KR20120121477A - Method for preparing rigid poly1,4:3,6-dianhydrohexitol esters - Google Patents
Method for preparing rigid poly1,4:3,6-dianhydrohexitol esters Download PDFInfo
- Publication number
- KR20120121477A KR20120121477A KR1020110039316A KR20110039316A KR20120121477A KR 20120121477 A KR20120121477 A KR 20120121477A KR 1020110039316 A KR1020110039316 A KR 1020110039316A KR 20110039316 A KR20110039316 A KR 20110039316A KR 20120121477 A KR20120121477 A KR 20120121477A
- Authority
- KR
- South Korea
- Prior art keywords
- dianhydrohexitol
- polyester
- reaction
- formula
- carbon atoms
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/02—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
- C08G63/12—Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from polycarboxylic acids and polyhydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/66—Polyesters containing oxygen in the form of ether groups
- C08G63/668—Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
- C08G63/672—Dicarboxylic acids and dihydroxy compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G63/00—Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
- C08G63/78—Preparation processes
- C08G63/80—Solid-state polycondensation
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Polyesters Or Polycarbonates (AREA)
Abstract
Description
본 발명은 1,4:3,6-디안히드로헥시톨 폴리에스테르(폴리(1,4:3,6-디안히드로헥시톨 에스테르)) 제조방법에 관한 것으로서, 더욱 상세하게는 인-시튜(in-situ) 제조된 아실레이티드(acylated) 1,4:3,6-디안히드로헥시톨(dianhydrohexitol)을 이용한 신규한 1,4:3,6-디안히드로헥시톨 (호모)폴리에스테르((homo)polyester) 제조방법에 관한 것이다.
The present invention relates to a method for preparing 1,4: 3,6- dianhydrohexitol polyester (poly (1,4: 3,6- dianhydrohexitol ester)), more specifically in-situ (in-situ) Novel 1,4: 3,6-dianhydrohexitol (homo) poly using acylated 1,4: 3,6-dianhydrohexitol It relates to a method for preparing an ester (homo).
1,4:3,6-디안히드로헥시톨(dianhydrohexitol)은, 석유화학 산업에 기반을 둔 기존 원료들과는 달리, 폴리사카라이드(polysaccharide)를 구성 성분으로 가지는 밀, 설탕, 옥수수 등과 같은 재생자원(renewable resource)인 바이오매스(biomass)들로부터 유도된 생물기반(bio-based) 원료로서, 고분자재료, 제약, 화장품 등 다양한 분야에서 사용되고 있다. 1,4:3,6-디안히드로헥시톨은 하기 화학식 1a로 표시되는 이소만나이드(isomannide, mp: 81-85℃, bp: 123-130℃/2mmHg), 하기 화학식 1b로 표시되는 이소소르바이드(isosorbide, mp: 61-62℃, bp: 148-151℃/2mmHg) 및 하기 화학식 1c으로 표시되는 이소이다이드(isoidide, mp: 64℃, bp: 159-162℃/2mmHg)의 세 가지 입체 이성질체들로 존재하는데 각각의 두 히드록실기(hydroxyl group)들의 상대적인 배열(configuration) 차이에 의해 화학적 물성들에서 차이가 난다. 특히, 상기 1,4:3,6-디안히드로헥시톨이 고분자재료 가운데 하나인 폴리에스테르의 중합에 단량체로 사용될 경우, 제조된 폴리에스테르는 친환경적 장점을 가지고, 이외에도 1,4:3,6-디안히드로헥시톨의 분자구조적 특징인 단단함(rigidity)과 비대칭 히드록실기들의 존재에 기인한 키랄러티(chirality)에 의해 우수한 열적 및 광학성 특성을 가지게 된다. 이와 같은 특성으로 인하여, 상기 1,4:3,6-디안히드로헥시톨은 친환경 소재 개발의 대표적인 구성 성분 원료로 사용되는 등 그 응용범위가 확대되고 있다.Unlike conventional raw materials based on the petrochemical industry, 1,4: 3,6-dianhydrohexitol is a renewable resource such as wheat, sugar, corn, etc., which contains polysaccharide as a component. As a bio-based raw material derived from biomass, which is a renewable resource, it is used in various fields such as polymer materials, pharmaceuticals, and cosmetics. 1,4: 3,6-dianhydrohexitol is isomannide represented by the following formula 1a (isomannide, mp: 81-85 ℃, bp: 123-130 ℃ / 2mmHg), iso represented by the formula 1b Sorbide (mp: 61-62 ℃, bp: 148-151 ℃ / 2mmHg) and isoidide (mpoid: 64 ℃, bp: 159-162 ℃ / 2mmHg) represented by the formula (1c) It exists in three stereoisomers, which differ in chemical properties due to the relative configuration difference of each of the two hydroxyl groups. In particular, when the 1,4: 3,6- dianhydrohexitol is used as a monomer in the polymerization of the polyester of one of the polymer materials, the polyester produced has an environmentally friendly advantage, in addition to 1,4: 3,6 Excellent thermal and optical properties are due to the rigidity, the molecular structure of dianhydrohexitol, and the chirality due to the presence of asymmetric hydroxyl groups. Due to such a characteristic, the application range of 1,4: 3,6-dianhydrohexitol is used as a representative constituent raw material for the development of environmentally friendly materials.
[화학식 1a][Formula 1a]
[화학식 1b][Chemical Formula 1b]
[화학식 1b][Chemical Formula 1b]
하기 화학식 1d 내지 1f는, 각각 이소만나이드(화학식 1d), 이소소르바이드(화학식 1e) 및 이소이다이드(화학식 1f)의 분자구조를 나타낸다. 하기 화학식 1e에 나타낸 바와 같이, 대표적인 1,4:3,6-디안히드로헥시톨인 이소소르바이드는 두 개의 융합된 고리들(fused rings) 사이의 중심각이 120°이고 두 개의 화학적으로 동등하지 않은 히드록실기를 가지는 V-shape의 2차 디올(secondary diol)로서, C2-OH는 두 개의 융합된 고리들에 엑소 배향(exo orientation)을 이루고 있어 입체적으로 다른 화합물의 접근이 용이한 반면에, C5-OH는 엔도 배향(endo orientation)을 이루고 있어 인접한 테트라히드로퓨란 고리(tetrahydrofuran ring)의 산소 원자와 분자 내 수소결합(intramolecular hydrogen bonding)을 형성하기 때문에 입체적으로나 반응성 측면에서 C2-OH에 비해 매우 불리하다고 할 수 있고, 결과적으로 분자 내 수소결합에 의해 C5-OH는 C2-OH 보다 더욱 산성(acidic)을 띤다. 또한, 이소소르바이드의 히드록실기의 pKa 값은 5.0~7.5로 일반 선형 디올들에 비해 산성이 강하므로, 폴리에스테르 축중합 반응에서, 이소소르바이드의 히드록실기의 산소 비공유전자쌍이 디카르복실산의 카르보닐기를 공격하기가 용이하지 않아 반응성 저하의 원인이 된다. 상기와 같은 분자구조적 접근에 따라 1,4:3,6-디안히드로헥시톨 입체 이성질체들의 반응성 차이를 예측해보면, 이소이다이드(분자 내 수소결합 0개; endo 0, exo 2) > 이소소르바이드(분자 내 수소결합 1개; endo 1, exo 1) > 이소만나이드(분자 내 수소결합 2개; endo 2, exo 0)의 순서로 높은 반응성을 나타내게 된다.The following Chemical Formulas 1d to 1f represent the molecular structures of isomannide (formula 1d), isosorbide (formula 1e), and isoidide (formula 1f), respectively. As shown in Formula 1e, isosorbide, a representative 1,4: 3,6-dianhydrohexitol, has a central angle between two fused rings of 120 ° and two chemical equivalents. As a secondary diol of V-shape having a non-hydroxyl group, C2-OH forms an exo orientation on two fused rings, thereby facilitating access to other compounds in three dimensions. , C5-OH has an endo orientation and forms intramolecular hydrogen bonds with oxygen atoms of adjacent tetrahydrofuran rings. It is very disadvantageous, and as a result, C5-OH is more acidic than C2-OH due to intramolecular hydrogen bonding. In addition, iso sorbitan p K a value of the hydroxyl group of the carbide is because acid is strongly compared with general linear diol to 5.0 ~ 7.5, and in the polyester polycondensation reaction, the oxygen lone pair of hydroxyl groups of isosorbide dicarboxylic It is not easy to attack the carbonyl group of a carboxylic acid, and it becomes a cause of the reactivity decline. Predicting the difference in reactivity of 1,4: 3,6- dianhydrohexitol stereoisomers according to the above molecular structural approach, isoidide (0 hydrogen bonds in the molecule; endo 0, exo 2)> isosorb High reactivity in the order of Bide (1 hydrogen bond in the molecule; endo 1, exo 1)> Isomannide (2 hydrogen bonds in the molecule; endo 2, exo 0).
