[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20120003212A - Method of producing long chain aliphatic tertiary amine using catalyst with liquid phase - Google Patents

Method of producing long chain aliphatic tertiary amine using catalyst with liquid phase Download PDF

Info

Publication number
KR20120003212A
KR20120003212A KR1020100063954A KR20100063954A KR20120003212A KR 20120003212 A KR20120003212 A KR 20120003212A KR 1020100063954 A KR1020100063954 A KR 1020100063954A KR 20100063954 A KR20100063954 A KR 20100063954A KR 20120003212 A KR20120003212 A KR 20120003212A
Authority
KR
South Korea
Prior art keywords
catalyst
weight
alcohol
aliphatic tertiary
tertiary amine
Prior art date
Application number
KR1020100063954A
Other languages
Korean (ko)
Other versions
KR101208895B1 (en
Inventor
한요한
김형록
Original Assignee
한국화학연구원
주식회사 케이씨아이
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원, 주식회사 케이씨아이 filed Critical 한국화학연구원
Priority to KR1020100063954A priority Critical patent/KR101208895B1/en
Publication of KR20120003212A publication Critical patent/KR20120003212A/en
Application granted granted Critical
Publication of KR101208895B1 publication Critical patent/KR101208895B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/27Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a liquid or molten state
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/04Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups
    • C07C209/14Preparation of compounds containing amino groups bound to a carbon skeleton by substitution of functional groups by amino groups by substitution of hydroxy groups or of etherified or esterified hydroxy groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C211/00Compounds containing amino groups bound to a carbon skeleton
    • C07C211/01Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms
    • C07C211/02Compounds containing amino groups bound to a carbon skeleton having amino groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
    • C07C211/03Monoamines
    • C07C211/08Monoamines containing alkyl groups having a different number of carbon atoms

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

PURPOSE: A method for manufacturing long chain aliphatic tertiary amine using a liquid catalyst is provided to improve the yield of the amine under a simplified refining condition without a catalyst filtering process. CONSTITUTION: A liquid homogenous mixed metal colloid catalyst for manufacturing long chain aliphatic tertiary amine is represented by chemical formula 1. In the chemical formula 1, the a, the b, and the c are the content of the catalyst with respect to the weight of total metal elements. The M is lanthanum-based elements and is selected from a group including lanthanum(La), cerium(Ce), and samarium(Sm). A method for manufacturing aliphatic tertiary amine reacts C8 to C36 long chain aliphatic alcohol with dimethyl amine under the catalyst.

Description

액상 촉매를 이용한 장쇄 지방족 삼차 아민의 제조방법{Method of producing long chain aliphatic tertiary amine using catalyst with liquid phase} Method of producing long chain aliphatic tertiary amine using catalyst with liquid phase

본 발명은 액상 촉매를 이용한 장쇄 지방족 삼차 아민의 제조방법에 관한 것이다.
The present invention relates to a method for preparing a long chain aliphatic tertiary amine using a liquid phase catalyst.

지방족 삼차 아민은 소기름, 야자유, 팜유, 유채유 등을 원료로 가정용 또는 산업용 양이온성 계면활성제나 양쪽성 계면활성제, 아민 산화물 등의 중간체이다.
Aliphatic tertiary amines are intermediates such as domestic or industrial cationic surfactants, amphoteric surfactants, amine oxides, etc., using bovine oil, palm oil, palm oil, rapeseed oil as raw materials.

특히, 디메틸장쇄알킬아민은 사차 아민으로 제조되어 섬유 유연제, 대전방지제, 린스제품, 화장품유화제, 염료첨가제, 항균제 등의 용도로 널리 사용되고 있으며, 지방산, 지방족 알코올, 알파-올레핀 등을 원료로 상기와 같은 지방족 삼차 아민을 제조하는 다양한 방법이 공지되어 있다.
In particular, dimethyl long-chain alkylamine is made of quaternary amines and is widely used in fabric softeners, antistatic agents, rinse products, cosmetic emulsifiers, dye additives, antibacterial agents, and the like. Various methods of preparing the same aliphatic tertiary amines are known.

이중, 합성되는 지방족 삼차 아민의 순도 및 경제성의 측면에서, 지방족 알코올을 촉매의 존재 하에 아민화하는 방법이 가장 바람직하고, 아민화 촉매의 존재하에 디메틸아민, 메틸아민, 암모니아 등을 아민화제로 사용하여 지방족 알코올을 반응시키면 삼차 아민이 합성되고, 반응시, 트랜스알킬화나 불균등화 반응에 의하여 일차 아민이나 이차 아민 등과 같은 부산물이 생성될 수 있으므로, 삼차 아민의 제조시에는 아민화제로서 주로 디메틸아민이 사용되고 있다.
Among them, from the viewpoint of the purity and economical efficiency of the synthesized aliphatic tertiary amine, the method of aminating the aliphatic alcohol in the presence of a catalyst is most preferred, and in the presence of an amination catalyst, dimethylamine, methylamine, ammonia or the like is used as an amination agent. When the aliphatic alcohol is reacted, the tertiary amine is synthesized, and in the reaction, by-products such as primary amine and secondary amine may be produced by transalkylation or disproportionation reaction. It is used.

지방족 알코올을 아민화하여 삼차 아민을 제조하는 공정에 있어서, 수소화 및 탈수소화 기능을 가진 Cu(구리), Ni(니켈), Co(코발트), Cr(크롬) 촉매 등이 사용되고 있다.
In the process of aminating an aliphatic alcohol to produce a tertiary amine, Cu (copper), Ni (nickel), Co (cobalt), Cr (chromium) catalysts and the like having hydrogenation and dehydrogenation functions are used.

프랑스특허 제780,028호에는 Cu/Ba 담지촉매를 사용하여 도데실 알코올과 디에틸아민으로부터 디에틸도데실아민을 제조하는 공정이 개시되어 있다.
French Patent 780,028 discloses a process for preparing diethyldodecylamine from dodecyl alcohol and diethylamine using a Cu / Ba supported catalyst.

또한, 이와 유사한 방법으로, 독일특허 제2,749,064호에서는 Cu/Re 담지촉매를 사용하는 방법을 개시하였다. 그러나 상기 촉매들은 활성과 선택성이 상대적으로 낮아 다량의 촉매가 사용되어야 하며, 높은 반응압력 및 반응온도 등과 같은 엄격한 반응조건이 요구된다는 문제점이 있고, 생성물의 수율을 높이기 위하여 2.5 내지 8.5 중량%와 같은 다량의 촉매를 사용하기 때문에, 촉매비용의 증가, 촉매의 여과 및 회수문제도 발생하였다.
In a similar manner, German Patent No. 2,749,064 discloses a method using a Cu / Re supported catalyst. However, since the catalysts have relatively low activity and selectivity, a large amount of catalysts must be used, and strict reaction conditions such as high reaction pressure and reaction temperature are required, and in order to increase the yield of the product, such as 2.5 to 8.5 wt% Since the use of a large amount of catalysts, there was also an increase in catalyst cost, filtration and recovery of the catalyst.

이에 따라, 촉매의 활성과 선택성을 높이기 위하여, 미국특허 제4,138,437호 및 일본특허 제1977-19604호에서는 구리-크로마이트 촉매가 개시되었고, 미국특허 제3,390,184호에서는 니켈(Ni)/구리(Cu)/크롬(Cr) 촉매가 개시되었다. Accordingly, in order to increase the activity and selectivity of the catalyst, copper-chromite catalysts have been disclosed in US Pat. Nos. 4,138,437 and Japanese Patent Nos. 1977-19604, and nickel (Ni) / copper (Cu) in US Pat. Nos. 3,390,184. / Chromium (Cr) catalysts have been disclosed.

