KR20130012318A - Method for controlling temperature of reactor coolant to reduce amount of boron used in nuclear power plant - Google Patents
Method for controlling temperature of reactor coolant to reduce amount of boron used in nuclear power plant Download PDFInfo
- Publication number
- KR20130012318A KR20130012318A KR1020110073432A KR20110073432A KR20130012318A KR 20130012318 A KR20130012318 A KR 20130012318A KR 1020110073432 A KR1020110073432 A KR 1020110073432A KR 20110073432 A KR20110073432 A KR 20110073432A KR 20130012318 A KR20130012318 A KR 20130012318A
- Authority
- KR
- South Korea
- Prior art keywords
- coolant
- temperature
- reactor
- controlling
- control
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21D—NUCLEAR POWER PLANT
- G21D3/00—Control of nuclear power plant
- G21D3/08—Regulation of any parameters in the plant
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C1/00—Reactor types
- G21C1/04—Thermal reactors ; Epithermal reactors
- G21C1/06—Heterogeneous reactors, i.e. in which fuel and moderator are separated
- G21C1/08—Heterogeneous reactors, i.e. in which fuel and moderator are separated moderator being highly pressurised, e.g. boiling water reactor, integral super-heat reactor, pressurised water reactor
- G21C1/086—Pressurised water reactors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
Abstract
Description
본 발명은, 원자력발전소의 초기 노심의 냉각재에 주입되는 붕소의 양을 줄이기 위한 원자로 냉각재 온도 제어방법에 관한 것이다.
The present invention relates to a reactor coolant temperature control method for reducing the amount of boron injected into the coolant of an initial core of a nuclear power plant.
원자로는 농축 우라늄으로 제조된 다수의 연료봉을 연소(핵분열)시킬 때 발생하는 열에너지를 전기 에너지로 변환하는 장치이다. 열은 증기를 발생시키고, 그 증기는 터어빈 및 발전기를 회전시켜 전기를 생산하는 것이다. A nuclear reactor is a device that converts thermal energy generated by combustion (nuclear fission) of a plurality of fuel rods made of enriched uranium into electrical energy. Heat generates steam, which in turn rotates turbines and generators to produce electricity.
가압수형(PWR: Pressurized Water Reactor) 원자로는 원자로 압력용기 안의 노심(爐心) 내에서 이루어지는 핵연료의 연쇄반응에 의해 발생하는 열로 동작한다. 연쇄반응에서 발생한 열은 연료 집합체와 열 교환기 사이로 순환하는 제1차 계통에 전달되어 1차 계통의 물을 데우고, 1차 계통의 물은 증기 발생기로 불리는 열 교환기에서 제2차 계통에 열을 전달한다. 그 결과로 생성된 증기가 터빈발전기를 돌린다. 터빈을 통과한 2차 계통은 응축기에서 온도가 낮춰지게 되고, 증기 발생기로 다시 들어가게 된다. Pressurized Water Reactor (PWR) reactors operate with heat generated by a chain reaction of nuclear fuel in the core of the reactor pressure vessel. The heat from the chain reaction is transferred to the primary system, which circulates between the fuel assembly and the heat exchanger to heat the water in the primary system, and the water in the primary system transfers heat to the secondary system in a heat exchanger called a steam generator. do. The resulting steam turns the turbine generator. After passing through the turbine, the secondary system cools down in the condenser and back into the steam generator.
일반적인 가압수형 원자로의 출력은 1차 계통에 들어있는 붕산(Boron)의 양이나, 붕소의 펠렛으로 채워진 제어봉의 높이 제어를 통해 조절된다. 붕소는 핵 분열시에 방출되는 중성자를 즉시 흡수하므로, 중성자에 의한 연쇄반응을 줄여서 원자로의 반응도, 즉 출력을 제어한다.The output of a typical pressurized water reactor is controlled by controlling the amount of boric acid in the primary system or the height of a control rod filled with boron pellets. Boron immediately absorbs the neutrons released during nuclear fission, thus reducing the chain reaction by the neutrons, thereby controlling the reactor's reactivity, or output.
