 48 hours, and analyzed by HA and MyHC immunofluorescence using DAPI to investigate the degree of muscle differentiation (FIG. 2g), three independent micrographs of the number of nuclei in HA-positive cells (FIG. 2H) showed that ubiquitination of IRS-1 did not occur and muscle differentiation occurred without UBE2H in the presence of MG53. It can be confirmed that it happens well.

또한, Myc-Mg53 및 Flag-UBE2H 각 2 μg을 HEK293 세포에 48시간 공동 트랜스펙션시킨 후, MG53 및 UBE2H 간의 분자적 상호작용을 상호 면역침전법 (reciprocal immunoprecipitation)으로 모니터한 결과, MG53 및 UBE2H 의 상호작용을 확인할 수 있었으며 (도 3a), Flag-IRS-1, HA-MG53 WT, Myc-UBE2H 및 His-Ubiquitin 을 HEK293 세포에 공동 트랜스펙션시키고, MG132 10 μM 을 12시간 처리한 후, 항-Flag 항체를 이용한 면역침전 및 항-His 항체를 이용한 면역탁본법에 의하여 IRS-1 유비퀴틴화를 확인한 결과, HEK293 세포에서 UBE2H 과발현에 의하여 IRS-1 유비퀴틴화가 강하게 유도된다는 것을 확인할 수 있었다 (도 3b).In addition, 2 μg of each of Myc-Mg53 and Flag-UBE2H was co-transfected into HEK293 cells for 48 hours, and then the molecular interactions between MG53 and UBE2H were monitored by reciprocal immunoprecipitation, resulting in MG53 and UBE2H. Interactions of (Fig. 3a), Flag-IRS-1, HA-MG53 WT, Myc-UBE2H and His-Ubiquitin co-transfected HEK293 cells, and after 12 hours of MG132 10 μM, As a result of confirming IRS-1 ubiquitination by immunoprecipitation using anti-Flag antibody and immunotaxin method using anti-His antibody, it was confirmed that IRS-1 ubiquitination was strongly induced by UBE2H overexpression in HEK293 cells (FIG. 3b).

따라서, 상기 데이터들을 통하여 MG53이 IRS-1의 유비퀴틴화를 유도하기 위해서 UBE2H가 필요하다는 것을 알 수 있다.
Therefore, it can be seen from the data that UBE2H is required for MG53 to induce ubiquitination of IRS-1.

결과 2. Result 2. MG53MG53 넉아웃Knockout 마우스는 골격근의 비대 및 인슐린 민감성을 보임 Mice show hypertrophy and insulin sensitivity of skeletal muscle

MG53가 IGF 신호전달을 음성적으로 조절하기 때문에 MG53 넉아웃 마우스는 더 발달된 근육을 가질 것으로 예상하여, 실제로 8주령의 수컷 야생형 마우스 및 MG53 넉아웃 마우스 (각 그룹에서 n=7)에서 가자미근 (soleus muscle)을 분리하여 무게를 조사한 결과, MG53 넉아웃 마우스에서 가자미근의 무게가 30% 정도 증가함을 확인할 수 있었다 (도 4a). 또한, MG53 넉아웃 마우스의 가자미근을 DAPI-염색 및 베타-디스트로글리칸 면역형광염색 후 가자미근의 모양과 종단면 면적의 분포를 조사한 결과, MG53 넉아웃 마우스에서 종단면적의 비율과 분포가 높았다 (도 4b 및 4c). Because MG53 negatively regulates IGF signaling, MG53 knockout mice are expected to have more developed muscles, actually the soleus (soleus) in 8-week-old male wild-type mice and MG53 knockout mice (n = 7 in each group). muscle) was isolated and the weight was examined, it was confirmed that the weight of the soleus muscle in the MG53 knockout mice increased by about 30% (Fig. 4a). In addition, as a result of examining the shape and the distribution of the longitudinal area of the sole of the MG53 knockout mouse after DAPI-staining and beta-distoglycan immunofluorescence staining, the proportion and distribution of the longitudinal area of the MG53 knockout mouse was high (Fig. 4b and 4c).

