[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20110134728A - Manufacturing method of high efficiency organic photovoltaic cells - Google Patents

Manufacturing method of high efficiency organic photovoltaic cells Download PDF

Info

Publication number
KR20110134728A
KR20110134728A KR1020100054467A KR20100054467A KR20110134728A KR 20110134728 A KR20110134728 A KR 20110134728A KR 1020100054467 A KR1020100054467 A KR 1020100054467A KR 20100054467 A KR20100054467 A KR 20100054467A KR 20110134728 A KR20110134728 A KR 20110134728A
Authority
KR
South Korea
Prior art keywords
transport layer
solar cell
electron transport
organic solar
high efficiency
Prior art date
Application number
KR1020100054467A
Other languages
Korean (ko)
Other versions
KR101137983B1 (en
Inventor
문두경
허수원
구자람
송호준
Original Assignee
건국대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 건국대학교 산학협력단 filed Critical 건국대학교 산학협력단
Priority to KR1020100054467A priority Critical patent/KR101137983B1/en
Publication of KR20110134728A publication Critical patent/KR20110134728A/en
Application granted granted Critical
Publication of KR101137983B1 publication Critical patent/KR101137983B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)

Abstract

PURPOSE: A manufacturing method of high efficiency organic photovoltaic cells is provided to provide an organic solar cell having high efficiency by improving surface morphology and increasing short circuit current density, an open circuit voltage, and a fill factor. CONSTITUTION: In a manufacturing method of high efficiency organic photovoltaic cells, a first electrode(120) is formed on a substrate(110). A hole-transport layer(130) is formed on the first electrode. A photoelectric conversion layer(140) is formed on the hole-transport layer. An electron-transport layer(150) is formed on the photoelectric conversion layer. A second electrode(160) is formed on the electron-transport layer.

Description

고효율 유기태양전지 및 그 제조방법{Manufacturing method of high efficiency organic photovoltaic cells}High efficiency organic solar cell and its manufacturing method {Manufacturing method of high efficiency organic photovoltaic cells}

본 발명은 전자 수송층의 모폴로지(morphology) 향상을 통한 고효율 유기태양전지 및 그 제조방법에 관한 것으로서, 더욱 상세하게는 친전자성 기능을 가지는 수용성 고분자 전자 수송층에 계면활성제(surfactant)를 첨가하여 모폴로지를 향상시켜 단락전류밀도(short circuit current density), 개방전압(open circuit voltage), 필팩터(fill factor)의 증가를 통한 고효율의 유기태양전지 및 그를 제조하는 방법에 관한 것이다.The present invention relates to a highly efficient organic solar cell and a method for manufacturing the same by improving the morphology of the electron transport layer, and more particularly, by adding a surfactant to a water-soluble polymer electron transport layer having an electrophilic function. The present invention relates to an organic solar cell having high efficiency and a method of manufacturing the same by increasing short circuit current density, open circuit voltage, and fill factor.

태양전지는 공해가 없다는 장점 때문에 지구환경 보존의 관점에서 재평가되고 있으며, 차세대 청정에너지원으로서의 연구가 활발히 이루어지고 있다.Solar cells are being reassessed from the viewpoint of preserving the global environment due to their non-pollution, and research is being actively conducted as a next-generation clean energy source.

현재까지 알려진 태양전지의 종류에는 단결정 또는 다결정 벌크 실리콘을 이용한 태양전지, 비정질, 미결정질 도는 다결정질 실리콘을 이용한 박막형 태양전지를 비롯하여 화합물 반도체 태양전지, 연료감응형 태양전지 및 유기고분자 태양전지 등 매우 다양하다.The types of solar cells known to date include solar cells using monocrystalline or polycrystalline bulk silicon, thin film solar cells using amorphous, microcrystalline or polycrystalline silicon, compound semiconductor solar cells, fuel-sensitized solar cells, and organic polymer solar cells. Varies.

종래 상용화된 단결정 벌크(bulk) 실리콘을 이용한 태양전지는 높은 제조단가 및 설치비용 때문에 적극적인 활용이 이루지지 못하고 있다. 이러한 비용문제를 해결하기 위하여 유기물을 이용한 박막형 태양전지에 관한 연구가 진행 중에 있으며, 고효율 태양전지를 제조하기 위한 여러 가지 시도들이 제안되고 있다.Solar cells using commercially available single crystal bulk silicon have not been actively utilized due to high manufacturing cost and installation cost. In order to solve such a cost problem, researches on thin film solar cells using organic materials are underway, and various attempts have been made to manufacture high efficiency solar cells.

유기박막 태양전지 기술은 고분자 혹은 저분자 유기 반도체를 이용하여 태양에너지를 전기에너지로 변환시키는 기술로, 유기물의 가장 큰 장점인 저렴한 비용과 제조공정의 용이성을 바탕으로 박막형 소자, 대면적 소자, 롤-투-롤(roll-to-roll) 방법 등에 의한 유연성(flexible) 소자 등 초저가, 다용도의 대량 생산 특정을 모두 갖춘 차세대 기술이다.Organic thin film solar cell technology converts solar energy into electrical energy using polymer or low molecular organic semiconductor. Its thin-film device, large-area device, and roll- It is a next-generation technology with both ultra-low cost and versatile mass production specifications such as flexible elements by a roll-to-roll method.

통상적으로, 유기태양전지는 전자공여체(electron donor)와 전자수여체(electron acceptor) 물질의 접합구조로 이루어져 있으며, 이러한 광전변환층에 빛이 입사되면 전자공여체에서 전자와 정공쌍이 여기되고 전자가 전자수용체로 이동함으로써 전자와 정공의 분리가 일어난다. 따라서, 빛에 의해 생성된 캐리어들은 전자-정공으로 분리되는 현상을 거쳐 외부회로로 이동함에 따라 전력을 생산하게 된다.In general, an organic solar cell is composed of a junction structure of an electron donor and an electron acceptor material. When light is incident on the photoelectric conversion layer, electrons and hole pairs are excited in the electron donor, and electrons are electrons. By moving to the receptor, separation of electrons and holes occurs. Therefore, the carriers generated by the light generate power as they move to the external circuit through the phenomenon of electron-hole separation.

상기와 같은 이유로, 최근에는 값이 싸면서도 유연기판에 적용할 수 있는 벌크 헤테로정션 유기태양전지에 대한 관심이 좋아지고 있다. 미국공개특허 제2006-0011233호에는 전자공여체로서 폴리-3-헥실티오펜(poly(3-hexylthiophene); P3HT)과, 전자수용체로 [6,6]-페닐-C 61 -부틸산 메틸에스테르([6,6]-phenyl-C 61 -butyric acid methyl ester; PCBM)을 사용하고, 스핀코팅법으로 광전변환층이 도입된 유기태양전지가 개시되어 있지만, 이들의 에너지 변환효율이 높지 않다는데 문제가 있었다.For the same reason as above, in recent years, interest in bulk heterojunction organic solar cells that can be applied to flexible substrates with low cost has been improved. US Patent Publication No. 2006-0011233 discloses poly-3-hexylthiophene (P3HT) as an electron donor and [6,6] -phenyl- C 61 -butyl acid methyl ester as an electron acceptor ( Organic solar cells using a [6,6] -phenyl- C 61 -butyric acid methyl ester (PCBM) and a photoelectric conversion layer introduced by spin coating have been disclosed, but their energy conversion efficiency is not high. There was.