가압수형 원자로의 출력 제어는 반응도 제어계통에 의해 이루어지며, 일반적으로 노심 내부에서 중성자를 흡수하는 제어봉을 세로로 이동시켜서 제어한다. 가압수형 원자로의 제어방식 중 가장 많이 사용되는 방식에는 고도 흡수봉으로 구성된 제어집단의 운동을 노심의 실 평균온도와 원자로가 터빈에 공급해야 하는 출력의 일차함수인 기준온도 사이의 편차를 조절 매개변수로 이용하여 자동 제어하는 것이다. The output control of the pressurized water reactor is made by the reactivity control system, and is generally controlled by vertically moving the control rod absorbing neutrons in the core. The most commonly used control method of the pressurized water reactor includes the control of the movement of the control group consisting of the highly absorbing rod to control the deviation between the actual average temperature of the core and the reference temperature, which is the primary function of the output the reactor must supply to the turbine. Automatic control by using.
그러나 가압수형 원자로의 모든 반응도 제어 계통에는 원자로 냉각수의 붕산처리 및 그 냉각수 희석 시스템을 추가로 포함한다. 그런데 가용성 붕산 함유량의 증가는 사실상 냉각수에 의한 중성자의 흡수를 증가시키기 때문에 원자로의 출력을 감소시킬 수 있다. However, all reactivity control systems of pressurized water reactors further include boric acid treatment of the reactor cooling water and its cooling water dilution system. However, an increase in the content of soluble boric acid can actually reduce the output of the reactor because it increases the absorption of neutrons by the cooling water.
따라서, 최근의 가압수형 원자로에서는 독성물질인 붕산수를 사용하지 않고 노심 잉여 반응도를 보상하는 무붕산 노심 반응도 제어기법에 대한 연구가 진행되고 있다.
Therefore, in recent pressurized water reactors, researches on the core boric acid free reactivity controller method for compensating core surplus reactivity without using toxic boric acid water have been conducted.
본 발명의 목적은 연소도가 증가함에 따라 원자로 냉각재의 온도가 변화되도록 제어함으로서, 원자력발전소의 초기 노심의 냉각재에 주입되는 붕소의 양을 줄이는 원자로 냉각재 온도 제어방법을 제공함에 있다.
An object of the present invention is to provide a method for controlling the reactor coolant temperature by reducing the amount of boron injected into the coolant of the initial core of a nuclear power plant by controlling the temperature of the reactor coolant to change as the combustion degree increases.
상기 목적을 달성하기 위한 본 발명의 원자로 냉각재 온도 제어방법은, 원자로 내부를 순환하는 냉각재의 온도를 초기 노심 상태에서부터 핵 연료의 연소가 진행됨에 따라 상기 냉각재 온도를 점차 낮추는 단계를 포함하여 상기 원자로의 잉여 반응도를 제어한다.Reactor coolant temperature control method of the present invention for achieving the above object, including the step of gradually lowering the coolant temperature as the combustion of the nuclear fuel from the initial core state of the coolant circulating inside the reactor of the reactor Control excess reactivity.
여기서, 초기 노심 상태의 상기 냉각재 온도는 초기 노심 상태에 상기 냉각재에 주입된 붕소의 양에 따른 잉여 반응도를 줄이기 위한 온도로 설정되어야 한다.Here, the coolant temperature in the initial core state should be set to a temperature for reducing the excess reactivity according to the amount of boron injected into the coolant in the initial core state.
또한, 상기 핵 연료의 동일한 연소도를 기준으로, 상기 원자로의 출력을 줄일수록 상기 냉각재의 온도를 더 낮게 제어하는 것이 바람직하다.Further, based on the same combustion degree of the nuclear fuel, it is desirable to control the coolant temperature lower as the output of the reactor is reduced.
실시 예에 따라, 상기 냉각재 온도 제어는 응축기에서 냉각되는 2차 냉각수의 온도와, 열교환기로 공급되는 상기 2차 냉각수의 양을 제어함으로써 상기 냉각재의 온도를 제어할 수 있다.
According to an embodiment, the coolant temperature control may control the temperature of the coolant by controlling the temperature of the secondary coolant cooled in the condenser and the amount of the secondary coolant supplied to the heat exchanger.
