[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20120069324A - Method for manufacturing an autoclave lightweight concrete and autoclave lightweight concrete - Google Patents

Method for manufacturing an autoclave lightweight concrete and autoclave lightweight concrete Download PDF

Info

Publication number
KR20120069324A
KR20120069324A KR1020100130830A KR20100130830A KR20120069324A KR 20120069324 A KR20120069324 A KR 20120069324A KR 1020100130830 A KR1020100130830 A KR 1020100130830A KR 20100130830 A KR20100130830 A KR 20100130830A KR 20120069324 A KR20120069324 A KR 20120069324A
Authority
KR
South Korea
Prior art keywords
silica
weight
concrete
manufacturing
slurry
Prior art date
Application number
KR1020100130830A
Other languages
Korean (ko)
Other versions
KR101247288B1 (en
Inventor
이승호
추용식
송훈
이종규
Original Assignee
한국세라믹기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원 filed Critical 한국세라믹기술원
Priority to KR1020100130830A priority Critical patent/KR101247288B1/en
Publication of KR20120069324A publication Critical patent/KR20120069324A/en
Application granted granted Critical
Publication of KR101247288B1 publication Critical patent/KR101247288B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/02Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof by adding chemical blowing agents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B14/00Use of inorganic materials as fillers, e.g. pigments, for mortars, concrete or artificial stone; Treatment of inorganic materials specially adapted to enhance their filling properties in mortars, concrete or artificial stone
    • C04B14/02Granular materials, e.g. microballoons
    • C04B14/04Silica-rich materials; Silicates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B20/00Use of materials as fillers for mortars, concrete or artificial stone according to more than one of groups C04B14/00 - C04B18/00 and characterised by shape or grain distribution; Treatment of materials according to more than one of the groups C04B14/00 - C04B18/00 specially adapted to enhance their filling properties in mortars, concrete or artificial stone; Expanding or defibrillating materials
    • C04B20/02Treatment
    • C04B20/026Comminuting, e.g. by grinding or breaking; Defibrillating fibres other than asbestos
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B40/00Processes, in general, for influencing or modifying the properties of mortars, concrete or artificial stone compositions, e.g. their setting or hardening ability
    • C04B40/02Selection of the hardening environment
    • C04B40/0254Hardening in an enclosed space, e.g. in a flexible container
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2201/00Mortars, concrete or artificial stone characterised by specific physical values
    • C04B2201/50Mortars, concrete or artificial stone characterised by specific physical values for the mechanical strength

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Civil Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE: A manufacturing method of lightweight aerated concrete and lightweight cellular concrete is provided to adding excellent physical property to final products by adjusting fineness of silica stone. CONSTITUTION: A manufacturing method of lightweight cellular concrete comprises the following steps: pulverizing silica in a vibrating mill for predetermined time; manufacturing slurry by adding water to silicate powder, quick lime, and a mixture of cement; forming a molding product by mixing 0.05-1 parts by weight of aluminum powder to the slurry as a foaming agent based on the 100.0 parts by weight of the mixture; and processing hydrothermal reaction on the molding product by maturing at 45-55 deg. Celsius and relative humidity of 45-55% for 4-6 hours.

Description

경량 기포 콘크리트의 제조방법 및 경량 기포 콘크리트{Method for manufacturing an autoclave lightweight concrete and autoclave lightweight concrete}Method for manufacturing an autoclave lightweight concrete and autoclave lightweight concrete

본 발명은 경량 기포 콘크리트의 제조방법 및 그 경량 기포 콘크리트에 관한 것으로서, 보다 상세하게는 경량 기포 콘크리트의 주 구성요소인 규석을 미세분말화 하여 규석의 분말도를 조정함으로써 최종 수열합성 생성물의 물리적 특성 변화를 꽤하여 최종생성물의 압축강도, 휨강도 등의 우수한 물성을 가지도록 하는 경량기포 콘크리트의 제조방법 및 그에 따라 제조된 경량 기포 콘크리트에 관한 것이다.
The present invention relates to a method for manufacturing lightweight foamed concrete, and to lightweight foamed concrete. More specifically, the physical properties of the final hydrothermally synthesized product by finely powdering silica, which is the main component of lightweight foamed concrete, and adjusting the powder degree of silica The present invention relates to a method for manufacturing lightweight foamed concrete, which has a substantial change, and to have excellent properties such as compressive strength and flexural strength of the final product, and lightweight foamed concrete produced accordingly.