상기 크롬 함유 촉매의 경우, 아민화 활성과 선택성은 높았으나, 반응 중에 촉매의 금속성분이 용해되어 점차 활성이 감소 되는 문제점이 있으며, 또한 생성물에 포함된 발암 독성을 갖는 크롬의 분리와 정제에도 어려운 단점이 있다.
In the case of the chromium-containing catalyst, the amination activity and selectivity were high, but there is a problem that the metal component of the catalyst is dissolved during the reaction, thereby gradually decreasing the activity, and also difficult to separate and purify chromium having carcinogenic toxicity contained in the product. There are disadvantages.

이러한 단점을 보안 하기 위하여, 독성 성분인 크롬을 사용하지 않으면서 고활성과 반복 사용에도 유용한 촉매로 한국특허 제10-0738232호에서는 하이드로칼루마이트 형태의 구리(Cu)·니켈(Ni)·아연(Zn)·칼슘(Ca)·알루미늄(Al)으로 이루어진 혼합금속 산화물 촉매가 개시되었다. 상기 촉매를 사용하고, 220 ℃의 온도 및 대기압에서 3시간 동안 아민화 반응을 시킨 경우의 지방족 알코올은 100 %의 전환율을 나타내었고, 삼차 아민의 수율은 93 %를 나타내었고, 증류한 후의 삼차 아민의 순도는 98 %를 나타내었다. In order to secure these disadvantages, it is a catalyst useful for high activity and repeated use without using chromium which is a toxic component. A mixed metal oxide catalyst consisting of Zn), calcium (Ca) and aluminum (Al) has been disclosed. Using the catalyst, the aliphatic alcohol when the amination reaction was carried out for 3 hours at a temperature of 220 ℃ and atmospheric pressure showed a conversion rate of 100%, the yield of the tertiary amine was 93%, the tertiary amine after distillation The purity of showed 98%.

상기 촉매는 반응 수율과 증류한 삼차 아민의 순도가 매우 높으나, 촉매의 여과 분리시간이 3시간 이상으로 분리단계의 복잡함과 운전시간이 증가 된다는 문제점이 있다.
The catalyst has a high yield and a high purity of the distilled tertiary amine, but the filtration separation time of the catalyst is more than 3 hours, there is a problem that the complexity of the separation step and operating time increases.

미국특허 제2,953,601호, 미국특허 제3,152,185호 및 미국특허 제3,223,734호에서는 아민화 촉매의 여과 및 회수문제를 개선하기 위하여, 촉매의 비중이 큰 레니(Raney) 니켈촉매를 개시하였고, 미국특허 제4,152,353호에서는 산화물이 없는 상태를 기준으로 니켈이 20 내지 49 몰%, 구리가 36 내지 79 몰%, 철, 아연 및 지르코늄 등의 혼합금속이 1 내지 15 몰%인 촉매를 사용하였다. US Patent No. 2,953,601, US Patent No. 3,152,185 and US Patent No. 3,223,734 disclose a Raney nickel catalyst having a high specific gravity to improve the filtration and recovery problem of the amination catalyst, US Patent No. 4,152,353 In the arc, a catalyst having 20 to 49 mol% of nickel, 36 to 79 mol% of copper, and 1 to 15 mol% of mixed metals such as iron, zinc, and zirconium was used based on the absence of oxide.

이러한 촉매의 비중증가에 따라 촉매의 회수와 재사용 성능은 개선되었지만 촉매의 제조비용은 증가하였으며, 지방족 삼차 아민의 수율 또한 70 %이하로, 그 활성이 여전히 불충분하다는 문제점이 있었다.
As the specific gravity of the catalyst increased, the recovery and reuse performance of the catalyst was improved, but the production cost of the catalyst was increased, and the yield of the aliphatic tertiary amine was also 70% or less, and the activity was still insufficient.

미국특허 제4,210,605호 및 미국특허 제4,254,060호에서는 액상 균일계 콜로이드 형태의 구리(Cu)/니켈(Ni)/바륨(Ba) 촉매를 사용하는 방법을 개시하였다. U.S. Patent Nos. 4,210,605 and 4,254,060 disclose methods using copper (Cu) / nickel (Ni) / barium (Ba) catalysts in the form of liquid homogeneous colloids.

상기 방법에서는, 촉매로서 스테아린산 구리, 아세틸아세트산 니켈, 스테아린산 바륨(지방족 알코올에 대해서 구리 금속 0.1 중량%, 니켈 금속 0.02 중량%, 바륨 금속 0.04 중량%)로 구성된 3성분 금속촉매가 사용되었으며, 이에 따라 210 ℃의 온도 및 대기압에서 2시간 동안 반응시킨 경우의 지방족 알코올은 100 %의 전환율을 나타내었고, 삼차 아민의 수율은 96 %를 나타내었고, 증류한 후의 삼차 아민의 순도는 99 %를 나타내었다.In this method, a three-component metal catalyst consisting of copper stearate, nickel acetyl acetate, barium stearate (0.1% by weight of copper metal, 0.02% by weight of nickel metal, 0.04% by weight of barium metal) was used as a catalyst, and accordingly, The aliphatic alcohol when reacted for 2 hours at a temperature of 210 ° C. and atmospheric pressure showed a conversion of 100%, a yield of tertiary amine was 96%, and a purity of tertiary amine after distillation was 99%.

그러나 이러한 우수한 반응특성에도 불구하고, 반응물 중에 포함된 일산화탄소 등 미량의 불순물이나 생성물 중의 아민 부산물에 의해 상기 촉매가 쉽게 피독되어 그 활성이 감소됨으로써 반복사용시에 문제점이 있었다.
However, in spite of such excellent reaction characteristics, the catalyst is easily poisoned by trace impurities such as carbon monoxide contained in the reactants and amine by-products in the product, and the activity thereof is reduced, thereby causing problems in repeated use.

이에 본 발명자들은 균일계 콜로이드 촉매의 성분을 조정하여 고활성과 고선택성을 유지하면서, 반응안정성이 개선된 액상 균일계 혼합금속 콜로이드 촉매를 제조하고자 노력한 결과, 금속 성분 중에서 구리, 니켈 및 란타늄계 금속 성분으로 구성된 3성분 콜로이드 촉매물질을 제조하고, 상기 촉매에 포함된 금속성분의 조성비를 특정 수치 범위로 조절함으로써 고수율 및 고순도로 장쇄 지방족 삼차 아민을 제조할 수 있고, 상기 촉매는 간단하게 분리하여 활성의 저하 없이 재사용할 수 있음을 확인하고 본 발명을 완성하였다.
Accordingly, the present inventors have tried to prepare a liquid homogeneous mixed metal colloidal catalyst having improved reaction stability while adjusting high constituent colloidal catalyst to maintain high activity and high selectivity. By preparing a three-component colloidal catalyst material composed of the components, and by adjusting the composition ratio of the metal component contained in the catalyst to a specific numerical range, a long-chain aliphatic tertiary amine can be produced in high yield and high purity, and the catalyst is simply separated It was confirmed that the present invention can be reused without deterioration of activity and completed the present invention.

본 발명의 목적은 반응안정성, 반응선택성 및 활성이 우수한 액상 균일계 혼합금속 콜로이드 촉매를 사용하여 아민화 반응을 수행함으로써, 촉매 여과단계가 생략된 간단한 정제 조건에서 고수율로 장쇄 지방족 알코올로부터 장쇄 지방족 삼차 아민을 제조할 수 있는 방법을 제공하는 것이다.
An object of the present invention is to carry out the amination reaction using a liquid homogeneous mixed metal colloid catalyst having excellent reaction stability, reaction selectivity, and activity, so that long-chain aliphatic from long-chain aliphatic alcohol in high yield under simple purification conditions in which the catalyst filtration step is omitted. It is to provide a method for preparing a tertiary amine.