다음으로, MG53는 IRS-1의 유비퀴틴화를 유도하여 IGF 신호전달만이 아니라 인슐린 신호전달을 음성적으로 조절한다는 것을 증명하기 위하여, 아데노바이러스 벡터를 이용하여 MG53를 C2C12 근육모세포에 과량발현시킨 후 6시간동안 혈청이 없는 상태를 유지하였다. 인슐린 100 nM 을 시간대별 (0, 5, 10분)로 처리하고, 면역탁본법으로 MG53, pAkt, Akt, pERK1/2, ERK1/2 및 actin 의 발현을 측정하여 인슐린에 의한 신호전달을 조사하였다. IRS-1 의 타이로신 인산화는 면역침전 후 항-인산-타이로신 항체를 이용한 면역탁본법으로 확인하였다. 그 결과, MG53는 IRS-1, Akt, Erk의 인산화를 방해한다는 것을 확인할 수 있었다 (도 5a). 또한, 8주령의 야생형 마우스 및 MG53 넉아웃 마우스에 인슐린을 혈관 주사 하고 (10분, 5 U/kg), 5분 후 장딴지근 (gastrocnemius muscle) 및 족저근 (plantaris muscle)을 분리하고 인슐린 신호전달물질 pAkt, total Akt, pERK1/2, 총 ERK1/2 및 actin 의 단백질 양 및 IRS-1 의 타이로신 인산화를 면역탁본법으로 확인하였다. IRS-1 의 타이로신 인산화는 항-IRS-1 을 이용한 면역침전 및 항-인산-타이로신 항체를 이용한 면역탁본법으로 확인하였다. 그 결과, 야생형 마우스에 비해서 넉아웃 마우스의 근육에서 IRS-1의 발현량이 증가하였고 인슐린에 의한 IRS-1, Akt, Erk의 인산화가 더 잘 일어남을 확인할 수 있었다 (도 5b). 또한, 8주령의 야생형 마우스 및 MG53 넉아웃 마우스의 가자미근, 장딴지근 및 족저근에서 IRS-1 발현, IRS-1 인산화 및 Akt 인산화를 통계적으로 분석한 결과, 넉아웃 마우스의 근육에서 IRS-1의 발현량이 증가하였고 인슐린에 의한 IRS-1 및 Akt의 인산화가 더 잘 일어남을 재확인할 수 있었다 (도 5c 및 d).
Next, to demonstrate that MG53 negatively regulates insulin signaling as well as IGF signaling by inducing ubiquitination of IRS-1, after overexpression of MG53 in C2C12 myoblasts using adenovirus vectors, 6 The serum was kept free for hours. Insulin 100 nM was treated by time period (0, 5, 10 minutes), and the expression of MG53, pAkt, Akt, pERK1 / 2, ERK1 / 2 and actin was measured by immunoassay to investigate the signaling by insulin. . Tyrosine phosphorylation of IRS-1 was confirmed by immunotaxy using an anti-phosphate-tyrosine antibody after immunoprecipitation. As a result, it was confirmed that MG53 interferes with phosphorylation of IRS-1, Akt, and Erk (FIG. 5A). In addition, 8-week-old wild-type mice and MG53 knockout mice were injected with insulin (10 min, 5 U / kg), and 5 min later, gastrocnemius muscle and plantaris muscle were isolated and insulin signaling Materials pAkt, total Akt, pERK1 / 2, total ERK1 / 2 and protein amount of actin and tyrosine phosphorylation of IRS-1 were confirmed by immunotrophography. Tyrosine phosphorylation of IRS-1 was confirmed by immunoprecipitation using anti-IRS-1 and immunotaxine using anti-phosphate-tyrosine antibody. As a result, it was confirmed that the expression level of IRS-1 was increased in the muscles of knockout mice compared to wild type mice, and phosphorylation of IRS-1, Akt, and Erk by insulin was better (FIG. 5B). In addition, IRS-1 expression, IRS-1 phosphorylation, and Akt phosphorylation in soleus, calf and plantar muscles of 8-week-old wild-type and MG53 knockout mice were analyzed. Expression levels were increased and it was confirmed that phosphorylation of IRS-1 and Akt by insulin was better (FIGS. 5c and d).

결과 3. Result 3. MG53MG53 넉아웃Knockout 마우스는 인슐린 저항성을 보이지 않음 Mice do not show insulin resistance

10주간 고설탕-고지방식으로 비만 및 당뇨를 유도시킨 4주령의 수컷 야생형 마우스 및 MG53 넉아웃 마우스에 (각 그룹당 n=6) 각각 당부하검사 (glucose tolerance test) 및 인슐린부하검사 (insulin tolerance test)를 수행한 결과, 야생형 마우스에 비해 MG53 넉아웃 마우스의 경우 빠른 혈당 감소를 보여주었다 (도 6a와 b). 또한, 상기 비만을 유도시킨 MG53 넉아웃 마우스의 혈액에서 중성 지방 및 자유 지방산, 전체 콜레스테롤, 인슐린 및 렙틴의 농도를 측정한 결과, 야생형 마우스에 비해 MG53 넉아웃 마우스는 혈중 지방성분 및 대사관련 호르몬의 농도가 정상마우스와 비슷하였다 (도 6c-6g). 이는 MG53이 제2형 당뇨 치료를 위한 타겟 단백질임을 강력하게 보여주는 것이며, 나아가 MG53 의 작용에 반드시 필요한 UBE2H 와의 상호작용을 이용하여 제2형 당뇨 치료제를 효과적으로 선별할 수 있음을 뒷받침한다.Four-week-old male wild-type mice and MG53 knockout mice (n = 6 in each group) inducing high-sugar-fat obesity and diabetes (n = 6 in each group) were tested for glucose tolerance and insulin tolerance tests, respectively. ) Showed faster blood glucose reduction in MG53 knockout mice compared to wild-type mice (FIGS. 6A and B). In addition, as a result of measuring the concentrations of triglycerides and free fatty acids, total cholesterol, insulin and leptin in the blood of the MG53 knockout mice induced with obesity, MG53 knockout mice compared with wild type mice were found Concentrations were similar to normal mice (FIGS. 6C-6G). This strongly demonstrates that MG53 is a target protein for the treatment of type 2 diabetes, and further supports the effective selection of the type 2 diabetes treatment using interaction with UBE2H, which is essential for the action of MG53.