최근 콘크리트 고품질화의 일환으로 콘크리트의 최대 단점인 무게에 비해 낮은 강도 즉, 비강도를 개선하기 위해 고강도화에 대한 연구가 활발하게 진행되고 있으며, 실용화되고 있다. 미국에서는 1975년 262m 높이의 Water Tower Palace에 60MPa의 고강도 콘크리트를, 1988~89년 시에틀의 58층 건물인 Two Union Square에 120MPa의 고강도 콘크리트를 시공하였다. 국내에서도 고강도 콘크리트의 필요성을 크게 인식하여 80년대 후반부터 본격적인 연구가 시작되었으며 최근에 들어 건설관련 연구소 및 대학 연구실을 중심으로 실용화 및 특성 규명을 위한 연구가 활발히 수행되고는 있지만 레미콘 품질의 불신, 심리적 한계, 품질에 대한 자신감 부족 등으로 인해 실제 구조물에의 적용은 극히 드물다고 할 수 있다. 이러한 때에 건축재료, 건설, 화학업종에서 세계적인 회사들인 Lafarge, Bouygues 및 Rhodia가 공동으로 연구, 개발한 "고연성을 갖는 초고강도 콘크리트 (제품명 Ductal)"에 관심이 집중되고 있다. 덕탈은 초고강도, 고연성, 고내구성 및 미려함을 갖춘 섬유-시멘트 메트릭스 건축재료 (fiber -cement matrix construction material)로 철강과 같은 추가적인 보강자재 없이도 사용가능한 재료이다. 1993년 세계적인 건축회사인 Bouygue는 reactive powder concrete에 대해 특허를 출원하고 1994년 10월 Bouygue-Lafarge-Rhodia 사이에 5년간 예정으로 연구를 시작하였다. 그 결과 1997년 11월 금속섬유를 첨가한 Ductal FM에 대하여, 1998년 4월 유기섬유를 첨가한 Ductal FO에 대하여 특허를 출원하였다. 즉, 덕탈은 프랑스 라파즈사의 초고강도 시멘트 및 콘크리트 관련 제품이며, 일반학술용어로는 초고강도 섬유보강 콘크리트로 명명될 수 있다.Recently, as part of high quality concrete, research on high strength has been actively conducted to improve low strength, that is, specific strength, compared to weight, which is the biggest disadvantage of concrete. In the United States, 60MPa high-strength concrete was constructed in 1975 at 262m Water Tower Palace, and 120MPa high-strength concrete was installed in Two Union Square, a 58-story Seattle in 1988-89. In Korea, since the need for high-strength concrete was greatly recognized in Korea, full-scale research began in the late 80s. Recently, researches for practical use and characterization have been actively conducted, especially in construction-related research institutes and university laboratories. Due to limitations and lack of confidence in quality, the application to actual structures is extremely rare. At this time, attention is focused on "Super Ductal," a highly flexible concrete, jointly researched and developed by world-class companies Lafarge, Bouygues and Rhodia in the building materials, construction and chemical industries. The duct is a fiber-cement matrix construction material with ultra high strength, high ductility, high durability and beauty, which can be used without additional reinforcement such as steel. In 1993, Bouygue, a world-renowned building company, applied for a patent on reactive powder concrete and began a five-year study between Bouygue-Lafarge-Rhodia in October 1994. As a result, a patent was filed for Ductal FM in which metal fiber was added in November 1997, and Ductal FO in which organic fiber was added in April 1998. In other words, ductal is a product related to ultra-high strength cement and concrete of La Paz, France, and may be referred to as ultra-high strength fiber reinforced concrete in general academic terms.

초고강도 섬유보강 콘크리트의 물리적 특성은 높은 압축강도, 휨강도, 연성을 지닌다는 것이며, 압축강도는 160~230 N/㎟로서, 일반 콘크리트(21~28 N/㎟)의 약 8배 이상이다. 또한 휨강도는 40~50 N/㎟ 수준으로 일반 콘크리트(3.5~5.6 N/㎟)의 약 10배 이상이기도 하다. 따라서 철근 사용이 없는 초고강도 섬유보강 콘크리트로, 1)덕탈로 만들어진 구조물은 초고강도 섬유가 철근을 대체, 2)동일한 하중과 강도를 제공하는 전통적인 콘크리트와 비교하여 절반 정도의 분량으로 강도충족 및 3)철근 및 부재두께 감소(초고층 및 장대교량 유리)라는 장점을 갖는다.The physical properties of ultra high strength fiber reinforced concrete have high compressive strength, flexural strength and ductility. The compressive strength is 160 ~ 230 N / mm2, which is about 8 times higher than that of general concrete (21 ~ 28 N / mm2). In addition, the flexural strength is 40 ~ 50 N / mm2, which is about 10 times higher than that of general concrete (3.5 ~ 5.6 N / mm2). Therefore, ultra-high strength fiber-reinforced concrete without reinforcing bars, 1) the structure made of ducts replaces reinforcing bars with ultra high-strength fibers; Rebar and member thickness reduction (ultra high and long bridge glass) has the advantage.

한편, 일반적으로 건축 및 토목용 구조물의 시공시에 사용되는 경량 기포 콘크리트는 흡습성과 건조수축이 보통 콘크리트보다 훨씬 큰 경량콘크리트의 일종으로, 동물성 또는 식물성 기포제를 사용하며 포틀랜트 시멘트와 물을 혼합하여 슬러리화한 상태에서 기포제가 발포기를 통과하여 발포된 기포액과 다시 혼합하여 적정한 물성이 확보되도록 제조한다. 종래 경량 기포콘크리트는 재료의 투입량에 따라 압축강도가 28일강도 기준으로 660 kgf/㎠, 비중 0.5~1.8 정도로 사용된다. 상기 경량 기포콘크리트는 상온?상압에서 양생하는 것과 오토클레이브(autoclave) 양생하는 것의 2종류로 나뉜다. On the other hand, lightweight foamed concrete, which is generally used in construction and construction of civil engineering structures, is a kind of lightweight concrete that has much higher hygroscopicity and dry shrinkage than ordinary concrete. It uses animal or vegetable foaming agent and mixes portland cement with water. In the slurrying state, the foaming agent passes through the foaming machine and mixed with the foamed foam liquid to prepare proper physical properties. Conventional lightweight foam concrete has a compressive strength of 660 kgf / ㎠, specific gravity of 0.5 ~ 1.8 about 28 days of strength, depending on the amount of material input. The lightweight foam concrete is divided into two types: curing at normal temperature and pressure and autoclave curing.

상온?상압에서 양생하는 경량 기포콘크리트는 시멘트 반죽에 발포기를 통과한 발포액제를 혼합하여 상온상압에서 양생하며, 보통 기건 비중 0.4?0.6, 압축강도 8?12kgf/㎠로서 흡수성이 크고 건조시 균열이 생기는 단점이 있어 주로 터널 뒷채움용, 폐광채움용, 아파트의 바닥충진용 등으로 활용되고 있으며, 다른 용도로의 활용은 거의 없는 실정이다.Lightweight foamed concrete cured at room temperature and atmospheric pressure is cured at room temperature by mixing the foam liquid passed through the foaming machine with cement dough, and it is cured at normal temperature and normal pressure.It is usually 0.4 ~ 0.6, compressive strength 8 ~ 12kgf / ㎠, which has high absorbency and cracks when drying. Due to the drawbacks, it is mainly used for filling the tunnel, filling the abandoned mine, and filling the floor of the apartment, and it is rarely used for other purposes.