본 발명에 따른 원자로 냉각재 온도 제어방법은 냉각재에 주입되는 붕소의 양을 줄이면서도 초기 노심 상태의 잉여 반응도를 제어할 수 있으며, 붕소의 과다한 사용으로 인한 원자로의 출력 저하 문제를 해결할 수 있다. Reactor coolant temperature control method according to the present invention can control the excess reactivity of the initial core state while reducing the amount of boron injected into the coolant, it is possible to solve the problem of reduced output of the reactor due to the excessive use of boron.
또한, 핵 연료의 연소가 진행되는 것에 맞추어 냉각재의 온도를 점진적으로 낮춤으로써, 냉각재 온도가 높음에 따라 발생할 수 있는 원자로의 출력 저하를 방지할 수 있다.
In addition, by gradually lowering the temperature of the coolant as the combustion of the nuclear fuel proceeds, it is possible to prevent a decrease in the output of the reactor that may occur as the coolant temperature is high.
도 1은 본 발명의 원자로 냉각재 온도 제어방법이 수행되는 원자력 발전소의 구성을 간략히 도시한 도면, 그리고
도 2는 본 발명의 원자로 냉각재 온도 제어방법의 설명에 제공되는 도면이다.1 is a view briefly showing the configuration of a nuclear power plant in which the method for controlling the reactor coolant temperature of the present invention is performed, and
2 is a view provided to explain the reactor coolant temperature control method of the present invention.
이하 도면을 참조하여 본 발명을 더욱 상세히 설명한다.BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail with reference to the drawings.
도 1을 참조하면, 본 발명에 따른 원자력발전소는 가압수형 원자로(PWR: Pressurized Water Reactor)를 간략히 도시한 것으로서, 원자로 압력용기(101), 1차 냉각계통(103), 열교환기(105), 2차 냉각계통(107), 터빈(109), 발전기(111), 응축기(113) 및 제어장치(115)를 포함한다. Referring to FIG. 1, a nuclear power plant according to the present invention briefly illustrates a pressurized water reactor (PWR), a
원자로 압력용기(101) 내의 핵연료의 연쇄반응에 의해 발생하는 열이 1차 냉각계통(103) 상의 물을 데운다. 열교환기(105)는 1차 냉각계통(103)상의 냉각재가 가진 열 에너지를 이용하여 2차 냉각계통(107)상의 물을 증기로 변화시키고, 열교환기(105)에서 발생한 고압의 증기가 터빈(109)을 돌리면 터빈(109)에 축 연결된 발전기(111)가 발전하게 된다. 터빈(109)을 통과한 증기는 응축기(113)에서 다시 물로 냉각되어 열교환기(105)로 공급된다. Heat generated by the chain reaction of the nuclear fuel in the
제어장치(115)는 응축기(113)와 2차 냉각계통(107)을 제어하여 2차 냉각수의 온도를 제어함으로써, 본 발명의 방법에 따른 원자로 냉각재(1차 냉각수) 온도 제어를 수행한다. 이에 따라, 원자력발전소의 초기 노심 상태에서 냉각재에 주입되는 붕소의 양을 현저하게 줄이고도 초기 노심시의 잉여 반응도를 줄인다. The
이하에서는 도 2를 참조하여, 본 발명의 원자로 냉각재 온도 제어방법을 설명한다. 도 2의 가로축은 핵 연료의 연소도를 나타내는 것으로서, 새로운 핵 연료가 주입된 주기 초(BOC: Beginning Of Cycle)에서부터 주기 말(End Of Cycle)까지 냉각재 온도 제어가 수행됨을 알 수 있다. 세로축은 냉각재 계통(RCS: Reactor Coolant System) 냉각재(Coolant)의 평균 제어온도를 나타낸 다. 이해를 돕기 위하여, 종래에 일정하게 유지된 냉각재의 온도(Tc)도 점선으로 함께 도시되어 있다. Hereinafter, with reference to Figure 2, the reactor coolant temperature control method of the present invention. 2 represents the combustion degree of nuclear fuel, and it can be seen that coolant temperature control is performed from the beginning of the cycle (BOC) to the end of the cycle (BOC) in which new nuclear fuel is injected. The vertical axis represents the average control temperature of the Reactor Coolant System (RCS) coolant. For the sake of understanding, the temperature Tc of the coolant, which has been kept constant in the past, is also shown together in dashed lines.