이를 해결하고자 벌크 헤테로정션 구조의 유기태양전지에 정공 주입층, 정공수송층, 전자 주입층 및 전자 수송층 등 1개 이상의 층을 삽입하여 에너지 변환효율을 높이고자하는 연구가 진행되고 있다. 대표적으로 국내공개특허 제 10-2007-0108040호에서는 유기태양전지의 정공 수송층에 글리세롤이 포함된 G-PEDOT:PSS를 도입하여 벌크 헤테로정션 구조의 유기태양전지를 제작하였으나, 여전히 낮은 에너지 변환효율을 나타내었으며, K.Y Jen 그룹에서는 전자 수송층으로 하기 화학식 1의 구조를 갖는 poly[9,9-bis(6'-(diethanolamino)hexyl)-fluorene] (PFN-OH)를 사용하여 개방전압을 향상시켰지만, 박막의 모폴로지가 좋지 않아 에너지 변환효율의 증가는 보이지 못했다.In order to solve this problem, research is being conducted to increase energy conversion efficiency by inserting one or more layers such as a hole injection layer, a hole transport layer, an electron injection layer, and an electron transport layer into an organic solar cell having a bulk heterojunction structure. Representatively, Korean Patent Publication No. 10-2007-0108040 introduces a G-PEDOT: PSS containing glycerol to the hole transport layer of the organic solar cell to manufacture an organic solar cell having a bulk heterojunction structure, but still has low energy conversion efficiency. In the KY Jen group, the open voltage was improved by using poly [9,9-bis (6 '-(diethanolamino) hexyl) -fluorene] (PFN-OH) having the structure of Chemical Formula 1 as an electron transporting layer. Due to the poor morphology of the thin film, no increase in energy conversion efficiency was observed.

[화학식 1][Formula 1]

Figure pat00001
Figure pat00001

poly[9,9-bis(6'-(diethanolamino)hexyl)-fluorene](PFN-OH)
poly [9,9-bis (6 '-(diethanolamino) hexyl) -fluorene] (PFN-OH)

따라서, 실제 유기태양전지의 상업화를 위해서는 더 높은 에너지 변환효율을 나타내는 소자의 개발이 필요하다.Therefore, in order to commercialize an organic solar cell, it is necessary to develop a device showing higher energy conversion efficiency.

이에, 본 발명은 상기와 같은 문제점을 해결하고자 안출된 것으로, 본 발명의 주된 목적은 친전자성 기능기를 가지는 수용성 고분자에 의해 형성되는 전자 수송층의 표면 모폴로지(surface morphology)를 향상시켜, 단락전류밀도(short circuit current density), 개방전압(open circuit voltage), 필팩터(fill factor)의 증가를 통한 고효율의 유기태양전지 및 그 제조방법을 제공하는데 있다. Accordingly, the present invention has been made to solve the above problems, the main object of the present invention is to improve the surface morphology (surface morphology) of the electron transport layer formed by a water-soluble polymer having an electrophilic functional group, short circuit current density The present invention provides an organic solar cell having high efficiency and a method of manufacturing the same by increasing a short circuit current density, an open circuit voltage, and a fill factor.

상기 목적을 달성하기 위하여, 본 발명은 투명기판 위에 형성된 제1 전극, 정공 수송층, 광전변화층, 전자 수송층 및 제2 전극을 포함하는 유기태양전지에 있어서, 전자 수송층에 계면활성제(surfactant)를 첨가하여 상기 전자 수송층의 표면 모폴로지를 향상시킨 고효율 유기태양전지를 제공한다.In order to achieve the above object, the present invention is an organic solar cell comprising a first electrode, a hole transport layer, a photoelectric change layer, an electron transport layer and a second electrode formed on a transparent substrate, a surfactant is added to the electron transport layer By providing a high efficiency organic solar cell with improved surface morphology of the electron transport layer.

본 발명에서, 상기 전자 수송층에 첨가되는 계면활성제는 2,4,7,9-테트라메틸-5-데킨-4,7-디올(2,4,7,9-tetramethyl-5-decyne-4,7-diol)인 것을 특징으로 하며, 상기 계면활성제는 2-에틸헥산올(2-ethylhexanol), 2-부톡시헥산올(2-butoxyethanol), 디프로필렌 글리콜(dipropylene glycol), 에틸렌 글리콜(ethylene glycol), n-프로필 알코올(n-propyl alcohol), 이소프로필 알코올(isopropyl alcohol),프로필렌 글리콜(propylene glycol)로 구성된 그룹 중에서 선택되는 어느 하나 이상의 용매에 용해하여 상기 전자 수송층에 대해 0.1내지 3 중량%로 첨가하는 것이 좋다.In the present invention, the surfactant added to the electron transport layer is 2,4,7,9-tetramethyl-5-dekin-4,7-diol (2,4,7,9-tetramethyl-5-decyne-4, 7-diol), and the surfactant is 2-ethylhexanol, 2-butoxyhexanol, 2-butoxyethanol, dipropylene glycol, ethylene glycol ), n-propyl alcohol, isopropyl alcohol, isopropyl alcohol, propylene glycol dissolved in any one or more solvents selected from the group consisting of 0.1 to 3% by weight relative to the electron transport layer It is good to add.

본 발명은 또한, 전자 수송층에 계면활성제(surfactant)를 첨가하여 상기 전자 수송층의 표면 모폴로지를 향상시키는 것을 특징으로 하는 고효율 유기태양전지의 제조방법을 제공한다.The present invention also provides a method of manufacturing a high efficiency organic solar cell, wherein a surfactant is added to the electron transport layer to improve the surface morphology of the electron transport layer.

구체적으로, 본 발명은 (1) 친전자성 기능기를 가지는 수용성 고분자를 용해하는 단계; (2) 상기 고분자 용액에 계면활성제를 첨가하는 단계; 및 (3) 상기 용액을 여과하여 박막을 형성하는 단계;를 포함하여 전자 수송층을 제조하는 것이 특징이며, 상기 친전자성 기능기를 가지는 수용성 고분자는 폴리[9,9-비스(6'-(디에탄올아미노)헥실)-플루오렌]이고, 상기 계면활성제는 2,4,7,9-테트라메틸-5-데킨-4,7-디올(2,4,7,9-tetramethyl-5-decyne-4,7-diol)이다.Specifically, the present invention comprises the steps of (1) dissolving a water-soluble polymer having an electrophilic functional group; (2) adding a surfactant to the polymer solution; And (3) filtering the solution to form a thin film. The method of preparing an electron transporting layer includes a poly [9,9-bis (6 ′-(d). Ethanolamino) hexyl) -fluorene] and the surfactant is 2,4,7,9-tetramethyl-5-dekin-4,7-diol (2,4,7,9-tetramethyl-5-decyne- 4,7-diol).

상기와 같은 본 발명에 따르면, 본 발명은 유기 친전자성 기능기를 가지는 수용성 고분자가 도입된 전자 수송층에 계면활성제를 첨가시켜 광전변환층과 전자 수송층의 밀착성을 향상시키고, 전자 수송층 내부의 마이크로폼(microfoam)을 제거하는 역할을 하여 표면 모폴로지(surface morphology)를 향상시켜, 단락전류밀도(short circuit current density), 개방전압(open circuit voltage), 필팩터(fill factor)의 증가를 통한 고효율의 유기태양전지를 제공하는 것이 가능하다.According to the present invention as described above, the present invention improves the adhesion between the photoelectric conversion layer and the electron transport layer by adding a surfactant to the electron transport layer introduced with a water-soluble polymer having an organic electrophilic functional group, and the microforms inside the electron transport layer ( It removes microfoams and improves surface morphology, resulting in high efficiency organic solar cells by increasing short circuit current density, open circuit voltage, and fill factor. It is possible to provide a battery.

또한, 본 발명의 전자 수송층을 적용한 유기태양전지는 에너지 변환효율이 우수하고, 잉크젯 프린팅, 스크린 프린팅, 그라비아 프린팅 등의 비교적 간단한 공정으로 박막을 형성할 수 있기 때문에 대면적, 고효율의 유기태양전지를 저렴한 가격으로 제작할 수 있다.In addition, the organic solar cell to which the electron transport layer of the present invention is applied has excellent energy conversion efficiency and can form a thin film by a relatively simple process such as inkjet printing, screen printing, and gravure printing. It can be produced at a low price.