오토클레이브 양생한 경량 기포 콘크리트는 실리카분이 많이 들어 있는 모래와 생석회 등을 주원료로 만들며, 슬러리에 발포제(알루미나분말 등)와 안정제 등을 섞어 거푸집에 넣고 발포팽창하여 케이크 모양으로 굳었을 때 꺼내 소요형상을 잘라 오토클레이브 안에서 약 180℃, 10기압으로 양생한다. 보통 ALC(autoclaved lightweight concrete)라고 하며 기건 비중 약 0.5~0.8 정도, 압축강도 약 40 ~ 60 kgf/㎠이고, 흡수건조할 때 용적변형이 적고 균열이 잘 생기지 않으며 단열성이 뛰어나다는 장점이 있으나 압축강도가 낮아 각종 건축 및 토목 구조물과 콘크리트 2차 제품군에 활용하기에는 한계가 있었다.
Lightweight foamed concrete cured with autoclave is made of sand and quicklime, which contain a lot of silica, as the main raw materials, and when the slurry is mixed with foaming agent (alumina powder) and stabilizer, it is put into the formwork and foamed to expand into a cake shape. Cut off and cure in autoclave at about 180 ℃, 10 atm. It is usually called ALC (autoclaved lightweight concrete), and its specific gravity is about 0.5 ~ 0.8, its compressive strength is about 40 ~ 60 kgf / ㎠, and it has the advantages of low volumetric deformation, less cracking, and excellent thermal insulation when absorbed and dried. Because of the low level, there was a limit to use in various architectural and civil structures and concrete secondary products.

본 발명은 경량 기포 콘크리트의 물성을 개선하기 위해 규석의 입도를 제어하여 경량성과 차음, 단열성 등은 그대로 유지하면서 압축강도, 휨강도 등의 물성이 크게 향상된 경량 기포 콘크리트의 제조방법 및 그에 따른 경량 기포 콘크리트를 제공하는 것을 그 해결과제로 한다.
The present invention is to control the particle size of the silica to improve the properties of lightweight foam concrete while maintaining light weight, sound insulation, heat insulation, etc. while maintaining the properties such as compressive strength, flexural strength significantly improved lightweight foam concrete and the resulting lightweight foam concrete Providing is a challenge.

상기한 과제를 해결한 본 발명의 경량 기포 콘크리트의 제조방법은 규석을 진동밀에 투입하여 일정시간동안 분쇄하는 단계; 상기 분쇄된 규석분말, 생석회 및 시멘트를 혼합한 혼합물에 일정점도를 가지도록 물을 첨가하여 슬러리를 제조하는 단계; 상기 슬러리에 발포제로 알루미늄 분말을 상기 혼합물100중량부에 대하여 0.05 ~ 0.1중량부를 혼합하여 성형체를 형성하는 단계; 상기 성형체를 항온항습기에서 온도 45~55℃, 상대습도 45 ~ 55%조건에서 4 ~ 6시간 숙성시키면서 수열합성반응시키는 단계를 포함하여 되는 것을 특징으로 한다. Method for producing a lightweight foam concrete of the present invention to solve the above problems is the step of pulverizing for a predetermined time by adding silica to a vibration mill; Preparing a slurry by adding water to a mixture of the pulverized silica powder, quicklime and cement to have a predetermined viscosity; Mixing the aluminum powder with a foaming agent to 0.05 to 0.1 parts by weight based on 100 parts by weight of the mixture to form a molded body in the slurry; It characterized in that it comprises the step of hydrothermally synthesized while the molded body is aged for 4 to 6 hours at a temperature of 45 ~ 55 ℃, relative humidity 45 ~ 55% conditions in a thermo-hygrostat.

여기서, 상기 규석의 분쇄는 분쇄시간 20 ~ 40분, 평균입도 90㎛, 잔분율은 1.0 ~ 5.0%가 되도록 분쇄하는 것을 특징으로 한다. Here, the grinding of the silica is characterized in that the grinding time 20 to 40 minutes, the average particle size of 90㎛, the residual fraction is 1.0 to 5.0%.

여기서, 상기 슬러리는 규석 55 ~ 60중량%, 생석회 12 ~ 15중량% 및 시멘트 30 ~ 35중량%, 물 40 ~ 50중량%를 포함하도록 혼합하는 것을 특징으로 한다. Here, the slurry is characterized in that it is mixed to include 55 to 60% by weight of silica, 12 to 15% by weight of quicklime and 30 to 35% by weight of cement, 40 to 50% by weight of water.

또한, 본 발명에서는 상기 개시된 제조방법에 의해 제조되는 경량 기포 콘크리트를 제공한다.
In addition, the present invention provides a lightweight foam concrete produced by the above-described manufacturing method.