도시된 것처럼, 본 발명에 따른 원자로 냉각재 온도 제어방법은 원자로 냉각재(즉, 1차 냉각수)의 평균 온도를 일정하게 유지하지 않고, 핵 연료의 연소도가 증가함에 따라 원자로 냉각재의 평균 온도가 변하도록 제어하는데 특징이 있다. As shown, the method for controlling the reactor coolant temperature according to the present invention does not maintain the average temperature of the reactor coolant (ie, primary coolant) at a constant value, so that the average temperature of the reactor coolant changes as the combustion of nuclear fuel increases. It is characteristic to control.
특별히, 냉각재의 평균 온도(Tavg)는 새로운 핵 연료가 주입된 주기 초(BOC: Beginning Of Cycle)에는 높게 유지하였다가 주기 말(End Of Cycle)이 될수록 낮춘다. 도 2에서처럼, 종래에 일정하게 유지된 냉각재 온도(Tc)와 비교할 때, 주기 초에는 종래의 냉각재 온도(Tc)보다 높은 온도를 유지하고, 주기 말에는 종래의 냉각재 온도(Tc)보다 낮은 온도로 제어된다. In particular, the average temperature (Tavg) of the coolant is kept high during the Beginning Of Cycle (BOC) in which the new nuclear fuel is injected, and lowered at the end of the cycle. As shown in FIG. 2, when compared with the conventionally maintained coolant temperature Tc, a temperature higher than the conventional coolant temperature Tc is maintained at the beginning of the cycle and at a temperature lower than the conventional coolant temperature Tc at the end of the cycle. Controlled.
여기서, 냉각재 온도는 원자로 내에서의 온도를 의미하며, 냉각재 평균 온도(Tavg)는 원자로로 입수되는 냉각재의 온도(Tin)와 원자로로부터 배출되는 냉각재의 온도(Tout)의 평균값이 된다. 앞서 설명한 바와 같이, 제어장치(115)가 응축기(113)와 2차 냉각계통(107)을 제어하여 응축기(113)에서 냉각되는 2차 냉각수의 온도와 열교환기(105)로 공급되는 2차 냉각수의 양을 제어하면, 열교환기(105)에서 다시 냉각되는 냉각재의 온도를 제어할 수 있게 된다.Here, the coolant temperature means a temperature in the nuclear reactor, and the coolant average temperature (Tavg) is an average value of the temperature (Tin) of the coolant obtained into the reactor and the temperature (Tout) of the coolant discharged from the reactor. As described above, the
핵연료의 반응도는 여러 가지 요인에 영향을 받으며, 그 중에서 냉각재 온도가 높을수록 반응도는 떨어진다. 따라서 잉여 반응도가 상당히 높은 초기 노심 상태(BOC)에서 노심의 평균온도를 증가시킴으로써 붕소를 적게 사용하고도 반응도를 충분히 낮추어 잉여 반응도를 보상할 수 있게 된다. Nuclear fuel reactivity is affected by a number of factors, the higher the coolant temperature, the lower the reactivity. Therefore, by increasing the average temperature of the core in the initial core state (BOC) with a high excess reactivity, it is possible to compensate the excess reactivity by sufficiently reducing the reactivity even with less boron.
초기 노심 이후의 제어는 잉여 반응도의 감소량을 반영하여 온도를 서서히 감소시키게 된다. 반응도는 핵 연료의 연소도와 출력의 세기(0% ~ 100%) 뿐만 아니라 냉각재에 주입되는 붕소(Boron)의 양에 등에 모두 영향을 받으므로, 초기 노심 이후에 냉각재 온도의 감소량은 잉여 반응도의 감소 경과, 핵 연료의 연소도, 출력의 세기 및 붕소의 량을 기준으로 종합적으로 결정된다. The control after the initial core will gradually reduce the temperature to reflect the decrease in excess reactivity. Reactivity is affected both by the combustion of nuclear fuel and the intensity of output (0% to 100%) as well as by the amount of boron injected into the coolant, so that the decrease in coolant temperature after the initial core will reduce the excess reactivity. It is determined comprehensively on the basis of progress, combustion of nuclear fuel, intensity of output and amount of boron.