상기 목적을 달성하기 위하여, 본 발명은 하기 화학식 1로 표시되는 지방족 삼차 아민 제조용 액상 균일계 혼합금속 콜로이드 촉매를 제공한다.In order to achieve the above object, the present invention provides a liquid homogeneous mixed metal colloid catalyst for preparing aliphatic tertiary amine represented by the following formula (1).

또한, 본 발명은 하기 화학식 1로 표시되는 액상 균일계 혼합금속 콜로이드촉매의 존재하에서, 8 내지 36의 탄소수를 갖는 장쇄 지방족 알코올을 디메틸아민과 반응시켜 제조하는 단계를 포함하는 지방족 삼차 아민의 제조방법을 제공한다.In addition, the present invention is a method for producing an aliphatic tertiary amine comprising the step of reacting a long chain aliphatic alcohol having a carbon number of 8 to 36 with dimethylamine in the presence of a liquid homogeneous mixed metal colloid catalyst represented by the following formula (1) To provide.

[화학식 1][Formula 1]

Figure pat00001
Figure pat00001

(상기 화학식 1에서, M, a, b 및 c는 본 명세서에서 정의한 바와 같다).
(In Formula 1, M, a, b and c are as defined herein).

본 발명에 따르면, 반응의 안정성, 반응의 선택성 및 활성이 우수한 액상 균일계 혼합금속 콜로이드 촉매를 사용하여 아민화 반응을 수행하기 때문에, 촉매 여과 단계가 생략되어 정제가 간단하며, 94 % 이상의 고수율 및 96 % 이상의 고순도로 장쇄 지방족 삼차 아민을 제조할 수 있고, 또한, 본 발명의 촉매는 촉매 여과 단계가 없으므로 증류단계를 통하여 생성물로부터 간단하게 분리하여 재사용할 수 있고, 재사용시 촉매의 활성이 저하되지 않으므로 매우 경제적이고 효과적이다.
According to the present invention, since the amination reaction is carried out using a liquid homogeneous mixed metal colloid catalyst having excellent reaction stability, reaction selectivity and activity, the catalyst filtration step is omitted, so that purification is simple and high yield of 94% or more. And a long chain aliphatic tertiary amine with high purity of 96% or more, and also, since the catalyst of the present invention does not have a catalyst filtration step, it can be easily separated and reused from the product through a distillation step, and the activity of the catalyst decreases upon reuse. Is not very economical and effective.

이하, 본 발명을 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명은 하기 화학식 1로 표시되는 지방족 삼차 아민 제조용 액상 균일계 혼합금속 콜로이드 촉매를 제공한다.The present invention provides a liquid homogeneous mixed metal colloid catalyst for preparing aliphatic tertiary amine represented by the following Chemical Formula 1.

Figure pat00002
Figure pat00002

(상기 화학식 1에서,(In the formula 1,

a, b 및 c는 촉매의 총 금속원소 중량에 대한 함량이고,a, b and c are the content of the total metal element weight of the catalyst,

M은 란타늄계 금속원소이다)M is a lanthanum-based metal element)

이때, 상기 M은 란타늄, 세륨 및 사마륨으로 이루어지는 군으로부터 선택되는 것이 바람직하다.At this time, M is preferably selected from the group consisting of lanthanum, cerium and samarium.

본 발명에 따른 촉매에 있어서, 촉매 함량으로서 구리의 함량(a)은 40 내지 90 중량%이고, 니켈의 함량(b)은 4 내지 30 중량%이고, 란타늄계 금속(M)의 함량(c)은 4 내지 30 중량%인 것이 바람직하고, a는 50 내지 80 중량 %이고, b는 8 내지 25 중량%이고, c는 4 내지 30 중량%인 것이 더욱 바람직하다.In the catalyst according to the present invention, the copper content (a) as the catalyst content is 40 to 90% by weight, the nickel content (b) is 4 to 30% by weight, the content of the lanthanum-based metal (M) (c) Silver is preferably 4 to 30% by weight, a is 50 to 80% by weight, b is 8 to 25% by weight, and c is more preferably 4 to 30% by weight.

만일, 구리의 함량이 90 중량% 이상인 경우, 구리결정의 크기가 증가하여 반응활성이 오히려 감소하고, 40 중량% 이하인 경우에는 구리결정의 크기는 작으나 아민화 활성이 낮아서 전환율이 감소된다. If the content of copper is more than 90% by weight, the size of the copper crystals increases, the reaction activity is rather reduced. When the content of copper is less than 40% by weight, the copper crystals are small but the amination activity is low and the conversion rate is reduced.

또한, 니켈의 함량이 4 중량% 이하이거나, M의 함량이 30 중량% 이상이면, 구리 결정의 균일성과 안정성이 감소 되어 아민화 반응 활성이 낮아서 전환율 낮아지게 되고, 니켈의 함량이 30 중량% 이상이거나, M의 함량이 4 중량% 이하이면, 촉매의 산성과 염기성이 크게 증가함에 따라 알돌축합과 과아민화 부반응이 증가하게 되어 삼차 아민의 선택성이 크게 감소하고, 고비점 부산물이 증가한다.In addition, when the content of nickel is 4% by weight or less, or the content of M is 30% by weight or more, the uniformity and stability of the copper crystals are reduced, so that the conversion rate is low due to low amination reaction activity, and the content of nickel is more than 30% by weight. Or, if the M content is less than 4% by weight, as the acidity and basicity of the catalyst are greatly increased, the aldol condensation and peraminelation side reactions increase, thereby greatly reducing the selectivity of the tertiary amine and increasing the high boiling by-product.

본 발명에 따른 촉매에 있어서, 상기 촉매는 화학식 1의 혼합금속의 카르복시산 염을 수소로 환원시킴으로써 얻을 수 있으나, 이에 제한되는 것은 아니다.
In the catalyst according to the present invention, the catalyst may be obtained by reducing the carboxylic acid salt of the mixed metal of Formula 1 with hydrogen, but is not limited thereto.

또한, 본 발명은 하기 화학식 1로 표시되는 액상 균일계 혼합금속 콜로이드 촉매의 존재하에서, 8 내지 36의 탄소수를 갖는 장쇄 지방족 알코올을 디메틸아민과 반응시켜 장쇄 지방족 삼차 아민을 제조하는 단계를 포함하는 장쇄 지방족 삼차 아민의 제조방법을 제공한다.In addition, the present invention, in the presence of a liquid homogeneous mixed metal colloid catalyst represented by the following formula (1), a long chain aliphatic alcohol having a carbon number of 8 to 36 by reacting with dimethylamine to prepare a long chain aliphatic tertiary amine Provided are methods for preparing aliphatic tertiary amines.

[화학식 1][Formula 1]

Figure pat00003
Figure pat00003

(상기 화학식 1에서,(In the formula 1,

a, b 및 c는 촉매의 총 금속원소 중량에 대한 함량이고,a, b and c are the content of the total metal element weight of the catalyst,

M은 란타늄계 금속원소이다)
M is a lanthanum-based metal element)

본 발명에 따른 제조방법에 있어서, a는 40 내지 90 중량%이고, b는 4 내지 30 중량%이고, c는 4 내지 30 중량%이고, M은 란타늄(La), 세륨(Ce), 및 사마륨(Sm) 중에서 선택된 적어도 1종 이상의 금속 원소를 나타낸다. In the production method according to the invention, a is 40 to 90% by weight, b is 4 to 30% by weight, c is 4 to 30% by weight, M is lanthanum (La), cerium (Ce), and samarium At least one metal element selected from (Sm) is shown.