본 발명에 의해 제공되는 경량 기포 콘크리트의 제조방법에 따라 제조되는 경량 기포 콘크리트는 규석의 입도를 제어함으로써, 경량성과 차음, 단열성 등은 그대로 유지하면서 압축강도, 휨강도 등의 물성이 크게 향상되는 효과를 가진다.
Lightweight foamed concrete prepared according to the method for manufacturing light-weight foamed concrete provided by the present invention has the effect of greatly improving the physical properties such as compressive strength, flexural strength, etc., while maintaining light weight, sound insulation, heat insulation, etc. by controlling the particle size of silica. Have

도 1은 분쇄시간에 따른 규석의 분말도 변화를 도시한 그래프이다.
도 2 및 3은 규석의 분쇄시간에 따른 압축강도와 휨강도 측정 결과를 도시한 것이다.
도 4는 규석의 분쇄시간에 따른 미세구조 관찰을 위해 주사전자현미경사진이다.
도 5는 초기 미분쇄 상태로 수열합성된 ALC 내부의 규석들의 주사전자현미경사진이다.
도 6은 규석의 분쇄 시간에 따른 XRD 패턴을 나타낸 것이다.
1 is a graph showing a change in the powder degree of silica with grinding time.
2 and 3 show the results of measuring compressive strength and flexural strength according to the grinding time of silica.
4 is a scanning electron micrograph for observing the microstructure according to the grinding time of silica.
FIG. 5 is a scanning electron micrograph of silicas in ALC hydrothermally synthesized in an initial pulverized state.
Figure 6 shows the XRD pattern according to the grinding time of the silica.

이하, 본 발명을 보다 상세히 설명하기로 한다. Hereinafter, the present invention will be described in more detail.

본 발명에 따른 경량기포 콘크리트의 제조방법은 규석을 진동밀에 투입하여 일정시간동안 분쇄하는 단계; 상기 분쇄된 규석분말, 생석회 및 시멘트를 혼합한 혼합물에 일정점도를 가지도록 물을 첨가하여 슬러리를 제조하는 단계; 상기 슬러리에 발포제로 알루미늄 분말을 상기 혼합물100중량부에 대하여 0.05 ~ 0.1중량부를 혼합하여 성형체를 형성하는 단계; 상기 성형체를 항온항습기에서 온도 45~55℃, 상대습도 45 ~ 55%조건에서 4 ~ 6시간 숙성시키면서 수열합성반응시키는 단계를 포함하여 이루어진다. Method for producing lightweight foamed concrete according to the present invention comprises the steps of pulverizing for a predetermined time by putting the silica into a vibration mill; Preparing a slurry by adding water to a mixture of the pulverized silica powder, quicklime and cement to have a predetermined viscosity; Mixing the aluminum powder with a foaming agent to 0.05 to 0.1 parts by weight based on 100 parts by weight of the mixture to form a molded body in the slurry; The molded body is subjected to hydrothermal synthesis while aging for 4 to 6 hours at 45-55 ° C. and 45-55% relative humidity in a thermo-hygrostat.

여기서, 상기 규석의 분쇄는 분쇄시간 20 ~ 40분, 평균입도 90㎛, 잔분율은 1.0 ~ 5.0%가 되도록 분쇄하는 것이 바람직하다. Here, the grinding of the silica is preferably pulverizing such that the grinding time is 20 to 40 minutes, the average particle size is 90㎛, the residual fraction is 1.0 to 5.0%.

여기서, 상기 슬러리는 규석 55 ~ 60중량%, 생석회 12 ~ 15중량% 및 시멘트 30 ~ 35중량%, 물 40 ~ 50중량%를 포함하도록 혼합하는 것이 바람직하다.
Here, the slurry is preferably mixed to include 55 to 60% by weight of silica, 12 to 15% by weight of quicklime, 30 to 35% by weight of cement, and 40 to 50% by weight of water.

본 발명에 따르면, 이상에서 개시되는 제조방법에 따라 제조된 경량 기포 콘크리트가 제공한다.
According to the present invention, there is provided a lightweight foam concrete prepared according to the manufacturing method disclosed above.

이하, 본 발명을 바람직한 실시예를 들어 보다 상세히 설명하기로 한다. 단, 하기의 실시예로 본 발명이 한정되는 것은 아니다. Hereinafter, the present invention will be described in more detail with reference to preferred embodiments. However, the present invention is not limited to the following examples.

[실시예][Example]

화학성분이 표 1과 같은 규석, 생석회 및 시멘트를 사용하였다. ALC의 주원료중 하나인 규석의 SiO2 함량은 88.0%이었으며, 생석회의 CaO 함량은 67.6%이었다. 본 실험의 원료들은 현재 국내 ALC 제조업체에서 사용하는 원료들을 입수?사용하였다. As the chemical composition, silica, quicklime and cement shown in Table 1 were used. The SiO 2 content of silica, one of the main raw materials of ALC, was 88.0%, and the CaO content of quicklime was 67.6%. The raw materials of this experiment were obtained and used raw materials currently used by domestic ALC manufacturers.

출발원료인 규석의 입도 즉, 규석의 비표면적 차이에 따른 반응성을 알아보기 위하여 진동밀 (WTBM-01, 웅비사, 한국)을 이용하여 분쇄하였다. 규석의 입도에 따른 기초물성을 측정하고 ALC 제조를 위한 최적의 배합기술을 도출하기 위해 규석을 시료용기에 각각 3㎏씩 넣고 5분부터 30분까지 5분 간격으로 분쇄를 실시하였다. 분쇄한 규석의 분말도를 확인하기 위해 KS L 5117-2010 규격에 준하여 90㎛체 잔분 실험을 하였으며, KS L 5106-2009에 따른 Blaine 분말도 시험도 진행하였다.To determine the particle size of the starting material, that is, the reactivity according to the specific surface area of the silica, it was pulverized using a vibration mill (WTBM-01, Unbisa, Korea). In order to measure the basic physical properties according to the size of the silica and to derive the optimum blending technology for ALC manufacturing, 3 kg each of the silica was put in the sample container and ground at intervals of 5 minutes from 5 minutes to 30 minutes. In order to confirm the powder level of the crushed silica, 90 µm sieve residue experiment was conducted according to KS L 5117-2010 standard, and the Blaine powder test according to KS L 5106-2009 was also conducted.

