[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20120078127A - In-plane switching mode liquid crystal display device - Google Patents

In-plane switching mode liquid crystal display device Download PDF

Info

Publication number
KR20120078127A
KR20120078127A KR1020100140331A KR20100140331A KR20120078127A KR 20120078127 A KR20120078127 A KR 20120078127A KR 1020100140331 A KR1020100140331 A KR 1020100140331A KR 20100140331 A KR20100140331 A KR 20100140331A KR 20120078127 A KR20120078127 A KR 20120078127A
Authority
KR
South Korea
Prior art keywords
liquid crystal
electrode
crystal layer
pixel
crystal display
Prior art date
Application number
KR1020100140331A
Other languages
Korean (ko)
Other versions
KR101830240B1 (en
Inventor
윤상순
Original Assignee
엘지디스플레이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지디스플레이 주식회사 filed Critical 엘지디스플레이 주식회사
Priority to KR1020100140331A priority Critical patent/KR101830240B1/en
Publication of KR20120078127A publication Critical patent/KR20120078127A/en
Application granted granted Critical
Publication of KR101830240B1 publication Critical patent/KR101830240B1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/58Dopants or charge transfer agents
    • C09K19/586Optically active dopants; chiral dopants
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133784Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by rubbing
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1343Electrodes
    • G02F1/134309Electrodes characterised by their geometrical arrangement
    • G02F1/134363Electrodes characterised by their geometrical arrangement for applying an electric field parallel to the substrate, i.e. in-plane switching [IPS]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/136286Wiring, e.g. gate line, drain line
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/136Liquid crystal cells structurally associated with a semi-conducting layer or substrate, e.g. cells forming part of an integrated circuit
    • G02F1/1362Active matrix addressed cells
    • G02F1/1368Active matrix addressed cells in which the switching element is a three-electrode device
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/06Materials and properties dopant

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Liquid Crystal (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Geometry (AREA)

Abstract

PURPOSE: An in-plane switching mode liquid crystal display device is provided to lower a driving voltage and increase transmittance. CONSTITUTION: A gate line is formed on an inner surface of a first substrate(110). A data line crosses the gate line. A thin film transistor is connected to the gate line and the data line. Pixel electrodes(134a,134c) are formed on a pixel area. A common electrode(118) crosses the pixel electrode on the pixel area. A chiral dopant(174) is added to a liquid crystal layer(170). The pixel electrode and the common electrode form a rubbing direction with the liquid crystal layer.

Description

수평전계 구동방식 액정표시장치{in-plane switching mode liquid crystal display device}Horizontal field drive mode liquid crystal display device

본 발명은 액정표시장치에 관한 것으로서, 더욱 상세하게는 액정을 구동시키는 제 1 및 제 2 전극이 동일 기판에 형성되어 있는 수평전계 구동방식 액정표시장치에 관한 것이다.
The present invention relates to a liquid crystal display device, and more particularly, to a horizontal electric field drive type liquid crystal display device in which first and second electrodes for driving a liquid crystal are formed on the same substrate.

일반적으로 액정표시장치는 전계 생성 전극이 각각 형성되어 있는 두 기판을 두 전극이 형성되어 있는 면이 마주 대하도록 배치하고 두 기판 사이에 액정 물질을 주입한 다음, 두 전극에 전압을 인가하여 생성되는 전기장에 의해 액정 분자를 움직이게 함으로써, 이에 따라 달라지는 빛의 투과율에 의해 화상을 표현하는 장치이다. 이러한 액정표시장치는 휴대폰이나 멀티미디어장치와 같은 휴대용 기기부터 컴퓨터 모니터 및 대형 텔레비전에 이르기까지 다양하게 적용된다. In general, a liquid crystal display device is formed by arranging two substrates on which electric field generating electrodes are formed so that the surfaces on which the two electrodes are formed face each other, injecting a liquid crystal material between the two substrates, and then applying a voltage to the two electrodes. By moving the liquid crystal molecules by an electric field, the device expresses an image by the transmittance of light that varies accordingly. The liquid crystal display device is applied to a variety of applications ranging from portable devices such as mobile phones and multimedia devices to computer monitors and large televisions.

액정표시장치는 다양한 형태로 이루어질 수 있는데, 현재 박막 트랜지스터와 박막 트랜지스터에 연결된 화소 전극이 행렬 방식으로 배열된 능동 행렬 액정표시장치(Active Matrix LCD : AM-LCD)가 해상도 및 동영상 구현 능력이 우수하여 가장 주목받고 있다.A liquid crystal display can be formed in various forms. Currently, an active matrix liquid crystal display (AM-LCD) having a thin film transistor and pixel electrodes connected to the thin film transistor in a matrix manner has excellent resolution and video performance. It is the most noticeable.

이러한 액정표시장치는 하부 기판에 화소 전극이 형성되어 있고 상부 기판에 공통 전극이 형성되어 있는 구조로, 두 전극 사이에 걸리는 기판에 수직한 방향의 전기장에 의해 액정 분자를 구동하는 방식이다. 수직 전기장에 의한 액정표시장치는, 투과율과 개구율 등의 특성이 우수하다.The liquid crystal display device has a structure in which a pixel electrode is formed on a lower substrate and a common electrode is formed on an upper substrate, and the liquid crystal molecules are driven by an electric field in a direction perpendicular to the substrate between the two electrodes. The liquid crystal display device by a vertical electric field is excellent in characteristics, such as transmittance | permeability and aperture ratio.