<110> Korea University Research and Business Foundation <120> Screening method using MG53-UBE2H interaction for the treatment of type 2 diabetes <130> DPP20117102KR <160> 33 <170> KopatentIn 1.71 <210> 1 <211> 477 <212> PRT <213> Mus musculus <220> <221> PEPTIDE <222> (1)..(477) <223> MG53 (Genbank accession No. NP_001073401) <400> 1 Met Ser Ala Ala Pro Gly Leu Leu Arg Gln Glu Leu Ser Cys Pro Leu 1 5 10 15 Cys Leu Gln Leu Phe Asp Ala Pro Val Thr Ala Glu Cys Gly His Ser 20 25 30 Phe Cys Arg Ala Cys Leu Ile Arg Val Ala Gly Glu Pro Ala Ala Asp 35 40 45 Gly Thr Val Ala Cys Pro Cys Cys Gln Ala Pro Thr Arg Pro Gln Ala 50 55 60 Leu Ser Thr Asn Leu Gln Leu Ser Arg Leu Val Glu Gly Leu Ala Gln 65 70 75 80 Val Pro Gln Gly His Cys Glu Glu His Leu Asp Pro Leu Ser Ile Tyr 85 90 95 Cys Glu Gln Asp Arg Thr Leu Val Cys Gly Val Cys Ala Ser Leu Gly 100 105 110 Ser His Arg Gly His Arg Leu Leu Pro Ala Ala Glu Ala Gln Ala Arg 115 120 125 Leu Lys Thr Gln Leu Pro Gln Gln Lys Met Gln Leu Gln Glu Ala Cys 130 135 140 Met Arg Lys Glu Lys Thr Val Ala Val Leu Glu His Gln Leu Val Glu 145 150 155 160 Val Glu Glu Thr Val Arg Gln Phe Arg Gly Ala Val Gly Glu Gln Leu 165 170 175 Gly Lys Met Arg Met Phe Leu Ala Ala Leu Glu Ser Ser Leu Asp Arg 180 185 190 Glu Ala Glu Arg Val Arg Gly Asp Ala Gly Val Ala Leu Arg Arg Glu 195 200 205 Leu Ser Ser Leu Asn Ser Tyr Leu Glu Gln Leu Arg Gln Met Glu Lys 210 215 220 Val Leu Glu Glu Val Ala Asp Lys Pro Gln Thr Glu Phe Leu Met Lys 225 230 235 240 Phe Cys Leu Val Thr Ser Arg Leu Gln Lys Ile Leu Ser Glu Ser Pro 245 250 255 Pro Pro Ala Arg Leu Asp Ile Gln Leu Pro Val Ile Ser Asp Asp Phe 260 265 270 Lys Phe Gln Val Trp Lys Lys Met Phe Arg Ala Leu Met Pro Ala Leu 275 280 285 Glu Glu Leu Thr Phe Asp Pro Ser Ser Ala His Pro Ser Leu Val Val 290 295 300 Ser Ser Ser Gly Arg Arg Val Glu Cys Ser Asp Gln Lys Ala Pro Pro 305 310 315 320 Ala Gly Glu Asp Thr Arg Gln Phe Asp Lys Ala Val Ala Val Val Ala 325 330 335 Gln Gln Leu Leu Ser Gln Gly Glu His Tyr Trp Glu Val Glu Val Gly 340 345 350 Asp Lys Pro Arg Trp Ala Leu Gly Val Met Ala Ala Asp Ala Ser Arg 355 360 365 Arg Gly Arg Leu His Ala Val Pro Ser Gln Gly Leu Trp Leu Leu Gly 370 375 380 Leu Arg Asp Gly Lys Ile Leu Glu Ala His Val Glu Ala Lys Glu Pro 385 390 395 400 Arg Ala Leu Arg Thr Pro Glu Arg Pro Pro Ala Arg Ile Gly Leu Tyr 405 410 415 Leu Ser Phe Ala Asp Gly Val Leu Ala Phe Tyr Asp Ala Ser Asn Pro 420 425 430 Asp Val Leu Thr Pro Ile Phe Ser Phe His Glu Arg Leu Pro Gly Pro 435 440 445 Val Tyr Pro Ile Phe Asp Val Cys Trp His Asp Lys Gly Lys Asn Ala 450 455 460 Gln Pro Leu Leu Leu Val Gly Pro Glu Gln Glu Gln Ala 465 470 475 <210> 2 <211> 477 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(477) <223> MG53 (Genbank accession No. NP_001008275) <400> 2 Met Ser Ala Ala Pro Gly Leu Leu His Gln Glu Leu Ser Cys Pro Leu 1 5 10 15 Cys Leu Gln Leu Phe Asp Ala Pro Val Thr Ala Glu Cys Gly His Ser 20 25 30 Phe Cys Arg Ala Cys Leu Gly Arg Val Ala Gly Glu Pro Ala Ala Asp 35 40 45 Gly Thr Val Leu Cys Pro Cys Cys Gln Ala Pro Thr Arg Pro Gln Ala 50 55 60 Leu Ser Thr Asn Leu Gln Leu Ala Arg Leu Val Glu Gly Leu Ala Gln 65 70 75 80 Val Pro Gln Gly His Cys Glu Glu His Leu Asp Pro Leu Ser Ile Tyr 85 90 95 Cys Glu Gln Asp Arg Ala Leu Val Cys Gly Val Cys Ala Ser Leu Gly 100 105 110 Ser His Arg Gly His Arg Leu Leu Pro Ala Ala Glu Ala His Ala Arg 115 120 125 Leu Lys Thr Gln Leu Pro Gln Gln Lys Leu Gln Leu Gln Glu Ala Cys 130 135 140 Met Arg Lys Glu Lys Ser Val Ala Val Leu Glu His Gln Leu Val Glu 145 150 155 160 Val Glu Glu Thr Val Arg Gln Phe Arg Gly Ala Val Gly Glu Gln Leu 165 170 175 Gly Lys Met Arg Val Phe Leu Ala Ala Leu Glu Gly Ser Leu Asp Arg 180 185 190 Glu Ala Glu Arg Val Arg Gly Glu Ala Gly Val Ala Leu Arg Arg Glu 195 200 205 Leu Gly Ser Leu Asn Ser Tyr Leu Glu Gln Leu Arg Gln Met Glu Lys 210 215 220 Val Leu Glu Glu Val Ala Asp Lys Pro Gln Thr Glu Phe Leu Met Lys 225 230 235 240 Tyr Cys Leu Val Thr Ser Arg Leu Gln Lys Ile Leu Ala Glu Ser Pro 245 250 255 Pro Pro Ala Arg Leu Asp Ile Gln Leu Pro Ile Ile Ser Asp Asp Phe 260 265 270 Lys Phe Gln Val Trp Arg Lys Met Phe Arg Ala Leu Met Pro Ala Leu 275 280 285 Glu Glu Leu Thr Phe Asp Pro Ser Ser Ala His Pro Ser Leu Val Val 290 295 300 Ser Ser Ser Gly Arg Arg Val Glu Cys Ser Glu Gln Lys Ala Pro Pro 305 310 315 320 Ala Gly Glu Asp Pro Arg Gln Phe Asp Lys Ala Val Ala Val Val Ala 325 330 335 His Gln Gln Leu Ser Glu Gly Glu His Tyr Trp Glu Val Asp Val Gly 340 345 350 Asp Lys Pro Arg Trp Ala Leu Gly Val Ile Ala Ala Glu Ala Pro Arg 355 360 365 Arg Gly Arg Leu His Ala Val Pro Ser Gln Gly Leu Trp Leu Leu Gly 370 375 380 Leu Arg Glu Gly Lys Ile Leu Glu Ala His Val Glu Ala Lys Glu Pro 385 390 395 400 Arg Ala Leu Arg Ser Pro Glu Arg Arg Pro Thr Arg Ile Gly Leu Tyr 405 410 415 Leu Ser Phe Gly Asp Gly Val Leu Ser Phe Tyr Asp Ala Ser Asp Ala 420 425 430 Asp Ala Leu Val Pro Leu Phe Ala Phe His Glu Arg Leu Pro Arg Pro 435 440 445 Val Tyr Pro Phe Phe Asp Val Cys Trp His Asp Lys Gly Lys Asn Ala 450 455 460 Gln Pro Leu Leu Leu Val Gly Pro Glu Gly Ala Glu Ala 465 470 475 <210> 3 <211> 183 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE <222> (1)..