도 1은 본 발명에 따른 유기태양전지의 구조이다.
도 2는 본 발명의 실시예 및 비교예에 따른 따른 유기태양전지의 전류밀도-전압(J-V) 특성 그래프이다.
도 3은 본 발명의 실시예 및 비교예에 따른 유기태양전지의 IPCE 그래프이다.
도 4a는 본 발명의 실시예에 따른 광활성층의 AFM 사진이다(RMS 0.32 ㎚).
도 4b는 본 발명의 실시예에 따른 전자 수송층인 PFN-OH의 AFM 사진이다(RMS 0.556 ㎚).
도 4c는 본 발명의 실시예에 따른 이소프로필알콜에 용해된 계면활성제를 첨가한의 전자 수송층의 AFM 사진이다(RMS 0.276 ㎚).
도 4d는 본 발명의 실시예에 따른 에틸렌 글리콜에 용해된 계면활성제를 첨가한의 전자 수송층의 AFM 사진이다(RMS 0.156 ㎚).
1 is a structure of an organic solar cell according to the present invention.
2 is a graph showing current density-voltage (JV) characteristics of an organic solar cell according to Examples and Comparative Examples of the present invention.
3 is an IPCE graph of an organic solar cell according to Examples and Comparative Examples of the present invention.
4A is an AFM photograph of a photoactive layer according to an embodiment of the present invention (RMS 0.32 nm).
Figure 4b is an AFM image of the electron transport layer PFN-OH according to an embodiment of the present invention (RMS 0.556 nm).
4C is an AFM photograph of an electron transport layer added with a surfactant dissolved in isopropyl alcohol according to an embodiment of the present invention (RMS 0.276 nm).
4D is an AFM photograph of an electron transport layer added with a surfactant dissolved in ethylene glycol according to an embodiment of the present invention (RMS 0.156 nm).

이하, 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.

도 1은 본 발명의 바람직한 실시예에 따라 제조된 유기태양전지의 개략적인 구조로, 도시된 바와 같이, 하부로부터 기판(110), 제1 전극(120), 정공 수송층(130), 광전변환층(140), 전자 수송층(150) 및 제2 전극(160)이 적층된 구조를 갖는다.1 is a schematic structure of an organic solar cell manufactured according to a preferred embodiment of the present invention, as shown, the substrate 110, the first electrode 120, the hole transport layer 130, the photoelectric conversion layer from the bottom 140, the electron transport layer 150, and the second electrode 160 are stacked.

본 발명에서, 소자 제작에 사용되는 상기 기판(110)은 유리 및 석영판 이외에도 PET(polyethylene terephthalate), PEN(polyethylene naphthelate), PP(polyperopylene), PI(polyimide), PC(polycarbornate), PS(polystylene), POM(polyoxyethlene), AS 수지(acrylonitrile styrene copolymer), ABS 수지(acrylonitrile butadiene styrene copolymer) 및 TAC(Triacetyl cellulose) 등을 포함하는 플라스틱과 같은 유연하고 투명한 물질로 제조될 수 있다.In the present invention, the substrate 110 used in the device fabrication is in addition to glass and quartz plate polyethylene terephthalate (PET), polyethylene naphthelate (PEN), polyperopylene (PP), polyimide (PI), polycarbornate (PC), PS (polystylene) ), POM (polyoxyethlene), AS resin (acrylonitrile styrene copolymer), ABS resin (acrylonitrile butadiene styrene copolymer) and may be made of a flexible and transparent material such as plastic, such as triacetyl cellulose (TAC).

본 발명의 제1 전극(120)은 스퍼터링, E-Beam, 열증착, 스핀코팅, 스크린 프린팅, 잉크젯 프린팅, 닥터 블레이드 또는 그라비아 프린팅법을 사용하여 투명전극 물질을 상기 기판의 일면에 도포되거나 필름형태로 코팅됨으로써 형성된다. 제1 전극(120)은 애노드의 기능을 하는 부분으로써, 후술하는 제2 전극(160)에 비해 일함수가 큰 물질로 투명성 및 도전성을 갖는 임의의 물질이 사용될 수 있다. 예를 들면, ITO(indium tin oxide), 금, 은, 플로린이 도핑된 틴 옥사이드(fluorine doped tin oxide; FTO), 알루미늄이 도핑된 징크 옥사이드(aluminium doped zink oxide, AZO), IZO(indium zink oxide), ZnO-Ga2O3, ZnO-Al2O3 및 ATO(antimony tin oxide) 등이 있으며, 바람직하게는 ITO를 사용하는 것이 좋다.The first electrode 120 of the present invention is coated with a transparent electrode material on one side of the substrate by using sputtering, E-Beam, thermal evaporation, spin coating, screen printing, inkjet printing, doctor blade or gravure printing, or in the form of a film. It is formed by coating with. The first electrode 120 is a part that functions as an anode, and any material having transparency and conductivity may be used as a material having a higher work function than the second electrode 160 described later. For example, indium tin oxide (ITO), gold, silver, fluorine doped tin oxide (FTO), aluminum doped zink oxide (AZO), indium zink oxide ), ZnO-Ga 2 O 3 , ZnO-Al 2 O 3, antimony tin oxide (ATO), and the like, and preferably ITO is used.

패터닝된 ITO 기판을 세정제, 아세톤, 이소프로판올(IPA)로 순차적으로 세정한 다음 수분제거를 위해 가열판에서 100~150℃로 1~30분간, 바람직하게는 120℃에서 10분간 건조하고, 기판이 완전히 세정되면 기판 표면을 친수성으로 개질한다.The patterned ITO substrate is washed sequentially with a detergent, acetone and isopropanol (IPA), and then dried for 1 to 30 minutes at 100 to 150 ° C., preferably at 120 ° C. for 10 minutes on a heating plate to remove moisture, and the substrate is thoroughly cleaned. The surface of the substrate is modified to be hydrophilic.

상기와 같은 표면 개질을 통해 접합표면전위를 정공주입층의 표면 전위에 적합한 수준으로 유지할 수 있으며, 개실 시 ITO 기판위에 고분자 박막의 형성이 용이해지고, 박막의 품질이 향상된다. 이를 위한 전처리 기술로는 a) 평행평판형 방전을 이용한 표면 산화법, b) 진공상태에서 UV 자외선을 이용하여 생성된 오존을 통해 표면을 산화하는 방법, 및 c) 플라즈마에 의해 생성된 산소 라디칼을 이용하여 산화하는 방법 등이 있으며, 기판의 상태에 따라 상기 방법 중 한가지를 선택하게 되는데 어느 방법을 이용하든지 공통적으로 기판 표면의 산소이탈을 방지하고 수분 및 유기물의 잔류를 최대한 억제해야 전처리의 실질적인 효과를 기대할 수 있다.Through the surface modification as described above, the bonding surface potential can be maintained at a level suitable for the surface potential of the hole injection layer, and when opened, the formation of the polymer thin film on the ITO substrate is facilitated and the quality of the thin film is improved. Pretreatment techniques for this are a) surface oxidation using parallel planar discharge, b) oxidation of the surface through ozone generated using UV ultraviolet light in a vacuum state, and c) oxygen radicals generated by plasma. There is a method to oxidize, etc., depending on the state of the substrate to select one of the above methods, whichever method is commonly used to prevent oxygen escape from the surface of the substrate and to minimize the residual of moisture and organic matter in order to achieve the substantial effect of the pretreatment You can expect

본 발명의 실시예에서는 UV를 이용하여 생성된 오존을 통해 표면을 산화하는 방법을 사용하였으며, 초음파 세정 후 패턴된 ITO 기판을 가열판(hot plate)에서 베이킹(baking)하여 잘 건조시킨 다음 챔버에 투입하고 UV 램프를 작용시켜 산소 가스가 UV광과 반응하여 발생하는 오존에 의해 패턴된 ITO 기판을 세정하게 된다.In an embodiment of the present invention, a method of oxidizing a surface through ozone generated by using UV was used. After ultrasonic cleaning, the patterned ITO substrate was baked on a hot plate, dried well, and then placed in a chamber. The UV lamp is activated to clean the ITO substrate patterned by ozone generated by oxygen gas reacting with UV light.

그러나, 본 발명에 있어서의 패턴된 ITO 기판의 표면개질방법은 특별히 한정시킬 필요는 없으며, 기판을 산화시키는 방법이라면 어떠한 방법도 무방하다.However, the surface modification method of the patterned ITO substrate in this invention does not need to be specifically limited, Any method may be used as long as it is a method of oxidizing a substrate.