그러나, 수직 전기장에 의한 액정표시장치는 시야각이 좁은 단점을 가진다. 따라서, 이러한 단점을 극복하기 위해 여러 가지 방법이 제시되었는데, 그 중의 한 예가 수평전계 구동방식 즉, IPS(in-plane switching) 모드의 액정표시장치이다.However, the liquid crystal display device due to the vertical electric field has a narrow viewing angle. Accordingly, various methods have been proposed to overcome these disadvantages, and one example thereof is a horizontal electric field driving method, that is, an LCD in an in-plane switching (IPS) mode.

이하, 첨부한 도면을 참조하여 종래의 IPS 모드의 액정표시장치에 관하여 설명한다.Hereinafter, a liquid crystal display of the conventional IPS mode will be described with reference to the accompanying drawings.

도 1은 일반적인 IPS 모드 액정표시장치를 개략적으로 도시한 단면도이다. 1 is a schematic cross-sectional view of a general IPS mode liquid crystal display.

도 1에 도시한 바와 같이, 상부 기판(1)과 하부 기판(2)이 일정 거리를 두고 배치되어 있으며, 두 기판(1, 2) 사이에는 액정 분자(3)가 위치한다. 액정 분자(3)를 구동시키기 위한 화소 전극(4)과 공통 전극(5)은 하부 기판(2) 상에 형성되어 있다. 따라서, 두 전극(4, 5)에 전압이 인가되었을 때, 두 전극(4, 5) 사이에는 기판에 평행한 수평 전계(6)가 생성되고, 액정층의 액정 분자(3)는 이 수평 전계(6)에 의해 동작하게 된다.As shown in FIG. 1, the upper substrate 1 and the lower substrate 2 are disposed at a predetermined distance, and the liquid crystal molecules 3 are positioned between the two substrates 1 and 2. The pixel electrode 4 and the common electrode 5 for driving the liquid crystal molecules 3 are formed on the lower substrate 2. Therefore, when a voltage is applied to the two electrodes 4, 5, a horizontal electric field 6 parallel to the substrate is generated between the two electrodes 4, 5, and the liquid crystal molecules 3 of the liquid crystal layer generate this horizontal electric field. It is operated by (6).

이와 같이, IPS 모드 액정표시장치에서는 동일 기판 상에 화소전극과 공통전극을 형성하고 두 전극 사이에 기판과 평행한 수평 전계를 생성하여, 액정 분자가 수평 전계와 나란하게 배열되도록 함으로써, 액정표시장치의 시야각을 넓게 할 수 있다.As described above, in the IPS mode liquid crystal display, a liquid crystal display is formed by forming a pixel electrode and a common electrode on the same substrate, and generating a horizontal electric field parallel to the substrate between the two electrodes, so that the liquid crystal molecules are aligned with the horizontal electric field. The viewing angle of can be widened.

특히, 각 화소 영역 내에 다수의 도메인(multi-domain)을 형성하여 각 도메인에서의 액정 분자의 배열 방향을 다르게 함으로써 시야각을 더욱 넓게 하고 있다. In particular, the viewing angle is further widened by forming a plurality of domains in each pixel region to change the arrangement direction of the liquid crystal molecules in each domain.

그런데, 휴대단말기 등의 경우, 시야각의 요구가 상대적으로 적기 때문에, 한 화소 영역이 하나의 도메인을 가지도록 하는 고투과율 화소 구조가 적용되고 있다. However, in the case of a portable terminal or the like, since the demand for viewing angle is relatively small, a high transmittance pixel structure in which one pixel region has one domain has been applied.

이때, IPS 모드 액정표시장치의 화소 전극과 공통 전극을 게이트 배선이나 데이터 배선에 대해 비스듬하게 형성하고, 액정 분자의 배열 방향, 즉, 러빙 방향을 게이트 배선이나 데이터 배선에 평행하게 함으로써, 내부 전경선(disclination) 영역을 최소화하고 있으며, 이에 따라 구동시 추가로 발생할 수 있는 도메인 불량 등을 방지하고 있다.At this time, the pixel electrode and the common electrode of the IPS mode liquid crystal display are formed obliquely with respect to the gate wiring or the data wiring, and the arrangement direction of the liquid crystal molecules, that is, the rubbing direction is parallel to the gate wiring or the data wiring, thereby making the internal foreground line ( disclination) area is minimized, thereby preventing additional domain defects that may occur during operation.

일례로, 도 2에 도시한 바와 같이, 액정 분자에 대한 러빙 방향을 데이터 배선(도시하지 않음)과 평행하게 하고, 화소 전극(PXL)과 공통 전극(COM)을 러빙 방향과 약 15도 내지 약 20도의 각도(θ)를 이루도록 한다. For example, as shown in FIG. 2, the rubbing direction for the liquid crystal molecules is made parallel to the data line (not shown), and the pixel electrode PXL and the common electrode COM are about 15 degrees to about the rubbing direction. Make an angle θ of 20 degrees.