(183) <223> UBE2H (Genbank accession No.NP_003335) <400> 3 Met Ser Ser Pro Ser Pro Gly Lys Arg Arg Met Asp Thr Asp Val Val 1 5 10 15 Lys Leu Ile Glu Ser Lys His Glu Val Thr Ile Leu Gly Gly Leu Asn 20 25 30 Glu Phe Val Val Lys Phe Tyr Gly Pro Gln Gly Thr Pro Tyr Glu Gly 35 40 45 Gly Val Trp Lys Val Arg Val Asp Leu Pro Asp Lys Tyr Pro Phe Lys 50 55 60 Ser Pro Ser Ile Gly Phe Met Asn Lys Ile Phe His Pro Asn Ile Asp 65 70 75 80 Glu Ala Ser Gly Thr Val Cys Leu Asp Val Ile Asn Gln Thr Trp Thr 85 90 95 Ala Leu Tyr Asp Leu Thr Asn Ile Phe Glu Ser Phe Leu Pro Gln Leu 100 105 110 Leu Ala Tyr Pro Asn Pro Ile Asp Pro Leu Asn Gly Asp Ala Ala Ala 115 120 125 Met Tyr Leu His Arg Pro Glu Glu Tyr Lys Gln Lys Ile Lys Glu Tyr 130 135 140 Ile Gln Lys Tyr Ala Thr Glu Glu Ala Leu Lys Glu Gln Glu Glu Gly 145 150 155 160 Thr Gly Asp Ser Ser Ser Glu Ser Ser Met Ser Asp Phe Ser Glu Asp 165 170 175 Glu Ala Gln Asp Met Glu Leu 180 <210> 4 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> si-MG53 <400> 4 aagcacgccu caagacacag c 21 <210> 5 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> si-UBE2H <400> 5 cuaugaucuu accaauaua 19 <210> 6 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> forward primer for MG53 <400> 6 tccctgttgt caggcatcta c 21 <210> 7 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for MG53 <400> 7 ttcttccaca cctggaattt g 21 <210> 8 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> forward primer for MyoD <400> 8 ctcctttgag acagcagacg actt 24 <210> 9 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for MyoD <400> 9 aaatcgcatt ggggtttgag cctg 24 <210> 10 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> forward primer for MyHC <400> 10 agaaggagga ggcaacttct g 21 <210> 11 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for MyHC <400> 11 acatactcat tgccgacctt g 21 <210> 12 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> forward primer for a-actin <400> 12 gaagagctat gagctgcctg a 21 <210> 13 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for a-actin <400> 13 ctcatcgtac tcctgcttgc t 21 <210> 14 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> forward primer for UBE2H <400> 14 aaggaacacc atatgaaggc g 21 <210> 15 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for UBE2H <400> 15 gcgtacttct ggatgtactc tttaa 25 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> forward primer for UBE2R1 <400> 16 tgccaagctc gcagaaggcg 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for UBE2R1 <400> 17 ccaccgctct gagggcagct 20 <210> 18 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> forward primer for UBE2D2 <400> 18 gccctcagct cgtctgatcc g 21 <210> 19 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for UBE2D2 <400> 19 tgataggggc tgtcatttgg ccc 23 <210> 20 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> forward primer for UBE2E1 <400> 20 tgcctggtta atagttgctg ttgct 25 <210> 21 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for UBE2E1 <400> 21 cactgcagtt tggcggaggg t 21 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> forward primer for UBE2L3 <400> 22 aaggggcagg tctgtctgcc 20 <210> 23 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for UBE2L3 <400> 23 cctgctttgc ggggtgtctg a 21 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> forward primer for UBE2L6 <400> 24 agctgccgcc ataccttcgc 20 <210> 25 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for UBE2L6 <400> 25 gcaagttcca gacgcacagg ct 22 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> forward primer for UBE2C <400> 26 aaaccgcgac ccagctgctg 20 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for UBE2C <400> 27 gccctgggtg tccacgttgg 20 <210> 28 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> forward primer for UBE2M <400> 28 agggcagcag caagaaggcg 20 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for UBE2M <400> 29 ggcagacgtt gccctcgagg 20 <210> 30 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> forward primer for UBE2N <400> 30 atgtggtcat tgctggcccc c 21 <210> 31 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for UBE2N <400> 31 gcagaacagg agaagtggtg tacac 25 <210> 32 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> forward primer for GAPDH <400> 32 tggcaaattc catggcacc 19 <210> 33 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for GAPDH <400> 33 agagatgatg acccttttg 19 <110> Korea University Research and Business Foundation <120> Screening method using MG53-UBE2H interaction for the treatment          of type 2 diabetes <130> DPP20117102KR <160> 33 <170> Kopatentin 1.71 <210> 1 <211> 477 <212> PRT <213> Mus musculus <220> <221> PEPTIDE (222) (1) .. (477) <223> MG53 (Genbank accession No. NP_001073401) <400> 1 Met Ser Ala Ala