상기 전처리된 제1 전극(120)의 상부에는 정공 수송층(130)이 스핀코팅 또는 딥코팅 등의 방법을 통해 도입되는데, 본 발명에서는 전도성 고분자 용액으로서 폴리리(3,4-에틸렌디옥시티오펜):폴리(4-스티렌설포네이트)[PEDOT:PSS]를 사용하는 것이 바람직하다.The hole transport layer 130 is introduced into the pretreated first electrode 120 through spin coating or dip coating. In the present invention, poly (3,4-ethylenedioxythiophene) is used as the conductive polymer solution. It is preferable to use poly (4-styrenesulfonate) [PEDOT: PSS].

본 발명의 광전변환층(140)은, 폴리[N-9'-헵타데카닐-2,7-카바졸-알트-5,5-(4',7'-디-2-티에닐-2',1',3'-벤조티아디아졸)][PCDTBT] 등 로우 밴드갭(low band gap) 고분자 또는 C-T 타입 고분자 및 그의 유도체를 전자공여체로 하고, [6,6]-페닐-C 61 -부틸산 메틸에스테르(PCBM(C 60 )) 및 [6,6]-페닐-C 71 -부틸산 메틸에스테르(PC 71 BM)를 전자수용체로 하며, 그 비율은 1 : 2 ~ 1 : 6, 바람직하게는 1 : 3 ~ 1 : 5의 중량비로 배합되어 있는 광전변환물질을 사용할 수 있다.The photoelectric conversion layer 140 of the present invention is poly [N-9'-heptadecanyl-2,7-carbazole-al-5,5- (4 ', 7'-di-2-thienyl-2 Low band gap polymers such as ', 1', 3'-benzothiadiazole)] [PCDTBT] or CT type polymers and derivatives thereof are used as electron donors, and [6,6] -phenyl- C 61 Butyric acid methyl ester (PCBM (C 60 )) and [6,6] -phenyl- C 71 -butyl acid methyl ester (PC 71 BM) as electron acceptors, with a ratio of 1: 2 to 1: 6, Preferably, a photoelectric conversion material mixed in a weight ratio of 1: 3 to 1: 5 may be used.

상기와 같은 광전변환물질들은 유기용매에 용해시키는데, 바람직하게는 2가지 이상의 끓는점이 다른 유기용매에 용해시킨 용액을 스핀코팅 등의 방법으로 10 내지 150nm, 바람직하게는 60 내지 120nm 두께로 광전변환층을 도입한다. 이때, 광전변환층은 딥코팅, 스크린 프린팅, 스프레이 코팅, 닥터블레이드, 브러쉬 페인팅 등의 방법을 응용할 수 있다.Such photoelectric conversion materials are dissolved in an organic solvent. Preferably, a solution obtained by dissolving two or more boiling points in an organic solvent having different boiling points in a thickness of 10 to 150 nm, preferably 60 to 120 nm by spin coating or the like is used. Introduce. In this case, the photoelectric conversion layer may be applied to methods such as dip coating, screen printing, spray coating, doctor blade, brush painting, and the like.

또한, 상기 전자수용체는 PCBM(C 60 )을 포함하여, C 70 , C 76 , C 78 , C 80 , C 82 , C 84 등의 다른 플러렌 유도체를 사용할 수도 있으며, 코팅된 박막은 80 내지 160℃, 바람직하게는 90 내지 140℃에서 어닐링 하여 전도성 고분자의 결정성을 높여주는 것이 좋다.In addition, the electron acceptor may include other fullerene derivatives such as C 70 , C 76 , C 78 , C 80 , C 82 , C 84 , including PCBM (C 60 ), and the coated thin film is 80 to 160 ° C. Preferably, the annealed at 90 to 140 ℃ to improve the crystallinity of the conductive polymer.

본 발명의 전자 수송층(150)은 전자 수송층의 모폴로지를 향상시키기 위해 계면활성제(surfactant)를 첨가하여 제조한다.The electron transport layer 150 of the present invention is prepared by adding a surfactant to improve the morphology of the electron transport layer.

이때, 상기 전자 수송층은 친전자성 기능을 가지는 수용성 고분자를 물, 에탄올 또는 이들의 혼합용매에 용해하고, 상기 고분자 용액에 계면활성제를 첨가한 후 여과하여 박막을 형성하는 단계를 포함하여 제조할 수 있다.In this case, the electron transport layer may be prepared by dissolving a water-soluble polymer having an electrophilic function in water, ethanol or a mixed solvent thereof, adding a surfactant to the polymer solution and then filtering to form a thin film. have.

본 발명에서 상기 친전자성 기능기를 가지는 수용성 고분자로는 폴리[9,9-비스(6'-디에탄올아미노)헥실)-플루오렌]이 바람직하며, 상기 계면활성제는 2,4,7,9-테트라메틸-5-데킨-4,7-디올인 것이 바람직하다.In the present invention, as the water-soluble polymer having an electrophilic functional group, poly [9,9-bis (6'- diethanolamino) hexyl) -fluorene] is preferable, and the surfactant is 2,4,7,9. Preference is given to -tetramethyl-5-dekin-4,7-diol.

더욱 바람직하게는, 상기 계면활성제를 2-에틸헥산올 (2-ethylhexanol), 2-부톡시헥산올(2-butoxyethanol), 디프로필렌 글리콜(dipropylene glycol), 에틸렌 글리콜(ethylene glycol), n-프로필 알코올(n-propyl alcohol), 이소프로필 알코올(isopropyl alcohol), 프로필렌 글리콜(propylene glycol)로 구성된 그룹 중에서 선택되는 어느 하나 이상의 용매에 50 내지 75중량%로 용해하여, 상기 수용성 고분자가 물, 에탄올 또는 이들의 혼합물에 0.1 내지 1중량%로 용해된 용액에 1 내지 3중량%를 첨가하여 혼합한 후 스핀 코팅 등의 방법으로 2 내지 20nm 코팅하여 열처리하는 것이 좋다.More preferably, the surfactant is 2-ethylhexanol, 2-butoxyethanol, dipropylene glycol, ethylene glycol, n-propyl 50-75% by weight in one or more solvents selected from the group consisting of alcohol (n-propyl alcohol), isopropyl alcohol, propylene glycol (propylene glycol), the water-soluble polymer is water, ethanol or It is preferable to add 1 to 3% by weight to a solution dissolved at 0.1 to 1% by weight of these mixtures, and then mix and heat-treat by 2 to 20 nm coating by a method such as spin coating.

가장 바람직하게는, 폴리[9,9-비스(6'-(디에탄올아미노)헥실)-플루오렌][PFN-OH]을 에탄올 0.1 내지 0.5중량%로 용해시킨 용액에 2,4,7,9-테트라메틸-5-데킨-4,7-디올이 에틸렌 글리콜에 50중량% 용해된 용액을 1 내지 3중량% 첨가하여 혼합한 후 스핀코팅의 방법으로 5 내지 15nm 두께로 코팅하여 70 내지 90℃에서 10 내지 30분간 열처리하는 것이 좋다.Most preferably, 2,4,7, in a solution of poly [9,9-bis (6 '-(diethanolamino) hexyl) -fluorene] [PFN-OH] dissolved in 0.1 to 0.5% by weight of ethanol 9-tetramethyl-5-dekin-4,7-diol was added by mixing 1 to 3% by weight of a solution of 50% by weight dissolved in ethylene glycol, and then coated with a thickness of 5 to 15nm by spin coating to 70 to 90 Heat treatment at 10 ° C. for 30 minutes is preferred.

또한, 상기 전자 수송층은 스핀코팅의 방법 외에도 딥코팅, 스크린 프린팅, 잉크젯 프린팅, 그라비아 프린팅, 스프레이 코팅, 닥터블레이드, 브러쉬 페인팅 등의 방법을 응용할 수 있으며, 본 발명이 이에 제한되는 것은 아니다.In addition, the electron transport layer may be applied to methods such as dip coating, screen printing, inkjet printing, gravure printing, spray coating, doctor blade, brush painting, etc., but the present invention is not limited thereto.