그러나, 이러한 종래의 IPS 모드 액정표시장치에서는, 전극과 액정 분자가 이루는 각도, 즉, 전극 각도가 크기 때문에, 동일 개구 면적에서의 액정 효율이 떨어지고 이에 따라 투과율이 낮은 문제가 있다. However, in such a conventional IPS mode liquid crystal display device, since the angle formed between the electrode and the liquid crystal molecules, that is, the electrode angle is large, the liquid crystal efficiency in the same opening area is inferior, and thus the transmittance is low.

이를 개선하기 위해, 전극 각도를 작게 할 경우, 전경선이 발생하여 오히려 투과율이 저하된다. 또한, 구동 전압도 높아지게 되어, 저전압 및 저소비전력을 요구하는 휴대용 기기에 적용하는데 있어 큰 단점이 되고 있다. In order to improve this, when the electrode angle is made small, the foreground line is generated and the transmittance is lowered. In addition, the driving voltage is also increased, which is a major disadvantage in application to portable devices requiring low voltage and low power consumption.

도 3a와 도 3b는 종래의 IPS 모드 액정표시장치에서 전극 각도에 따른 전경선 발생 유무를 도시한 도면이고, 도 4는 종래의 IPS 모드 액정표시장치에서 전극 각도에 따른 구동 전압 대비 투과율을 도시한 그래프이다. 여기서, 화소 및 공통 전극이 러빙 방향에 대해 20도와 0도의 각을 가지는 경우에 대해 도시한다. 3A and 3B are diagrams showing whether a foreground line is generated according to an electrode angle in a conventional IPS mode liquid crystal display, and FIG. 4 is a graph showing transmittance versus driving voltage according to an electrode angle in a conventional IPS mode liquid crystal display. to be. Here, the case where the pixel and the common electrode have an angle of 20 degrees and 0 degrees with respect to the rubbing direction is shown.

도시한 바와 같이, 화소 및 공통 전극과 액정 분자가 20도를 이룰 경우, 전경선이 발생하지 않으나, 화소 및 공통 전극과 액정 분자가 0도를 이룰 경우, 즉, 평행할 경우, 전경선이 발생하는 것을 알 수 있다. 또한, 화소 및 공통 전극과 액정 분자가 0도를 이룰 경우, 투과율도 낮아지게 되며, 동일한 투과율을 얻기 위해 더 높은 전압이 필요하게 된다.
As shown, when the pixel and the common electrode and the liquid crystal molecules are 20 degrees, the foreground line does not occur, but when the pixel and the common electrode and the liquid crystal molecules are 0 degrees, that is, when the parallel lines, the foreground line is generated. Able to know. In addition, when the pixel, the common electrode, and the liquid crystal molecules reach 0 degrees, the transmittance is also lowered, and a higher voltage is required to obtain the same transmittance.

본 발명은, 투과율을 높이고 구동 전압이 개선된 수평전계 방식 액정표시장치를 제공하는데 그 목적이 있다.
An object of the present invention is to provide a horizontal field type liquid crystal display device having a high transmittance and an improved driving voltage.

상기의 목적을 달성하기 위하여, 본 발명은, 이격되어 마주 대하는 제1 및 제2기판과, 상기 제1기판 내면에 형성된 게이트 배선과, 상기 게이트 배선과 교차하여 화소 영역을 정의하는 데이터 배선, 상기 게이트 배선 및 데이터 배선에 연결된 박막 트랜지스터, 상기 화소 영역에 형성되고, 상기 박막 트랜지스터와 연결되는 화소 전극, 상기 화소 영역에서 상기 화소 전극과 엇갈리게 배치된 공통 전극, 상기 제1 및 제2기판 사이에 위치하고 카이럴 도펀트가 첨가된 액정층을 포함하며, 상기 화소 전극 및 상기 공통 전극은 상기 액정층의 배열 방향, 즉, 러빙 방향과 15도 이하의 각을 이루는 수평전계 구동방식 액정표시장치를 제공한다. In order to achieve the above object, the present invention, the first and second substrates spaced apart from each other, the gate wiring formed on the inner surface of the first substrate, and the data wiring defining the pixel region crossing the gate wiring, A thin film transistor connected to a gate wiring and a data wiring, a pixel electrode formed in the pixel region, and connected to the thin film transistor, a common electrode intersecting with the pixel electrode in the pixel region, and positioned between the first and second substrates. A liquid crystal layer including a chiral dopant is added, and the pixel electrode and the common electrode provide a horizontal electric field driving method liquid crystal display having an angle of 15 degrees or less with an arrangement direction of the liquid crystal layer, that is, a rubbing direction.

상기 액정층의 배열 방향은 상기 데이터 배선과 평행하거나, 또는 상기 게이트 배선과 평행하다.An arrangement direction of the liquid crystal layer is parallel to the data line or parallel to the gate line.

상기 카이럴 도펀트의 함량은 상기 액정층 대비 약 0.09% 내지 약 0.3%이다.The chiral dopant content is about 0.09% to about 0.3% compared to the liquid crystal layer.