[화학식 1d]≪ RTI ID = 0.0 &
[화학식 1e][Formula 1e]
[화학식 1f](1f)
상기 1,4:3,6-디안히드로헥시톨의 분자구조적 특징으로 인하여 1,4:3,6-디안히드로헥시톨을 포함하는 호모폴리에스테르를 기존의 용융 축중합 방법으로 제조하는 것은 매우 어렵다. 특히, 방향족 디카르복실산 또는 디카르복실산 에스테르를 이소소르바이드와 용융 축중합할 경우, 250℃ 이상의 에스테르화 또는 에스테르화 교환 반응 온도를 필요로 하며, 이로 인해 이소소르바이드가 열분해를 일으키고 중합 반응물의 변색(discoloration)을 유발할 수 있고, 반응시간이 매우 느린 단점을 지니고 있다. 따라서, 높은 분자량이 필요하지 않고, 250℃ 이하의 용융중합 온도에서 제조 가능한 바인더, 코팅, 토너 등의 용도로 탄소수 4 내지 10의 선형 지방족 디카르복실산 또는 디카르복실산 에스테르를 이소소르바이드와 용융 축중합한 경우가 현재까지 가장 효과적인 이소소르바이드 호모폴리에스테르의 사례로 알려져 있다. 또한, 상업용 플라스틱 분야에서는 코폴리에스테르(co-polyester) 제조에 공중합 단량체로 이소소르바이드를 소량 첨가하여 유리전이 온도(Tg)를 높여주거나 결정성 감소 인자로 주로 사용되고 있으나, 이소소르바이드가 첨가되면 기존 용융 축중합 반응속도 대비 반응속도가 현저히 느려지고, 낮은 반응성으로 인해 축중합 반응 부산물과 함께 기화 또는 승화되어 목표로 하는 고분자 내 이소소르바이드 함량 대비 최대 두 배 정도의 이소소르바이드 투입량을 사용해야 하는 문제가 있다. 결과적으로, 반응계 밖으로 손실된 이소소르바이드를 재사용하기 위한 또 다른 복잡한 글리콜(glycol) 회수 및 분리공정이 필요하게 되는 단점이 있다.
Due to the molecular structural characteristics of the 1,4: 3,6-dianhydrohexitol, the production of homopolyester containing 1,4: 3,6-dianhydrohexitol by the conventional melt polycondensation method Very difficult. In particular, melt condensation polymerization of aromatic dicarboxylic acid or dicarboxylic acid esters with isosorbide requires an esterification or transesterification reaction temperature of 250 ° C. or higher, which causes isosorbide to thermally decompose and polymerize. Discoloration of the reactants can be caused, and the reaction time is very slow. Therefore, high molecular weight is not required, and linear aliphatic dicarboxylic acid or dicarboxylic acid having 4 to 10 carbon atoms with isosorbide can be used for binders, coatings, toners and the like which can be produced at a melt polymerization temperature of 250 ° C. or lower. Melt polycondensation is known to be the most effective isosorbide homopolyester to date. In addition, in the commercial plastic field, a small amount of isosorbide is added as a copolymerization monomer to prepare co-polyester, thereby increasing the glass transition temperature (Tg) or reducing the crystallinity. However, when isosorbide is added The reaction rate is significantly slower than the existing melt polycondensation reaction rate, and due to low reactivity, it is vaporized or sublimed together with the polycondensation reaction by-products, so that the isosorbide input of up to twice the amount of isosorbide in the target polymer is required. There is. As a result, another complicated glycol recovery and separation process is required to reuse the isosorbide lost out of the reaction system.
일반적으로 폴리에스테르 축중합 시 낮은 반응성을 가지는, 즉, 낮은 pKa 값들을 가지는 방향족 디카르복실산 또는 디올은 각각의 카르복실산 또는 히드록실기를 활성화시켜줌으로써 반응성을 높여 줄 수 있다. 즉, 상기 방향족 단량체들의 반응성을 높이기 위한 방법으로는 (i) 활성화된 디카르복실산 단량체를 사용하는 방법, (ii) 활성화된 디카르복실산 및 디올을 사용하는 방법 및 (iii) 활성화된 디올을 단량체로 사용하는 방법이 있다. 상기 활성화된 디카르복실산 단량체로는 대표적으로 디카르복실산 디클로라이드(dichloride)가 사용될 수 있으며, 상기 (i) 방법의 경우, 디카르복실산 디클로라이드와 자유 디올이 축중합될 수 있다. 또한, 상기 활성화된 디올 단량체로는 비스실리레이티드(bissilylated)된 디올, 아실레이티드(acylated)된 디올 등을 사용할 수 있으며, 상기 (ii) 방법의 경우, 디카르복실산 디클로라이드와 비스실리레이티드(bissilylated)된 디올이 축중합될 수 있으며, 상기 (iii) 방법의 경우, 아실레이티드(acylated)된 디올이 자유 디카르복실산 성분과 축중합될 수 있다. 그러나, 디카르복실산 디클로라이드를 활성화 단량체로 사용하는 경우, 축중합 반응 부산물로 염산(HCl)이 생성되기 때문에 상업적 적용에 한계가 있고, 디카르복실산과 디올을 모두 활성화시킨 경우는, 반응 전에 활성화된 단량체들로 제조하여야 하는 단점을 가지고 있으며, 두 방법((i) 및 (ii) 방법) 모두 주로 용액 상에서 축중합 반응을 실행한다는 점에서 상업적 이용가능성은 매우 낮다고 볼 수 있다.
In general, aromatic dicarboxylic acids or diols having low reactivity during polyester polycondensation, ie, having low p K a values, may increase reactivity by activating respective carboxylic acid or hydroxyl groups. That is, a method for enhancing the reactivity of the aromatic monomers may include (i) using activated dicarboxylic acid monomers, (ii) using activated dicarboxylic acids and diols, and (iii) activated diols. Is used as a monomer. Dicarboxylic acid dichloride may be typically used as the activated dicarboxylic acid monomer, and in the case of the method (i), dicarboxylic acid dichloride and free diol may be condensation-polymerized. In addition, as the activated diol monomer, a bissilylated diol, an acylated diol, and the like may be used. In the case of the method (ii), dicarboxylic acid dichloride and bissilyl may be used. The bissilylated diols can be condensation polymerized, and in the case of the method (iii) above, the acylated diols can be condensation polymerized with the free dicarboxylic acid component. However, when dicarboxylic acid dichloride is used as an activating monomer, there is a limitation in commercial applications because hydrochloric acid (HCl) is produced as a byproduct of polycondensation reaction, and when both dicarboxylic acid and diol are activated, the reaction is performed before the reaction. It has the disadvantage of having to be prepared with activated monomers, and both methods ((i) and (ii)) are very low in terms of commercial availability in that they mainly carry out polycondensation reactions in solution.
방향족 액정(aromatic liquid crystalline) 폴리에스테르를 제조하기 위한 상업적 방법으로, 아실레이티드된 방향족 디올 또는 히드록시산을 자유 디카르복실산 성분과 축중합하는 방법이 사용되어왔다. 방향족 디올 또는 히드록시산들의 pKa 값들은 선형 및 덜 단단한(rigid) 다른 디올들에 비해 매우 낮기 때문에 활성화된 단량체들을 사용하지 않으면 높은 분자량과 양질의 기계적 물성들을 가지는 최종 제품을 기대하기 어렵다. 대표적인 방향족 디올인 히드로퀴논(hydroquinone)의 pKa 값은 10.35이고, 또한 히드록시산인 p-히드록시벤젠산(hydroxybenzoic acid)의 pKa 값은 4.48로 테레프탈산의 pKa 값 3.51과 거의 유사하며, 특히 p-히드록시벤젠산의 경우 일반적인 방향족 액정 폴리에스테르 용융 축중합 반응조건에서 일부 디카르복실레이션(decarboxylation)이 발생되는 단점이 있다.As a commercial method for producing aromatic liquid crystalline polyesters, a method of condensation polymerization of acylated aromatic diols or hydroxy acids with free dicarboxylic acid components has been used. The p K a values of aromatic diols or hydroxy acids are very low compared to other linear and less rigid diols, so it is difficult to expect a final product with high molecular weight and good mechanical properties without the use of activated monomers. P K a value of a representative aromatic diol is hydroquinone (hydroquinone) was 10.35, and also hydroxy acids and p- hydroxy p K a value of the benzene acid (hydroxybenzoic acid) is virtually identical to the p K a value of 3.51 to 4.48 terephthalic acid In particular, p-hydroxybenzene acid has a disadvantage in that some decarboxylation occurs under general aromatic liquid crystal polyester melt polycondensation reaction conditions.
방향족 액정 폴리에스테르의 단량체 활성화 과정, 즉 아실레이션(acylation)에 주로 사용되는 지방족산 안히드라이드(aliphatic acid anhydride)는 상업적으로 이용이 쉬우며, 특히 활성화 단계 후 아실레이티드된 단량체의 분리나 정제과정 없이 곧바로 용융 축중합 단계로 연계할 수 있는 장점이 있다. 또한, 아실레이티드된 디올 또는 히드록시산들과 아실레이션 과정에서 영향을 받지 않은 자유 디카르복실산 성분과의 축중합에 의해 부산물로 지방족산이 생성되는데 이는 상기에서 언급된 세 가지 활성화 단량체들의 축중합 반응에 의해 생성되는 부산물 가운데 상업적 적용과 제거가 가장 용이하다.