상기 계면활성제가 첨가된 전자 수송층(150)은 표면 모폴로지(surface morphology)가 향상되어 단락전류밀도(short circuit current density), 개방전압(open circuit voltage) 및 필팩터(fill factor)가 증가하여 에너지변환효율에 좋다.The electron transport layer 150 to which the surfactant is added has an improved surface morphology, so that short circuit current density, open circuit voltage, and fill factor increase energy conversion. Good for efficiency

본 발명의 제2 전극(160)은 전자 수송층(150)이 도입된 상태에서 5ㅧ 10-7 torr 이하의 진공도를 보이는 열증착기 내부에서 증착된다. 이때 사용가능한 전극재료로는 불화리튬/알루미늄, 불화리튬/칼슘/알루미늄, 칼슘/알루미늄, 불화바륨/알루미늄, 불화바륨/바륨/알루미늄, 바륨/알루미늄, 알루미늄, 금, 은, 마스네슘:은, 또는 리튬:알루미늄 중에서 선택될 수 있으며, 바람직하게는 불화바륨/바륨/알루미늄 구조로 제작된 전극을 사용하는 것이 좋다.
The second electrode 160 of the present invention is deposited inside the thermal evaporator exhibiting a vacuum degree of 5 kPa 10 -7 torr or less in the state in which the electron transport layer 150 is introduced. The electrode materials usable here include lithium fluoride / aluminum, lithium fluoride / calcium / aluminum, calcium / aluminum, barium fluoride / aluminum, barium fluoride / barium / aluminum, barium / aluminum, aluminum, gold, silver, magnesium: silver, Or lithium: aluminum, and it is preferable to use an electrode made of a barium fluoride / barium / aluminum structure.

이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 예시하기 위한 것으로서, 본 발명의 범위가 이들 실시예에 의해 제한되는 것으로 해석되지는 않는 것은 당업계에서 통상의 지식을 가진 자에게 있어서 자명할 것이다.
Hereinafter, the present invention will be described in more detail with reference to Examples. It is to be understood by those skilled in the art that these examples are for illustrative purposes only and that the scope of the present invention is not construed as being limited by these examples.

실시예 1. 패턴된 ITO 기판 세정Example 1. Patterned ITO Substrate Cleaning

패턴된 ITO glass(면저항: ~15 Ω/sq2, 삼성 코닝, 한국) 기판의 표면을 세정하기 위하여, 세정제(Alconox, Aldtrich, 미국), 아세톤, 및 이소프로판올(IPA)을 사용해 순차적으로 각각 20분씩 초음파 세정을 실시한 후, 질소로 물기를 완전히 불어낸 다음 가열판에서 120℃로 10분간 건조해 수분을 완전히 제거하였다.To clean the surface of the patterned ITO glass (Surface Resistance: ~ 15 Ω / sq 2 , Samsung Corning, Korea) substrate, 20 minutes each using a cleaning agent (Alconox, Aldtrich, USA), acetone, and isopropanol (IPA) sequentially After performing ultrasonic cleaning, water was completely blown with nitrogen and dried at 120 ° C. for 10 minutes on a heating plate to completely remove moisture.

패턴된 ITO 기판의 세정이 완료되면, UVO 세정기(UVO cleaner, Ahtech LTS, 한국)에서 10분 동안 표면을 친수성으로 개질하였다.
Once the cleaning of the patterned ITO substrate was completed, the surface was hydrophilically modified for 10 minutes in a UVO cleaner (UVO cleaner, Ahtech LTS, Korea).

실시예 2. 전자 수송층의 제조(1)Example 2 Preparation of Electron Transport Layer (1)

전자 수송층의 모폴로지를 향상시키기 위해 계면활성제인 2,4,7,9-테트라메틸-5-데킨-4,7-디올이 이소프로필 알콜에 50중량% 용해된 용액(Sufynol 104 PA, Air Products, 미국)을 폴리[9,9-비스(6'-(디에탄올아미노)헥실)-플루오렌][PFN-OH]을 에탄올에 0.2중량% 용해시킨 용액에 2중량%를 첨가하여 24시간동안 교반한 후 스핀코팅 등의 방법으로 10 ㎚ 두께로 도입한 후, 80℃에서 20분간 열처리하였다.
In order to improve the morphology of the electron transport layer, a solution in which a surfactant, 2,4,7,9-tetramethyl-5-dekin-4,7-diol, is dissolved in isopropyl alcohol by 50% by weight (Sufynol 104 PA, Air Products, USA) was added to the solution of 0.2% by weight of poly [9,9-bis (6 '-(diethanolamino) hexyl) -fluorene] [PFN-OH] in ethanol, and stirred for 24 hours. After introducing into a thickness of 10 nm by spin coating or the like, and then heat-treated for 20 minutes at 80 ℃.

실시예 3. 전자 수송층의 제조(2)Example 3 Preparation of Electron Transport Layer (2)

전자 수송층의 모폴로지를 향상시키기 위해 계면활성제인 2,4,7,9-테트라메틸-5-데킨-4,7-디올이 에틸렌 글리콜에 50중량% 용해된 용액(Sufynol 104 E, Air Products, 미국)을 폴리[9,9-비스(6'-(디에탄올아미노)헥실)-플루오렌][PFN-OH]을 에탄올에 0.2중량% 용해시킨 용액에 2중량%를 첨가하여 24시간동안 교반한 후 스핀코팅 등의 방법으로 10 ㎚ 두께로 도입한 후, 80℃에서 20분간 열처리하였다.
A 50% by weight solution of 2,4,7,9-tetramethyl-5-decyne-4,7-diol in ethylene glycol was used to improve the morphology of the electron transport layer (Sufynol 104 E, Air Products, USA ) Was added to a solution of 0.2% by weight of poly [9,9-bis (6 '-(diethanolamino) hexyl) -fluorene] [PFN-OH] in ethanol, and then stirred for 24 hours. After introducing into a thickness of 10 nm by spin coating or the like, and then heat-treated at 80 20 minutes.

실시예 4. 유기태양전지의 제조(1)Example 4 Fabrication of Organic Solar Cell (1)

폴리(3,4-에틸렌디옥시티오펜):폴리(4-스티렌설포네이트)[PEDOT:PSS]를 상기 실시예 1에서 제조한 패터닝된 ITO 위에 40 ㎚ 두께로 스핀 코팅한 후, 핫플레이트에서 120℃에서 20분간 열처리하여 잔류용매를 제거하고 버퍼층을 완성하였다.Poly (3,4-ethylenedioxythiophene): poly (4-styrenesulfonate) [PEDOT: PSS] was spin-coated 40 nm thick on the patterned ITO prepared in Example 1 above, followed by 120 on a hotplate. Heat treatment was performed at 20 ° C. for 20 minutes to remove residual solvent to complete the buffer layer.

폴리[N-9'-헵타데카닐-2,7-카바졸-알트-5,5-(4',7'-디-2-티에닐-2',1',3'-벤조티아디아졸)][PCDTBT]와 PCBM(70)을 1 : 4의 중량비로 혼합한 광전변환층 재료를 오쏘-디클로로벤젠 용매에 0.5중량%의 농도로 용해시키고, 상기의 버퍼층이 도입된 ITO 기판에 스핀코팅한 다음 120℃에서 10분간 열처리하여 100 ㎚ 두께의 광전변환층을 도입하였다.Poly [N-9'-heptadecanyl-2,7-carbazole-al-5,5- (4 ', 7'-di-2-thienyl-2', 1 ', 3'-benzothiadia Sol)] [PCDTBT] and PCBM 70 were dissolved in an ortho-dichlorobenzene solvent at a weight ratio of 1: 4 by dissolving the photoelectric conversion layer material at a concentration of 0.5% by weight, and spin the ITO substrate into which the buffer layer was introduced. After coating and heat treatment at 120 ℃ for 10 minutes to introduce a 100 nm thick photoelectric conversion layer.