상기 액정층의 피치는 ±10㎛ 내지 ±100㎛이다.The pitch of the liquid crystal layer is ± 10㎛ to ± 100㎛.

상기 액정층의 피치는 ±10㎛이고, 상기 화소 전극 및 상기 공통 전극은 상기 액정층의 배열 방향과 0도를 이룬다.
The pitch of the liquid crystal layer is ± 10 μm, and the pixel electrode and the common electrode form 0 degrees with the alignment direction of the liquid crystal layer.

본 발명에 따른 수평전계 구동방식 액정표시장치에서는, 공통 전극 및 화소 전극과 액정 분자의 배열방향, 즉, 러빙 방향과 15도 이하의 각을 이루도록 하여 투과율을 높이면서, 이에 따라 발생하는 문제를 방지하기 위해 카이럴 도펀트를 액정층 내에 첨가한다. 따라서, 전경선의 발생을 방지하고, 구동 전압을 낮출 수 있다.
In the horizontal electric field driving type liquid crystal display device according to the present invention, the common electrode, the pixel electrode and the liquid crystal molecules are arranged in an angle of 15 degrees or less, so as to increase the transmittance while preventing a problem occurring accordingly. A chiral dopant is added to the liquid crystal layer in order to. Therefore, the generation of the foreground line can be prevented and the driving voltage can be lowered.

도 1은 일반적인 IPS 모드 액정표시장치를 개략적으로 도시한 단면도이다.
도 2는 종래의 IPS 모드 액정표시장치에서 전극 방향과 러빙 방향을 개략적으로 도시한 도면이다.
도 3a와 도 3b는 종래의 IPS 모드 액정표시장치에서 전극 각도에 따른 전경선 발생 유무를 도시한 도면이다.
도 4는 종래의 IPS 모드 액정표시장치에서 전극 각도에 따른 구동 전압 대비 투과율을 도시한 그래프이다.
도 5는 본 발명의 실시예에 따른 IPS 모드 액정표시장치의 평면도이다.
도 6은 도 5의 VI-VI선에 대응하는 단면도이다.
도 7은 본 발명에 따른 IPS 모드 액정표시장치에서 전극 방향과 러빙 방향을 개략적으로 도시한 도면이다.
도 8은 본 발명에 따른 IPS 모드 액정표시장치에서 전경선 발생 여부를 도시한 도면이다.
도 9는 본 발명에 따른 IPS 모드 액정표시장치에서 구동 전압 대비 투과율을 도시한 그래프이다.
1 is a schematic cross-sectional view of a general IPS mode liquid crystal display.
2 is a view schematically showing an electrode direction and a rubbing direction in a conventional IPS mode liquid crystal display.
3A and 3B are diagrams illustrating whether a foreground line is generated according to an electrode angle in a conventional IPS mode LCD.
4 is a graph showing transmittance versus driving voltage according to an electrode angle in a conventional IPS mode liquid crystal display.
5 is a plan view of an IPS mode liquid crystal display according to an exemplary embodiment of the present invention.
FIG. 6 is a cross-sectional view corresponding to line VI-VI of FIG. 5.
7 is a view schematically showing an electrode direction and a rubbing direction in an IPS mode liquid crystal display according to the present invention.
8 is a diagram illustrating whether foreground lines are generated in an IPS mode LCD according to the present invention.
9 is a graph showing transmittance versus driving voltage in the IPS mode LCD according to the present invention.

이하, 도면을 참조하여 본 발명의 실시예를 설명한다.Hereinafter, embodiments of the present invention will be described with reference to the drawings.

도 5는 본 발명의 실시예에 따른 IPS 모드 액정표시장치의 평면도로 어레이 기판을 중심으로 도시한 것이고, 도 6은 도 5의 VI-VI선에 대응하는 단면도이다. FIG. 5 is a plan view of an IPS mode liquid crystal display according to an exemplary embodiment of the present invention, and is illustrated with the center of the array substrate. FIG. 6 is a cross-sectional view corresponding to the VI-VI line of FIG. 5.

도 5와 도 6에 도시한 바와 같이, 투명한 제1기판(110) 상에 금속과 같은 도전 물질로 게이트 배선(112)과, 게이트 전극(114), 공통 배선(116) 및 공통 전극(118)이 형성된다. 게이트 배선(112)은 제1방향을 따라 연장되고, 게이트 전극(114)은 게이트 배선(112)에서 돌출되어 있다. 공통 배선(116)은 게이트 배선(112)과 평행하며, 공통 배선(116)에서 연장된 공통 전극(118)이 게이트 배선(112) 쪽을 향하여 제2방향을 따라 형성되어 있다.As shown in FIGS. 5 and 6, the gate wiring 112, the gate electrode 114, the common wiring 116, and the common electrode 118 are formed of a conductive material such as metal on the transparent first substrate 110. Is formed. The gate wiring 112 extends along the first direction, and the gate electrode 114 protrudes from the gate wiring 112. The common wiring 116 is parallel to the gate wiring 112, and a common electrode 118 extending from the common wiring 116 is formed along the second direction toward the gate wiring 112.