Pro Gly Leu Leu Arg Gln Glu Leu Ser Cys Pro Leu   1 5 10 15 Cys Leu Gln Leu Phe Asp Ala Pro Val Thr Ala Glu Cys Gly His Ser              20 25 30 Phe Cys Arg Ala Cys Leu Ile Arg Val Ala Gly Glu Pro Ala Ala Asp          35 40 45 Gly Thr Val Ala Cys Pro Cys Cys Gln Ala Pro Thr Arg Pro Gln Ala      50 55 60 Leu Ser Thr Asn Leu Gln Leu Ser Arg Leu Val Glu Gly Leu Ala Gln  65 70 75 80 Val Pro Gln Gly His Cys Glu Glu His Leu Asp Pro Leu Ser Ile Tyr                  85 90 95 Cys Glu Gln Asp Arg Thr Leu Val Cys Gly Val Cys Ala Ser Leu Gly             100 105 110 Ser His Arg Gly His Arg Leu Leu Pro Ala Ala Glu Ala Gln Ala Arg         115 120 125 Leu Lys Thr Gln Leu Pro Gln Gln Lys Met Gln Leu Gln Glu Ala Cys     130 135 140 Met Arg Lys Glu Lys Thr Val Ala Val Leu Glu His Gln Leu Val Glu 145 150 155 160 Val Glu Glu Thr Val Arg Gln Phe Arg Gly Ala Val Gly Glu Gln Leu                 165 170 175 Gly Lys Met Arg Met Phe Leu Ala Ala Leu Glu Ser Ser Leu Asp Arg             180 185 190 Glu Ala Glu Arg Val Arg Gly Asp Ala Gly Val Ala Leu Arg Arg Glu         195 200 205 Leu Ser Ser Leu Asn Ser Tyr Leu Glu Gln Leu Arg Gln Met Glu Lys     210 215 220 Val Leu Glu Glu Val Ala Asp Lys Pro Gln Thr Glu Phe Leu Met Lys 225 230 235 240 Phe Cys Leu Val Thr Ser Arg Leu Gln Lys Ile Leu Ser Glu Ser Pro                 245 250 255 Pro Pro Ala Arg Leu Asp Ile Gln Leu Pro Val Ile Ser Asp Asp Phe             260 265 270 Lys Phe Gln Val Trp Lys Lys Met Phe Arg Ala Leu Met Pro Ala Leu         275 280 285 Glu Glu Leu Thr Phe Asp Pro Ser Ser Ala His Pro Ser Leu Val Val     290 295 300 Ser Ser Ser Gly Arg Arg Val Glu Cys Ser Asp Gln Lys Ala Pro Pro 305 310 315 320 Ala Gly Glu Asp Thr Arg Gln Phe Asp Lys Ala Val Ala Val Val Ala                 325 330 335 Gln Gln Leu Leu Ser Gln Gly Glu His Tyr Trp Glu Val Glu Val Gly             340 345 350 Asp Lys Pro Arg Trp Ala Leu Gly Val Met Ala Ala Asp Ala Ser Arg         355 360 365 Arg Gly Arg Leu His Ala Val Pro Ser Gln Gly Leu Trp Leu Leu Gly     370 375 380 Leu Arg Asp Gly Lys Ile Leu Glu Ala His Val Glu Ala Lys Glu Pro 385 390 395 400 Arg Ala Leu Arg Thr Pro Glu Arg Pro Pro Ala Arg Ile Gly Leu Tyr                 405 410 415 Leu Ser Phe Ala Asp Gly Val Leu Ala Phe Tyr Asp Ala Ser Asn Pro             420 425 430 Asp Val Leu Thr Pro Ile Phe Ser Phe His Glu Arg Leu Pro Gly Pro         435 440 445 Val Tyr Pro Ile Phe Asp Val Cys Trp His Asp Lys Gly Lys Asn Ala     450 455 460 Gln Pro Leu Leu Leu Val Gly Pro Glu Gln Glu Gln Ala 465 470 475 <210> 2 <211> 477 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE (222) (1) .. (477) <223> MG53 (Genbank accession No. NP_001008275) <400> 2 Met Ser Ala Ala Pro Gly Leu Leu His Gln Glu Leu Ser Cys Pro Leu   1 5 10 15 Cys Leu Gln Leu Phe Asp Ala Pro Val Thr Ala Glu Cys Gly His Ser              20 25 30 Phe Cys Arg Ala Cys Leu Gly Arg Val Ala Gly Glu Pro Ala Ala Asp          35 40 45 Gly Thr Val Leu Cys Pro Cys Cys Gln Ala Pro Thr Arg Pro Gln Ala      50 55 60 Leu Ser Thr Asn Leu Gln Leu Ala Arg Leu Val Glu Gly Leu Ala Gln  65 70 75 80 Val Pro Gln Gly His Cys Glu Glu His Leu Asp Pro Leu Ser Ile Tyr                  85 90 95 Cys Glu Gln Asp Arg Ala Leu Val Cys Gly Val Cys Ala Ser Leu Gly             100 105 110 Ser His Arg Gly His Arg Leu Leu Pro Ala Ala Glu Ala His Ala Arg         115 120 125 Leu Lys Thr Gln Leu Pro Gln Gln Lys Leu Gln Leu Gln Glu Ala Cys     130 135 140 Met Arg Lys Glu Lys Ser Val Ala Val Leu Glu His Gln Leu Val Glu 145 150 155 160 Val Glu Glu Thr Val Arg Gln Phe Arg Gly Ala Val Gly Glu Gln Leu                 165 170 175 Gly Lys Met Arg Val Phe Leu Ala Ala Leu Glu Gly Ser Leu Asp Arg             180 185 190 Glu Ala Glu Arg Val Arg Gly Glu Ala Gly Val Ala Leu Arg Arg Glu         195 200 205 Leu Gly Ser Leu Asn Ser Tyr Leu Glu Gln Leu Arg Gln Met Glu Lys     210 215 220 Val Leu Glu Glu Val Ala Asp Lys Pro Gln Thr Glu Phe Leu Met Lys 225 230 235 240 Tyr Cys Leu Val Thr Ser Arg Leu Gln Lys Ile Leu Ala Glu Ser Pro                 245 250 255 Pro Pro Ala Arg Leu Asp Ile Gln Leu Pro Ile Ile Ser Asp Asp Phe             260 265 270 Lys Phe Gln Val Trp Arg Lys Met Phe Arg Ala Leu Met Pro Ala Leu         275 280 285 Glu Glu Leu Thr Phe Asp Pro Ser Ser Ala His Pro Ser Leu Val Val     290 295 300 Ser Ser Ser Gly Arg Arg Val Glu Cys Ser Glu Gln Lys Ala Pro Pro 305 310 315 320 Ala Gly Glu Asp Pro Arg Gln Phe Asp Lys Ala Val Ala Val Val Ala                 325 330 335 His Gln Gln Leu Ser Glu Gly Glu His Tyr Trp Glu Val Asp Val Gly             340 345 350 Asp Lys Pro Arg Trp Ala Leu Gly Val Ile Ala Ala Glu Ala Pro Arg         355 360 365 Arg Gly Arg Leu His Ala Val Pro Ser Gln Gly Leu Trp Leu Leu Gly     370 375 380 Leu Arg Glu Gly Lys Ile Leu Glu Ala His Val Glu Ala Lys Glu Pro 385 390 395 400 Arg Ala Leu Arg Ser Pro Glu Arg Arg Pro Thr Arg Ile Gly Leu Tyr                 405 410 415 Leu Ser Phe Gly Asp Gly Val Leu Ser Phe Tyr Asp Ala Ser Asp Ala             