상기 3성분계 금속 콜로이드 촉매의 활성 성분으로서 구리(Cu)는 촉매 총 금속원소에서 40 내지 90 중량%이며, 니켈(Ni)은 4 내지 30 중량%이며, M은 4 내지 30 중량%가 되도록 사용하는 것이 바람직하고, 구리는 50 내지 80 중량%이며, 니켈(Ni)은 8 내지 25 중량%이며, M은 4 내지 30 중량%이 더욱 바람직하다.
Copper (Cu) is 40 to 90% by weight of the total metal element of the catalyst, nickel (Ni) is 4 to 30% by weight, M is 4 to 30% by weight as the active component of the three-component metal colloid catalyst Preferably, copper is 50 to 80% by weight, nickel (Ni) is 8 to 25% by weight, and M is more preferably 4 to 30% by weight.

만일, 구리의 함량이 90 중량% 이상인 경우, 구리결정의 크기가 증가하여 반응활성이 오히려 감소하고, 40 중량% 이하인 경우에는 구리결정의 크기는 작으나 아민화 활성이 낮아서 전환율이 감소된다. If the content of copper is more than 90% by weight, the size of the copper crystals increases, the reaction activity is rather reduced. When the content of copper is less than 40% by weight, the copper crystals are small but the amination activity is low and the conversion rate is reduced.

또한, 니켈의 함량이 4 중량% 이하이거나, M의 함량이 30 중량% 이상이면, 구리 결정의 균일성과 안정성이 감소 되어 아민화 반응 활성이 낮아서 전환율 낮아지게 되고, 니켈의 함량이 30 중량% 이상이거나, M의 함량이 4 중량% 이하이면, 촉매의 산성과 염기성이 크게 증가함에 따라 알돌축합과 과아민화 부반응이 증가하게 되어 삼차 아민의 선택성이 크게 감소하고, 고비점 부산물이 증가한다.In addition, when the content of nickel is 4% by weight or less, or the content of M is 30% by weight or more, the uniformity and stability of the copper crystals are reduced, so that the conversion rate is low due to low amination reaction activity, and the content of nickel is more than 30% by weight. Or, if the M content is less than 4% by weight, as the acidity and basicity of the catalyst are greatly increased, the aldol condensation and peraminelation side reactions increase, thereby greatly reducing the selectivity of the tertiary amine and increasing the high boiling by-product.

본 발명에 따른 촉매에 있어서, 상기 촉매는 화학식 1의 혼합금속의 카르복시산 염을 수소로 환원시킴으로써 얻을 수 있으나, 이에 제한되는 것은 아니다.In the catalyst according to the present invention, the catalyst may be obtained by reducing the carboxylic acid salt of the mixed metal of Formula 1 with hydrogen, but is not limited thereto.

상기 장쇄 지방족 알코올의 예로는 옥틸 알코올, 라우릴 알코올, 미리스틸 알코올, 스테아릴 알코올, 비헤닐 알코올, 올레일 알코올 등을 들 수 있으며, 특히 상기 분지형 알코올로는 지글러 공정에서 생성되는 지글러 알코올, 옥소합성 공정에서 생성되는 옥소 알코올 등을 들 수 있다. 이들은 단독 또는 이들 중 하나 이상의 조합으로서 사용될 수 있다. Examples of the long chain aliphatic alcohols include octyl alcohol, lauryl alcohol, myristyl alcohol, stearyl alcohol, bihenyl alcohol, oleyl alcohol, and the like. Oxo alcohol produced | generated at an oxo synthesis process, etc. are mentioned. These may be used alone or in combination of one or more of them.

상기 아민화 반응시, 상기 촉매는 상기 장쇄 지방족 알코올에 대하여 촉매 금속으로서 0.01 내지 1 중량% 로 반응기에 공급되며, 상기 디메틸아민은 상기 장쇄 지방족 알코올에 대하여 시간당 1.05 내지 1.2 당량비의 유속으로 반응기에 공급된다. 또한, 상기 아민화 반응은 210 내지 250 ℃의 온도 및 0.8 내지 2.0기압의 압력에서 수행한다. During the amination reaction, the catalyst is fed to the reactor at 0.01 to 1% by weight as catalyst metal relative to the long chain aliphatic alcohol, and the dimethylamine is fed to the reactor at a flow rate of 1.05 to 1.2 equivalents per hour relative to the long chain aliphatic alcohol. do. In addition, the amination reaction is carried out at a temperature of 210 to 250 ℃ and a pressure of 0.8 to 2.0 atm.

상기 아민화 반응 수행 후, 생성물을 증류하여 삼차 아민을 회수한 후, 이후의 아민화 반응에 잔류된 촉매를 재사용할 수 있다.After performing the amination reaction, the product may be distilled to recover the tertiary amine, and the catalyst remaining in the subsequent amination reaction may be reused.

본 발명의 촉매는 반응의 안정성, 반응의 선택성 및 활성이 우수한 액상 균일계 혼합금속 콜로이드 촉매를 사용하여 아민화 반응을 수행하기 때문에, 촉매 여과 단계가 생략되어 정제가 간단하며, 94 % 이상의 고수율 및 96 % 이상의 고순도로 장쇄 지방족 삼차 아민을 제조할 수 있고, 또한, 본 발명의 촉매는 촉매 여과 단계가 없으므로 증류단계를 통하여 생성물로부터 간단하게 분리하여 재사용할 수 있고, 재사용시 촉매의 활성이 저하되지 않으므로 매우 경제적이고 효과적이다.
Since the catalyst of the present invention performs the amination reaction using a liquid homogeneous mixed metal colloid catalyst having excellent reaction stability, reaction selectivity, and activity, the catalyst filtration step is omitted, so that purification is simple and high yield of 94% or more. And a long chain aliphatic tertiary amine with high purity of 96% or more, and also, since the catalyst of the present invention does not have a catalyst filtration step, it can be easily separated and reused from the product through a distillation step, and the activity of the catalyst decreases upon reuse. Is not very economical and effective.

이하 본 발명의 촉매가 사용되는 지방족 알코올의 아민화 반응에 대해 상세히 설명한다. Hereinafter, the amination reaction of the aliphatic alcohol using the catalyst of the present invention will be described in detail.

우선, 반응기에 장쇄 지방족 알코올과 카르복시산 금속 촉매를 주입한다. 이어서 질소(N2)와 같은 불활성 가스로 반응기를 치환한 후, 반응기를 120 ℃의 온도로 가열하면서 상기 반응기를 다시 수소(H2) 로 치환한다. First, a long chain aliphatic alcohol and a carboxylic acid metal catalyst are injected into the reactor. Subsequently, after replacing the reactor with an inert gas such as nitrogen (N 2 ), the reactor is again replaced with hydrogen (H 2 ) while heating the reactor to a temperature of 120 ° C.

수소압을 0.5기압(게이지압력)으로 충전하고, 반응온도를 210 내지 250 ℃의 온도로 올려준 후, 지방족 알코올에 대하여 시간당 1.05 내지 1.2 당량비의 유속으로 디메틸아민 가스를 반응기에 공급하여, 0.8 내지 2.0 기압의 반응압력에서 2 내지 6 시간 동안 반응을 진행시킨다. After filling the hydrogen pressure to 0.5 atm (gauge pressure) and raising the reaction temperature to a temperature of 210 to 250 ° C, dimethylamine gas was supplied to the reactor at a flow rate of 1.05 to 1.2 equivalents per hour with respect to aliphatic alcohol, and 0.8 to The reaction proceeds for 2 to 6 hours at a reaction pressure of 2.0 atmospheres.

수소, 미반응 아민 가스, 반응에서 생성되는 물, 소량의 미반응 지방족 알코올 및 생성된 지방족 아민 등은 반응기에서 연속적으로 배가스로 제거되어 응축기에 공급된다. Hydrogen, unreacted amine gas, water produced in the reaction, small amounts of unreacted aliphatic alcohol and produced aliphatic amines, etc. are continuously removed from the reactor as exhaust gas and fed to the condenser.