게이트 배선(112)과 게이트 전극(114), 공통 배선(116) 및 공통 전극(118) 상부에는 게이트 절연막(120)이 형성되어 있으며, 게이트 전극(114) 상부의 게이트 절연막(120) 위에는 액티브층(122)과 오믹콘택층(124)이 차례로 형성된다. 게이트 절연막(120)은 실리콘 질화물(SiNx)나 실리콘 산화물(SiO2)로 이루어질 수 있다. 또한, 액티브층(122)은 순수 비정질 실리콘으로 이루어지고, 오믹콘택층(124)은 불순물 비정질 실리콘으로 이루어질 수 있으며, 액티브층(122)과 오믹콘택층(124)은 반도체층을 구성한다. A gate insulating film 120 is formed on the gate wiring 112, the gate electrode 114, the common wiring 116, and the common electrode 118, and an active layer is formed on the gate insulating film 120 above the gate electrode 114. The 122 and the ohmic contact layer 124 are sequentially formed. The gate insulating layer 120 may be made of silicon nitride (SiNx) or silicon oxide (SiO 2). In addition, the active layer 122 may be made of pure amorphous silicon, the ohmic contact layer 124 may be made of impurity amorphous silicon, and the active layer 122 and the ohmic contact layer 124 constitute a semiconductor layer.

오믹콘택층(124) 상부에는 금속과 같은 도전 물질로 소스 및 드레인 전극(126, 128)이 형성되며, 소스 및 드레인 전극(126, 128)은 게이트 전극(114)을 중심으로 이격되어 있다. Source and drain electrodes 126 and 128 are formed on the ohmic contact layer 124 with a conductive material such as metal, and the source and drain electrodes 126 and 128 are spaced apart from the gate electrode 114.

여기서, 게이트 전극(114)과 액티브층(122), 그리고 소스 및 드레인 전극(126, 128)은 박막 트랜지스터(T)를 이룬다. Here, the gate electrode 114, the active layer 122, and the source and drain electrodes 126 and 128 form a thin film transistor T.

한편, 소스 전극(126)과 연결된 데이터 배선(130)이 제2방향을 따라 연장되고, 데이터 배선(130)은 게이트 배선(112)과 교차하여 화소 영역을 정의한다. The data line 130 connected to the source electrode 126 extends along the second direction, and the data line 130 crosses the gate line 112 to define a pixel area.

데이터 배선(130)과 소스 전극(126) 및 드레인 전극(128) 상부에는 보호층(132)이 형성되고, 보호층(132)은 드레인 전극(128)을 드러내는 콘택홀(132a)을 가진다. The passivation layer 132 is formed on the data line 130, the source electrode 126, and the drain electrode 128, and the passivation layer 132 has a contact hole 132a exposing the drain electrode 128.

보호층(132) 상부에는 화소 전극이 형성되어 있으며, 화소 전극은 제1 및 제2 수평부(134a, 134b)와 다수의 수직부(134c)를 포함한다. 제1수평부(134a)와 제2수평부(134b)는 수직부(134c)의 양단을 각각 연결하며, 수직부(134c)는 공통 전극(118)과 엇갈리게 배치된다. 제1수평부(134a)는 콘택홀(132a)을 통해 드레인 전극(128)과 연결되고, 제2수평부(134a)는 공통 배선(116)과 중첩하여 스토리지 커패시터를 형성한다. 여기서, 화소 전극(134a, 134b, 134c)은 인듐-틴-옥사이드(indium tin oxide)나 인듐 징크 옥사이드(indium zinc oxide)와 같은 투명 도전 물질로 이루어진다. 또는, 화소 전극(134a, 134b, 134c)은 드레인 전극(128)과 동일 물질로 동일 층 상에 형성될 수도 있다. 또한, 여기서는 화소 전극의 제1수평부(134a)가 드레인 전극(128)과 연결되어 있으나, 제1수평부(134a) 없이 수직부(134b) 중 어느 하나가 드레인 전극(128)과 연결될 수도 있다. A pixel electrode is formed on the passivation layer 132, and the pixel electrode includes first and second horizontal portions 134a and 134b and a plurality of vertical portions 134c. The first horizontal portion 134a and the second horizontal portion 134b connect both ends of the vertical portion 134c, respectively, and the vertical portion 134c is alternately disposed with the common electrode 118. The first horizontal portion 134a is connected to the drain electrode 128 through the contact hole 132a, and the second horizontal portion 134a overlaps the common wiring 116 to form a storage capacitor. Here, the pixel electrodes 134a, 134b, and 134c are made of a transparent conductive material such as indium tin oxide or indium zinc oxide. Alternatively, the pixel electrodes 134a, 134b, and 134c may be formed on the same layer of the same material as the drain electrode 128. In addition, although the first horizontal portion 134a of the pixel electrode is connected to the drain electrode 128, any one of the vertical portions 134b may be connected to the drain electrode 128 without the first horizontal portion 134a. .

화소 전극(134a, 134b, 134c) 상부에는 제1배향막(136)이 형성된다.The first alignment layer 136 is formed on the pixel electrodes 134a, 134b, and 134c.