420 425 430 Asp Ala Leu Val Pro Leu Phe Ala Phe His Glu Arg Leu Pro Arg Pro         435 440 445 Val Tyr Pro Phe Phe Asp Val Cys Trp His Asp Lys Gly Lys Asn Ala     450 455 460 Gln Pro Leu Leu Leu Val Gly Pro Glu Gly Ala Glu Ala 465 470 475 <210> 3 <211> 183 <212> PRT <213> Homo sapiens <220> <221> PEPTIDE &Lt; 222 > (1) .. (183) <223> UBE2H (Genbank accession No. NP_003335) <400> 3 Met Ser Ser Pro Ser Pro Gly Lys Arg Arg Met Asp Thr Asp Val Val   1 5 10 15 Lys Leu Ile Glu Ser Lys His Glu Val Thr Ile Leu Gly Gly Leu Asn              20 25 30 Glu Phe Val Val Lys Phe Tyr Gly Pro Gln Gly Thr Pro Tyr Glu Gly          35 40 45 Gly Val Trp Lys Val Arg Val Asp Leu Pro Asp Lys Tyr Pro Phe Lys      50 55 60 Ser Pro Ser Ile Gly Phe Met Asn Lys Ile Phe His Pro Asn Ile Asp  65 70 75 80 Glu Ala Ser Gly Thr Val Cys Leu Asp Val Ile Asn Gln Thr Trp Thr                  85 90 95 Ala Leu Tyr Asp Leu Thr Asn Ile Phe Glu Ser Phe Leu Pro Gln Leu             100 105 110 Leu Ala Tyr Pro Asn Pro Ile Asp Pro Leu Asn Gly Asp Ala Ala Ala         115 120 125 Met Tyr Leu His Arg Pro Glu Glu Tyr Lys Gln Lys Ile Lys Glu Tyr     130 135 140 Ile Gln Lys Tyr Ala Thr Glu Glu Ala Leu Lys Glu Gln Glu Glu Gly 145 150 155 160 Thr Gly Asp Ser Ser Ser Glu Ser Ser Met Ser Asp Phe Ser Glu Asp                 165 170 175 Glu Ala Gln Asp Met Glu Leu             180 <210> 4 <211> 21 <212> RNA <213> Artificial Sequence <220> <223> si-MG53 <400> 4 aagcacgccu caagacacag c 21 <210> 5 <211> 19 <212> RNA <213> Artificial Sequence <220> <223> si-UBE2H <400> 5 cuaugaucuu accaauaua 19 <210> 6 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> forward primer for MG53 <400> 6 tccctgttgt caggcatcta c 21 <210> 7 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for MG53 <400> 7 ttcttccaca cctggaattt g 21 <210> 8 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> forward primer for MyoD <400> 8 ctcctttgag acagcagacg actt 24 <210> 9 <211> 24 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for MyoD <400> 9 aaatcgcatt ggggtttgag cctg 24 <210> 10 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> forward primer for MyHC <400> 10 agaaggagga ggcaacttct g 21 <210> 11 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for MyHC <400> 11 acatactcat tgccgacctt g 21 <210> 12 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> forward primer for a-actin <400> 12 gaagagctat gagctgcctg a 21 <210> 13 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for a-actin <400> 13 ctcatcgtac tcctgcttgc t 21 <210> 14 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> forward primer for UBE2H <400> 14 aaggaacacc atatgaaggc g 21 <210> 15 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for UBE2H <400> 15 gcgtacttct ggatgtactc tttaa 25 <210> 16 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> forward primer for UBE2R1 <400> 16 tgccaagctc gcagaaggcg 20 <210> 17 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for UBE2R1 <400> 17 ccaccgctct gagggcagct 20 <210> 18 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> forward primer for UBE2D2 <400> 18 gccctcagct cgtctgatcc g 21 <210> 19 <211> 23 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for UBE2D2 <400> 19 tgataggggc tgtcatttgg ccc 23 <210> 20 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> forward primer for UBE2E1 <400> 20 tgcctggtta atagttgctg ttgct 25 <210> 21 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for UBE2E1 <400> 21 cactgcagtt tggcggaggg t 21 <210> 22 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> forward primer for UBE2L3 <400> 22 aaggggcagg tctgtctgcc 20 <210> 23 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for UBE2L3 <400> 23 cctgctttgc ggggtgtctg a 21 <210> 24 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> forward primer for UBE2L6 <400> 24 agctgccgcc ataccttcgc 20 <210> 25 <211> 22 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for UBE2L6 <400> 25 gcaagttcca gacgcacagg ct 22 <210> 26 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> forward primer for UBE2C <400> 26 aaaccgcgac ccagctgctg 20 <210> 27 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for UBE2C <400> 27 gccctgggtg tccacgttgg 20 <210> 28 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> forward primer for UBE2M <400> 28 agggcagcag caagaaggcg 20 <210> 29 <211> 20 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for UBE2M <400> 29 ggcagacgtt gccctcgagg 20 <210> 30 <211> 21 <212> DNA <213> Artificial Sequence <220> <223> forward primer for UBE2N <400> 30 atgtggtcat tgctggcccc c 21 <210> 31 <211> 25 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for UBE2N <400> 31 gcagaacagg agaagtggtg tacac 25 <210> 32 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> forward primer for GAPDH <400> 32 tggcaaattc catggcacc 19 <210> 33 <211> 19 <212> DNA <213> Artificial Sequence <220> <223> reverse primer for GAPDH <400> 33 agagatgatg acccttttg 19