상기 응축기에서 상기 물질들은 물과 유기층으로 분리되고, 이중 유기층은 반응기로 재순환되며, 수소와 미반응 아민 가스 또한 반응기로 재순환된다. In the condenser the materials are separated into water and organic layer, the double organic layer is recycled to the reactor, and hydrogen and unreacted amine gas are also recycled to the reactor.

반응 후, 생성된 지방족 삼차 아민은 감압 증류 등으로 정제되고, 잔류한 콜로이드 촉매는 다음의 아민화 반응시 반응기에 공급된다.
After the reaction, the resulting aliphatic tertiary amine is purified by distillation under reduced pressure or the like, and the remaining colloidal catalyst is supplied to the reactor during the next amination reaction.

이하, 본 발명을 실시예에 의해 상세히 설명한다.Hereinafter, the present invention will be described in detail by way of examples.

단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기 실시예에 의해 한정되는 것은 아니다.
However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited by the following examples.

<< 실시예Example 1> 1>

스테아린산 구리(Copper Stearate(Ⅰ)) 9.0 g(전체 금속촉매에 대한 구리금속 65.2 중량%), 스테아린산 니켈(Nikel Stearate(Ⅱ)) 2.4 g(전체 금속촉매에 대한 니켈금속 17.4 중량%) 및 스테아린산 란타늄(Lanthanum Stearate(Ⅲ)) 3.6 g(전체 금속촉매에 대한 란타늄금속 17.4 중량%)을 혼합하여 액상 균일계 혼합금속 콜로이드 촉매용 혼합물을 제조하였다.9.0 g (Copper Stearate (I)) of copper (65.2 wt% based on total metal catalysts), 2.4 g of Nickel Stearate (II)) (17.4 wt% of nickel metals based on total metal catalysts) and lanthanum stearate (Lanthanum Stearate (III)) 3.6 g (17.4 wt% of lanthanum metal based on the total metal catalyst) were mixed to prepare a mixture for a liquid homogeneous mixed metal colloidal catalyst.

1 ℓ 스테인레스 플라스크 반응기에 장쇄 지방족 알코올인 스테아릴 알코올 600g과 상기 액상 균일계 혼합금속 콜로이드 촉매용 혼합물 15 g(알코올에 대한 금속촉매 0.23 중량%)을 충진 시킨 후, 이들을 교반함과 동시에 질소로 반응기를 3회 치환하였다. A 1 L stainless flask reactor was charged with 600 g of long chain aliphatic stearyl alcohol and 15 g of the mixture for the liquid homogeneous mixed metal colloid catalyst (0.23 wt% of metal catalyst to alcohol), followed by stirring and reactor with nitrogen. Was substituted three times.

상기와 같은 방법으로 질소를 공급하고 감압하는 과정을 3회 반복한 후, 반응기를 120 ℃의 온도로 가열하고, 다시 수소를 공급하고, 감압하는 과정을 2회 반복하였다. 그 후, 수소를 0.5 기압으로 충전하여 200 ℃의 온도로 1시간 동안 유지하고, 다시 온도를 220 ℃로 올려준 후, 지방족 알코올에 대해 시간당 1.1 당량비의 디메틸 아민 가스를 반응기에 55 ℓ/hr 유속으로 공급하고, 1.0 기압의 반응압력에서 3시간 동안 반응을 진행하였다.After repeating the process of supplying nitrogen and depressurizing three times in the same manner as described above, the reactor was heated to a temperature of 120 ° C., hydrogen was again supplied, and the process of depressurizing was repeated twice. Thereafter, hydrogen was charged at 0.5 atmosphere and maintained at a temperature of 200 ° C. for 1 hour, and the temperature was raised to 220 ° C. again, and then 1.1 equivalent ratio of dimethyl amine gas per hour for aliphatic alcohol was flowed into the reactor at 55 L / hr flow rate. The reaction was carried out for 3 hours at a reaction pressure of 1.0 atm.

수소, 미반응 아민 가스, 반응에서 생성되는 물, 소량의 미반응 지방족 알코올 및 생성된 지방족 아민은 반응기에서 연속적으로 배가스로 제거하여 응축기에 공급하였고, 응축기의 응축물을 물과 유기층으로 분리하였으며, 이 중 유기층을 반응기로 재순환시키고, 수소와 미반응 아민 가스 또한 반응기로 재순환시켰다. 반응 후, 생성물로부터 촉매 및 지방족 삼차 아민은 감압 증류하여 정제하였다. Hydrogen, unreacted amine gas, water produced in the reaction, a small amount of unreacted aliphatic alcohol and produced aliphatic amine were continuously removed from the reactor as exhaust gas and fed to the condenser, and the condensate of the condenser was separated into water and an organic layer. The organic layer was recycled to the reactor, and hydrogen and unreacted amine gas were also recycled to the reactor. After the reaction, the catalyst and aliphatic tertiary amine were purified from the product by distillation under reduced pressure.

잔류 된 콜로이드 촉매는 스테아릴 알코올을 600 g 가하여 교반하고, 반응기에 다시 충진하여 아민화 반응에 5회 반복하여 사용하였다. The remaining colloidal catalyst was stirred by adding 600 g of stearyl alcohol, and charged again in the reactor, and used five times for the amination reaction.

제조된 아민화 반응 생성물은 가스크로마토그래피(GC)로 분석하고, 그 결과를 하기 표 1에 나타내었다. 반응 결과는 중량 %로 표시하였으며, 증류 후 정제된 지방족 삼차 아민에 함유된 금속 잔류량은 시료를 산분해하고, 유도결합플라즈마 원자방출분광기(Inductively Coupled Plasma Atomic Emission Spectrometer)로 정량분석하여 측정하였다. 상기 반응의 1회 내지 5회 반응 후의 정제시료에서의 구리,니켈 및 란타늄의 함량은 1 ppm 이하였다.
The prepared amination reaction product was analyzed by gas chromatography (GC), and the results are shown in Table 1 below. The reaction results were expressed in weight%, and the residual amount of metal contained in the purified aliphatic tertiary amine after distillation was measured by acid decomposition of the sample and quantitatively analyzed by an Inductively Coupled Plasma Atomic Emission Spectrometer. The content of copper, nickel and lanthanum in the purified sample after the first to fifth reactions of the reaction was 1 ppm or less.

<< 실시예Example 2> 2>

촉매 제조시 스테아린산 구리 10.4 g, 스테아린산 니켈 1.0 g 및 스테아린산 란타늄 3.6 g을 사용하여 촉매 내 금속 조성을 구리는 75.2 중량%, 니켈은 7.4 중량% 및 란타늄은 17.4 중량%의 조성비로 한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 장쇄 지방족 삼차 아민을 제조하고, 반응 결과를 하기 표 1에 나타내었다.
10.4 g of copper stearate, 1.0 g of nickel stearate, and 3.6 g of lanthanum stearate were used to prepare the catalyst, except that the metal composition in the catalyst was used at a composition ratio of 75.2 wt% copper, 7.4 wt% nickel, and 17.4 wt% lanthanum. It was carried out in the same manner as in Example 1 to prepare a long chain aliphatic tertiary amine, the reaction results are shown in Table 1 below.

<< 실시예Example 3> 3>

촉매 제조시 스테아린산 구리 10.4 g, 스테아린산 니켈 2.4 g 및 스테아린산 란타늄 1.5 g을 사용하여 촉매 내 금속 조성을 구리는 75.2 중량%, 니켈은 17.4 중량%, 란타늄을 7.4 중량%로 한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 장쇄 지방족 삼차 아민을 제조하고, 결과를 하기 표 1에 나타내었다.
Example 1 except that 10.4 g of copper stearate, 2.4 g of nickel stearate and 1.5 g of lanthanum stearate were used to prepare the catalyst, except that the metal composition in the catalyst was 75.2 wt% copper, 17.4 wt% nickel, and 7.4 wt% lanthanum. The long chain aliphatic tertiary amine was prepared by the same method as described in Table 1 below.