Aliphatic acid anhydride, which is mainly used in the monomer activation process, that is, acylation of aromatic liquid crystalline polyesters, is easy to use commercially, and in particular, the separation or purification of acylated monomers after the activation step There is an advantage that can be directly linked to the melt condensation polymerization step without a process. In addition, polycondensation of the acylated diols or hydroxy acids with free dicarboxylic acid components unaffected in the acylation process produces aliphatic acids as by-products, which are condensation of the three activating monomers mentioned above. Among the by-products produced by the reaction, commercial application and removal are the easiest.
따라서, 본 발명의 목적은, 1,4:3,6-디안히드로헥시톨의 아실레이션 반응을 통하여, 폴리에스테르 용융 축중합 시 반응성 및 반응속도를 향상시킬 수 있는 아실레이티드 1,4:3,6-디안히드로헥시톨을 인-시튜(in-situ) 제조하고 그것을 사용한 1,4:3,6-디안히드로헥시톨 폴리에스테르 제조방법을 제공하는 것이다.Accordingly, it is an object of the present invention, through the acylation reaction of 1,4: 3,6- dianhydrohexitol, acylate 1,4: which can improve the reactivity and reaction rate during polyester melt condensation polymerization: It is to provide a method for preparing 1,4: 3,6-dianhydrohexitol polyester using 3,6-dianhydrohexitol in-situ.
본 발명의 다른 목적은, 높은 중합도와 우수한 기계적 물성을 가지며, 다양한 용도로 사용 가능한 단단한(rigid) 고분자 반복단위를 가지는 1,4:3,6-디안히드로헥시톨 호모폴리에스테르의 제조방법을 제공하는 것이다.
Another object of the present invention is to provide a method for preparing 1,4: 3,6-dianhydrohexitol homopolyester having high polymerizability and excellent mechanical properties and having a rigid polymer repeating unit that can be used for various purposes. To provide.
상기 목적을 달성하기 위하여, 본 발명은, 하기 화학식 1로 표시되는 1,4:3,6-디안히드로헥시톨 및 탄소수 4 내지 16의 지방족산 안히드라이드를 인-시튜(in-situ) 아실레이션 반응시켜 하기 화학식 2로 표시되는 아실레이티드 1,4:3,6-디안히드로헥시톨을 제조하는 단계; 및 상기 아실레이티드 1,4:3,6-디안히드로헥시톨 및 탄소수 8 내지 22의 방향족 또는 환지방족 자유 디카르복실산 성분을 인-시튜(in-situ) 용융 축중합 반응시켜 하기 화학식 3으로 표시되는 반복단위를 포함하는 1,4:3,6-디안히드로헥시톨 폴리에스테르를 제조하는 단계를 포함하는 1,4:3,6-디안히드로헥시톨 폴리에스테르 제조방법을 제공한다.In order to achieve the above object, the present invention, in-situ 1,4: 3,6- dianhydrohexitol represented by the following formula (1) and aliphatic acid anhydride having 4 to 16 carbon atoms Preparing the acylate 1,4: 3,6-dianhydrohexitol represented by the following Chemical Formula 2 by acylation reaction; And an in-situ melt polycondensation reaction of the acylated 1,4: 3,6- dianhydrohexitol and an aromatic or cycloaliphatic free dicarboxylic acid component having 8 to 22 carbon atoms. It provides a 1,4: 3,6- dianhydrohexitol polyester manufacturing method comprising the step of preparing a 1,4: 3,6- dianhydrohexitol polyester comprising a repeating unit represented by 3. do.
[화학식 1][Formula 1]
[화학식 2][Formula 2]
[화학식 3](3)
상기 화학식 1 내지 3에서, 물결선은 쐐기선(wedge line, ) 또는 점쐐기선(dashed-wedge line, )을 나타내고, R1은 각각 독립적으로 탄소수 1 내지 7의 지방족 탄화수소기이며, X는 치환 또는 비치환된 탄소수 6 내지 20의 방향족 또는 환지방족 탄화수소기이다.
In Chemical Formulas 1 to 3, wavy lines are wedge lines, ) Or dashed-wedge line, ), R 1 are each independently an aliphatic hydrocarbon group having 1 to 7 carbon atoms, and X is a substituted or unsubstituted aromatic or cycloaliphatic hydrocarbon group having 6 to 20 carbon atoms.
본 발명에 따른 1,4:3,6-디안히드로헥시톨 폴리에스테르(폴리(1,4:3,6-디안히드로헥시톨 에스테르)) 제조방법은 반응성이 낮은 1,4:3,6-디안히드로헥시톨을 인-시튜(in-situ) 아실레이션 반응을 통하여 활성화 시킴으로써, 폴리에스테르 용융 축중합 반응에서 반응속도를 높일 수 있고, 1,4:3,6-디안히드로헥시톨의 동등하지 않은 히드록실기들의 반응성을 동일하게 활성화시킬 수 있으며, 아실레이티드(acylated) 1,4:3,6-디안히드로헥시톨의 분리나 정제과정 없이 곧바로 용융 축중합 단계를 수행할 수 있으므로, 반응속도 및 원료비가 절감되는 장점이 있다.
1,4: 3,6- dianhydrohexitol polyester (poly (1,4: 3,6- dianhydrohexitol ester)) according to the present invention is a low reactivity 1,4: 3, By activating 6-dianhydrohexitol through in-situ acylation reaction, the reaction rate can be increased in polyester melt polycondensation reaction, and 1,4: 3,6-dianhydrohex It is possible to equally activate the reactivity of non-equivalent hydroxyl groups of the toll, and perform the melt condensation polymerization step immediately without separating or purifying acylated 1,4: 3,6-dianhydrohexitol. Since it can be, there is an advantage that the reaction rate and raw material costs are reduced.
이하, 본 발명을 상세히 설명하면 다음과 같다.Hereinafter, the present invention will be described in detail.
본 발명에 따른 1,4:3,6-디안히드로헥시톨 폴리에스테르 제조방법은 아실레이티드(acylated) 1,4:3,6-디안히드로헥시톨을 디올 성분을 사용하여 용융 축중합 반응성을 높인 것으로서, (a) 하기 화학식 1로 표시되는 1,4:3,6-디안히드로헥시톨 및 치환 또는 비치환된 탄소수 4 내지 16, 바람직하게는 4 내지 8의 지방족산 안히드라이드를 인-시튜(in-situ) 아실레이션 반응시켜 하기 화학식 2로 표시되는 아실레이티드 1,4:3,6-디안히드로헥시톨을 제조하는 단계 및 (b) 상기 아실레이티드 1,4:3,6-디안히드로헥시톨 및 탄소수 8 내지 22, 바람직하게는 8 내지 14, 더욱 바람직하게는 8 내지 12의 방향족 또는 환지방족 자유 디카르복실산 성분을 인-시튜(in-situ) 용융 축중합 반응시켜 하기 하기 화학식 3으로 표시되는 반복단위를 포함하는 1,4:3,6-디안히드로헥시톨 폴리에스테르를 제조하는 단계를 포함한다.1,4: 3,6-dianhydrohexitol polyester production method according to the present invention is melt condensation polymerization of acylated 1,4: 3,6-dianhydrohexitol using a diol component Increasing the reactivity, (a) 1,4: 3,6- dianhydrohexitol represented by the following formula (1) and substituted or unsubstituted aliphatic acid anhydride having 4 to 16, preferably 4 to 8 carbon atoms To prepare an acylate 1,4: 3,6- dianhydrohexitol represented by the following formula 2 by in-situ acylation reaction and (b) the acylate 1,4 In-situ is an aromatic or cycloaliphatic free dicarboxylic acid component of 3,6-dianhydrohexitol and 8 to 22 carbon atoms, preferably 8 to 14 carbon atoms, more preferably 8 to 12 carbon atoms. 1,4: 3,6-dianhydrohexitol polyester comprising a repeating unit represented by the following Chemical Formula 3 by melt condensation polymerization: Manufacturing step.
상기 화학식 1 내지 3에서, 물결선은 쐐기선(wedge line, ) 또는 점쐐기선(dashed-wedge line, )을 나타내고, R1은 각각 독립적으로 탄소수 1 내지 7, 바람직하게는 1 내지 3의 지방족 탄화수소기이며, X는 치환 또는 비치환된 탄소수 6 내지 20, 바람직하게는 6 내지 12, 더욱 바람직하게는 6 내지 10의 방향족 또는 환지방족 탄화수소기이다. 여기서, 쐐기선은 히드록실기(-OH) 등이 평면(통상적인 선으로 표시된 구조)의 위에서 결합됨을 의미하고, 점쐐기선은 평면의 아래에서 결합됨을 의미하며, 특히, 환지방족 탄화수소기의 trans 함량은 0 내지 100%이다.
In Chemical Formulas 1 to 3, wavy lines are wedge lines, ) Or dashed-wedge line, ), R 1 is each independently an aliphatic hydrocarbon group having 1 to 7, preferably 1 to 3, X is substituted or unsubstituted 6 to 20, preferably 6 to 12, more preferably 6-10 aromatic or cycloaliphatic hydrocarbon group. Here, the wedge means that the hydroxyl group (-OH) and the like are bonded above the plane (structure represented by the normal line), and the point wedge means the bond below the plane, in particular, of the cycloaliphatic hydrocarbon group trans content is from 0 to 100%.
상기 폴리에스테르 제조방법에 의해 제조되는 화학식 3으로 표시되는 반복단위를 포함하는 1,4:3,6-디안히드로헥시톨 폴리에스테르의 최종 도달 가능한 고유 점도(intrinsic viscosity: IV)는 0.3 내지 1.2 dL/g이다.