Claims (8)

(a) MG53 (mitsugumin 53) 및 UBE2H (ubiquitin-conjugating enzyme E2H)를 발현하는 세포에 후보 화합물을 처리하는 단계; 및
(b) 상기 세포에서 MG53 및 UBE2H 의 상호작용이 저해되는지 여부를 결정하는 단계를 포함하는,
제2형 당뇨 치료제를 스크리닝하는 방법.
(a) treating candidate compounds to cells expressing MG53 (mitsugumin 53) and UBE2H (ubiquitin-conjugating enzyme E2H); And
(b) determining whether the interaction of MG53 and UBE2H in said cells is inhibited,
Screening for Type 2 Diabetes Therapeutics.
(a') 분리된 MG53 및 분리된 UBE2H 의 혼합물에 후보 화합물을 처리하는 단계; 및
(b') MG53 및 UBE2H 의 상호작용이 저해되는지 여부를 결정하는 단계를 포함하는,
제2형 당뇨 치료제를 스크리닝하는 방법.
(a ') treating the candidate compound with a mixture of isolated MG53 and isolated UBE2H; And
(b ') determining whether the interaction of MG53 and UBE2H is inhibited,
Screening for Type 2 Diabetes Therapeutics.
제1항 또는 제2항에 있어서, 상기 MG53 및 UBE2H 의 상호작용을 MG53 또는 UBE2H 에 특이적인 항체를 이용하여 검출하는 것인 방법.
The method of claim 1 or 2, wherein the interaction of MG53 and UBE2H is detected using an antibody specific for MG53 or UBE2H.
제3항에 있어서, 상기 MG53 및 UBE2H 의 상호작용을 면역탁본법, 면역침전법 또는 면역염색법에 의해 검출하는 것인 방법.
The method of claim 3, wherein the interaction between MG53 and UBE2H is detected by immunotaxine, immunoprecipitation, or immunostaining.
제1항 또는 제2항에 있어서, 상기 MG53 및 UBE2H 는 각각 리포터 단백질 연결된 것인 방법.
The method of claim 1 or 2, wherein the MG53 and UBE2H are each reporter protein linked.
제5항에 있어서, 상기 리포터 단백질은 클로람페니콜아세틸트랜스퍼라제, 베타-글루쿠로니다제, 루시퍼라제, 베타-갈락토시다제 또는 형광 단백질인 방법.
The method of claim 5, wherein the reporter protein is chloramphenicolacetyltransferase, beta-glucuronidase, luciferase, beta-galactosidase or fluorescent protein.
제5항에 있어서, 상기 형광 단백질은 녹색 형광 단백질 (green fluorescent protein), 적색 형광 단백질 (red fluorescent protein), 청색 형광 단백질 (blue fluorescent protein), 황색 형광 단백질 (yellow fluorescent protein), 남색 형광 단백질 (cyan fluorescent protein), 증강된 녹색 형광 단백질 (enhanced green fluorescent protein), 증강된 적색 형광 단백질, 증강된 청색 형광 단백질, 증강된 황색 형광 단백질 또는 증강된 남색 형광 단백질인 방법.
The method of claim 5, wherein the fluorescent protein is a green fluorescent protein (red fluorescent protein), red fluorescent protein (red fluorescent protein), blue fluorescent protein (blue fluorescent protein), yellow fluorescent protein (yellow fluorescent protein), navy blue fluorescent protein ( cyan fluorescent protein, enhanced green fluorescent protein, enhanced red fluorescent protein, enhanced blue fluorescent protein, enhanced yellow fluorescent protein or enhanced indigo fluorescent protein.
제5항에 있어서, MG53 및 UBE2H 의 상호작용을 리포터 단백질의 신호 크기에 의해 검출하는 것인 방법.The method of claim 5, wherein the interaction of MG53 and UBE2H is detected by the signal magnitude of the reporter protein.
KR1020120016541A 2012-02-17 2012-02-17 Screening method using MG53-UBE2H interaction for the treatment of type 2 diabetes KR101460737B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020120016541A KR101460737B1 (en) 2012-02-17 2012-02-17 Screening method using MG53-UBE2H interaction for the treatment of type 2 diabetes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120016541A KR101460737B1 (en) 2012-02-17 2012-02-17 Screening method using MG53-UBE2H interaction for the treatment of type 2 diabetes