예컨대, 도 2는 특별히 원자로가 100 %의 출력으로 운행될 때를 도시하고 있으나, 냉각재 온도는 원자로의 출력에 따라서 달라질 수 있다. 도 2에서 원 안에 도시된 것은, 해당 연소도 상태에서의 냉각재의 제어온도를 출력 상태별로 나타낸 것으로서, 원자로의 출력이 낮아질수록 냉각재 평균 제어온도도 낮아진다.For example, FIG. 2 specifically illustrates when the reactor is running at 100% output, but the coolant temperature may vary depending on the output of the reactor. In FIG. 2, the circle shows the control temperature of the coolant in the combustion state for each output state, and as the output of the reactor decreases, the coolant average control temperature also decreases.
한편, 도 2에는 주기 초에서 주기 말로 가면서 냉각재의 평균 온도가 선형 제어되는 것으로 도시되어 있으나, 본 발명이 반드시 이러한 선형 제어만을 포함하는 것은 아니다. 다시 말해, 연소도의 진행에 따른 냉각재 온도의 감소 폭은 다양한 요소에 의해 종합적으로 결정된다.On the other hand, Figure 2 shows that the average temperature of the coolant is linearly controlled from the beginning of the cycle to the end of the cycle, but the present invention does not necessarily include only this linear control. In other words, the extent of the decrease in coolant temperature as the degree of combustion progresses is determined comprehensively by various factors.
실제적으로, 제어장치(115)는 초기 노심에는 냉각재의 평균온도를 기준온도보다 높게 시작하여 점차 낮추는 제어를 수행할 수 있을 것이다. 여기서, 기준온도는 실험적으로 정해질 수 있으며, 적어도 종래의 일정하게 유지된 냉각재 온도(Tc)와 같거나 높은 온도가 될 것이다. In practice, the
이상에서는 본 발명의 바람직한 실시 예에 대하여 도시하고 설명하였지만, 본 발명은 상술한 특정의 실시 예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 다양한 변형실시가 가능한 것은 물론이고, 이러한 변형실시들은 본 발명의 기술적 사상이나 전망으로부터 개별적으로 이해되어서는 안 될 것이다.While the present invention has been particularly shown and described with reference to exemplary embodiments thereof, it is clearly understood that the same is by way of illustration and example only and is not to be construed as limiting the scope of the invention as defined by the appended claims. It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the present invention.
Claims (4)
And controlling the excess reactivity of the reactor by gradually lowering the temperature of the coolant circulating in the reactor from the initial core state as the combustion of the nuclear fuel proceeds.
초기 노심 상태의 상기 냉각재 온도는 초기 노심 상태에 상기 냉각재에 주입된 붕소의 양에 따른 잉여 반응도를 줄이기 위한 온도인 것을 특징으로 하는 원자로 냉각재 온도 제어방법.
The method of claim 1,
The coolant temperature in the initial core state is a temperature for reducing the excess reactivity according to the amount of boron injected into the coolant in the initial core state.
상기 단계는,
응축기에서 냉각되는 2차 냉각수의 온도와, 열교환기로 공급되는 상기 2차 냉각수의 양을 제어함으로써 상기 냉각재의 온도를 제어하는 것을 특징으로 하는 원자로 냉각재 온도 제어방법.
The method of claim 1,
Wherein the step
And controlling the temperature of the coolant by controlling the temperature of the secondary coolant cooled in the condenser and the amount of the secondary coolant supplied to the heat exchanger.
상기 핵 연료의 동일한 연소도를 기준으로, 상기 원자로의 출력을 줄일수록 상기 냉각재의 온도를 더 낮게 제어하는 것을 특징으로 하는 원자로 냉각재 온도 제어방법.