전자 수송층으로, 폴리[9,9-비스(6'-(디에탄올아미노)헥실)-플루오렌][PFN-OH]을 에탄올에 0.2중량% 용해시킨 용액을 10nm 두께로 스핀코팅한 후, 80℃에서 20분간 열처리하였다.In the electron transport layer, a solution obtained by dissolving poly [9,9-bis (6 '-(dieethanolamino) hexyl) -fluorene] [PFN-OH] in 0.2% by weight in ethanol was spin-coated to a thickness of 10 nm, and then 80 Heat-treated for 20 minutes at ° C.

이어서 5× 10-7 torr 이하의 진공도를 보이는 열증착기 내부에서 불화바륨(BaF2)을 0.1Å/s의 속도로 2 ㎚, 바륨(Ba)을 0.2Å/s의 속도로 2 ㎚ 및 알루미늄(Al)을 5Å/s의 속도로 100 ㎚ 증착하여 유기태양전지를 제조하였다.Subsequently, barium fluoride (BaF 2 ) was 2 nm at a rate of 0.1 mW / s, and barium (Ba) was 2 nm at a rate of 0.2 mW / s, and inside the thermal evaporator having a vacuum degree of 5 × 10 −7 torr or less. An organic solar cell was prepared by depositing 100 nm of Al) at a rate of 5 mA / s.

이렇게 제조된 소자는 수분과 산소에 의한 분해를 방지하기 위하여 수분 및 산소 흡습제를 봉지유리 안쪽면에 도입한 후, 자외선 경화제를 이용하여 밀봉하였다.
The device thus manufactured was introduced with a moisture and oxygen absorbent to the inner surface of the encapsulating glass in order to prevent decomposition by moisture and oxygen, and then sealed using an ultraviolet curing agent.

실시예 5. 유기태양전지의 제조(2)Example 5 Fabrication of Organic Solar Cell (2)

실시예 4와 동일한 방법 및 조건으로 유기태양전지를 제조하되, 전자 수송층은 상기 실시예 2의 방법으로 제조하였다.
An organic solar cell was manufactured by the same method and condition as in Example 4, except that the electron transport layer was manufactured by the method of Example 2.

실시예 6. 유기태양전지의 제조(3)Example 6 Fabrication of Organic Solar Cell (3)

상기 실시예 4와 동일한 방법 및 조건으로 유기태양전지를 제조하되, 전자 수송층은 상기 실시예 3의 방법으로 제조하였다.
An organic solar cell was manufactured by the same method and condition as in Example 4, but the electron transport layer was manufactured by the method of Example 3.

비교예 1. 유기태양전지의 제조(4)Comparative Example 1. Fabrication of Organic Solar Cell (4)

상기 실시예 4와 동일한 방법 및 조건으로 유기태양전지를 제조하되, 전자 수송층을 도입하지 않고 제조하였다.
An organic solar cell was manufactured in the same manner and in the same manner as in Example 4, but without introducing an electron transport layer.

비교예 2. 유기태양전지의 제조(5)Comparative Example 2. Fabrication of Organic Solar Cell (5)

상기 비교예 1과 동일한 방법 및 조건으로 유기태양전지를 제조하되, BaF2와 Ba을 도입하지 않고 제조하였다.
An organic solar cell was manufactured by the same method and condition as in Comparative Example 1, except that BaF 2 and Ba were not introduced.

실험예 1. 유기태양전지의 특성 평가Experimental Example 1. Evaluation of Characteristics of Organic Solar Cell

상기 실시예 4~6 및 비교예 1~2에서 제조한 유기태양전지의 전기광학적 특성을 측정하기 위하여, 키슬리 2400 소스미터와 태양광 모의실험장치(Oriel 150W solar simulator)를 사용해 표준조건(Air Mass 1.5 Global, 100 ㎽/㎠, 25℃)에서 전류-전압밀도를 측정하였다.In order to measure the electro-optical characteristics of the organic solar cells manufactured in Examples 4 to 6 and Comparative Examples 1 and 2, standard conditions (Air) were used using a Keithley 2400 source meter and an Oriel 150W solar simulator. Mass 1.5 Global, 100 mA / cm 2, 25 ° C.), current-voltage density was measured.

상기 유기태양전지들의 광단락전류밀도(Jsc), 광개방전압(Voc), 필팩터(Fill Factor;FF) 및 에너지변환효율은 하기 표 1에 나타내었다.Optical short-circuit current density (Jsc), photo-opening voltage (Voc), fill factor (FF) and energy conversion efficiency of the organic solar cells are shown in Table 1 below.

이때, Fill Factor(FF)는 최대 전력점에서 전압값(Vmax)ㅧ 전류밀도(Jmax)/(Vocㅧ Jsc), 에너지변환효율은 FFㅧ (Jscㅧ Voc)/Pin, Pin=100[㎽/㎠]으로 계산하였다.At this time, the Fill Factor (FF) is the voltage value (Vmax) ㅧ current density (Jmax) / (Voc ㅧ Jsc) at the maximum power point, and the energy conversion efficiency is FF ㅧ (JscJ Voc) / Pin, Pin = 100 [㎽ / Cm 2].

광단락전류밀도
Jsc(㎃/㎠)
Optical short circuit current density
Jsc (㎃ / ㎠)
광개방전압
Voc(V)
Photo-opening voltage
Voc (V)
Fill Factor(필팩턱)
(%)
Fill Factor
(%)
에너지변환효율
(%)
Energy conversion efficiency
(%)
실시예 4Example 4 8.68.6 0.89900.8990 42.142.1 3.23.2 실시예 5Example 5 8.88.8 0.93940.9394 43.743.7 3.63.6 실시예 6Example 6 9.99.9 0.95960.9596 44.544.5 4.24.2 비교예 1Comparative Example 1 8.08.0 0.93940.9394 39.739.7 3.03.0 비교예 2Comparative Example 2 8.78.7 0.81820.8182 35.435.4 2.52.5

또한, 도 2는 상기 유기태양전지들의 전류밀도-전압(J-V) 특성 그래프이고, 도 3는 입사광자의 전류변환효율(incident photon-to-current conversion efficiency; IPCE) 그래프이며, 도 4은 상기에서 제조한 전자 수송층의 AFM 사진이다.In addition, Figure 2 is a graph of the current density-voltage (JV) characteristics of the organic solar cells, Figure 3 is an incident photon-to-current conversion efficiency (IPCE) graph, Figure 4 is manufactured in the above An AFM picture of an electron transport layer.

상기 표 1과 도 2 및 도 3에서도 알 수 있듯이, 비교예에서의 광전변환효율은 각각 비교예 1이 3.0%, 비교예 2가 2.5%인 것에 비해, 실시예 6에서는 4.2%로 최고 68%의 증가를 보였다.As can be seen from Table 1 and FIGS. 2 and 3, the photoelectric conversion efficiency in Comparative Example is 4.2% in Example 6, up to 68%, compared with 3.0% in Comparative Example 1 and 2.5% in Comparative Example 2, respectively. Showed an increase.

광전변환층에 알루미늄 전극만을 도입한 비교예 2의 경우, 전자 주입층 및 전자 수송층의 부재로 가장 낮은 광개방전압과 필팩터를 나타내 2.5%의 낮은 에너지변환효율을 보였다. 하지만, 전자 주입층인 Ba과 전자 수송층인 BaF2를 도입한 비교예 1의 경우, 광개방전압과 필팩터가 증가하면서 3.0%의 증가된 에너지 변환효율을 보였다.In the case of Comparative Example 2 in which only the aluminum electrode was introduced into the photoelectric conversion layer, the lowest photo-opening voltage and fill factor were shown in the absence of the electron injection layer and the electron transport layer, resulting in a low energy conversion efficiency of 2.5%. However, in Comparative Example 1 in which Ba, an electron injection layer, and BaF 2 , an electron transport layer were introduced, 3.0% of the energy conversion efficiency was increased as the photo-opening voltage and the fill factor were increased.