한편, 투명한 제2기판(150)이 제1기판(110) 상부에 이격되어 배치되고, 제2기판(150) 하부에는 박막 트랜지스터(T)에 대응하여 블랙매트릭스(152)가 형성된다. 도시하지 않았지만, 블랙매트릭스(150)는 게이트 배선(112) 및 데이터 배선(130)과대응하는 위치에도 형성되며, 화소 영역에 대응하여 개구부를 가진다. Meanwhile, the transparent second substrate 150 is spaced apart from the upper portion of the first substrate 110, and a black matrix 152 is formed below the second substrate 150 to correspond to the thin film transistor T. Although not shown, the black matrix 150 is also formed at a position corresponding to the gate wiring 112 and the data wiring 130 and has an opening corresponding to the pixel region.

블랙매트릭스(152) 하부와 블랙매트릭스(152)의 개구부에 대응하는 제2기판(150) 하부에는 컬러필터층(154)이 형성된다. 컬러필터층(154)은 각각이 화소 영역에 대응하는 적, 녹, 청색 컬러필터 패턴을 포함한다. The color filter layer 154 is formed under the black matrix 152 and under the second substrate 150 corresponding to the opening of the black matrix 152. The color filter layer 154 includes red, green, and blue color filter patterns each corresponding to a pixel area.

컬러필터층(154) 하부에는 오버코트층(156)이 형성되어 컬러필터층(154)을 보호한다. An overcoat layer 156 is formed under the color filter layer 154 to protect the color filter layer 154.

오버코트층(156) 하부에는 제2배향막(158)이 형성되어 있다. A second alignment layer 158 is formed under the overcoat layer 156.

제1 및 제2배향막(136, 158) 사이에는 액정층(170)이 위치하며, 액정층(170) 내에는 카이럴 도펀트(chiral dopant: 174)가 첨가되어 있다. 제1 및 제2배향막(136, 158)은 액정층(170)의 액정분자의 초기 배열을 결정하는 것으로, 여기서는 데이터 배선(130)과 평행한 제2방향을 따라 러빙 등의 방법으로 배향된다. The liquid crystal layer 170 is positioned between the first and second alignment layers 136 and 158, and a chiral dopant 174 is added to the liquid crystal layer 170. The first and second alignment layers 136 and 158 determine the initial arrangement of the liquid crystal molecules of the liquid crystal layer 170, and are aligned by rubbing or the like along a second direction parallel to the data line 130.

본 발명에서, 한 화소 영역은 액정 분자의 배열 방향이 하나인 모노 도메인(mon-domain) 형태이며, 공통 전극(118) 및 화소 전극, 보다 상세하게는 화소 전극의 수직부(134c)는 데이터 배선(130)과 15도 이하의 각도를 이룬다. 일례로, 도 5에서는 공통 전극(118) 및 화소 전극의 수직부(134c)가 데이터 배선(130)과 평행하게 형성된 것으로 도시한다. 이때, 공통 전극(118) 및 화소 전극의 수직부(134c)는 러빙 방향과 0도를 이룬다. In the present invention, one pixel region is in the form of a mono-domain in which the alignment direction of the liquid crystal molecules is one, and the common electrode 118 and the pixel electrode, more specifically, the vertical portion 134c of the pixel electrode are connected to the data line. Make an angle of less than 15 degrees with 130. For example, in FIG. 5, the common electrode 118 and the vertical portion 134c of the pixel electrode are formed to be parallel to the data line 130. At this time, the common electrode 118 and the vertical portion 134c of the pixel electrode form 0 degrees with the rubbing direction.

한편, 공통 전극(118) 및 화소 전극의 수직부(134c)는 게이트 배선(130)과 평행하게 형성될 수도 있으며, 이 경우, 액정층에 대한 러빙 방향은 게이트 배선(130)과 나란한 제1방향이 된다. 따라서, 공통 전극(118) 및 화소 전극의 수직부(134c)는 러빙 방향과 0도를 이룬다. Meanwhile, the common electrode 118 and the vertical portion 134c of the pixel electrode may be formed in parallel with the gate wiring 130. In this case, the rubbing direction with respect to the liquid crystal layer is in a first direction parallel to the gate wiring 130. Becomes Therefore, the common electrode 118 and the vertical portion 134c of the pixel electrode form 0 degrees with the rubbing direction.

이와 같이, 본 발명에서는 전극 각도를 15도 이하로 하면서 액정 분자의 꼬임각을 제어하는 카이럴 도펀트를 첨가하여, 전경선 발생을 방지하고 투과율을 높이며 구동 전압을 감소시킬 수 있다. As described above, in the present invention, a chiral dopant for controlling the twist angle of the liquid crystal molecules while the electrode angle is 15 degrees or less can be added to prevent the foreground line generation, increase the transmittance, and reduce the driving voltage.

여기서, 전극 각도에 따라 액정의 피치를 다르게 한다. 즉, 전극 각도가 작아질수록 액정의 피치 또한 작아지는 것이 바람직하다. 일례로, 전극 각도가 0도일 경우, 액정의 피치는 약 ±10㎛가 되도록 하고, 전극 각도가 15도 일 경우, 액정의 피치는 ±10㎛ 내지 ±100㎛가 되도록 한다. Here, the pitch of the liquid crystal is changed according to the electrode angle. That is, the smaller the electrode angle is, the smaller the pitch of the liquid crystal is. For example, when the electrode angle is 0 degrees, the pitch of the liquid crystal is about ± 10 μm, and when the electrode angle is 15 degrees, the pitch of the liquid crystal is about ± 10 μm to ± 100 μm.