<< 실시예Example 4> 4>

촉매 제조시 스테아린산 란타늄 대신 스테아린산 세륨 3.6 g을 사용하여 촉매 내 금속 조성을 구리는 65.2 중량%, 니켈은 17.4 중량% 및 세륨은 17.4 중량%의 조성비로 한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 장쇄 지방족 삼차 아민을 제조하고, 결과를 하기 표 1에 나타내었다.
3.6 g of cerium stearate instead of lanthanum stearate was used to prepare the catalyst in the same manner as in Example 1, except that the metal composition of the catalyst was 65.2 wt% copper, 17.4 wt% nickel, and 17.4 wt% cerium. To prepare a long chain aliphatic tertiary amine, the results are shown in Table 1 below.

<< 실시예Example 5> 5>

촉매 제조시 스테아린산 란타늄 대신 스테아린산 사마륨 3.9 g을 사용하여 촉매 내 금속 조성을 구리는 65.2 중량%, 니켈은 17.4 중량% 및 사마륨은 17.4 중량%의 조성비로 한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 장쇄 지방족 삼차 아민을 제조하고, 결과를 하기 표 1에 나타내었다.
3.9 g of samarium stearate instead of lanthanum stearate was used to prepare the catalyst in the same manner as in Example 1, except that the metal composition of the catalyst was 65.2 wt% copper, 17.4 wt% nickel, and 17.4 wt% samarium. To prepare a long chain aliphatic tertiary amine, the results are shown in Table 1 below.

<< 비교예Comparative example 1> 1>

촉매 제조시 스테아린산 구리 12.4 g, 스테아린산 니켈 1.0 g 및 스테아린산 란타늄 0.9 g을 사용하여 촉매 내 금속 조성을 구리는 90.2 중량%, 니켈은 7.4 중량%, 란타늄은 2.4 중량%의 조성비로 한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 장쇄 지방족 삼차 아민을 제조하고, 결과를 하기 표 1에 나타내었다.
12.4 g of copper stearate, 1.0 g of nickel stearate and 0.9 g of lanthanum stearate were used to prepare the catalyst, except that the metal composition in the catalyst was 90.2 wt% copper, 7.4 wt% nickel, and 2.4 wt% lanthanum. Performed in the same manner as in Example 1 to prepare a long chain aliphatic tertiary amine, the results are shown in Table 1 below.

<< 비교예Comparative example 2> 2>

촉매 제조시 스테아린산 구리 8.3 g, 스테아린산 니켈 4.5 g 및 스테아린산 란타늄 1.5 g을 사용하여 촉매 내 금속 조성을 구리는 60.2 중량%, 니켈은 32.4 중량%, 란타늄은 7.4 중량%의 조성비로 한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 장쇄 지방족 삼차 아민을 제조하고, 결과를 하기 표 1에 나타내었다.
The catalyst was prepared using 8.3 g of copper stearate, 4.5 g of nickel stearate, and 1.5 g of lanthanum stearate, except that the metal composition in the catalyst was 60.2 wt% copper, 32.4 wt% nickel, and 7.4 wt% lanthanum. Performed in the same manner as in Example 1 to prepare a long chain aliphatic tertiary amine, the results are shown in Table 1 below.

<< 비교예Comparative example 3> 3>

촉매 제조시 스테아린산 란타늄 대신 스테아린산 바륨 3.5 g을 사용하여 촉매 내 금속 조성을 구리는 65.2 중량%, 니켈은 17.4 중량%, 바륨은 17.4 중량%의 조성비로 한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 장쇄 지방족 삼차 아민을 제조하고, 결과를 하기 표 1에 나타내었다.
3.5 g of barium stearate instead of lanthanum stearate was used to prepare the catalyst in the same manner as in Example 1, except that the metal composition in the catalyst was 65.2 wt% copper, 17.4 wt% nickel, and 17.4 wt% barium. To prepare a long chain aliphatic tertiary amine, the results are shown in Table 1 below.


촉매조성
(성분 중량 %)
Catalyst composition
(Component weight%)

반응횟수

Reaction count
지방족 삼차 아민 분석 결과Aliphatic tertiary amine assay result
반응
수율(%)
reaction
yield(%)
증류
수율(%)
distillation
yield(%)
순도(%)water(%)
실시예 1Example 1 Cu(65.2)·Ni(17.4)·La(17.4)Cu (65.2), Ni (17.4), La (17.4) 1One 97.297.2 95.295.2 98.098.0 33 96.296.2 95.095.0 98.098.0 55 96.096.0 94.894.8 97.997.9 실시예 2Example 2 Cu(75.2)·Ni(7.4)·La(17.4)Cu (75.2), Ni (7.4), La (17.4) 1One 96.096.0 93.793.7 97.097.0 55 95.895.8 93.593.5 97.397.3 실시예 3Example 3 Cu(75.2)·Ni(17.4)·La(7.4)Cu (75.2), Ni (17.4), La (7.4) 1One 98.098.0 94.094.0 98.298.2 55 95.295.2 93.093.0 98.798.7 실시예 4Example 4 Cu(65.2)·Ni(17.4)·Ce(17.4)Cu (65.2), Ni (17.4), Ce (17.4) 1One 95.295.2 95.095.0 97.797.7 55 94.294.2 94.094.0 97.397.3 실시예 5Example 5 Cu(65.2)·Ni(17.4)·Sm(17.4)Cu (65.2), Ni (17.4), Sm (17.4) 1One 95.795.7 95.195.1 97.097.0 55 94.294.2 95.095.0 96.696.6 비교예 1Comparative Example 1 Cu(90.2)·Ni(7.4)·La(2.4)
Cu (90.2), Ni (7.4), La (2.4)
1One 78.078.0 73.673.6 97.597.5
55 76.576.5 72.672.6 96.396.3 비교예 2Comparative Example 2 Cu(60.2)·Ni(32.4)·La(7.4)Cu (60.2), Ni (32.4), La (7.4) 1One 87.587.5 72.672.6 95.695.6 55 81.581.5 70.370.3 92.392.3 비교예 3Comparative Example 3 Cu(65.2)·Ni(17.4)·Ba(17.4)Cu (65.2), Ni (17.4), Ba (17.4) 1One 97.697.6 92.292.2 96.896.8 33 86.686.6 76.676.6 88.688.6

상기 표 1에 있어서, 촉매를 1회 사용한 경우, 본 발명의 실시예 1 내지 5에서 제조된 지방족 삼차 아민은 비교예 3의 Cu·Ni·Ba 촉매를 사용한 경우와 동등한 반응 수율, 증류 수율 및 순도를 나타내었다. 그러나 촉매를 3회 또는 5회 반복 재사용하는 경우, 본 발명의 촉매는 반응 수율이 95.2 ~ 97.2 %, 증류 수율이 95.0 ~ 95.2 % 및 순도가 97.0 ~ 98.0 %로써 우수한 반응 수율, 증류 수율 및 순도를 유지하나, 비교예 3의 Cu, Ni, Ba 촉매는 반응 수율이 86.6 %, 증류 수율이 76.6 % 및 순도가 86.6 %를 나타냄으로써 반응횟수에 따라 촉매 활성이 현저히 저하되는 것을 확인하였다.In Table 1, when the catalyst is used once, the aliphatic tertiary amines prepared in Examples 1 to 5 of the present invention have the same reaction yield, distillation yield, and purity as those of the Cu · Ni · Ba catalyst of Comparative Example 3. Indicated. However, when the catalyst is reused three or five times, the catalyst of the present invention has excellent reaction yield, distillation yield, and purity with a reaction yield of 95.2 to 97.2%, a distillation yield of 95.0 to 95.2%, and a purity of 97.0 to 98.0%. However, the Cu, Ni, Ba catalyst of Comparative Example 3, the reaction yield was 86.6%, the distillation yield was 76.6% and the purity was 86.6%, it was confirmed that the catalyst activity is significantly reduced depending on the number of reactions.