전자 수송층으로, PFN-OH를 도입한 실시예 4의 경우, 비교예 1에서 보다 광 단락전류밀도와 필팩터가 증가하면서, 3.2%의 증가된 에너지 변환효율을 보였다. PFN-OH 층을 도입하여 전자의 수송능력의 증대로 인한 에너지 변환효율의 증대를 기대했지만, 광개방전압의 감소로, 소폭의 증가만이 관찰되었다. 그 이유는 도 4a 및 b의 모폴로지 관찰을 통해 해석할 수 있다. 광활성층인 PCDTBT 박막의 표면거칠기(root mean square, RMS)는 0.32nm 이지만, PCDTBT/PFN-OH 박막의 RMS는 0.556nm로 증가한 것을 알 수 있다. 통상적으로, 표면 거칠기의 증가는 캐소드와 접촉면적의 증가로 인한 단락전류밀도의 증가를 보이지만, 광개방전압 및 필팩터의 감소를 야기한다. 따라서, 실시예 4는 친전자성 기능기인 PFN-OH에 의해 단락전류밀도의 증가를 보였지만, 나빠진 표면 거칠기로 인해 크게 개선된 에너지 변환효율을 보이지 못했다.In Example 4 in which PFN-OH was introduced as the electron transporting layer, the optical short-circuit current density and the fill factor were increased more than those in Comparative Example 1, showing an increased energy conversion efficiency of 3.2%. The introduction of the PFN-OH layer was expected to increase the energy conversion efficiency due to the increase of the electron transport capacity, but only a slight increase was observed due to the decrease in the photo-opening voltage. The reason can be interpreted through observation of the morphology of FIGS. 4A and 4B. The root mean square (RMS) of the PCDTBT thin film, which is a photoactive layer, is 0.32 nm, but the RMS of the PCDTBT / PFN-OH thin film has been increased to 0.556 nm. Typically, an increase in surface roughness shows an increase in short-circuit current density due to an increase in cathode and contact area, but causes a decrease in photo-opening voltage and fill factor. Therefore, Example 4 showed an increase in short-circuit current density by PFN-OH, an electrophilic functional group, but did not show a significantly improved energy conversion efficiency due to poor surface roughness.

따라서, 2,4,7,9-테트라메틸-5-데킨-4,7-디올이 이소프로필 알콜에 용해된 계면활성제를 PFN-OH에 도입하여 표면 거칠기를 개선하였다. 실시예 5에서의 RMS는 도 4c에서 알 수 있듯이, 0.276nm로 PCDTBT의 RMS보다 낮아졌으며, 광단락전류밀도, 광개방전압 및 필팩터가 모두 증가하여 3.6%의 에너지 변환효율을 보였다. Thus, the surface roughness was improved by introducing a surfactant in which 2,4,7,9-tetramethyl-5-dekin-4,7-diol was dissolved in isopropyl alcohol to PFN-OH. As shown in FIG. 4C, the RMS in Example 5 was lower than the RMS of PCDTBT at 0.276 nm, and the optical short-circuit current density, photo-opening voltage, and fill factor were all increased to show an energy conversion efficiency of 3.6%.

2,4,7,9-테트라메틸-5-데킨-4,7-디올이 에틸렌 글리콜에 용해된 계면활성제를 PFN-OH에 도입한 실시예 6은 도 4d에서 알 수 있듯이 RMS가 0.156nm로 매우 좋아진 것을 확인할 수 있었다. 광단락전류밀도는 9.9mA/cm2, 광개방전압은 0.9596V, 필팩터는 44.5%로 에너지 변환효율은 4.2%보여 전자 수송층 및 전자 주입층을 적용하지 않은 비교예 2보다 68%의 효율 증가를 보였다.
Example 6 in which 2,4,7,9-tetramethyl-5-dekin-4,7-diol dissolved in ethylene glycol was introduced into PFN-OH, as shown in FIG. 4D, the RMS was 0.156 nm. I could see that it was very good. The optical short-circuit current density is 9.9mA / cm 2 , the photo-opening voltage is 0.9596V, the fill factor is 44.5% and the energy conversion efficiency is 4.2%, which is 68% higher than that of Comparative Example 2 without the electron transport layer and electron injection layer. Showed.

이상, 본 발명의 내용의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적인 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서, 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의해 의하여 정의된다고 할 것이다. As described above, specific portions of the contents of the present invention have been described in detail, and for those skilled in the art, these specific techniques are merely preferred embodiments, and the scope of the present invention is not limited thereto. Will be obvious. Accordingly, the substantial scope of the present invention will be defined by the appended claims and their equivalents.

Claims (10)

투명기판 위에 형성된 제1 전극, 정공 수송층, 광전변화층, 전자 수송층 및 제2 전극을 포함하는 태양전지에 있어서,
전자 수송층에 계면활성제를 첨가하여 상기 전자 수송층의 표면 모폴로지를 향상시킨 것을 특징으로 하는 고효율 유기태양전지.
In the solar cell comprising a first electrode, a hole transport layer, a photoelectric change layer, an electron transport layer and a second electrode formed on a transparent substrate,
A high efficiency organic solar cell, wherein the surface morphology of the electron transport layer is improved by adding a surfactant to the electron transport layer.
제 1 항에 있어서,
상기 계면활성제는 2,4,7,9-테트라메틸-5-데킨-4,7-디올
(2,4,7,9-tetramethyl-5-decyne-4,7-diol)인 것을 특징으로 하는 고효율 유기태양전지.
The method of claim 1,
The surfactant is 2,4,7,9-tetramethyl-5-dekin-4,7-diol
High efficiency organic solar cell, characterized in that (2,4,7,9-tetramethyl-5-decyne-4,7-diol).
제 2 항에 있어서,
상기 계면활성제는 2-에틸헥산올(2-ethylhexanol), 2-부톡시헥산올(2-butoxyethanol), 디프로필렌 글리콜(dipropylene glycol), 에틸렌 글리콜(ethylene glycol), n-프로필 알코올(n-propyl alcohol), 이소프로필 알코올(isopropyl alcohol),프로필렌 글리콜(propylene glycol)로 구성된 그룹 중에서 선택되는 어느 하나 이상의 용매에 용해하여 전자 수송층에 대해 0.1 내지 3중량%로 첨가되는 것을 특징으로 하는 고효율 유기태양전지.
The method of claim 2,
The surfactant is 2-ethylhexanol, 2-butoxyethanol, 2-butoxyethanol, dipropylene glycol, ethylene glycol, n-propyl alcohol High efficiency organic solar cell, characterized in that dissolved in any one or more solvents selected from the group consisting of alcohol, isopropyl alcohol, propylene glycol is added in an amount of 0.1 to 3% by weight based on the electron transport layer .
전자 수송층에 계면활성제(surfactant)를 첨가하여 상기 전자 수송층의 표면 모폴로지를 향상시킨 것을 특징으로 하는 고효율 유기태양전지의 제조방법.
A method of manufacturing a high efficiency organic solar cell, wherein a surface morphology of the electron transport layer is improved by adding a surfactant to the electron transport layer.
제 4 항에 있어서,
상기 계면활성제는 2,4,7,9-테트라메틸-5-데킨-4,7-디올
(2,4,7,9-tetramethyl-5-decyne-4,7-diol)인 것을 특징으로 하는 고효율 유기태양전지의 제조방법.
The method of claim 4, wherein
The surfactant is 2,4,7,9-tetramethyl-5-dekin-4,7-diol
(2,4,7,9-tetramethyl-5-decyne-4,7-diol) The manufacturing method of the high efficiency organic solar cell characterized by the above-mentioned.
제 4항에 있어서,
상기 계면활성제는 2-에틸헥산올(2-ethylhexanol), 2-부톡시헥산올(2-butoxyethanol), 디프로필렌 글리콜(dipropylene glycol), 에틸렌 글리콜(ethylene glycol), n-프로필 알코올(n-propyl alcohol), 이소프로필 알코올(isopropyl alcohol),프로필렌 글리콜(propylene glycol)로 구성된 그룹 중에서 선택되는 어느 하나 이상의 용매에 용해하여 전자 수송층에 대해 0.1 내지 3중량%로 첨가되는 것을 특징으로 하는 고효율 유기태양전지의 제조방법.
The method of claim 4, wherein
The surfactant is 2-ethylhexanol, 2-butoxyethanol, 2-butoxyethanol, dipropylene glycol, ethylene glycol, n-propyl alcohol (n-propyl alcohol). High efficiency organic solar cell, characterized in that dissolved in any one or more solvents selected from the group consisting of alcohol, isopropyl alcohol, propylene glycol is added in an amount of 0.1 to 3% by weight based on the electron transport layer Manufacturing method.
제 4 항에 있어서,
상기 전자 수송층은,
(1) 친전자성 기능기를 가지는 수용성 고분자를 용해하는 단계;
(2) 상기 고분자 용액에 계면활성제를 첨가하는 단계; 및
(3) 상기 용액을 여과하여 박막을 형성하는 단계;를 포함하여 제조하는 것을 특징으로 하는 고효율 유기태양전지의 제조방법.
The method of claim 4, wherein
The electron transport layer,
(1) dissolving a water-soluble polymer having an electrophilic functional group;
(2) adding a surfactant to the polymer solution; And
(3) filtering the solution to form a thin film.
제 7 항에 있어서,
상기 친전자성 기능기를 가지는 수용성 고분자는 폴리[9,9-비스(6'-(디에탄올아미노)헥실)-플루오렌][PFN-OH]인 것을 특징으로 하는 고효율 유기태양전지의 제조방법.
The method of claim 7, wherein
The water-soluble polymer having an electrophilic functional group is a poly [9,9-bis (6 '-(dietanolamino) hexyl) -fluorene] [PFN-OH] manufacturing method of high efficiency organic solar cell.
제 7 항에 있어서,
상기 계면활성제는 2,4,7,9-테트라메틸-5-데킨-4,7-디올
(2,4,7,9-tetramethyl-5-decyne-4,7-diol)을 2-에틸헥산올(2-ethylhexanol), 2-부톡시헥산올(2-butoxyethanol), 디프로필렌 글리콜(dipropylene glycol), 에틸렌 글리콜(ethylene glycol), n-프로필 알코올(n-propyl alcohol), 이소프로필 알코올(isopropyl alcohol),프로필렌 글리콜(propylene glycol)로 구성된 그룹 중에서 선택되는 어느 하나 이상의 용매에 용해하여 전자 수송층에 대해 0.1 내지 3중량%로 첨가되는 것을 특징으로 하는 고효율 유기태양전지의 제조방법.
The method of claim 7, wherein
The surfactant is 2,4,7,9-tetramethyl-5-dekin-4,7-diol
(2,4,7,9-tetramethyl-5-decyne-4,7-diol) to 2-ethylhexanol, 2-butoxyethanol, dipropylene glycol electron transport layer by dissolving in at least one solvent selected from the group consisting of glycol, ethylene glycol, n-propyl alcohol, isopropyl alcohol, and propylene glycol Method for producing a high efficiency organic solar cell, characterized in that added to 0.1 to 3% by weight relative to.
제 7 항에 있어서,
상기 박막은 상기 용액을 2 내지 20nm의 두께로 코팅하여 70 내지 90℃로 열처리 하는 것을 특징으로 하는 유기태양전지의 제조방법.
The method of claim 7, wherein
The thin film is a method of manufacturing an organic solar cell, characterized in that the solution is coated with a thickness of 2 to 20nm heat treatment at 70 to 90 ℃.
KR1020100054467A 2010-06-09 2010-06-09 Manufacturing method of high efficiency organic photovoltaic cells KR101137983B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020100054467A KR101137983B1 (en) 2010-06-09 2010-06-09 Manufacturing method of high efficiency organic photovoltaic cells