The final attainable intrinsic viscosity (IV) of 1,4: 3,6-dianhydrohexitol polyester comprising a repeating unit represented by Formula 3 prepared by the polyester production method is 0.3 to 1.2 dL / g.
본 명세서에 있어서, 디카르복실산 성분 등의 용어는 테레프탈산 등의 디카르복실산, 이의 알킬 에스테르(모노메틸, 모노에틸, 디메틸, 디에틸 또는 디부틸 에스테르 등 탄소수 1 내지 4의 저급 알킬 에스테르) 및/또는 이들의 산무수물(acid anhydride)을 포함하는 의미로 사용되며, 상기 방향족 또는 환지방족 자유 디카르복실산 성분의 탄소수는 디카르복실산 형태일 경우에 해당한다. 또한, 용용 축중합 반응은 에스테르화와 에스테르화 교환 반응을 포괄하는 명칭이다.
In the present specification, terms such as dicarboxylic acid component is dicarboxylic acid such as terephthalic acid, alkyl ester thereof (lower alkyl ester having 1 to 4 carbon atoms such as monomethyl, monoethyl, dimethyl, diethyl or dibutyl ester) And / or acid anhydrides thereof, wherein the carbon number of the aromatic or cycloaliphatic free dicarboxylic acid component corresponds to the dicarboxylic acid form. The molten polycondensation reaction is a name encompassing esterification and esterification exchange reaction.
상기 아실레이티드 1,4:3,6-디안히드로헥시톨을 제조하는 단계((a) 단계)는 1,4:3,6-디안히드로헥시톨(이소만나이드, 이소소르바이드 및 이소이다이드)의 동등하지 않은 히드록실기들의 반응성을 동일하게 활성화시키기 위한 단계로서, 상기 아실레이션 반응의 반응온도는 80 내지 180℃, 바람직하게는 120 내지 160℃이고, 반응시간은 5분 내지 10시간, 바람직하게는 10분 내지 5시간이다.
The step of preparing the acylate 1,4: 3,6- dianhydrohexitol (step (a)) is 1,4: 3,6- dianhydrohexitol (isomanide, isosorbide and Is a step for equally activating the reactivity of dissimilar hydroxyl groups of isoidide), the reaction temperature of the acylation reaction is 80 to 180 ℃, preferably 120 to 160 ℃, the reaction time is 5 minutes to 10 hours, preferably 10 minutes to 5 hours.
상기 1,4:3,6-디안히드로헥시톨의 아실레이션 반응에 사용되는 지방족산 안히드라이드의 대표적인 예로는, 아세트 안히드라이드(acetic anhydride), 프로피오닉 안히드라이드(propionic anhydride), 부티릭 안히드라이드(butyric anhydride), 이소부티릭 안히드라이드(isobutyric anhydride), 발레릭 안히드라이드(valeric anhydride), 피발릭 안히드라이드(pivalic anhydride), 2-에틸헥사노익 안히드라이드(2-ethylhexanoic anhydride), b-브로모프로피오닉 안히드라이드(b-bromopropionic anhydride), 모노클로로아세틱 안히드라이드(monochloroacetic anhydride), 디클로로아세틱 안히드라이드(dichloroacetic anhydride), 트리클로로아세틱 안히드라이드(trichloroacetic anhydride), 모노브로모아세틱 안히드라이드(monobromoacetic anhydride), 디브로모아세틱 안히드라이드(dibromoacetic anhydride), 트리브로모아세틱 안히드라이드(tribromoacetic anhydride), 모노플루오로아세틱 안히드라이드(monofluoroacetic anhydride), 디플루오로아세틱 안히드라이드(difluoroacetic anhydride), 트리플루오로아세틱 안히드라이드(trifluoroacetic anhydride) 등을 예시할 수 있다. 상기 지방족산 안히드라이드를 2종 이상 혼합하여 사용할 수도 있으며, 사용하는 지방족산 안히드라이드에 따라 상기 화학식 2의 R1이 결정된다. 가격 및 취급 용이성 면에서, 아세트 안히드라이드, 프로피오닉 안히드라이드, 부티릭 안히드라이드 및 이소부티릭 안히드라이드을 사용하는 것이 바람직하고, 더욱 바람직하게는 아세트 안히드라이드를 사용할 수 있다.Representative examples of the aliphatic acid anhydride used in the acylation reaction of 1,4: 3,6-dianhydrohexitol include acet anhydride, propionic anhydride, Butyric anhydride, isobutyric anhydride, valeric anhydride, pivalic anhydride, 2-ethylhexanoic anhydride ( 2-ethylhexanoic anhydride, b-bromopropionic anhydride, monochloroacetic anhydride, dichloroacetic anhydride, trichloroacetic anhydride Trichloroacetic anhydride, monobromoacetic anhydride, dibromoacetic anhydride, tribromoacetic anhydride etic anhydride, monofluoroacetic anhydride, difluoroacetic anhydride, trifluoroacetic anhydride and the like. Two or more aliphatic acid anhydrides may be mixed and used, and R 1 of Chemical Formula 2 is determined according to the aliphatic acid anhydride to be used. In terms of cost and ease of handling, it is preferable to use acet anhydride, propionic anhydride, butyric anhydride and isobutyric anhydride, more preferably acet anhydride can be used.
상기 지방족산 안히드라이드의 사용량은 1,4:3,6-디안히드로헥시톨의 모든 히드록실기를 아실레이트 하기 위해 필요한 지방족산 안히드라이드의 화학양론 양의 0.9 내지 1.2배, 바람직하게는 0.97 내지 1.13배이다. 상기 지방족산 안히드라이드의 사용량이 상기 범위를 벗어나면, 연계된 폴리에스테르 용융 축중합의 반응속도가 느려지게 되거나, 혼합된 안히드라이드 불순물들에 의해 최종 고분자의 색을 비롯한 1,4:3,6-디안히드로헥시톨 폴리에스테르들의 물성이 저하될 우려가 있다.
The amount of aliphatic anhydride used is 0.9 to 1.2 times the stoichiometric amount of aliphatic anhydride required to acylate all the hydroxyl groups of 1,4: 3,6-dianhydrohexitol, preferably Is 0.97 to 1.13 fold. When the amount of the aliphatic anhydride is out of the above range, the reaction rate of the associated polyester melt condensation polymerization may be slowed, or 1,4: 3, including the color of the final polymer, may be caused by mixed anhydride impurities. There is a fear that the physical properties of 6-dianhydrohexitol polyesters are lowered.
상기 아실레이티드 1,4:3,6-디안히드로헥시톨을 제조하는 단계에서, 반응물의 산화(oxidation)를 최소화하기 위해 아실레이션 반응 동안 질소, 아르곤 등의 불활성(inert) 기체 퍼지(purge)를 사용할 수 있다. 불활성 기체 퍼지는 연계된 폴리에스테르 용융 축중합 반응에서도 계속되는 것이 바람직하며, 아실레이션 반응과 용융 축중합 반응 부산물인 지방족산의 제거와 응축은 증류 헤드(head)와 컨덴서(condenser) 같은 전통적인 방법을 사용하여 쉽게 이루어질 수 있다. 특히, 아실레이션 반응과 용융 축중합 반응 부산물 중 아세트산(acetic acid)은 휘발성 부산물로 제거가 매우 용이하다.
In preparing the acylate 1,4: 3,6-dianhydrohexitol, purge an inert gas such as nitrogen or argon during an acylation reaction to minimize the oxidation of the reactants. ) Can be used. The inert gas purge is preferably continued in the associated polyester melt polycondensation reaction, and the removal and condensation of the acylation and melt polycondensation by-product aliphatic acids is carried out using conventional methods such as distillation heads and condensers. It can be done easily. In particular, acetic acid in the acylation and melt polycondensation reaction by-products is a volatile by-product and is very easy to remove.
다음으로, 1,4:3,6-디안히드로헥시톨 호모폴리에스테르 제조를 위한 용융 축중합 반응 단계((b) 단계)가 곧바로 연계되어 실행된다. 인-시튜(in-situ) 아실레이션 반응 후, 상기 용융 축중합 반응의 개시(initiation)는 아실레션 반응 보다 높은 반응온도를 선택함으로써 이루어진다. 여기서, 인-시튜(in-situ) 제조된 아실레이티드 1,4:3,6-디안히드로헥시톨의 아실(acyl)기 양은 자유 디카르복실산 성분의 카르복실기 동등 양의 0.7 내지 1.3배, 바람직하게는 0.9 내지 1.1배가 될 수 있고, 상기 용융 축중합 반응의 승온속도는 0.1 내지 60℃/분, 바람직하게는 0.2 내지 20℃/분, 더욱 바람직하게는 0.5 내지 6℃/분이고, 반응온도는 120 내지 320℃, 바람직하게는 150 내지 290℃이며, 반응시간은 1 내지 10시간, 바람직하게는 3 내지 8시간이다.Next, the melt condensation polymerization step (step (b)) for the preparation of 1,4: 3,6-dianhydrohexitol homopolyester is carried out directly in conjunction. After the in-situ acylation reaction, the initiation of the melt polycondensation reaction is achieved by selecting a higher reaction temperature than the acylation reaction. Here, the amount of acyl groups of in-situ prepared acylated 1,4: 3,6-dianhydrohexitol is 0.7 to 1.3 times the equivalent amount of the carboxyl groups of the free dicarboxylic acid component. Preferably, it may be 0.9 to 1.1 times, the temperature increase rate of the melt polycondensation reaction is 0.1 to 60 ℃ / min, preferably 0.2 to 20 ℃ / min, more preferably 0.5 to 6 ℃ / min, the reaction The temperature is 120 to 320 ° C, preferably 150 to 290 ° C, and the reaction time is 1 to 10 hours, preferably 3 to 8 hours.