출발 원료인 분쇄 규석, 생석회 및 시멘트를 표 2와 같이 배합설계하고, 제품의 강도에 큰 영향을 미치는 CaO/SiO2비를 현재 제조업체에서 적용중인 0.5로 고정하여 배합하였다. 혼합수는 분말대비 45%로 배합하였으며, 이때 발포제로 알루미늄 분말을 출발원료 대비 0.08% 첨가하였다. 이후 제조된 성형체를 50℃ 상대습도 50%의 항온항습기 (CC600, 우진정밀, 한국)에 넣고 5시간 동안 숙성시켰다. 이때 서서히 수열합성이 진행되면서 부피팽창이 일어나고 발포제로 첨가하였던 알루미늄 분말이 기공들을 형성한다. 이렇게 제조된 성형체를 오토클레이브에 장입하고, 1시간 동안 180℃까지 승온시키며, 이후 180℃에서 7시간 동안 수열합성을 진행하였다.The starting materials, pulverized silica, quicklime and cement were designed and blended as shown in Table 2, and the CaO / SiO 2 ratio, which had a great influence on the strength of the product, was fixed at 0.5, which is currently being applied by the manufacturer. The mixed water was blended with 45% of the powder. At this time, aluminum powder was added 0.08% of the starting material as a blowing agent. Then, the manufactured molded product was placed in a constant temperature and humidity chamber (CC600, Woojin Precision, Korea) of 50 ° C and 50% relative humidity, and aged for 5 hours. At this time, as the hydrothermal synthesis progresses, volume expansion occurs, and the aluminum powder added as the blowing agent forms pores. The molded product thus prepared was charged into an autoclave, heated to 180 ° C. for 1 hour, and then hydrothermal synthesis was performed at 180 ° C. for 7 hours.

오토클레이브에서 수열합성이 종료된 후 얻어진 시편은 비중 및 압축?휨강도 측정을 위해 휨강도용 160×40×40㎜, 압축강도용 40×40×40㎜로 절단하였다. 절단된 성형체는 100℃에서 항량이 될 때까지 건조하였다. 또한 주사전자현미경(SM-300, 탑콘사, 일본)과 X-선 회절기(D5005D, 지멘스사, 독일)를 사용하여 미세구조 및 결정상을 검토하였다.   After completion of hydrothermal synthesis in the autoclave, the specimens were cut into 160 × 40 × 40 mm for flexural strength and 40 × 40 × 40 mm for compressive strength to measure specific gravity and compressive strength. The cut molded body was dried at 100 ° C. until a constant weight was obtained. The microstructure and crystal phase were also examined using a scanning electron microscope (SM-300, Topcon, Japan) and an X-ray diffractometer (D5005D, Siemens, Germany).

MaterialsMaterials SiO2 SiO 2 Al2O3 Al 2 O 3 Fe2O3 Fe 2 O 3 CaOCaO K2OK 2 O Na2ONa 2 O SO3 SO 3 QuartziteQuartzite 88.088.0 5.115.11 2.092.09 0.360.36 0.760.76 0.080.08 -- LimeLime 1.541.54 0.420.42 0.410.41 67.6067.60 0.100.10 0.120.12 0.100.10 OPCOPC 20.4520.45 5.475.47 3.033.03 62.2262.22 0.340.34 0.800.80 2.382.38

Starting MaterialsStarting Materials Quartzite
규석
Quartzite
burr
Lime
생석회
Lime
quicklime
OPC
시멘트
OPC
cement
WaterWater
Mixing Ratio (wt%)Mixing Ratio (wt%) 56.456.4 12.412.4 31.231.2 4545

[상기 실시예에 따른 결과 및 고찰][Results and Discussions According to the Example]

<분쇄시간에 따른 규석의 분말도 변화><Change of Powder Content of Silica According to Grinding Time>

규석의 분쇄시간에 따른 분말도, 즉 90㎛ 체 잔분 변화를 관찰하기 위해 진동밀을 사용하여 분쇄한 결과를 도 1에 나타내었다. 최초 입수된 규석의 잔분율은 38%이었으며, 이후 10분 분쇄는 16% (Blaine 분말도 기준 1,548㎠/g), 20분 분쇄는 4.9% (3,233㎠/g), 30분 분쇄는 1.3% (5,491㎠/g)이었다. 이는 분쇄시간에 따라 잔분이 감소하는 일반적 경향과 일치하는 결과이기도 하다. 분쇄하지 않은 규석과 30분 분쇄한 규석의 잔분율 차이는 36.7%였으며, 분쇄 시간이 증가할수록 잔분율의 감소 폭은 작아짐을 확인할 수 있었다. 또한 25분부터는 90㎛ 체 잔분율이 크게 감소하지 않는 경향을 나타내었다. 1 shows the results of grinding using a vibrating mill to observe the change in the powder degree according to the grinding time of silica, that is, 90 μm sieve residue. The percentage of silica obtained initially was 38%, followed by 16% for 10-minute grinding (1,548 cm2 / g based on Blaine powder), 4.9% (3,233 cm2 / g) for 20-minute grinding, and 1.3% (30-minute grinding). 5,491 cm 2 / g). This is also in line with the general trend that the residues decrease with grinding time. The difference between the residual fractions of the unpolished silica and the 30 minutes ground silica was 36.7%. As the grinding time increased, the decrease of the residual fraction decreased. Also, from 25 minutes, the 90 μm sieve fraction did not tend to decrease significantly.