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020100054467A KR101137983B1 (en) 2010-06-09 2010-06-09 Manufacturing method of high efficiency organic photovoltaic cells

Publications (2)

Publication Number Publication Date
KR20110134728A true KR20110134728A (en) 2011-12-15
KR101137983B1 KR101137983B1 (en) 2012-04-20

Family

ID=45501918

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020100054467A KR101137983B1 (en) 2010-06-09 2010-06-09 Manufacturing method of high efficiency organic photovoltaic cells

Country Status (1)

Country Link
KR (1) KR101137983B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116234338A (en) * 2023-04-27 2023-06-06 广东爱旭科技有限公司 Solar cell

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4461656B2 (en) 2000-12-07 2010-05-12 セイコーエプソン株式会社 Photoelectric conversion element
JP4534930B2 (en) * 2005-09-27 2010-09-01 パナソニック電工株式会社 Manufacturing method of organic solar cell
JP2009158734A (en) 2007-12-27 2009-07-16 Hitachi Ltd Photoelectric conversion element
KR20090111733A (en) * 2008-04-22 2009-10-27 재단법인서울대학교산학협력재단 A fabrication method of organic solar cell to align molecular structure by adding hydrocarbon

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116234338A (en) * 2023-04-27 2023-06-06 广东爱旭科技有限公司 Solar cell
CN116234338B (en) * 2023-04-27 2023-10-10 广东爱旭科技有限公司 Solar cell
WO2024221663A1 (en) * 2023-04-27 2024-10-31 浙江爱旭太阳能科技有限公司 Solar cell

Also Published As

Publication number Publication date
KR101137983B1 (en) 2012-04-20

Similar Documents

Publication Publication Date Title
US10388899B2 (en) Inverted polymer solar cells and process for producing the same
Aslan et al. Sol–gel derived In2S3 buffer layers for inverted organic photovoltaic cells
Gupta et al. Impedance spectroscopy on degradation analysis of polymer/fullerene solar cells
Raïssi et al. Enhancing the short-circuit current, efficiency of inverted organic solar cells using tetra sulfonic copper phthalocyanine (TS-CuPc) as electron transporting layer
KR20170049359A (en) Perovskite based solar cells employing graphene as transparent conductive electrodes
JP2011082421A (en) Method for manufacturing organic photoelectric conversion element, and organic photoelectric conversion element
JP5681932B2 (en) All-spray see-through organic solar array with seal
Zhang et al. Efficient ternary organic solar cells with small aggregation phases and low bimolecular recombination using ICBA: ITIC double electron acceptors
KR101189664B1 (en) Organic solar cell using high conductive buffer layer and low work function metal buffer layer, and fabrictaing method thereof
KR101149782B1 (en) Inverted organic photovoltaic cells and manufacturing method thereof
KR101112676B1 (en) Large area and high energy conversion efficiency OPVs using nano particle and high conducting novel organic/inorganic hydrid buffer layer and manufacturing method thereof
KR101563048B1 (en) Active layer, organic photovoltaic cell comprising the same and manufacturing method thereof
KR101646727B1 (en) Solar cell and method of manufacturing the same
KR101434090B1 (en) Organic photovoltaics having zinc oxide electron-transfer-layer blended with cesium carbonate
Yeh et al. Large active area inverted tandem polymer solar cell with high performance via alcohol treatment on the surface of bottom active layer P3HT: ICBA
KR101108540B1 (en) Method for the fabrication of organic electric device by patternable brush printing process
Qing et al. MoO3/Ag/Al/ZnO intermediate layer for inverted tandem polymer solar cells
Wang et al. Inverted heterojunction solar cells incorporating fullerene/polythiophene composite core/shell nanorod arrays
KR101137983B1 (en) Manufacturing method of high efficiency organic photovoltaic cells
KR101496521B1 (en) Organic photovoltaic cell and manufacturing method thereof
KR101496520B1 (en) Organic photovoltaic cell and manufacturing method thereof
KR101116847B1 (en) Inverted opvs using zinc oxide buffer layer and manufacturing method thereof
Heo et al. Enhanced performance in bulk heterojunction solar cells with alkylidene fluorene donor by introducing modified PFN-OH/Al bilayer cathode
Solís-Vivanco et al. Double ETL in ITO-free poly-3-hexylthiophene-based organic solar cells
CN112778504B (en) D-A type conjugated polymer donor photovoltaic material and preparation method and application thereof

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20151001

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160411

Year of fee payment: 5

LAPS Lapse due to unpaid annual fee