The method of claim 1,
And controlling the temperature of the coolant lower as the output of the nuclear reactor decreases based on the same combustion degree of the nuclear fuel.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110073432A KR101242876B1 (en) | 2011-07-25 | 2011-07-25 | Method for Controlling Temperature of Reactor Coolant to Reduce Amount of Boron Used in Nuclear Power Plant |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110073432A KR101242876B1 (en) | 2011-07-25 | 2011-07-25 | Method for Controlling Temperature of Reactor Coolant to Reduce Amount of Boron Used in Nuclear Power Plant |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20130012318A true KR20130012318A (en) | 2013-02-04 |
KR101242876B1 KR101242876B1 (en) | 2013-03-12 |
Family
ID=47893046
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110073432A KR101242876B1 (en) | 2011-07-25 | 2011-07-25 | Method for Controlling Temperature of Reactor Coolant to Reduce Amount of Boron Used in Nuclear Power Plant |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR101242876B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101971601B1 (en) * | 2018-03-29 | 2019-04-23 | 한국전력기술 주식회사 | Method for controlling and purifying boron for the chemical and volume control system using crystallization |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH08233989A (en) * | 1995-02-23 | 1996-09-13 | Toshiba Corp | Reactor power plant and operation method |
JP5452513B2 (en) * | 2011-01-27 | 2014-03-26 | 日立Geニュークリア・エナジー株式会社 | Reactor operation method |
-
2011
- 2011-07-25 KR KR1020110073432A patent/KR101242876B1/en active IP Right Grant
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101971601B1 (en) * | 2018-03-29 | 2019-04-23 | 한국전력기술 주식회사 | Method for controlling and purifying boron for the chemical and volume control system using crystallization |
Also Published As
Publication number | Publication date |
---|---|
KR101242876B1 (en) | 2013-03-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yetisir et al. | Development and integration of Canadian SCWR concept with counter-flow fuel assembly | |
RU2016131332A (en) | NUCLEAR REACTOR SYSTEM AND METHOD FOR PRODUCING NUCLEAR ENERGY | |
US8699653B2 (en) | Method of achieving automatic axial power distribution control | |
EP2421005B1 (en) | Nuclear reactor | |
KR100935560B1 (en) | Fuel bundle for pressurized-water reactor and method of designing fuel bundle | |
Hu et al. | Commissioning and operation experience and safety experiments on HTR-10 | |
JP6804274B2 (en) | Control rod unit, nuclear reactor, fuel positioning system and fuel positioning method | |
Schulenberg et al. | Core design concepts for high performance light water reactors | |
Alameri et al. | Assessment of a nuclear reactor-thermal energy storage coupled system | |
US20140146934A1 (en) | Compact Liquid Metal Cooled Spherical Fast Neutron Reactor Core Design | |
KR101242876B1 (en) | Method for Controlling Temperature of Reactor Coolant to Reduce Amount of Boron Used in Nuclear Power Plant | |
US9543045B2 (en) | Nuclear reactor and power generation facility | |
JP5704526B2 (en) | Cogeneration HTGR system | |
Boczar et al. | Reactor physics studies for a pressure tube supercritical water reactor (PT-SCWR) | |
CN113823427A (en) | Method for managing fuel in pressurized water reactor core with flexibly adjusted cycle length | |
Maksimov et al. | Control of the axial offset in a nuclear reactor at power maneuvering | |
Oka et al. | Light water reactor design | |
Hoang et al. | Conceptual design of a small-pressurized water reactor using the AP1000 fuel assembly design | |
JP2002303691A (en) | Solid-cooled reactor | |
Li et al. | Study of Industrial Steam Supply on PWR Nuclear Power Plant Safety Analysis | |
Hu et al. | Thermal-Hydraulic Characteristics of the 250MW Pebble-Bed Modular High Temperature Gas-Cooled Reactor in Start-Up and Shutdown Processes | |
Fetterman | Advanced first core design for the Westinghouse AP1000 | |
RU2046406C1 (en) | Operating process for light-water tank reactor | |
Bruce et al. | The Modification of Fuelling Frequency and the Use of Burnable Absorbers in CANDU Reactors | |
Hu et al. | Unprotected Loss of Flow Analysis of a Million Kilowatt Traveling Wave Reactor Core |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20160302 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20170302 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20180302 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20190305 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20200305 Year of fee payment: 8 |