<절건 비중><Abstract weight>

규석의 분쇄시간에 따른 비중은 개기공을 포함하는 부피비중으로 측정하였으며, 100℃ 항량 후 절건비중을 표 3에 나타내었다. 분쇄 시간에 따른 절건비중은 0.55g/㎤부터 최대 0.61g/㎤까지 다양하게 분포하였지만 큰 차이를 나타내지 않았다. 최초 입수 상태로 규석을 사용한 ALC에서 가장 낮은 비중 값을 나타내었다. 이후 분쇄시간의 증가에 따라 제조된 ALC에서 소폭의 비중 증가가 동반되었다. 이는 분쇄시간이 증가할수록 규석의 입자 크기가 작아지고, 비표면적이 넓어져 CaO 원료와의 반응성이 증가하며, 또한 성형체의 경화시간이 단축되어 성형체 내부 기공병합 현상이 줄어들기 때문으로 판단되었다.Specific gravity according to the grinding time of the silica was measured by the volume specific gravity including the open pores, and the specific dry weight after the 100 ℃ dosage is shown in Table 3. Drying specific gravity according to the grinding time ranged from 0.55 g / cm 3 to a maximum of 0.61 g / cm 3, but there was no significant difference. The lowest specific gravity value was obtained in ALC using silica as the initial acquisition state. Thereafter, with the increase of the grinding time, a small increase in the specific gravity of the prepared ALC was accompanied. It was determined that as the grinding time increases, the particle size of the silica decreases, the specific surface area increases, the reactivity with the CaO raw material increases, and the curing time of the molded body is shortened, thereby reducing the pore merging in the molded body.

Grinding time
(min)
Grinding time
(min)
00 55 1010 1515 2020 2525 3030
Specific GravitySpecific Gravity 0.550.55 0.590.59 0.580.58 0.590.59 0.600.60 0.580.58 0.610.61

<압축 및 휨강도>Compression and Flexural Strength

압축강도 시험기를 사용하여 규석의 분쇄시간에 따른 압축강도 측정 결과를 도 2에 나타내었다. 분쇄시간이 증가함에 따라 강도 값도 증가하는 뚜렷한 경향을 보였다. 압축강도는 미분쇄 규석 사용시 2.2MPa, 30분 분쇄시 5.4MPa로 높은 결과값을 나타내어, 약 250% 수준의 압축강도 증진이 도출되었다. 이는 규석의 잔사 감소에 따른 비표면적 증대와 이에 따른 반응성 증진 때문이라고 판단된다. 더불어 분쇄시간의 증가에 따라 압축강도 값의 증가폭이 작아지는 이차함수적 경향을 나타내었으며, 90㎛ 잔사 수준과 유사하게 분쇄시간 25분 이후부터는 강도 증진폭이 크지 않음을 확인할 수도 있었다.Compressive strength tester using the compressive strength test results are shown in Figure 2 according to the grinding time of the silica. As the grinding time increased, the strength value also increased. The compressive strength was 2.2MPa when pulverized silica was used and 5.4MPa after 30 minutes grinding, resulting in about 250% improvement in compressive strength. This may be due to the increase in specific surface area and the responsiveness according to the reduction of silica residue. In addition, the increase in the value of compressive strength showed a tendency to decrease the secondary function as the increase of the grinding time, and similar to the 90㎛ residue level, it was also confirmed that the strength enhancement range is not large after 25 minutes of grinding time.

압축강도와 유사한 경향으로 분쇄시간의 증가에 따라 휨강도가 증가하는 경향을 나타내었다. 분쇄하지 않은 규석을 사용한 경우, 0.9MPa로 가장 낮은 값을 나타내었다. 25분 분쇄한 경우 휨강도가 3.2MPa로 가장 높은 결과를 나타내었다. Similar to compressive strength, flexural strength increased with increasing grinding time. When unpolished silica was used, the lowest value was 0.9 MPa. After 25 minutes of grinding, the flexural strength was 3.2MPa, which was the highest.

분쇄시간 증가에 따른 강도의 증가폭 또한 압축강도에서와 동일하게 작아지는 이차함수의 경향을 나타내었다. 또한 25분 분쇄하였을 때 30분 분쇄시보다 다소 강도가 높은 것으로 나타났는데, 이 역시 분쇄시간이 25분을 넘어서면서 규석입자의 비표면적에 큰 차이가 없고, 규석입자의 비표면적이 넓어지더라도 100% 반응에 참여하지 않기 때문이라 판단된다. 상기에서 얻어진 ALC 소재의 압축/휨강도와 규석 분말도와의 상관성을 도 3에 나타내었다. 이들 상관성은 Origin 6.0 프로그램을 사용하여 분석하였다. 도 3에서와 같이 압축강도와 90㎛ 잔사와의 상관관계계수는 -0.97, 휨강도와의 상관관계계수는 -0.99로, 강도와 90㎛ 잔사는 매우 밀접한 상관성이 있음을 확인할 수 있었다.
The increase in strength with increasing grinding time also showed the tendency of the secondary function to be smaller than that of compressive strength. In addition, when grinding for 25 minutes, the strength was slightly higher than that for 30 minutes, but also the grinding time exceeded 25 minutes, and there was no significant difference in the specific surface area of the silica particles, even if the specific surface area of the silica particles was widened. This is because it does not participate in the% response. The correlation between the compressive / bending strength and the silica powder of the ALC material obtained above is shown in FIG. 3. These correlations were analyzed using the Origin 6.0 program. As shown in FIG. 3, the correlation coefficient between the compressive strength and the 90 μm residue was −0.97 and the correlation coefficient between the bending strength and −0.99, and the 90 μm residue was closely related to the strength.

<미세구조><Microstructure>

규석의 분쇄시간에 따른 미세구조 관찰을 위해 주사전자현미경을 사용하였으며, 관찰사진을 도 4에 나타내었다. 최초 입수상태의 규석을 사용하였을 경우, 수열합성 생성물인 토버모라이트 결정이 양호하지 못한 상태로 생성되었으나, 분쇄시간이 증가할수록 결정형상이 변화하여 육각판상 모양의 토버모라이트 결정으로 변화함을 확인할 수 있었다. 특히 분쇄시간 20분 조건에서는 토버모라이트 결정이 완전하게 생성되었음을 확인할 수 있었으며, 20분 이후 조건에서도 20분과 동일한 결정이 생성됨을 관찰할 수 있었다. 즉 분쇄시간의 증가에 따라 토버모라이트 결정생성이 양호해지나, 일정 잔사 수준 이하에서는 더 이상의 결정변화가 관찰되지 않았다. 또한 초기 미분쇄 상태로 수열합성된 ALC 내부의 규석들은 Fig. 5에서와 같이 미반응 입자들로 존재하였다. 즉 수열합성 반응을 향상시키기 위해서는 규석 입자의 적절한 미분화가 필수적이며, 본 연구에서는 규석의 90㎛ 잔사수준을 2.5% 전후로 선정할 수 있었다. Scanning electron microscope was used to observe the microstructure according to the grinding time of the silica, and the photograph is shown in FIG. 4. When the first obtained silica was used, the hydrothermally synthesized tobermorite crystal was produced in a poor state, but as the grinding time increased, the crystal shape changed to a hexagonal tobermorite crystal. Could. In particular, it was confirmed that the tobermorite crystals were completely formed under 20 minutes of grinding time, and the same crystals as 20 minutes were observed even after 20 minutes. That is, tobermorite crystal formation was improved with increasing grinding time, but no further crystal change was observed below a certain residue level. In addition, the silicas in ALC hydrothermally synthesized in the initial milling state are shown in Fig. It was present as unreacted particles as in 5. In order to improve hydrothermal reaction, appropriate micronization of silica particles is essential. In this study, 90μm residue level of silica could be selected around 2.5%.

<결정구조 분석>Crystal Structure Analysis

도 6은 규석의 분쇄 시간에 따른 XRD 패턴을 나타낸 것이다. 0분부터 25분까지 일정 간격으로 분쇄한 규석을 출발 원료로 한 ALC의 XRD 패턴 분석을 통해 토버모라이트의 형성 및 다른 결정상 존재여부를 파악해 보았다. XRD 측정을 통해 토버모라이트 형성정도를 상호 비교해 본 결과, 시험편 모두 동일한 토버모라이트와 쿼츠 피크가 형성되었음을 알 수 있었으며, 이외 다른 결정상들은 크게 관찰할 수 없었다. 또한 분쇄시간이 증가와 함께 XRD 강도 또한 증가하는 경향을 확인할 수 있다. 약 26.5도에서 발생하는 쿼츠 피크와 약 29.5도에서 발생하는 토버모라이트 피크의 강도를 비교하여 표 4에 나타내었다. 표 4에서와 같이 분쇄시간의 증가에 따라 토버모라이트 피크와 쿼츠 피크 모두 증가함을 확인할 수 있었다. 토버모라이트 피크의 강도 증가는 규석의 미분말화에 따라 수열합성반응이 증진되기 때문이다. 또한 쿼츠 피크의 증가는 규석 미분말화에 의한 부피증가와 더불어 수열합성반응에 참여하지 않는 부분의 규석 미분말 부피도 증가하기 때문으로 추정되었다. Figure 6 shows the XRD pattern according to the grinding time of the silica. The formation of tobermorite and the presence of other crystal phases were investigated by analyzing the XRD pattern of ALC as the starting material from the pulverized silica from 0 to 25 minutes at regular intervals. As a result of comparing the degree of Tobermorite formation by XRD measurement, it was found that the same Tobermorite and quartz peak were formed in all specimens, and other crystal phases could not be observed. In addition, as the grinding time increases, the XRD strength also increases. Table 4 compares the intensities of the quartz peak occurring at about 26.5 degrees and the Tobermorite peak occurring at about 29.5 degrees. As shown in Table 4, it was confirmed that both the tobermorite peak and the quartz peak increased as the grinding time increased. The increase in the intensity of the tobermorite peak is due to the enhancement of hydrothermal reaction with the fine powder of silica. In addition, the increase of the quartz peak was presumed to be due to the increase in the volume due to the fine silica powder and the volume of the fine silica powder in the part not participating in the hydrothermal synthesis reaction.

Figure pat00001
Figure pat00001

Claims (4)

규석을 진동밀에 투입하여 일정시간동안 분쇄하는 단계;
상기 분쇄된 규석분말, 생석회 및 시멘트를 혼합한 혼합물에 일정점도를 가지도록 물을 첨가하여 슬러리를 제조하는 단계;
상기 슬러리에 발포제로 알루미늄 분말을 상기 혼합물100중량부에 대하여 0.05 ~ 0.1중량부를 혼합하여 성형체를 형성하는 단계;
상기 성형체를 항온항습기에서 온도 45~55℃, 상대습도 45 ~ 55%조건에서 4 ~ 6시간 숙성시키면서 수열합성반응시키는 단계를 포함하여 되는 것을 특징으로 하는 경량 기포 콘크리트의 제조방법.
Pulverizing the silica for a predetermined time by putting it in a vibrating mill;
Preparing a slurry by adding water to a mixture of the pulverized silica powder, quicklime and cement to have a predetermined viscosity;
Mixing the aluminum powder with a foaming agent to 0.05 to 0.1 parts by weight based on 100 parts by weight of the mixture to form a molded body in the slurry;
Method for producing a lightweight foam concrete, characterized in that it comprises the step of hydrothermal synthesis while aging the molded body 4 ~ 6 hours at 45 ~ 55 ℃, relative humidity 45 ~ 55% conditions in a constant temperature and humidity.
제 1 항에 있어서,
상기 규석의 분쇄는 분쇄시간 20 ~ 40분, 평균입도 90㎛, 잔분율은 1.0 ~ 5.0%가 되도록 분쇄하는 것을 특징으로 하는 경량 기포 콘크리트의 제조방법.
The method of claim 1,
The grinding of the silica is a pulverization time 20 to 40 minutes, the average particle size of 90㎛, the remaining fraction is 1.0 to 5.0% of the manufacturing method of light weight foam concrete, characterized in that the grinding.
제 1 항에 있어서,
상기 슬러리는 규석 55 ~ 60중량%, 생석회 12 ~ 15중량% 및 시멘트 30 ~ 35중량%, 물 40 ~ 50중량%를 포함하도록 혼합하는 것을 특징으로 하는 경량 기포 콘크리트의 제조방법.
The method of claim 1,
Said slurry is 55 to 60% by weight of silica, 12 to 15% by weight of quicklime and 30 to 35% by weight of cement, 40 to 50% by weight of water, characterized in that the mixing method for producing a lightweight foamed concrete.
청구항 제1항 내지 제3항 중 어느 한 항 기재의 제조방법에 따라 제조되며, 압축강도 경량 기포 콘크리트.
Claims 1 to 3, according to any one of the manufacturing method of the substrate, the compressive strength lightweight foam concrete.
KR1020100130830A 2010-12-20 2010-12-20 Method for manufacturing an autoclave lightweight concrete and autoclave lightweight concrete KR101247288B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100130830A KR101247288B1 (en) 2010-12-20 2010-12-20 Method for manufacturing an autoclave lightweight concrete and autoclave lightweight concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100130830A KR101247288B1 (en) 2010-12-20 2010-12-20 Method for manufacturing an autoclave lightweight concrete and autoclave lightweight concrete

Publications (2)

Publication Number Publication Date
KR20120069324A true KR20120069324A (en) 2012-06-28
KR101247288B1 KR101247288B1 (en) 2013-03-25

Family

ID=46687597

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100130830A KR101247288B1 (en) 2010-12-20 2010-12-20 Method for manufacturing an autoclave lightweight concrete and autoclave lightweight concrete

Country Status (1)

Country Link
KR (1) KR101247288B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210108815A (en) * 2020-02-26 2021-09-03 김요섭 Light weight concrete composition and method the same

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104211327A (en) * 2013-05-30 2014-12-17 蒋寿悟 Heat and sound insulation lightweight building block and manufacturing method thereof
KR20230068474A (en) 2021-11-10 2023-05-18 주식회사 웰스톤 Composition of a lightweight block using a fluidized bed boiler scattering material and its manufacturing method
KR102468577B1 (en) 2022-01-20 2022-11-21 주식회사 솔패이브 Eco-friendly self-healing lightweight bubble grouting composition and preparation method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0812390A (en) * 1994-06-22 1996-01-16 Sumitomo Metal Mining Co Ltd Production of artificial light weight aggregate
KR0130405B1 (en) * 1995-01-16 1998-04-06 유미꾸라 레이찌 Treatment of light weight foam concrete panel
KR100316191B1 (en) * 1998-05-19 2001-12-12 아오야기 모리키 Method for manufacturing artificial light-weight aggregate
JP2001302367A (en) * 2000-04-26 2001-10-31 Clion Co Ltd Method for manufacturing lightweight foamed concrete

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210108815A (en) * 2020-02-26 2021-09-03 김요섭 Light weight concrete composition and method the same

Also Published As

Publication number Publication date
KR101247288B1 (en) 2013-03-25

Similar Documents

Publication Publication Date Title
Peng et al. Combined curing as a novel approach to improve resistance of ultra-high performance concrete to explosive spalling under high temperature and its mechanical properties
Hanif et al. Properties investigation of fiber reinforced cement-based composites incorporating cenosphere fillers
Wahab et al. The use of Wollastonite to enhance the mechanical properties of mortar mixes
Heidari et al. A study of the mechanical properties of ground ceramic powder concrete incorporating nano-SiO2 particles
Saridemir et al. The influence of elevated temperature on strength and microstructure of high strength concrete containing ground pumice and metakaolin
Bumanis et al. Alkali-silica reactivity of foam glass granules in structure of lightweight concrete
Bektas et al. Performance of ground clay brick in ASR-affected concrete: Effects on expansion, mechanical properties and ASR gel chemistry
Sophia et al. Synergistic effect of mineral admixture and bio-carbonate fillers on the physico-mechanical properties of gypsum plaster
US7695560B1 (en) Strong, lower density composite concrete building material with foam glass aggregate
AU2013403634B2 (en) Lightweight concretes and mortars
KR101247288B1 (en) Method for manufacturing an autoclave lightweight concrete and autoclave lightweight concrete
Khater et al. Preparation and characterization of engineered stones based geopolymer composites
Zhu et al. Engineered cementitious composites (ECC) with a high volume of volcanic ash: Rheological, mechanical, and micro performance
KR102637810B1 (en) lightweight foam concrete composition and method for menufacturing the same
Wang et al. Assessment of recycling use of GFRP powder as replacement of fly ash in geopolymer paste and concrete at ambient and high temperatures
Zhang et al. Experimental research on mechanical properties and microstructure of magnesium phosphate cement-based high-strength concrete
Chen et al. Comparative study on mechanical properties and microstructure development of ultra-high performance concrete incorporating phosphorous slag under different curing regimes
WO1999042418A1 (en) Cured calcium silicate object with high strength
KR20110109286A (en) Autoclaved lightweight concrete using base materials for high strength concrete and its preparing method
KR20100112800A (en) Cement binder composition, super ultra high strength precast concrete composition and method for producing super ultra high strength precast concrete goods using the same
JP4628237B2 (en) Method for producing lightweight cellular concrete
Shaheen et al. Effect of metakaolin and Alccofine on strength of concrete
JP4176395B2 (en) Manufacturing method of low specific gravity calcium silicate hardened body
Shareef et al. Potential Use of Wastes of Thermostone Blocks and Ceramic Tiles as Recycled Aggregates in Production of Foam Concrete
CN104961414A (en) Rice hull light-weight building block and preparation method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20160308

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180319

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20190312

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20200302

Year of fee payment: 8