한편, 상기 용융 축중합 반응 동안 반응 부산물로 생성된 지방족산과 미반응 지방족산 안히드라이드는, 반응평형을 폴리에스테르 생성 방향으로 이동시키기 위해, 반응계 밖으로 증류되어야 한다. 특히, 상기 승온속도 범위를 벗어나게 되면 아실레이티드 1,4:3,6-디안히드로헥시톨이 지방족산과 함께 기화 또는 승화될 수 있다. 1,4:3,6-디안히드로헥시톨 폴리에스테르는 회분식(batch) 공정 또는 연속식 공정에 의해서 제조될 수 있다.
On the other hand, the aliphatic acid and unreacted aliphatic acid anhydride produced as reaction by-products during the melt polycondensation reaction must be distilled out of the reaction system in order to shift the reaction equilibrium in the polyester production direction. In particular, when out of the temperature increase rate range, the acylated 1,4: 3,6-dianhydrohexitol may be vaporized or sublimed together with the aliphatic acid. The 1,4: 3,6- dianhydrohexitol polyester can be prepared by a batch process or by a continuous process.
상기 방향족 또는 환지방족 디카르복실산 성분의 대표적인 예로는 하기 화학식 4로 표시되는 단량체를 예시할 수 있다.Representative examples of the aromatic or cycloaliphatic dicarboxylic acid component may be exemplified by the monomer represented by the following formula (4).
상기 화학식 4에서, R2는 수소 원자, 탄소수 1 내지 6의 알킬기, 또는 탄소수 6 내지 16의 아릴기이고, X는 상기 화학식 3에서 정의한 바와 같다. 또한, X의 대표적인 예로는 , , , , , , , , , , , 등을 예시할 수 있다. 여기서, *는 결합부위를 나타내며, Y는 산소 원자(O), 황 원자(S), 알킬렌기, 카르보닐기 또는 술포닐기이다. 또한, X는 필요에 따라, 알킬기, 아릴기, 알콕시기, 할로겐기 등에 의해 치환될 수 있다.
In Formula 4, R 2 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 16 carbon atoms, and X is as defined in Formula 3 above. Also, representative examples of X are , , , , , , , , , , , And the like. Where * represents a bonding site, and Y is an oxygen atom (O), a sulfur atom (S), an alkylene group, a carbonyl group or a sulfonyl group. In addition, X may be substituted by an alkyl group, an aryl group, an alkoxy group, a halogen group, etc. as needed.
본 발명에 따른 1,4:3,6-디안히드로헥시톨 폴리에스테르 제조방법은 용융 축중합 반응의 반응성 향상을 위하여 촉매를 더욱 사용할 수 있다. 상기 촉매로는 폴리에스테르 용융 축중합에 통상적으로 사용되는 촉매들이 사용될 수 있으며, 예를 들어, 티타늄(Ti) 또는 안티모니(Sb)의 염(salt), 코발트(Co), 아연(Zn), 안티모니(Sb)의 아세테이트 염(acetate salt), 안티모니(Sb) 또는 게르마늄(Ge)의 옥사이드(oxide), 또는 코발트(Co) 또는 안티모니(Sb)의 알카노에니트 염(alkanoate salt), 오르쏘(ortho) 티타네이트 에스테르(titanate ester) 등이 사용될 수 있다. 상기 촉매의 함량은 전체 반응물 중량에 대하여, 1 내지 500 ppm, 바람직하게는 10 내지 300 ppm이다. 상기 촉매는 용융 축중합 반응 단계에 관계없이 적용될 수 있지만, 용융 축중합 반응 개시 전에 투입하는 것이 바람직하다.
1,4: 3,6-dianhydrohexitol polyester production method according to the present invention may further use a catalyst for improving the reactivity of the melt polycondensation reaction. As the catalyst, catalysts commonly used in polyester melt condensation polymerization may be used. For example, salts of titanium (Ti) or antimony (Sb), cobalt (Co), zinc (Zn), Acetate salt of antimony (Sb), oxide of antimony (Sb) or germanium (Ge), or alkanoate salt of cobalt (Co) or antimony (Sb) Ortho titanate esters and the like can be used. The content of the catalyst is 1 to 500 ppm, preferably 10 to 300 ppm relative to the total reactant weight. The catalyst can be applied irrespective of the melt polycondensation reaction step, but is preferably added before the start of the melt polycondensation reaction.
또한, 본 발명에 따른 1,4:3,6-디안히드로헥시톨 폴리에스테르 제조방법은 용융 축중합 반응이 진행됨에 따라 중합도 증가에 따른 높은 점도를 가지는 용융상태에서 부산물 제거를 빨리 유도하고, 중합반응 속도를 촉진시키기 위하여 감압(reduced pressure)이 적용될 수 있다. 중합도 증가를 위한 감압 시, 감압 조건은 0.2 내지 2 Torr, 바람직하게는 0.5 내지 1 Torr이고, 감압 하 반응시간은 1 내지 10시간, 바람직하게는 1 내지 5시간 동안 진행될 수 있다.
In addition, the method for producing 1,4: 3,6-dianhydrohexitol polyester according to the present invention quickly induces by-product removal in a molten state having a high viscosity as the degree of polymerization increases as the melt polycondensation reaction proceeds. Reduced pressure may be applied to accelerate the rate of polymerization. Upon decompression to increase the degree of polymerization, the decompression conditions are 0.2 to 2 Torr, preferably 0.5 to 1 Torr, and the reaction time under reduced pressure may be performed for 1 to 10 hours, preferably 1 to 5 hours.
또한, 본 발명에 따른 1,4:3,6-디안히드로헥시톨 폴리에스테르 제조방법은, 필요에 따라, 다양한 첨가제를 더욱 첨가할 수 있다. 예를 들면, 힌더드 페놀(hindered phenol), 히드로퀴논(hydroquinone), 포스파이트(phosphite), 그리고 그들의 치환된 화합물 등의 산화안정제(antioxidant) 및 열안정제(heat stabilizer), 레조시놀(resorcinol), 살리실레이트(salicylate) 등의 UV 흡수제, 포스파이트, 히드로포스파이트 등의 색보호제(color protection agent), 몬타닉산(montanic acid), 스티아릴 알코올(stearyl alcohol) 등의 윤활제(lubricant) 등이 첨가제로 사용될 수 있다. 또한, 착색제(coloring agent)로 염료(dye)와 색소(pigment)들이 사용될 수 있고, 전도제(conductive agent), 착색제 또는 핵제(nucleation agent)로서 카본블랙(carbon black)이 사용될 수도 있으며, 그 외에도 난연제(fire retardant), 가소제(plasticizer), 정전기방지제(antistatic agent) 등이 사용될 수 있다. 여기서, 상기 언급된 모든 첨가제들은 최종 고분자 물성들 중에서도, 특히 열안정성을 저해하지 않아야 한다.
In addition, the 1,4: 3,6- dianhydrohexitol polyester manufacturing method which concerns on this invention can further add various additives as needed. For example, antioxidants and heat stabilizers, resorcinol, such as hindered phenol, hydroquinone, phosphite, and substituted compounds thereof, Additives include UV absorbers such as salicylate, color protection agents such as phosphite and hydrophosphite, lubricants such as montanic acid and stearyl alcohol, and the like. Can be used as In addition, dyes and pigments may be used as the coloring agent, and carbon black may be used as the conductive agent, the colorant, or the nucleation agent. Fire retardants, plasticizers, antistatic agents and the like can be used. Here, all the above-mentioned additives should not impair thermal stability, especially among the final polymer properties.
본 발명에 따른 1,4:3,6-디안히드로헥시톨 폴리에스테르 제조방법은 용융 축중합 반응 후, 고상(solid-sate)중합이 더욱 수행될 수 있다. 용융 축중합으로부터 얻어진 고분자는 반응기 밖에서 잘게 부수어지거나 얇은 조각(flake) 또는 작은 알갱이(pellet) 등의 고체상태로 수거된 후, 질소 또는 아르곤 가스 등에 의한 불활성 환경 아래에서, 승온속도 0.1 내지 0.5℃/분, 바람직하게는 0.1 내지 0.2℃/분으로, 반응온도 30 내지 350℃, 바람직하게는 100 내지 280℃에서, 반응시간 1 내지 30시간, 바람직하게는 2 내지 24시간 동안 열처리될 수 있다. 고상중합은 교반과 함께 또는 교반 없이 수행될 수 있고, 용융 중합과 동일한 반응기에서 연속적으로 수행될 수 있다. 고상중합 후, 얻어진 고분자는 통상의 방법에 의해 용도에 따라 최종목적에 맞게 바로 성형될 수 있다. 상기 고상중합에 의해 제조되는 1,4:3,6-디안히드로헥시톨 폴리에스테르의 최종 도달 가능한 고유 점도(intrinsic viscosity: IV)는 0.5 내지 2.5 dL/g이다.