한편, 액정의 피치는 카이럴 도펀트의 첨가량에 따라 조절할 수 있는데, 카이럴 도펀트의 함량이 증가할수록 액정의 피치는 작아진다. 앞서 언급한 바와 같이, 전극 각도가 15도 이하인 경우, 원하는 액정의 피치를 얻기 위해, 카이럴 도펀트는 액정층에 약 0.09 내지 0.3 %의 비율로 포함된다. On the other hand, the pitch of the liquid crystal can be adjusted according to the amount of chiral dopant added, the pitch of the liquid crystal becomes smaller as the content of the chiral dopant increases. As mentioned above, when the electrode angle is 15 degrees or less, the chiral dopant is included in the ratio of about 0.09 to 0.3% in the liquid crystal layer in order to obtain the pitch of the desired liquid crystal.

도 7은 본 발명에 따른 IPS 모드 액정표시장치에서 전극 방향과 러빙 방향을 개략적으로 도시한 도면이고, 도 8은 본 발명에 따른 IPS 모드 액정표시장치에서 전경선 발생 여부를 도시한 도면이고, 도 9는 본 발명에 따른 IPS 모드 액정표시장치에서 구동 전압 대비 투과율을 도시한 그래프이다. 도 9에서 비교를 위해 종래의 전극 각도에 따른 구동 전압 대비 투과율도 함께 도시한다. FIG. 7 is a view schematically showing an electrode direction and a rubbing direction in an IPS mode liquid crystal display according to the present invention, and FIG. 8 is a view showing whether foreground lines are generated in the IPS mode liquid crystal display according to the present invention, and FIG. 9. Is a graph showing transmittance vs. driving voltage in the IPS mode LCD according to the present invention. In FIG. 9, the transmittance versus the driving voltage according to a conventional electrode angle is also shown for comparison.

도 7에 도시한 바와 같이, 액정 분자의 배열 방향, 즉, 러빙 방향을 데이터 배선(도 5의 130)과 평행하게 하고, 화소 전극(PXL)과 공통 전극(COM)을 러빙 방향과 0도를 이루도록 한다. 여기서, 액정층 내에는 액정 분자의 꼬임각을 제어하는 카이럴 도펀트가 첨가되어 있다. As shown in FIG. 7, the alignment direction of the liquid crystal molecules, that is, the rubbing direction is parallel to the data line 130 (see FIG. 5), and the pixel electrode PXL and the common electrode COM are set to the rubbing direction and 0 degrees. To achieve. Here, a chiral dopant for controlling the twist angle of the liquid crystal molecules is added to the liquid crystal layer.

도시한 바와 같이, 화소 및 공통 전극과 액정 분자가 0도를 이루더라도 전경선이 발생하지 않는 것을 알 수 있다. 또한, 카이럴 도펀트를 첨가하지 않은 경우와 비교하여 구동 전압이 낮아지며 투과율 특성이 개선되는 것을 알 수 있다.
As shown in the figure, it can be seen that the foreground line does not occur even when the pixel, the common electrode, and the liquid crystal molecules form 0 degrees. In addition, it can be seen that the driving voltage is lowered and the transmittance characteristic is improved as compared with the case where the chiral dopant is not added.

본 발명은 상기한 실시예에 한정되지 아니하며, 본 발명의 정신을 벗어나지 않는 이상 다양한 변화와 변형이 가능하다.
The present invention is not limited to the above embodiments, and various changes and modifications can be made without departing from the spirit of the present invention.

110: 제1기판 114: 게이트 전극
118: 공통 전극 120: 게이트 절연막
122: 액티브층 124: 오믹콘택층
126: 소스 전극 128: 드레인 전극
132: 보호층 132a: 콘택홀
134a, 134b, 134c:화소 전극 136: 제1배향막
150: 제2기판 152: 블랙매트릭스
154: 컬러필터층 156: 오버코트층
158: 제2배향막 170: 액정층
174: 카이럴 도펀트
110: first substrate 114: gate electrode
118: common electrode 120: gate insulating film
122: active layer 124: ohmic contact layer
126: source electrode 128: drain electrode
132: protective layer 132a: contact hole
134a, 134b, and 134c: pixel electrode 136: first alignment film
150: second substrate 152: black matrix
154: color filter layer 156: overcoat layer
158: second alignment layer 170: liquid crystal layer
174: chiral dopant

Claims (6)