Publications (2)

Publication Number Publication Date
KR20130096338A true KR20130096338A (en) 2013-08-30
KR101460737B1 KR101460737B1 (en) 2014-11-17

Family

ID=49219223

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120016541A KR101460737B1 (en) 2012-02-17 2012-02-17 Screening method using MG53-UBE2H interaction for the treatment of type 2 diabetes

Country Status (1)

Country Link
KR (1) KR101460737B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101886788B1 (en) * 2017-02-07 2018-08-09 가톨릭대학교 산학협력단 Method for screening Duchenne Muscular Dystrophy agents comprising detecting interactions of MG53 and Orai1
CN110934787A (en) * 2019-11-27 2020-03-31 陈少威 Anti-aging composition and preparation method thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102101807B1 (en) 2017-03-21 2020-04-20 동국대학교 산학협력단 Composition for diagnosing insulin resistance and its uses

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU3731895A (en) 1994-09-28 1996-04-19 Shaman Pharmaceuticals, Inc. Cryptolepine analogs with hypoglycemic activity
EP2037737B1 (en) 2006-07-11 2014-04-02 University Of Medicine And Dentistry Of New Jersey Cell membrane repair proteins, nucleic acids encoding the same and associated methods of use
US8383602B2 (en) * 2007-09-04 2013-02-26 Korea University Industrial & Academic Collaborative Foundation Use of TRIM72 as a target for muscle and heart enhancer

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101886788B1 (en) * 2017-02-07 2018-08-09 가톨릭대학교 산학협력단 Method for screening Duchenne Muscular Dystrophy agents comprising detecting interactions of MG53 and Orai1
CN110934787A (en) * 2019-11-27 2020-03-31 陈少威 Anti-aging composition and preparation method thereof
CN110934787B (en) * 2019-11-27 2022-04-19 陈少威 Anti-aging composition and preparation method thereof

Also Published As

Publication number Publication date
KR101460737B1 (en) 2014-11-17

Similar Documents

Publication Publication Date Title
JP5628807B2 (en) Method for regulating cancer metastasis or cancer cell migration by regulating intracellular levels of lysyl tRNA synthetase
Park et al. Dyrk1A phosphorylates p53 and inhibits proliferation of embryonic neuronal cells
KR100501550B1 (en) Antibody against LAR phosphatase subunit
EP2261242A1 (en) Aspartate-N-acetyltransferase enzyme, diagnostic method and therapeutic method
CN101616684A (en) The sclerosis protein binding gametophyte regulator that is used for the treatment of the bone photo related disorders
JP2009525046A (en) Alpha-synuclein kinase
JP2022130514A (en) Anti-rho gtpase conformational single domain antibodies and uses thereof
JP2010517511A (en) Screening method for anti-diabetic compounds
CA2506331C (en) Protein specific to pancreatic beta cells in islets of langerhans and applications thereof
KR101460737B1 (en) Screening method using MG53-UBE2H interaction for the treatment of type 2 diabetes
JP2017512068A (en) Method and use of mitofusin
Stenzinger et al. The novel protein PTPIP51 exhibits tissue-and cell-specific expression
CN112824540B (en) SNX5 as biological marker for prognosis of liver cancer and application thereof
Kim et al. D2 dopamine receptor expression and trafficking is regulated through direct interactions with ZIP
EP3896080A1 (en) Novel igfr-like receptor and uses thereof
US20060094013A1 (en) Salt-inducible kinases 2 and use thereof
US11999776B2 (en) IGFR-like 2 receptor and uses thereof
US10363322B2 (en) Non-alcoholic fatty liver regulator 14-3-3 protein
Zhang et al. Islr regulates insulin sensitivity by interacting with Psma4 to control insulin receptor alpha levels in obese mice
US10188650B2 (en) Treatment of neurological disorders
US20180207294A1 (en) Non-alcoholic fatty liver regulating factor 14-3-3 protein
JP2002517998A (en) Interaction of p27 (KIP1) with FKBP-12
US20190351017A1 (en) Methods and compositions for treating hypoglycemia
CN114423444A (en) CAMKII-delta 9 antagonists and uses thereof
US20230025525A1 (en) Novel igfr-like receptor and uses thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20171030

Year of fee payment: 4