In the method for preparing 1,4: 3,6-dianhydrohexitol polyester according to the present invention, after the melt condensation polymerization, solid-sate polymerization may be further performed. The polymer obtained from the melt condensation polymerization is crushed out of the reactor or collected in a solid state such as flakes or pellets, and then heated under an inert environment such as nitrogen or argon gas, at a temperature raising rate of 0.1 to 0.5 ° C /. At a minute, preferably 0.1 to 0.2 ° C./minute, the reaction temperature may be heat treated at a reaction temperature of 30 to 350 ° C., preferably at 100 to 280 ° C., for a reaction time of 1 to 30 hours, preferably 2 to 24 hours. Solid phase polymerization can be carried out with or without stirring and can be carried out continuously in the same reactor as the melt polymerization. After solid phase polymerization, the obtained polymer can be molded immediately to meet the end purpose according to the application by conventional methods. The final attainable intrinsic viscosity (IV) of the 1,4: 3,6- dianhydrohexitol polyester produced by the solid phase polymerization is from 0.5 to 2.5 dL / g.
이하, 실시예 및 비교예를 통하여 본 발명을 더욱 상세히 설명한다. 하기 실시예는 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 하기 실시예에 의해 한정되는 것은 아니다.
Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. The following examples are intended to illustrate the invention, but the scope of the invention is not limited by the following examples.
[실시예 1] 화학식 3a로 표시되는 반복단위를 포함하는 1,4:3,6- 디안히드로헥시톨 폴리에스테르의 제조 Example 1 Preparation of 1,4: 3,6- dianhydrohexitol polyester comprising a repeating unit represented by the formula (3a)
(A) 아세틸레이션(acetylation) 반응(A) acetylation reaction
반응 전 1L 플라스크에 존재하는 공기를 완벽히 제거하기 위하여, 질소로 비우고, 5번 씻어준 후, 상기 플라스크에 증류 헤드, 냉각 콘덴서, 온도계, 질소 투입 튜브 및 기계작동(mechanical) 교반기를 장착하였다. 상기 플라스크에 200g(1.20mole)의 테레프탈산(terephthalic acid)과 176g(1.20mole)의 이소소르바이드을 넣고 60 내지 70℃로 승온 후, 10 내지 20분 동안 교반한 다음, 낙하 깔때기(dropping funnel)에 넣어진 250g(2.45mole)의 아세트 안히드라이드를 천천히 테레프탈산/이소소르바이드 슬러리(slurry)에 첨가하였다. 아세트 안히드라이드를 모두 첨가한 다음, 상압 아래에서, 곧바로 120℃로 승온시킨 다음, 1시간 동안 교반 및 유지하였다. 다시 145℃로 승온시킨 후, 3시간 동안 교반 및 유지하여 1,4:3,6-디안하이드-D-글루시톨-2,5-디아세테이트(1,4:3,6-dianhydro-D-glucitol-2,5-diacetate)를 얻었다.
In order to completely remove the air present in the 1 L flask before the reaction, the flask was emptied with nitrogen and washed five times, and then the flask was equipped with a distillation head, a cooling condenser, a thermometer, a nitrogen input tube, and a mechanical stirrer. 200 g (1.20 mole) of terephthalic acid and 176 g (1.20 mole) of isosorbide were added to the flask, and then heated to 60 to 70 ° C., stirred for 10 to 20 minutes, and then placed in a dropping funnel. 250 g (2.45 mole) of acet anhydride was slowly added to the terephthalic acid / isosorbide slurry. All of the acet anhydride was added and then immediately raised to 120 ° C. under atmospheric pressure, then stirred and maintained for 1 hour. After again raising the temperature to 145 ℃, stirred and maintained for 3 hours to 1,4: 3,6- dianhydride-D-glucitol-2,5- diacetate (1,4: 3,6-dianhydro-D -glucitol-2,5-diacetate).
(B) 용융 축중합(melt polycondensation) 반응(B) Melt polycondensation reaction
상기 아세틸레이션 반응 후, 200℃로 승온시키고, 아세틸레이션 반응 부산물인 아세트산을 제거하기 위해 1시간 동안 200℃에서 교반 및 유지시켰다. 다음으로, 승온속도 1℃/분로 250℃까지 승온시킨 다음, 250℃에서 3시간 동안 교반 및 유지시킴으로써 추가적인 아세트산 부산물이 제거시켰다. 질소 퍼지(purge)를 중단한 후, 1 Torr 감압 아래에서 2시간 동안 용융 축중합을 진행한 후, 상온으로 냉각시켜 고분자 덩어리(chunk) 형태의 하기 화학식 3a로 표시되는 반복단위를 포함하는 1,4:3,6-디안히드로헥시톨 (호모)폴리에스테르(IV= 0.55)를 얻었다.After the acetylation reaction, the temperature was raised to 200 ° C., and stirred and maintained at 200 ° C. for 1 hour to remove acetic acid which is an acetylation reaction by-product. Next, additional acetic acid by-products were removed by raising the temperature to 250 ° C. at a rate of 1 ° C./min, then stirring and holding at 250 ° C. for 3 hours. After stopping the nitrogen purge, the melt condensation polymerization is carried out for 2 hours under 1 Torr decompression, and then cooled to room temperature to include a repeating unit represented by the following Chemical Formula 3a in the form of a polymer chunk (chunk) 1, 4: 3,6- dianhydrohexitol (homo) polyester (IV = 0.55) was obtained.
[화학식 3a][Chemical Formula 3]
상기 화학식 3a로 표시되는 반복단위를 포함하는 1,4:3,6-디안히드로헥시톨 (호모)폴리에스테르는 비정형(amorphous)으로서, 유리전이온도(Tg)는 고유점도(intrinsic viscosity) 0.5 이상에서 203 내지 205℃이었으며, 비대칭(unsymmetrical)한 이소소르바이드 단위가, head-to-head, head-to-tail, 및 tail-to-tail 사슬 형태로 통계적으로 무작위(statistically random)하게 고분자 사슬에 포함되었기 때문에, 유리전이온도는 높으나, 기계적 물성은 이소이다이드를 단량체로 사용한 선형 구조를 가질 것으로 예상되는 고분자에 비해 떨어지고, 이소만나이드를 단량체로 사용한 고분자와는 비슷할 것으로 예상된다. 한편, 이소소르바이드 대비 1,4:3,6-디안하이드-D-글루시톨-2,5-디아세테이트의 반응성 비교에서 아세트산과 함께 기화 또는 승화된 1,4:3,6-디안하이드-D-글루시톨-2,5-디아세테이트의 손실률은 투입량 대비 최대 0.5% 정도이었으며, 이는 이소소르바이드의 한계였던 최대 배 이상의 손실률에 비해 매우 현저한 반응성 향상 결과를 보여주고 있는 것으로서, 이하 실시예들에서도 동일한 결과를 나타내었다.
1,4: 3,6-dianhydrohexitol (homo) polyester comprising a repeating unit represented by Formula 3a is amorphous, and glass transition temperature (Tg) is intrinsic viscosity 0.5 In the above range, the unsymmetrical isosorbide unit is statistically random in the form of head-to-head, head-to-tail, and tail-to-tail chains. Since it is included in the glass transition temperature is high, but the mechanical properties are expected to be lower than the polymer that is expected to have a linear structure using isoidide as a monomer, is expected to be similar to the polymer using isomannide as a monomer. Meanwhile, 1,4: 3,6-dianhydride vaporized or sublimed together with acetic acid in the reactivity comparison of 1,4: 3,6-dianhydride-D-glucitol-2,5-diacetate with isosorbide The loss rate of -D-glucitol-2,5-diacetate was up to 0.5% of the dose, which shows a remarkably remarkable improvement in reactivity compared to the loss ratio of more than twice the maximum of isosorbide. The same result was shown in the examples.
[실시예 2] 화학식 3b로 표시되는 반복단위를 포함하는 ( 환지방족 ) 1,4:3,6-디 안히드 로헥시톨 폴리에스테르의 제조 Example 2 Preparation of a ( cyclic aliphatic ) 1,4: 3,6 - dianhydrohexitol polyester containing a repeating unit represented by the formula (3b )
상기 (A) 단계에서, 200g(1.20mole)의 테레프탈산(terephthalic acid)과 176g(1.20mole)의 이소소르바이드 대신, cis/trans 비율이 77/23%인 250g(1.45mole)의 1,4-시클로헥산디카르복실산(1,4-cyclohexanedicarboxylic acid, 제조사: SK NJC)과 212g(1.45mole)의 이소소르바이드을 넣고, 아세틱 안히드라이드를 250g(2.45mole) 대신 300g(2.93mole) 첨가한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 하기 화학식 3b로 표시되는 반복단위를 포함하는 1,4:3,6-디안히드로헥시톨 (호모)폴리에스테르(IV= 0.58)를 얻었다.In step (A), instead of 200 g (1.20 mole) of terephthalic acid and 176 g (1.20 mole) of isosorbide, 250 g (1.45 mole) of 1,4- cis / trans ratio of 77/23% 1,4-cyclohexanedicarboxylic acid (manufactured by SK NJC) and 212 g (1.45 mole) of isosorbide were added, and 300 g (2.93 mole) of acetic anhydride was added instead of 250 g (2.45 mole). Except that 1,4: 3,6-dianhydrohexitol (homo) polyester (IV = 0.58) containing a repeating unit represented by the following formula (3b) was obtained in the same manner as in Example 1.
[화학식 3b](3b)
상기 화학식 3b로 표시되는 반복단위를 포함하는 1,4:3,6-디안히드로헥시톨 (호모)폴리에스테르는 비정형(amorphous)으로서, 특징적인 결과로는 최초 단량체 1,4-시클로헥산디카르복실산의 cis/trans 비율, 77/23%가 아세틸레이션과 축중합 반응을 거치면서 고분자 내에서는 44/64%로 변하였고, 이는 아세틸레이션과 축중합 반응 부산물인 아세트산의 산촉매 작용에 의한 이성화(isomerization) 반응 효과로 판단되며, 주어진 반응온도와 반응시간에서 일정한 cis/trans 비율이 얻어졌다. 결과적으로 상기 고분자의 유리전이온도는 최종 고분자 내의 cis/trans 비율에 영향을 받으며, 고유점도 0.5 이상에서 cis/trans 44/64%인 경우, 유리전이온도는 151 내지 153℃이었다.
1,4: 3,6- dianhydrohexitol (homo) polyester comprising a repeating unit represented by the formula (3b) is amorphous, and as a characteristic result is the first monomer 1,4-cyclohexanedica The cis / trans ratio of carboxylic acid, 77/23%, was changed to 44/64% in the polymer through acetylation and polycondensation reaction, which isomerized by acid catalysis of acetic acid, a byproduct of acetylation and polycondensation reaction. Judging from the effect of isomerization, a constant cis / trans ratio was obtained at a given reaction temperature and reaction time. As a result, the glass transition temperature of the polymer is influenced by the cis / trans ratio in the final polymer, and when the intrinsic viscosity is cis / trans 44/64% at 0.5 or more, the glass transition temperature was 151 to 153 ° C.
[실시예 3] 화학식 3c로 표시되는 반복단위를 포함하는 (각진( angled ) 방향족) 1,4:3,6- 디안히드로헥시톨 폴리에스테르의 제조 Example 3 Preparation of ( angled aromatic) 1,4: 3,6- dianhydrohexitol polyester comprising a repeating unit represented by Chemical Formula 3c
상기 (A) 단계에서, 200g(1.20mole)의 테레프탈산(terephthalic acid) 대신, 200g(1.20mole)의 이소프탈산(isophthalic acid)을 넣은 것을 제외하고는 상기 실시예 1과 동일한 방법으로 하기 화학식 3c로 표시되는 반복단위를 포함하는 1,4:3,6-디안히드로헥시톨 (호모)폴리에스테르(IV= 0.56)를 얻었다.In the step (A), 200g (1.20mole) of terephthalic acid (terephthalic acid), instead of 200g (1.20mole) isophthalic acid (isophthalic acid) except that in the same manner as in Example 1 to the formula 3c 1,4: 3,6- dianhydrohexitol (homo) polyester (IV = 0.56) containing the indicated repeating unit was obtained.
[화학식 3c] [Formula 3c]
상기 화학식 3c로 표시되는 반복단위를 포함하는 1,4:3,6-디안히드로헥시톨 (호모)폴리에스테르는 상기 화학식 3a로 표시되는 반복단위를 포함하는 폴리에스테르의 비정형 고분자 구조에 비해 보다 선형에 가까우며, 완만한 곡선을 가지는 갈지자(zig-zag) 또는 나선형의(helical) 사슬 배좌(conformation)를 나타낸다.
1,4: 3,6-dianhydrohexitol (homo) polyester comprising a repeating unit represented by Formula 3c is more than an amorphous polymer structure of a polyester comprising a repeating unit represented by Formula 3a. It is close to linear and exhibits a zig-zag or helical chain conformation with a gentle curve.
[실시예 4] 화학식 3d로 표시되는 반복단위를 포함하는 (각진 환지방족 ) 1,4:3,6-디 안히드 로헥시톨 폴리에스테르의 제조 [Example 4] Preparation of (angular cycloaliphatic ) 1,4: 3,6 - dianhydrohexitol polyester containing a repeating unit represented by Chemical Formula 3d
상기 (A) 단계에서, 200g(1.20mole)의 테레프탈산(terephthalic acid)과 176g(1.20mole)의 이소소르바이드 대신, cis/trans 비율이 46/54%인 250g(1.45mole)의 1,3-시클로헥산디카르복실산(1,3-cyclohexanedicarboxylic acid, 제조사: Aldrich)과 212g(1.45mole)의 이소소르바이드을 넣고, 아세틱 안히드라이드를 250g(2.45mole) 대신 300g(2.93mole) 첨가한 것을 제외하고는 상기 실시예 1과 동일한 방법으로 하기 화학식 3d로 표시되는 반복단위를 포함하는 1,4:3,6-디안히드로헥시톨 (호모)폴리에스테르(IV= 0.57)를 얻었다.In step (A), instead of 200 g (1.20 mole) of terephthalic acid and 176 g (1.20 mole) of isosorbide, 250 g (1.45 mole) of 1,3- cis / trans ratio is 46/54%. 1,3-cyclohexanedicarboxylic acid (manufactured by Aldrich) and 212 g (1.45 mole) of isosorbide were added, and 300 g (2.93 mole) of acetic anhydride was added instead of 250 g (2.45 mole). Except for the 1,4: 3,6- dianhydrohexitol (homo) polyester (IV = 0.57) containing a repeating unit represented by the following formula (3d) in the same manner as in Example 1.
[화학식 3d] [Formula 3d]
상기 화학식 3d로 표시되는 반복단위를 포함하는 1,4:3,6-디안히드로헥시톨 (호모)폴리에스테르는 상기 화학식 3b로 표시되는 반복단위를 포함하는 폴리에스테르 제조에서 얻어진 결과와 동일하게 최초 단량체 1,3-시클로헥산디카르복실산의 cis/trans 비율이 46/54%에서 5/95%으로 변화되었으며, 이는 trans 100%의 1,3-시클로헥산디카르복실산을 사용하여 제조된 고분자와 유사한 물성을 가진다.
1,4: 3,6-dianhydrohexitol (homo) polyester comprising a repeating unit represented by Formula 3d is the same as the result obtained in preparing a polyester including a repeating unit represented by Formula 3b. The cis / trans ratio of the original monomeric 1,3-cyclohexanedicarboxylic acid changed from 46/54% to 5/95%, prepared using trans 100% 1,3-cyclohexanedicarboxylic acid. It has similar properties to the polymers.
상기 실시예들로부터, 본 발명에 따라, 아실레이티드 1,4:3,6-디안히드로헥시톨(예를 들어, 1,4:3,6-디안히드로헥시톨-2,5-디아세테이트)를 인-시튜(in-situ) 제조하고, 이로부터 방향족 또는 환지방족 1,4:3,6-디안히드로헥시톨 폴리에스테르를 제조할 경우, 기존의 디카르복실산과 1,4:3,6-디안히드로헥시톨의 용융 축중합에 비하여 반응속도가 현저히 빨라지고, 반응성의 증가로 인해 고분자 내 이소소르바이드 함량과 거의 동일한 이소소르바이드 투입량을 사용할 수 있는 장점이 있음을 알 수 있다. 따라서, 반응계 밖으로 손실된 이소소르바이드를 재사용하기 위한 복잡한 글리콜 회수 및 분리공정이 필요하지 않아 경제적이다.From the above examples, according to the invention, acylate 1,4: 3,6- dianhydrohexitol (eg, 1,4: 3,6- dianhydrohexitol-2,5- Diacetate) is prepared in-situ, and when an aromatic or cycloaliphatic 1,4: 3,6-dianhydrohexitol polyester is prepared therefrom, the existing dicarboxylic acid and 1,4 Compared to the melt condensation polymerization of: 3,6-dianhydrohexitol, the reaction rate is significantly faster, and the increase in the reactivity leads to the advantage of using an isosorbide input which is almost equal to the isosorbide content in the polymer. have. Thus, there is no need for complicated glycol recovery and separation processes to reuse the isosorbide lost out of the reaction system, making it economical.
Claims (8)
상기 아실레이티드 1,4:3,6-디안히드로헥시톨 및 탄소수 8 내지 22의 방향족 또는 환지방족 자유 디카르복실산 성분을 인-시튜(in-situ) 용융 축중합 반응시켜 하기 화학식 3으로 표시되는 반복단위를 포함하는 1,4:3,6-디안히드로헥시톨 폴리에스테르를 제조하는 단계를 포함하는 1,4:3,6-디안히드로헥시톨 폴리에스테르 제조방법.
[화학식 1]
[화학식 2]
[화학식 3]
상기 화학식 1 내지 3에서, 물결선은 쐐기선(wedge line, ) 또는 점쐐기선(dashed-wedge line, )을 나타내고, R1은 각각 독립적으로 탄소수 1 내지 7의 지방족 탄화수소기이며, X는 치환 또는 비치환된 탄소수 6 내지 20의 방향족 또는 환지방족 탄화수소기이다.The acyl represented by the following formula (1) by in-situ acylation reaction of 1,4: 3,6-dianhydrohexitol represented by the following formula (1) and an aliphatic acid anhydride having 4 to 16 carbon atoms Preparing rated 1,4: 3,6-dianhydrohexitol; And
The acylated 1,4: 3,6- dianhydrohexitol and an aromatic or cycloaliphatic free dicarboxylic acid component having 8 to 22 carbon atoms are subjected to in-situ melt polycondensation reaction to the following Chemical Formula 3 1,4: 3,6- dianhydrohexitol polyester manufacturing method comprising the step of preparing a 1,4: 3,6- dianhydrohexitol polyester comprising a repeating unit.
[Formula 1]
(2)
(3)
In Chemical Formulas 1 to 3, wavy lines are wedge lines, ) Or dashed-wedge line, ), R 1 are each independently an aliphatic hydrocarbon group having 1 to 7 carbon atoms, and X is a substituted or unsubstituted aromatic or cycloaliphatic hydrocarbon group having 6 to 20 carbon atoms.
[화학식 4]
상기 화학식 4에서, R2는 수소 원자, 탄소수 1 내지 6의 알킬기, 또는 탄소수 6 내지 16의 아릴기이고, X는 상기 화학식 3에서 정의한 바와 같다.According to claim 1, wherein the aromatic or cycloaliphatic free dicarboxylic acid component is a 1,4: 3,6-dianhydrohexitol polyester manufacturing method that is a monomer represented by the following formula (4).
[Chemical Formula 4]
In Formula 4, R 2 is a hydrogen atom, an alkyl group having 1 to 6 carbon atoms, or an aryl group having 6 to 16 carbon atoms, and X is as defined in Formula 3 above.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110039316A KR20120121477A (en) | 2011-04-27 | 2011-04-27 | Method for preparing rigid poly1,4:3,6-dianhydrohexitol esters |
TW101114955A TW201245208A (en) | 2011-04-27 | 2012-04-26 | Method for preparing poly(1,4:3,6-dianhydrohexitol esters) |
PCT/KR2012/003233 WO2012148187A2 (en) | 2011-04-27 | 2012-04-26 | Method for preparing poly(1,4:3,6-dianhydrohexitol ester) |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020110039316A KR20120121477A (en) | 2011-04-27 | 2011-04-27 | Method for preparing rigid poly1,4:3,6-dianhydrohexitol esters |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020170052693A Division KR20170048298A (en) | 2017-04-25 | 2017-04-25 | Method for preparing rigid poly(1,4:3,6-dianhydrohexitol esters) |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20120121477A true KR20120121477A (en) | 2012-11-06 |
Family
ID=47072914
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020110039316A KR20120121477A (en) | 2011-04-27 | 2011-04-27 | Method for preparing rigid poly1,4:3,6-dianhydrohexitol esters |
Country Status (3)
Country | Link |
---|---|
KR (1) | KR20120121477A (en) |
TW (1) | TW201245208A (en) |
WO (1) | WO2012148187A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015012619A1 (en) * | 2013-07-24 | 2015-01-29 | 에스케이케미칼주식회사 | Highly heat-resistant and highly transparent polycarbonate ester, and preparation method therefor |
KR20180017476A (en) | 2016-08-09 | 2018-02-21 | 주식회사 엘지화학 | Polyester and preparing method thereof |
KR20210038997A (en) * | 2014-04-30 | 2021-04-08 | 스티크팅 와게닝엔 리서치 | Polyisoidide furanoate thermoplastic polyesters and copolyesters and a use thereof in hot fill packaging |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR3086663B1 (en) * | 2018-10-02 | 2020-11-13 | Roquette Freres | PROCESS FOR PREPARING A POLYESTER OF POLY TYPE (1,4: 3,6-DIANHYDROHEXITOL-COCYCLOHEXYLENE TEREPHTHALATE) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003064170A (en) * | 2001-08-24 | 2003-03-05 | Polyplastics Co | Method for producing aromatic polyester |
US6737481B1 (en) * | 2002-12-19 | 2004-05-18 | E. I. Du Pont De Nemours And Company | Ester-modified dicarboxylate polymers |
CA2600717C (en) * | 2005-03-18 | 2013-08-27 | Battelle Memorial Institute | Resins, low temperature formulations, and coatings derived therefrom |
US9034982B2 (en) * | 2009-08-12 | 2015-05-19 | Ashland Licensing And Intellectual Property, Llc | Formulations comprising isosorbide-modified unsaturated polyester resins and low profile additives which produce low shrinkage matrices |
-
2011
- 2011-04-27 KR KR1020110039316A patent/KR20120121477A/en not_active Application Discontinuation
-
2012
- 2012-04-26 TW TW101114955A patent/TW201245208A/en unknown
- 2012-04-26 WO PCT/KR2012/003233 patent/WO2012148187A2/en active Application Filing
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015012619A1 (en) * | 2013-07-24 | 2015-01-29 | 에스케이케미칼주식회사 | Highly heat-resistant and highly transparent polycarbonate ester, and preparation method therefor |
KR20150012152A (en) * | 2013-07-24 | 2015-02-03 | 에스케이케미칼주식회사 | Polycarbonate ester having high heat resistance and transparency, and preparation method thereof |
CN105392818A (en) * | 2013-07-24 | 2016-03-09 | Sk化学公司 | Highly heat-resistant and highly transparent polycarbonate ester, and preparation method therefor |
US9963543B2 (en) | 2013-07-24 | 2018-05-08 | Sk Chemicals Co., Ltd. | Highly heat-resistant and highly transparent polycarbonate ester, and preparation method therefor |
US9975991B2 (en) | 2013-07-24 | 2018-05-22 | Sk Chemicals Co., Ltd. | Highly heat-resistant and highly transparent polycarbonate ester, and preparation method therefor |
US10738150B2 (en) | 2013-07-24 | 2020-08-11 | Sk Chemicals Co., Ltd. | Highly heat-resistant and highly transparent polycarbonate ester, and preparation method therefor |
US11732089B2 (en) | 2013-07-24 | 2023-08-22 | Sk Chemicals Co., Ltd. | Highly heat-resistant and highly transparent polycarbonate ester, and preparation method therefor |
KR20210038997A (en) * | 2014-04-30 | 2021-04-08 | 스티크팅 와게닝엔 리서치 | Polyisoidide furanoate thermoplastic polyesters and copolyesters and a use thereof in hot fill packaging |
KR20180017476A (en) | 2016-08-09 | 2018-02-21 | 주식회사 엘지화학 | Polyester and preparing method thereof |
Also Published As
Publication number | Publication date |
---|---|
TW201245208A (en) | 2012-11-16 |
WO2012148187A3 (en) | 2013-03-21 |
WO2012148187A2 (en) | 2012-11-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0000832B1 (en) | Melt processable resorcinol-phthalate polyesters and process for their preparation | |
US8859711B2 (en) | Method for preparing wholly aromatic liquid crystalline polyester amide resin and method for preparing wholly aromatic liquid crystalline polyester amide resin compound | |
JP2010503736A (en) | Process for the production of polyesters based on dianhydrohexitol | |
JP7205836B2 (en) | Highly heat-resistant polycarbonate ester and its preparation method | |
JP2021502427A (en) | Molded product made from highly heat resistant polycarbonate ester | |
KR20120121477A (en) | Method for preparing rigid poly1,4:3,6-dianhydrohexitol esters | |
KR20210094600A (en) | Method of making at least one polyester copolymer, at least one oligomer, oligomer composition and method of making a polyester copolymer | |
JPS648025B2 (en) | ||
JP2012046686A (en) | Isosorbide-copolymerized polyester resin and method for producing the same | |
JPH0356527A (en) | Aromatic polyester and production thereof | |
KR20160053716A (en) | Novel polyester resin and method for preparation of the same | |
KR20170048298A (en) | Method for preparing rigid poly(1,4:3,6-dianhydrohexitol esters) | |
KR102350740B1 (en) | Acetylated lactide oligomer-based plasticizer and the method of manufacturing the same, pla resin composition comprising acetylated lactide oligomer-based plasticizer | |
JP2015091912A (en) | Method for producing polyester | |
KR101361299B1 (en) | Thermoplastic polyester resin composition having good crystallization property | |
JP3164889B2 (en) | Method for producing aromatic polyester | |
KR20150079072A (en) | Wholly aromatic liquid crystalline polyester fiber and method for manufacturing the same | |
JP2831543B2 (en) | Method for producing aromatic polyester | |
CN115536819B (en) | Terephthalic acid copolyester with high processability and preparation method thereof | |
KR101687395B1 (en) | Novel polyester resin and method for preparation of the same | |
JP2003055446A (en) | Manufacturing method of wholly aromatic polyesters | |
JPS63264628A (en) | Production of thermotropic liquid crystal copolyester | |
KR101586457B1 (en) | Method for preparing polyester resin | |
KR960006300B1 (en) | Aromatic copolyester and the method for manufacturing the same | |
KR101586458B1 (en) | Novel polyester resin |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
A107 | Divisional application of patent | ||
E601 | Decision to refuse application | ||
J201 | Request for trial against refusal decision | ||
N231 | Notification of change of applicant | ||
J301 | Trial decision |
Free format text: TRIAL NUMBER: 2017101003455; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20170720 Effective date: 20180806 |