또한, 촉매의 조성비에 따른 반응성을 살펴보면, 본 발명의 조성비에서는 1회 및 다수의 반복 재사용시에도 90 %이상, 우수한 반응 수율을 나타내는 반면, 구리의 조성비가 90.2 %인 경우(비교예 1)에서는 76.5 ~ 78 %, 니켈의 조성비가 32.4 %인 경우(비교예 2)에서는 81.5 ~ 87.5 %의 반응 수율을 나타내는 등 낮은 반응수율을 나타내는 것을 확인하였다.
In addition, looking at the reactivity according to the composition ratio of the catalyst, in the composition ratio of the present invention shows a good reaction yield of 90% or more even in one time and a plurality of repeated reuse, while the composition ratio of copper is 90.2% (Comparative Example 1) When the composition ratio of 76.5 to 78% and nickel was 32.4% (Comparative Example 2), it was confirmed that the reaction yield was low, such as showing a reaction yield of 81.5 to 87.5%.

<< 실시예Example 6> 6>

상기 아민화 반응에 있어서, 반응물을 스테아릴 알코올 대신 비헤닐 알코올 600 g을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 장쇄 지방족 삼차 아민을 제조하였다. 상기 비헤닐 알코올은 230 ℃의 온도에서 반응하였고, 결과를 하기 표 2에 나타내었다.
In the amination reaction, a long chain aliphatic tertiary amine was prepared in the same manner as in Example 1 except that 600 g of bihenyl alcohol was used instead of stearyl alcohol. The bihenyl alcohol was reacted at a temperature of 230 ℃, the results are shown in Table 2 below.

<< 실시예Example 7> 7>

상기 아민화 반응에 있어서, 반응물을 스테아릴 알코올 대신 올레일 알코올 600 g을 사용한 것을 제외하고는 실시예 1과 동일한 방법으로 수행하여 장쇄 지방족 삼차 아민을 제조하였다. 상기 올레일 알코올은 215 ℃의 온도에서 반응하였고, 결과를 하기 표 2에 나타내었다.
In the amination reaction, a long chain aliphatic tertiary amine was prepared in the same manner as in Example 1 except that 600 g of oleyl alcohol was used instead of stearyl alcohol. The oleyl alcohol was reacted at a temperature of 215 ℃, the results are shown in Table 2 below.


반응물Reactant 반응횟수
Reaction count
지방족 삼차 아민 분석결과Aliphatic tertiary amine assay
반응수율(%)Reaction yield (%) 증류수율(%)Distillation yield (%) 순도(%)water(%) 실시예 1Example 1 스테아릴 알코올Stearyl alcohol 1One 97.297.2 95.295.2 98.098.0 55 96.096.0 94.894.8 97.997.9 실시예 6Example 6 비헤닐 알코올Bihenyl alcohol 1One 97.297.2 93.893.8 98.098.0 55 97.097.0 93.693.6 97.897.8 실시예 7Example 7 올레일 알코올Oleyl alcohol 1One 97.397.3 93.793.7 98.398.3 55 97.097.0 93.593.5 98.198.1

상기 표 2에 나타낸 바와 같이, 지방족 삼차 아민을 제조하는데 있어서, 본 발명의 촉매는 알코올의 종류에 관계없이 반응 수율, 증류 수율 및 순도를 높게 유지하는 것으로 확인되었다.
As shown in Table 2, in preparing the aliphatic tertiary amine, the catalyst of the present invention was confirmed to maintain a high reaction yield, distillation yield and purity regardless of the type of alcohol.

따라서, 본 발명에 따른 액상 촉매는 지방족 삼차 아민 제조시 반복 재사용의 횟수 및 알코올의 종류에 관계없이 94 % 이상의 높은 반응 수율 및 96 %이상의 높은 순도를 나타내고, 액상 촉매이므로 별도의 여과 공정이 필요치 않으므로 경제적이기 때문에 지방족 삼차 아민 제조시 유용하게 사용될 수 있다.
Therefore, the liquid catalyst according to the present invention exhibits a high reaction yield of at least 94% and a high purity of at least 96% regardless of the number of times of repeated reuse and aliphatic tertiary amine preparation, and a high purity of at least 96%. Since it is economical, it can be usefully used for preparing aliphatic tertiary amines.

Claims (15)

하기 화학식 1로 표시되는 지방족 삼차 아민 제조용 액상 균일계 혼합금속 콜로이드 촉매:
[화학식 1]
Figure pat00004

(상기 화학식 1에서,
a, b 및 c는 촉매의 총 금속원소 중량에 대한 함량이고,
M은 란타늄계 금속원소이다).
Liquid homogeneous mixed metal colloid catalyst for preparing aliphatic tertiary amine represented by Formula 1 below:
[Formula 1]
Figure pat00004

(In Formula 1,
a, b and c are the content of the total metal element weight of the catalyst,
M is a lanthanum-based metal element).
제 1항에 있어서, 상기 M은 란타늄(La), 세륨(Ce) 및 사마륨(Sm)으로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 지방족 삼차 아민 제조용 액상 균일계 혼합금속 콜로이드 촉매.
The liquid homogeneous mixed metal colloid catalyst of claim 1, wherein M is selected from the group consisting of lanthanum (La), cerium (Ce), and samarium (Sm).
제 1항에 있어서, 상기 a는 40 내지 90 % 중량이고, b는 4 내지 30 % 중량이고, c는 4 내지 30% 중량인 것을 특징으로 하는 지방족 삼차 아민 제조용 액상 균일계 혼합금속 콜로이드 촉매.
The liquid homogeneous mixed metal colloid catalyst of claim 1, wherein a is 40 to 90% by weight, b is 4 to 30% by weight, and c is 4 to 30% by weight.
제 3항에 있어서, 상기 a는 50 내지 80 % 중량이고, b는 8 내지 25 % 중량이고, c는 4 내지 30% 중량인 것을 특징으로 하는 지방족 삼차 아민 제조용 액상 균일계 혼합금속 콜로이드 촉매.
The liquid homogeneous mixed metal colloid catalyst for preparing aliphatic tertiary amines according to claim 3, wherein a is 50 to 80% by weight, b is 8 to 25% by weight, and c is 4 to 30% by weight.
제 1항에 있어서, 상기 촉매는 화학식 1의 혼합금속의 카르복시산 염을 수소로 환원함으로써 얻는 것을 특징으로 하는 지방족 삼차 아민 제조용 액상 균일계 혼합금속 콜로이드 촉매.
The liquid homogeneous mixed metal colloid catalyst for preparing aliphatic tertiary amines according to claim 1, wherein the catalyst is obtained by reducing a carboxylic acid salt of a mixed metal of Formula 1 with hydrogen.
제 5항에 있어서, 상기 카르복시산은 스테아린산인 것을 특징으로 하는 지방족 삼차 아민 제조용 액상 균일계 혼합금속 콜로이드 촉매.
6. The liquid homogeneous mixed metal colloid catalyst for preparing aliphatic tertiary amines according to claim 5, wherein the carboxylic acid is stearic acid.
하기 화학식 1로 표시되는 액상 균일계 혼합금속 콜로이드 촉매의 존재하에서, 8 내지 36의 탄소수를 갖는 장쇄 지방족 알코올을 디메틸아민과 반응시켜 제조하는 단계를 포함하는 지방족 삼차 아민의 제조방법:
[화학식 1]
Figure pat00005