이격되어 마주 대하는 제1 및 제2기판과;
상기 제1기판 내면에 형성된 게이트 배선과;
상기 게이트 배선과 교차하여 화소 영역을 정의하는 데이터 배선;
상기 게이트 배선 및 데이터 배선에 연결된 박막 트랜지스터;
상기 화소 영역에 형성되고, 상기 박막 트랜지스터와 연결되는 화소 전극;
상기 화소 영역에서 상기 화소 전극과 엇갈리게 배치된 공통 전극;
상기 제1 및 제2기판 사이에 위치하고 카이럴 도펀트가 첨가된 액정층
을 포함하며, 상기 화소 전극 및 상기 공통 전극은 상기 액정층의 러빙 방향과 15도 이하의 각을 이루는 수평전계 구동방식 액정표시장치.
First and second substrates spaced apart from each other;
A gate wiring formed on an inner surface of the first substrate;
A data line crossing the gate line to define a pixel area;
A thin film transistor connected to the gate line and the data line;
A pixel electrode formed in the pixel region and connected to the thin film transistor;
A common electrode interposed with the pixel electrode in the pixel area;
A liquid crystal layer disposed between the first and second substrates and to which a chiral dopant is added.
Wherein the pixel electrode and the common electrode form an angle of 15 degrees or less with a rubbing direction of the liquid crystal layer.
청구항 1에 있어서,
상기 액정층의 러빙 방향은 상기 데이터 배선과 평행한 수평전계 구동방식 액정표시장치.
The method according to claim 1,
And a rubbing direction of the liquid crystal layer is parallel to the data line.
청구항 1에 있어서,
상기 액정층의 러빙 방향은 상기 게이트 배선과 평행한 수평전계 구동방식 액정표시장치.
The method according to claim 1,
And a rubbing direction of the liquid crystal layer is parallel to the gate line.
청구항 1에 있어서,
상기 카이럴 도펀트의 함량은 상기 액정층 대비 약 0.09% 내지 약 0.3%인 수평전계 구동방식 액정표시장치.
The method according to claim 1,
And the chiral dopant is about 0.09% to about 0.3% of the liquid crystal layer.
청구항 4에 있어서,
상기 액정층의 피치는 ±10㎛ 내지 ±100㎛인 수평전계 구동방식 액정표시장치.
The method of claim 4,
The pitch of the liquid crystal layer is a horizontal electric field driving method liquid crystal display device of ± 10㎛ to ± 100㎛.
청구항 5에 있어서,
상기 액정층의 피치는 ±10㎛이고, 상기 화소 전극 및 상기 공통 전극은 상기 액정층의 러빙 방향과 0도를 이루는 수평전계 구동방식 액정표시장치.
The method according to claim 5,
A pitch of the liquid crystal layer is ± 10㎛, the pixel electrode and the common electrode is a horizontal electric field drive type liquid crystal display device to form a 0 degree with the rubbing direction of the liquid crystal layer.
KR1020100140331A 2010-12-31 2010-12-31 in-plane switching mode liquid crystal display device KR101830240B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100140331A KR101830240B1 (en) 2010-12-31 2010-12-31 in-plane switching mode liquid crystal display device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100140331A KR101830240B1 (en) 2010-12-31 2010-12-31 in-plane switching mode liquid crystal display device

Publications (2)

Publication Number Publication Date
KR20120078127A true KR20120078127A (en) 2012-07-10
KR101830240B1 KR101830240B1 (en) 2018-02-20

Family

ID=46711518

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100140331A KR101830240B1 (en) 2010-12-31 2010-12-31 in-plane switching mode liquid crystal display device

Country Status (1)

Country Link
KR (1) KR101830240B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9562193B2 (en) 2013-10-11 2017-02-07 Samsung Display Co., Ltd. Liquid crystal display

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9562193B2 (en) 2013-10-11 2017-02-07 Samsung Display Co., Ltd. Liquid crystal display

Also Published As

Publication number Publication date
KR101830240B1 (en) 2018-02-20

Similar Documents

Publication Publication Date Title
US7940359B2 (en) Liquid crystal display comprising a dielectric layer having a first opening surrounding a patterned structure and exposing a portion of a first pixel electrode and a second pixel electrode formed on the dielectric layer
JP4543006B2 (en) Liquid crystal display element and manufacturing method thereof
US10288955B2 (en) Liquid crystal display device
US9063383B2 (en) Liquid crystal display device
TWI533051B (en) Liquid crystal display
KR100675635B1 (en) In plane switching mode liquid crystal display device having improved contrast ratio
US7688411B2 (en) Multi-domain liquid crystal display device
US20130321752A1 (en) Liquid crystal display device
WO2013001983A1 (en) Liquid crystal display panel and liquid crystal display device
KR101236520B1 (en) Liquid crystal display
JP2008032897A (en) Liquid crystal display
US8610856B2 (en) Liquid crystal display device
JP2008262006A (en) Active matrix substrate and liquid crystal panel
US8681297B2 (en) Liquid crystal display panel, and liquid crystal display device
US20120188496A1 (en) Liquid crystal display panel
KR20120078127A (en) In-plane switching mode liquid crystal display device
WO2014034786A1 (en) Active matrix substrate and liquid crystal display device
US20130342776A1 (en) Liquid crystal display device
JP2007310388A (en) Display panel
JP2009031411A (en) Liquid crystal display
KR20080003085A (en) In plane switching mode liquid crystal display device and method of fabricating thereof
KR101297737B1 (en) Liquid crystal display
JP2012032539A (en) Liquid crystal display device
KR20070070905A (en) Liquid crystal display device and method for fabricating the same
JP2008032898A (en) Liquid crystal display

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
AMND Amendment
E601 Decision to refuse application
AMND Amendment
X701 Decision to grant (after re-examination)
GRNT Written decision to grant