(상기 화학식 1에서,
a, b 및 c는 촉매의 총 금속원소 중량에 대한 함량이고,
M은 란타늄계 금속원소이다).
In the presence of a liquid homogeneous mixed metal colloid catalyst represented by the formula (1), a method for producing an aliphatic tertiary amine comprising the step of reacting a long chain aliphatic alcohol having a carbon number of 8 to 36 with dimethylamine.
[Formula 1]
Figure pat00005

(In Formula 1,
a, b and c are the content of the total metal element weight of the catalyst,
M is a lanthanum-based metal element).
제 7항에 있어서, 상기 M은 란타늄(La), 세륨(Ce) 및 사마륨(Sm)으로 이루어지는 군으로부터 선택되는 것을 특징으로 하는 지방족 삼차 아민의 제조방법.
The method of claim 7, wherein M is selected from the group consisting of lanthanum (La), cerium (Ce) and samarium (Sm).
제 7항에 있어서, 상기 a는 40 내지 90 % 중량이고, b는 4 내지 30 % 중량이고, c는 4 내지 30% 중량인 것을 특징으로 하는 지방족 삼차 아민의 제조방법.
The method of claim 7, wherein a is 40 to 90% by weight, b is 4 to 30% by weight, and c is 4 to 30% by weight.
제 9항에 있어서, 상기 a는 50 내지 80 % 중량이고, b는 8 내지 25 % 중량이고, c는 4 내지 30% 중량인 것을 특징으로 하는 지방족 삼차 아민의 제조방법.
10. The method of claim 9, wherein a is 50 to 80% by weight, b is 8 to 25% by weight, and c is 4 to 30% by weight.
제 7항에 있어서, 상기 장쇄 지방족 알코올은 옥틸 알코올, 라우릴 알코올, 미리스틸 알코올, 스테아릴 알코올, 비헤닐 알코올, 올레일 알코올, 지글러 공정에서 생산되는 지글러 알코올 및 옥소합성 공정에서 생산되는 옥소 알코올로 이루어진 군으로부터 선택되는 1종 이상인 것을 특징으로 하는 지방족 삼차 아민의 제조방법.
The method of claim 7, wherein the long-chain aliphatic alcohol is octyl alcohol, lauryl alcohol, myristyl alcohol, stearyl alcohol, bihenyl alcohol, oleyl alcohol, Ziegler alcohol produced in the Ziegler process and oxo alcohol produced in the oxo synthesis process Method for producing an aliphatic tertiary amine, characterized in that at least one selected from the group consisting of.
제 7항에 있어서, 상기 촉매는 장쇄 지방족 알코올에 대하여 0.01 내지 1 중량 %로 사용하는 것을 특징으로 하는 지방족 삼차 아민의 제조방법.
8. The method of claim 7, wherein the catalyst is used in an amount of 0.01 to 1% by weight based on the long chain aliphatic alcohol.
제 7항에 있어서, 상기 디메틸아민은 장쇄 지방족 알코올에 대하여 시간당 1.05 내지 1.2 당량비의 유속으로 공급하는 것을 특징으로 하는 지방족 삼차 아민의 제조방법.
8. The method for preparing aliphatic tertiary amines according to claim 7, wherein the dimethylamine is supplied at a flow rate of 1.05 to 1.2 equivalents per hour with respect to the long chain aliphatic alcohol.
제 7항에 있어서, 상기 반응은 210 내지 250 ℃의 온도 및 0.8 내지 2.0 기압의 압력하에서 수행하는 것을 특징으로 하는 지방족 삼차 아민의 제조방법.
The method of claim 7, wherein the reaction is performed at a temperature of 210 to 250 ° C. and a pressure of 0.8 to 2.0 atmospheres.
제 7항에 있어서, 상기 촉매는 반응 종결 후, 촉매 여과 단계 없이 증류단계를 통하여 생성물로부터 간단하게 분리되어 재사용되는 것을 특징으로 하는 지방족 삼차 아민의 제조방법.8. The method of claim 7, wherein after the completion of the reaction, the catalyst is simply separated from the product through a distillation step without a catalyst filtration step and reused.
KR1020100063954A 2010-07-02 2010-07-02 Method of producing long chain aliphatic tertiary amine using catalyst with liquid phase KR101208895B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100063954A KR101208895B1 (en) 2010-07-02 2010-07-02 Method of producing long chain aliphatic tertiary amine using catalyst with liquid phase

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100063954A KR101208895B1 (en) 2010-07-02 2010-07-02 Method of producing long chain aliphatic tertiary amine using catalyst with liquid phase

Publications (2)

Publication Number Publication Date
KR20120003212A true KR20120003212A (en) 2012-01-10
KR101208895B1 KR101208895B1 (en) 2012-12-06

Family

ID=45610280

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100063954A KR101208895B1 (en) 2010-07-02 2010-07-02 Method of producing long chain aliphatic tertiary amine using catalyst with liquid phase

Country Status (1)

Country Link
KR (1) KR101208895B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10207980B2 (en) 2014-11-10 2019-02-19 Rhodia Operations Process for forming amine by direct amination reaction

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4531905B2 (en) 2000-02-04 2010-08-25 ライオン・アクゾ株式会社 Method for producing aliphatic tertiary amine
KR100738232B1 (en) 2006-08-18 2007-07-12 한국화학연구원 Method of preparing mixed metal oxide catalyst and method of producing long chain aliphatic tertiary amine using the catalyst

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10207980B2 (en) 2014-11-10 2019-02-19 Rhodia Operations Process for forming amine by direct amination reaction

Also Published As

Publication number Publication date
KR101208895B1 (en) 2012-12-06

Similar Documents

Publication Publication Date Title
EP0489722B1 (en) Process for preparing N-substituted amine
JP6049757B2 (en) Process for the production of secondary amines in the liquid phase
US8536377B2 (en) Method for producing N,N-substituted-3-aminopropan-1-ols
EP2626343B1 (en) Method for producing bis(aminomethyl)cyclohexanes
US4625063A (en) Production of tertiary amine
EP2855443B1 (en) Process for preparing mono n-alkylpiperazine
US8461391B2 (en) Method for producing N,N-substituted-1,3-propandiamines
EP1454895B1 (en) Production method of xylylenediamine
KR20030078038A (en) Process for producing diamines
US7935846B2 (en) Method of producing nitrogen-containing compound
KR100738232B1 (en) Method of preparing mixed metal oxide catalyst and method of producing long chain aliphatic tertiary amine using the catalyst
KR101208895B1 (en) Method of producing long chain aliphatic tertiary amine using catalyst with liquid phase
TW201509880A (en) Process for preparing N-alkylpiperazines
US9315479B2 (en) Process for preparing pyrrolidine
US20090076306A1 (en) Process for continuous preparation of a primary aromatic amine
EP3010880B1 (en) Method for producing 2-chlorodialkylbenzylamines by hydrogenation
EP2178822B1 (en) Process for producing nitrogen-containing compounds
US7161039B2 (en) Method and device for producing ethylamine and butylamine
JP2022522886A (en) Preparation of polyalkylene-polyamines by reductive amination
US7767855B2 (en) Method for the continuous production of an amine
US7754923B2 (en) Method for producing nitrogen-containing compound
US8884015B2 (en) Process for the preparation of a mono-N-alkypiperazine
JPH061758A (en) Production of amino compound
EP3180308B1 (en) Method for producing 2,2-difluoroethylamine
CN118475554A (en) Process for preparing secondary and/or tertiary amines in the presence of manganese-doped copper catalysts

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee