KR20110015252A - Method for preparing segmented polyolefin copolymers - Google Patents
Method for preparing segmented polyolefin copolymers Download PDFInfo
- Publication number
- KR20110015252A KR20110015252A KR1020090072879A KR20090072879A KR20110015252A KR 20110015252 A KR20110015252 A KR 20110015252A KR 1020090072879 A KR1020090072879 A KR 1020090072879A KR 20090072879 A KR20090072879 A KR 20090072879A KR 20110015252 A KR20110015252 A KR 20110015252A
- Authority
- KR
- South Korea
- Prior art keywords
- acrylate
- methacrylate
- polymer
- group
- vinyl
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F255/00—Macromolecular compounds obtained by polymerising monomers on to polymers of hydrocarbons as defined in group C08F10/00
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C329/00—Thiocarbonic acids; Halides, esters or anhydrides thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/04—Polymerisation in solution
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2/00—Processes of polymerisation
- C08F2/38—Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/16—Copolymers of ethene with alpha-alkenes, e.g. EP rubbers
- C08F210/18—Copolymers of ethene with alpha-alkenes, e.g. EP rubbers with non-conjugated dienes, e.g. EPT rubbers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F265/00—Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
- C08F265/04—Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
- C08F265/06—Polymerisation of acrylate or methacrylate esters on to polymers thereof
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F299/00—Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F2438/00—Living radical polymerisation
- C08F2438/03—Use of a di- or tri-thiocarbonylthio compound, e.g. di- or tri-thioester, di- or tri-thiocarbamate, or a xanthate as chain transfer agent, e.g . Reversible Addition Fragmentation chain Transfer [RAFT] or Macromolecular Design via Interchange of Xanthates [MADIX]
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Graft Or Block Polymers (AREA)
- Polymerisation Methods In General (AREA)
- Other Resins Obtained By Reactions Not Involving Carbon-To-Carbon Unsaturated Bonds (AREA)
Abstract
Description
본원은 가역적 첨가-분절 연쇄이동 (RAFT = reversible addition-fragmentation chain transfer) 방법을 통한 올레핀계 분절 공중합체의 제조 방법에 관한 것으로서, 더욱 상세하게는, 상기 가역적 첨가-분절 연쇄이동 방법에서 트리티오카보네이트계 사슬이동제를 사용하여 비닐계 중합체를 합성함으로써, 올레핀계 중합체에 용이하게 그래프팅 시키는 것이 가능한 올레핀계 분절 공중합체의 제조 방법에 관한 것이다. The present application relates to a method for preparing an olefinic segment copolymer through a reversible addition-fragmentation chain transfer (RAFT) method, more specifically, trithiocarbonate in the reversible addition-fragmentation chain transfer method. The present invention relates to a method for producing an olefinic segment copolymer which can be easily grafted to an olefinic polymer by synthesizing a vinyl polymer using a systemic chain transfer agent.
고분자의 분자 구조를 제어하여 고분자의 화학적, 물리적 성질을 조절하는 연구는 고분자 화학의 가장 중요한 과제 중의 하나이다. 고분자 사슬은 그 구성성분에 의하여 단일 중합체와 공중합체로 구분되며, 사슬간의 연결 형태에 따라서도 다양하게 구분된다. 이들 구성 성분과 분자구조의 변환은 고분자의 화학적, 물리적 성질의 변화를 수반하게 되므로 적절한 고분자의 합성을 통하여 다양한 성질을 갖 는 고분자를 얻을 수 있다. 기존의 고분자 구조를 개질하는 연구가 흥미 있는 것은 기존 고분자 구조를 개질함으로써 기존 고분자의 성질과는 다른 특이한 성질을 발현하기 때문이며, 이러한 성질들은 유용하게 이용될 수 있다. 예를 들어 산업적으로 가장 많이 쓰이고 있는 올레핀 고분자 사슬에 하이드록시기나 카르보닐기를 치환시키므로 친수성을 띄거나 극성을 띄게 하는 것을 들 수 있다. 이때 사슬 중 개질되는 비율이나 양이 원래 개질 목적을 이루는데 중요한 척도가 된다. 만일 개질 정도가 높지 않지 않을 때는 원래 고분자의 물성은 크게 바뀌지 않는다. 그러나 물성 외에 불용성이었던 물질과 상용성이나 접착성이 개선되는 효과 등을 볼 수 있다. 또한 선형 고분자 물질의 가교는 고분자의 점도, 유리전이온도 등을 변화시킨다. Controlling the molecular structure of polymers to control their chemical and physical properties is one of the most important challenges in polymer chemistry. Polymer chains are classified into homopolymers and copolymers by their constituents, and variously classified according to the form of linkage between the chains. Since the conversion of these components and the molecular structure is accompanied by changes in the chemical and physical properties of the polymer, it is possible to obtain a polymer having a variety of properties through the synthesis of the appropriate polymer. Interesting researches to modify the existing polymer structure is because by modifying the existing polymer structure to express specific properties different from the properties of the existing polymer, these properties can be usefully used. For example, the hydroxy polymer or the carbonyl group is substituted in the olefin polymer chain, which is used most industrially, so that it is hydrophilic or polar. The rate or amount of modification in the chain is then an important measure for achieving the original modification goals. If the degree of modification is not high, the physical properties of the original polymer do not change significantly. However, in addition to physical properties, it is possible to see the effect of improving compatibility or adhesion with insoluble materials. In addition, the crosslinking of the linear polymer material changes the viscosity, glass transition temperature and the like of the polymer.
이종 고분자 성분의 결합은 주로 서로 보완적인 성질을 가진 성분을 결합하는 데에 초점이 맞추어져 있으며, 기존의 고분자 사슬과 이종고분자를 화학적으로 결합하는 형식은 블록공중합체와 그래프트 공중합체가 있다. 블록공중합체는 사슬말단에 이종단량체를 중합시키는 방법을 사용하는데, 리빙중합법이 많이 이용된다. 그래프트 공중합체는 사슬의 반복단위에 개시점을 이용하여 이종 중합체를 중합하거나(grafting - from), 이종고분자와 주쇄의 작용기를 이용하여 주쇄에 이종고분자사슬을 만드는 방법(grafting - onto) 등을 이용한다. Bonding of heterogeneous polymer components is mainly focused on bonding components having complementary properties to each other. Existing types of chemically bonding polymer chains and heteropolymers include block copolymers and graft copolymers. Block copolymers use a method of polymerizing heteromonomers at the chain ends, and living polymerization is widely used. The graft copolymers are two kinds of polymerization of the polymer or by using the start point to the repeating unit of the chain uses a - - (onto grafting) etc., using the (grafting from), two kinds of polymer and the main chain of the functional group to create a heterogeneous polymer chain in the main chain .
올레핀 고분자의 경우 오래 전부터 개질에 대한 연구가 이루어져 왔다. 그래프트 공중합체에 대한 연구로는 주로 극성 고분자를 폴리에틸렌(PE), 폴리프로필렌(PP), 에틸렌-프로필렌-디엔 삼원공중합체(EPDM) 등에 그래프트시키는 연구가 진 행되었다. 올레핀 고분자를 개질하여 그래프트 공중합체를 제조하는 방법은 주로 퍼옥사이드로 올레핀 고분자의 사슬 내의 수소를 제거하여 개시한 뒤 이종 고분자를 중합하여 제조한다. 그러나 올레핀 고분자 사슬의 개시효율이 낮고 개시된 사슬끼리의 결합으로 원하는 구조의 그래프트 공중합체를 얻기 어렵다. 이에 효과적으로 이종 고분자를 그래프트시키는 연구가 필요하다. In the case of olefin polymers, research on reforming has been made for a long time. The research on the graft copolymers mainly involves grafting polar polymers to polyethylene (PE), polypropylene (PP), and ethylene-propylene-diene terpolymer (EPDM). A method of preparing a graft copolymer by modifying an olefin polymer is mainly performed by removing hydrogen in a chain of an olefin polymer with a peroxide and then polymerizing a heterogeneous polymer. However, the initiation efficiency of the olefin polymer chain is low and it is difficult to obtain a graft copolymer having a desired structure by bonding the disclosed chains. To this end, research on grafting heterogeneous polymers is needed.
최근 고분자의 중합반응을 잘 제어하여 설계한 구조의 고분자를 합성할 수 있는 장점이 있는 리빙 라디칼 중합법 (controlled/"living" radical polymerization = CRP) 을 이용한 올레핀 고분자, 디엔 고분자 등의 개질이 연구되고 있다. 일반적인 라디칼 중합은 분자량이 일정하지 않고 분자의 크기가 넓은 분포를 갖는다. 최근 많이 연구되고 있는 리빙 라디칼 중합법은 중합반응 중 연쇄이동이나 정지반응을 제어하여 분자량과 분자량 분포의 조절, 고분자 사슬의 구조설계 및 작용기 도입, 공중합체 조성의 제어 등에 용이하여 재료의 고기능화, 고성능화 및 고분자 신소재 창출에 많이 응용되고 있다. Recently, reforming of olefin polymers, diene polymers, etc. using living radical polymerization method (controlled / "living" radical polymerization = CRP), which has the advantage of synthesizing the polymer of the designed structure by controlling the polymerization reaction of the polymer well, has been studied. have. Typical radical polymerizations have a constant molecular weight and a wide distribution of molecules. Living radical polymerization method, which has been studied a lot recently, controls the chain transfer or the stop reaction during the polymerization reaction to easily control the molecular weight and molecular weight distribution, design the structure of the polymer chain and introduce functional groups, and control the copolymer composition, thereby improving the material's high performance and performance. And it is applied to a lot of new polymer material creation.
그러나, 아직까지 가역적 첨가-분절 연쇄이동(reversible addition-fragmentation chain transfer, RAFT) 방법을 응용하여 효율적이고 간단하게 올레핀계 분절 공중합체를 제조하는 구체적인 방법은 아직 제시되지 않은 실정이다.However, a specific method for preparing an olefin-based fragment copolymer efficiently and simply by applying a reversible addition-fragmentation chain transfer (RAFT) method has not yet been proposed.
따라서, 본 발명은 상기와 같은 종래기술의 문제점과 과거로부터 요청되어온 기술적 과제를 해결하기 위하여 안출된 것으로서, 제조되는 올레핀계 분절 공중합체 중의 그래프트 사슬의 길이 및 수 뿐만 아니라 그래프팅 효율의 조절이 가능한 올레핀계 분절 공중합체의 신규 제조 방법을 개발하여, 중합체 개질을 위한 새로운 리빙 라디칼 중합의 기술 플랫폼을 제공하는 것을 목적으로 한다.Accordingly, the present invention has been made to solve the problems of the prior art and the technical problem has been requested from the past, it is possible to control the grafting efficiency as well as the length and number of the graft chain in the olefin-based fragment copolymer produced It is an object to develop a novel process for the preparation of olefinic segment copolymers, to provide a new technical platform for living radical polymerization for polymer modification.
상술한 기술적 과제를 달성하기 위한 기술적 수단으로서, 본 발명의 제1 측면은, 트리티오카보네이트계 사슬이동제(chain transfer agent)를 사용하여 가역적 첨가-분절 연쇄이동법(RAFT)으로 비닐계 단량체를 중합하여 비닐계 중합체를 합성하는 단계; 및, 상기 합성된 비닐계 중합체를 올레핀계 중합체에 그래프팅하는 단계를 포함하는, 올레핀계 분절 공중합체의 제조 방법을 제공한다.As a technical means for achieving the above-described technical problem, the first aspect of the present invention, polymerizing the vinyl monomer by a reversible addition-fragmentation chain transfer method (RAFT) using a trithiocarbonate-based chain transfer agent Synthesizing a vinyl polymer; And, grafting the synthesized vinyl polymer to an olefin polymer.
또한, 본 발명의 제2 측면은, 전술한 제조 방법으로 제조된 올레핀계 분절 공중합체를 제공한다.In addition, a second aspect of the present invention provides an olefinic segment copolymer produced by the above-described production method.
본원에 따른 제조 방법에 따르면, 간단한 2 단계 반응에 의하여 성공적으로 올레핀계 분절 공중합체를 용이하게 합성할 수 있다.According to the preparation method according to the present application, it is possible to easily synthesize the olefinic segment copolymer successfully by a simple two step reaction.
또한, 본원에 따른 제조 방법에 따라면, 라디칼 생성제 및 그래프트되는 비닐계 중합체의 양을 조절함으로써, 수득되는 올레핀계 분절 공중합체 중의 그래프트 사슬의 길이 및 수뿐만 아니라 그래프팅 효율의 조절이 가능하다. In addition, according to the production method according to the present application, by controlling the amount of the radical generator and the vinyl polymer to be grafted, it is possible to control the grafting efficiency as well as the length and number of the graft chains in the obtained olefinic segment copolymer. .
따라서, 본원에 따른 제조 방법을 사용하여, 다양한 개선된 물성을 가지고 넓은 응용성을 가지는 올레핀계 분절 공중합체의 합성이 가능하다.Thus, using the production process according to the invention, it is possible to synthesize olefinic segment copolymers having various improved physical properties and wide applicability.
이하, 첨부한 도면을 참조하여 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 구현예 및 실시예를 상세히 설명한다. DETAILED DESCRIPTION Hereinafter, embodiments and embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the present invention.
그러나, 이하의 설명은 본 발명을 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 사상 및 기술 범위에 포함되는 모든 변환, 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 본 발명을 설명함에 있어서 관련된 공지 기술에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우 그 상세한 설명을 생략한다.However, the following description is not intended to limit the present invention to specific embodiments, and it should be understood that the present invention covers all the transformations, equivalents, and substitutes included in the spirit and scope of the present invention. In the following description of the present invention, if it is determined that the detailed description of the related known technology may obscure the gist of the present invention, the detailed description thereof will be omitted.
본원에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 출원에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들 이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.The terminology used herein is for the purpose of describing particular embodiments only and is not intended to be limiting of the invention. Singular expressions include plural expressions unless the context clearly indicates otherwise. In this application, the terms "comprise" or "have" are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, and one or more other features. It is to be understood that the present invention does not exclude the possibility or the possibility of additions, numbers, steps, operations, components, parts, or a combination thereof.
본원에서 사용된 "분절(segmented) 공중합체"라는 표현은 서로 다른 고분자 분절들이 포함된 공중합체를 의미하는 것으로서, 그래프트(graft) 공중합체 및 블록(block) 공중합체를 포함하는 의미로 해석되어야 한다. 다만, 보다 바람직하게는 그래프트 공중합체를 의미하는 것으로 해석될 수 있을 것이다.As used herein, the expression "segmented copolymer" refers to a copolymer containing different polymer segments, and should be interpreted to include graft copolymers and block copolymers. . However, more preferably, it may be interpreted to mean a graft copolymer.
본 발명의 제 1 측면은, 트리티오카보네이트계 사슬이동제(chain transfer agent 또는 RAFT agent)를 사용하여 가역적 첨가-분절 연쇄이동법(RAFT)으로 비닐계 단량체를 중합하여 비닐계 중합체를 합성하는 단계 (제 1 단계); 및 상기 합성된 비닐계 중합체를 올레핀계 중합체에 그래프팅하는 단계 (제 2 단계)를 포함하는 올레핀계 분절 공중합체의 제조 방법을 제공한다.The first aspect of the present invention is to synthesize a vinyl-based polymer by polymerizing a vinyl monomer by a reversible addition-fragmentation chain transfer method (RAFT) using a trithiocarbonate-based chain transfer agent (RAFT agent) ( First step); And grafting the synthesized vinyl polymer to the olefin polymer (second step).
상기 제 1 단계는 올레핀계 중합체에 원하는 특성을 도입하기 위하여 그래프트되는 중합체를 제조하는 단계로서, 통상적인 디티오에스테르(dithioester) 사슬이동제 대신에 트리티오카보네이트 구조를 가진 트리티오카보네이트계 사슬이동제를 사용하여 그래프트되는 중합체를 합성하는 것을 특징으로 하며, 이러한 트리티오카보네이트계 사슬이동제를 사용하여 중합을 수행함으로써 생성되는 중합체 내에 트리티오카보네이트 구조(unit)가 포함되며, 이렇게 생성된 중합체를 이용하여 상기 제 2 단계의 그래프팅을 수행할 수 있다.The first step is to prepare a polymer to be grafted in order to introduce the desired properties to the olefinic polymer, using a trithiocarbonate-based chain transfer agent having a trithiocarbonate structure in place of a conventional dithioester chain transfer agent It is characterized by synthesizing the polymer to be grafted, the trithiocarbonate structure (unit) is included in the polymer produced by carrying out the polymerization using such a trithiocarbonate-based chain transfer agent, using the polymer so produced Two levels of grafting can be performed.
전술한 바와 같이, 상기 제 1 단계는 트리티오카보네이트계 사슬이동제를 사용하여 가역적 첨가-분절 연쇄이동법(RAFT)으로 비닐계 단량체를 중합하여 비닐 계 중합체를 합성하는 단계로서 개략적인 반응은 아래 반응식 1과 같다.As described above, the first step is a step of synthesizing the vinyl polymer by polymerizing the vinyl monomer by a reversible addition-fragmentation chain transfer method (RAFT) using a trithiocarbonate-based chain transfer agent. Same as 1.
상기 트리티오카보네이트계 사슬이동제는 분자 내에 트리티오카보네이트 구조를 가지고 있으며 RAFT 중합 반응에서 사슬이동제로서 사용될 수 있는 화합물을 말하며, 바람직하게는 하기 화학식 1로 표시되는 화합물일 수 있으나, 이에 제한되는 것은 아니다.The trithiocarbonate-based chain transfer agent refers to a compound which has a trithiocarbonate structure in a molecule and may be used as a chain transfer agent in a RAFT polymerization reaction, and preferably may be a compound represented by the following Chemical Formula 1, but is not limited thereto. .
상기 식 중,In the above formula,
상기 2개의 R은 각각 알킬; 알케닐; 포화, 불포화 또는 방향족 카르보시클릭 또는 헤테로시클릭 고리; 알킬티오; 알콕시; 및 디알킬아미노로 이루어진 군으로부터 독립적으로 선택되며, 상기 알킬; 알케닐; 포화, 불포화 또는 방향족 카르보시클릭 또는 헤테로시클릭 고리; 알킬티오; 알콕시; 및 디알킬아미노는 에폭시, 히드록시, 알콕시, 아릴, 아실, 아실옥시, 카르복시 및 그의 염, 술폰산 및 그의 염, 알킬카르보닐옥시, 이소시아네이토, 시아노, 실릴, 할로 및 디알킬아미노로 이루어지는 군으로부터 선택된 치환기로 독립적으로 치환될 수 있음.Each of the two R's is alkyl; Alkenyl; Saturated, unsaturated or aromatic carbocyclic or heterocyclic rings; Alkylthio; Alkoxy; And dialkylamino and independently selected from the group consisting of alkyl; Alkenyl; Saturated, unsaturated or aromatic carbocyclic or heterocyclic rings; Alkylthio; Alkoxy; And dialkylamino are epoxy, hydroxy, alkoxy, aryl, acyl, acyloxy, carboxy and salts thereof, sulfonic acid and salts thereof, alkylcarbonyloxy, isocyanato, cyano, silyl, halo and dialkylamino May be independently substituted with a substituent selected from the group consisting of:
또한, 상기 알킬은 바람직하게는 C1~C18 알킬, 더욱 바람직하게는 C1~C6 알킬일 수 있으며, 상기 카르보시클릭 고리 또는 헤테로시클릭 고리는 바람직하게는 5~14개의 고리 원자를 가지는 것일 수 있으나, 이에 제한되는 것은 아니다.In addition, the alkyl may preferably be C 1 to C 18 alkyl, more preferably C 1 to C 6 alkyl, and the carbocyclic ring or heterocyclic ring is preferably 5 to 14 ring atoms. It may be, but is not limited thereto.
상기 비닐계 단량체(vinylic monomer)는 자유 라디칼 중합이 가능한 비닐계 단량체로서, 바람직하게는 하기 화학식 2로 표시되는 화합물 및 이들의 조합일 수 있으나, 이에 제한되는 것은 아니다. The vinyl monomer is a vinyl monomer capable of free radical polymerization, and may be preferably a compound represented by the following Formula 2 and a combination thereof, but is not limited thereto.
식 중,In the formula,
U는 수소; 할로겐; 및, 히드록시, C1~C18 알콕시, 아릴옥시(OR'), 카르복시, 아실옥시, 아로일옥시(O2CR'), 알콕시-카르보닐 및 아릴옥시-카르보닐(CO2R')로 이루어진 군으로부터 독립적으로 선택된 치환기로 치환될 수 있는 C1~C4 알킬 로 이루어진 군으로부터 선택되고, U is hydrogen; halogen; And, hydroxy, C 1 -C 18 alkoxy, aryloxy (OR '), carboxy, acyloxy, aroyloxy (O 2 CR'), alkoxy-carbonyl and aryloxy-carbonyl (CO 2 R ') Selected from the group consisting of C 1 to C 4 alkyl which may be substituted with a substituent independently selected from the group consisting of
V는 수소, R', CO2H, CO2R', COR', CN, CONH2, CONHR', CONR'2, O2CR', OR' 및 할로겐으로 이루어진 군으로부터 선택되며, V is selected from the group consisting of hydrogen, R ', CO 2 H, CO 2 R', COR ', CN, CONH 2 , CONHR', CONR ' 2 , O 2 CR', OR 'and halogen,
여기서, 상기 R'는 각각 C1~C18 알킬, C2~C18 알케닐, 아릴, 헤테로시클릴, 아르알킬, 및 알크아릴로 이루어진 군으로부터 독립적으로 선택되며, 상기 C1~C18 알킬, C2~C18 알케닐, 아릴, 헤테로시클릴, 아르알킬, 및 알크아릴은 에폭시, 히드록시, 알콕시, 아릴, 아실, 아실옥시, 카르복시 및 그의 염, 술폰산 및 그의 염, 알콕시- 또는 아릴옥시-카르보닐, 이소시아네이토, 시아노, 실릴, 할로, 및, 디알킬아미노로 이루어진 군으로부터 독립적으로 선택된 치환기에 의해 치환될 수 있음.Wherein R ′ is each independently selected from the group consisting of C 1 -C 18 alkyl, C 2 -C 18 alkenyl, aryl, heterocyclyl, aralkyl, and alkaryl, wherein C 1 -C 18 alkyl , C 2 to C 18 alkenyl, aryl, heterocyclyl, aralkyl, and alkaryl are epoxy, hydroxy, alkoxy, aryl, acyl, acyloxy, carboxy and salts thereof, sulfonic acid and salts thereof, alkoxy- or Optionally substituted by a substituent independently selected from the group consisting of aryloxy-carbonyl, isocyanato, cyano, silyl, halo, and dialkylamino.
본 발명의 일 구현예에 따르면, 상기 비닐계 단량체는 메틸 메타크릴레이트, 에틸 메타크릴레이트, 프로필 메타크릴레이트, 부틸 메타크릴레이트, 2-에틸헥실 메타크릴레이트, 이소보르닐 메타크릴레이트, 메타크릴산, 벤질 메타크릴레이트, 페닐 메타크릴레이트, 메타크릴로니트릴, 알파-메틸스티렌, 메틸 아크릴레이트, 에틸 아크릴레이트, 프로필 아크릴레이트, 부틸 아크릴레이트, 2-에틸헥실 아크릴레이트, 이소보르닐 아크릴레이트, 아크릴산, 벤질 아크릴레이트, 페닐 아크릴레이트, 아크릴로니트릴, 스티렌; 글리시딜 메타크릴레이트, 2-히드록시에틸 메타크릴레이트, 히드록시프로필 메타크릴레이트, 히드록시부틸 메타크릴레이트, N,N-디메틸아미노에틸 메타크릴레이트, N,N-디에틸아미노에틸 메타크릴레이트, 트리에틸렌글리콜 메타크릴레이트, 이타콘산 무수물, 이타콘산, 글리시딜 아크릴레이트, 2-히드록시에틸 아크릴레이트, 히드록시프로필 아크릴레이트, 히드록시부틸 아크릴레이트, N,N-디메틸아미노에틸 아크릴레이트, N,N-디에틸아미노에틸 아크릴레이트, 트리에틸렌글리콜 아크릴레이트, 메타크릴아미드, N-메틸아크릴아미드, N,N-디메틸아크릴아미드, N-tert-부틸메타크릴아미드, N-n-부틸메타크릴아미드, N-메틸올메타 크릴아미드, N-에틸올메타크릴아미드, N-tert-부틸아크릴아미드, N-n-부틸아크릴아미드, N-메틸올아크릴아미드, N-에틸올아크릴아미드, 비닐 벤조산, 디에틸아미노스티렌, 알파-메틸비닐 벤조산, 디에틸아미노 알파-메틸스티렌, p-비닐벤젠 술폰산, p-비닐벤젠술폰산 나트륨염, 트리메톡시실릴프로필 메타크릴레이트, 트리에톡시실릴프로필 메타크릴레이트, 트리부톡시실릴프로필 메타크릴레이트, 디메톡시메틸실릴프로필 메타크릴레이트, 디에톡시메틸실릴프로필 메타크릴레이트, 디부톡시메틸실릴프로필 메타크릴레이트, 디이소프로폭시메틸실릴프로필 메타크릴레이트, 디메톡시실릴프로필 메타크릴레이트, 디에톡시실릴프로필 메타크릴레이트, 디부톡시실릴프로필 메타크릴레이트, 디이소프로폭시실릴프로필 메타크릴레이트, 트리메톡시실릴프로필 아크릴레이트, 트리에톡시실릴프로필 아크릴레이트, 트리부톡시실릴프로필 아크릴레이트, 디메톡시메틸실릴프로필 아크릴레이트, 디에톡시메틸실릴프로필 아크릴레이트, 디부톡시메틸실릴프로필 아크릴레이트, 디이소프로폭시메틸실릴프로필 아크릴레이트, 디메톡시실릴프로필 아크릴레이트, 디에톡시실릴프로필 아크릴레이트, 디부톡시실릴프로필 아크릴레이트, 디이소프로폭시실릴프로필 아크릴레이트, 비닐 아세테이트, 비닐 부티레이트, 비닐 벤조에이트, 비닐 클로라이드, 비늘 플루오라이드, 비늘 브로마이드, 말레산 무수물, N-페닐말레이미드, N-부틸말레이미드, N-비닐피롤리돈, N-비닐카르바졸, 부타디엔, 이소프렌, 클로로프렌 및 프로필렌으로 이루어진 군에서 선택되는 관능화 메타크릴레이트, 아크릴레이트 및 스티렌; 및 이들의 조합으로 이루어진 군에서 선택될 수 있으나, 이에 제한되는 것은 아니다. According to one embodiment of the invention, the vinyl monomer is methyl methacrylate, ethyl methacrylate, propyl methacrylate, butyl methacrylate, 2-ethylhexyl methacrylate, isobornyl methacrylate, meta Krylic acid, benzyl methacrylate, phenyl methacrylate, methacrylonitrile, alpha-methylstyrene, methyl acrylate, ethyl acrylate, propyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, isobornyl acryl Acrylate, acrylic acid, benzyl acrylate, phenyl acrylate, acrylonitrile, styrene; Glycidyl methacrylate, 2-hydroxyethyl methacrylate, hydroxypropyl methacrylate, hydroxybutyl methacrylate, N, N-dimethylaminoethyl methacrylate, N, N-diethylaminoethyl meta Acrylate, triethylene glycol methacrylate, itaconic anhydride, itaconic acid, glycidyl acrylate, 2-hydroxyethyl acrylate, hydroxypropyl acrylate, hydroxybutyl acrylate, N, N-dimethylaminoethyl Acrylate, N, N-diethylaminoethyl acrylate, triethylene glycol acrylate, methacrylamide, N-methylacrylamide, N, N-dimethylacrylamide, N-tert-butyl methacrylamide, Nn-butyl Methacrylamide, N-methylol methacrylamide, N-ethylol methacrylamide, N-tert-butylacrylamide, Nn-butylacrylamide, N-methylol acrylamide, N-ethylol acrylamide , Vinyl benzoic acid, diethylamino styrene, alpha-methylvinyl benzoic acid, diethylamino alpha-methylstyrene, p-vinylbenzene sulfonic acid, p-vinylbenzene sulfonic acid sodium salt, trimethoxysilylpropyl methacrylate, triethoxysilyl Propyl methacrylate, tributoxysilylpropyl methacrylate, dimethoxymethylsilylpropyl methacrylate, diethoxymethylsilylpropyl methacrylate, dibutoxymethylsilylpropyl methacrylate, diisopropoxymethylsilylpropyl methacrylate Latex, dimethoxysilylpropyl methacrylate, diethoxysilylpropyl methacrylate, dibutoxysilylpropyl methacrylate, diisopropoxysilylpropyl methacrylate, trimethoxysilylpropyl acrylate, triethoxysilylpropyl acrylic Rate, Tributoxysilylpropyl Acrylate, Dimethoxymethylsilylpropyl Acrylate , Diethoxymethylsilylpropyl acrylate, dibutoxymethylsilylpropyl acrylate, diisopropoxymethylsilylpropyl acrylate, dimethoxysilylpropyl acrylate, diethoxysilylpropyl acrylate, dibutoxysilylpropyl acrylate, di Isopropoxysilylpropyl acrylate, vinyl acetate, vinyl butyrate, vinyl benzoate, vinyl chloride, scale fluoride, scale bromide, maleic anhydride, N-phenylmaleimide, N-butylmaleimide, N-vinylpyrrolidone Functionalized methacrylates, acrylates and styrenes selected from the group consisting of N-vinylcarbazole, butadiene, isoprene, chloroprene and propylene; And combinations thereof may be selected from the group, but is not limited thereto.
본 발명의 일 구현예에 따르면, 상기 비닐계 단량체의 중합으로 합성되는 비닐계 중합체는 폴리스티렌, 폴리아크릴레이트, 폴리메타크릴레이트 및 폴리아크릴로니트릴로 이루어지는 군에서 선택될 수 있으나, 이에 제한되는 것은 아니다. According to one embodiment of the invention, the vinyl polymer synthesized by the polymerization of the vinyl monomer may be selected from the group consisting of polystyrene, polyacrylate, polymethacrylate and polyacrylonitrile, but is not limited thereto. no.
또한, 상기 제 1 단계에서 전술한 트리티오카보네이트계 사슬이동제 및 비닐계 단량체 이외에 라디칼 개시제(radical initiator)를 필요에 따라 첨가할 수 있으며, 상기 라디칼 개시제는 비닐계 단량체의 중합을 개시할 수 있고 RAFT 중합에 통상적으로 사용되는 라디칼 개시제라면 특별히 제한되지 않는다. In addition, in addition to the trithiocarbonate-based chain transfer agent and the vinyl monomer described above in the first step, a radical initiator may be added as needed, and the radical initiator may initiate polymerization of the vinyl monomer and RAFT. If it is a radical initiator normally used for superposition | polymerization, it will not specifically limit.
상기 제 2 단계에서는, 올레핀계 중합체 및 전술한 제1 단계에서 합성된 비닐계 중합체를 반응시킴으로써, 상기 비닐계 중합체를 상기 올레핀계 중합체의 사슬에 그래프팅 시킨다. 필요한 경우, 상기 제 2 단계에서는 상기 올레핀계 중합체에 반응성 라디칼 사이트를 생성시키는 라디칼 생성제의 존재 하에서 반응시킬 수 있다. 상기 라디칼 생성제의 존재하에서 상기 올레핀계 중합체 및 상기 합성된 비닐계 중합체를 반응시키면, 상기 올레핀계 중합체에 생성된 라디칼로 인하여 트리티오카보네이트 구조를 포함하고 있는 상기 비닐계 중합체가 사슬이동제의 역할을 하며 상기 올레핀계 중합체에 그래프팅된다. 여기서 상기 라디칼 생성제는 상기 올레핀계 중합체에 반응성 라디칼 사이트를 생성시킬 수 있는 것이라면 특별히 제한되지 않는다.In the second step, the vinyl polymer is grafted onto the chain of the olefin polymer by reacting the olefin polymer and the vinyl polymer synthesized in the first step. If necessary, in the second step, the olefinic polymer may be reacted in the presence of a radical generating agent for generating a reactive radical site. When the olefin-based polymer and the synthesized vinyl-based polymer are reacted in the presence of the radical generator, the vinyl-based polymer having a trithiocarbonate structure due to the radicals generated in the olefin-based polymer serves as a chain transfer agent. And grafted to the olefinic polymer. The radical generator is not particularly limited as long as it can generate reactive radical sites in the olefinic polymer.
상기 올레핀 중합체는 올레핀 단량체의 중합으로 생성되는 중합체로서 단일중합체 및 공중합체를 포함한다. 본 발명의 일 구현예에 따르면, 상기 올레핀 중합체는 폴리에틸렌, 폴리프로필렌, 폴리부타디엔, 에틸렌-프로필렌-디엔 삼원공중합 체(EPDM), 및 이들의 조합으로 이루어진 군에서 선택될 수 있으나, 이에 제한되는 것은 아니다. The olefin polymer is a polymer produced by the polymerization of olefin monomers and includes homopolymers and copolymers. According to one embodiment of the invention, the olefin polymer may be selected from the group consisting of polyethylene, polypropylene, polybutadiene, ethylene-propylene-diene terpolymer (EPDM), and combinations thereof, but is not limited thereto. no.
상기 제 2 단계는, 용매 중에서 용액상으로 수행할 수 있다. 본 발명의 일 구현예에 따르면, 상기 용매는 예컨대 자일렌 등을 사용할 수 있으나, 이에 제한되는 것은 아니며 다양한 유기용매를 용매로서 사용할 수 있다. 또한, 상기 제 2 단계는, 용매를 사용하지 않고 용융상으로 수행하는 것도 가능하다. The second step can be carried out in a solution phase in a solvent. According to one embodiment of the present invention, the solvent may be, for example, xylene or the like, but is not limited thereto. Various organic solvents may be used as the solvent. In addition, the second step may be performed in a molten phase without using a solvent.
본 발명의 제 2 측면은, 전술한 제조 방법을 제조된 올레핀계 분절 공중합체를 제공한다. 전술한 제조 방법에 의하여, 산업적으로 많이 이용되고 잇는 폴리에틸렌, 폴리프로필렌, 폴리부타디엔, 에틸렌-프로필렌-디엔 삼원공중합체 등의 올레핀계 중합체에 비닐계 중합체가 그래프트된 공중합체의 제공이 가능하며, 목적하는 개선된 물성을 갖는 중합체로의 개질이 가능하여 다양한 분야에 응용할 수 있다. A second aspect of the present invention provides an olefinic segment copolymer prepared by the above-mentioned manufacturing method. According to the above-described manufacturing method, it is possible to provide a copolymer in which a vinyl polymer is grafted to an olefin polymer such as polyethylene, polypropylene, polybutadiene, and ethylene-propylene-diene terpolymer, which are widely used industrially. It is possible to modify the polymer having improved physical properties can be applied to various fields.
이하 본 발명의 구성을 아래의 실시예를 통해 보다 구체적으로 설명하지만, 본 발명에 이에 제한되는 것은 아니다.Hereinafter, the configuration of the present invention will be described in more detail with reference to the following examples, but is not limited thereto.
<시약> <Reagent>
올레핀 중합체로서 에틸렌-프로필렌-디엔 삼원공중합체(EPDM) 고무는 금호폴리켐의 KEP-650L (Mn = 120700 g/mol, Mw/Mn = 2.20, 에틸리덴 노르보넨 함량 = 8.9 wt%, EPDM 사슬 당 약 90 개의 에틸리덴 노르보넨 유닛)을 사용하였다. 사슬 이동제로서 디벤질 트리티오카보네이트(DBTTC)는 Arkema로부터 구득하였다. 스티렌(99.8wt%, Aldrich)은 사용 전에 CaH2 하에서 진공 증류하였다. 2,2'-아조비스이소부티로니트릴(AIBN, 98 wt%, 삼전화학), 디쿠밀 퍼옥사이드(DCP, 99 wt%, Aldrich), 자일렌(98 wt%, 삼전화학), 아세톤(95 wt%, 삼전화학), 테트라하이드로푸란(THF, 98 wt%, 삼전화학) 및 안니솔(99 wt%, Aldrich)은 추가 정제 없이 사용하였다.Ethylene-propylene-diene terpolymer (EPDM) rubber as the olefin polymer is KEP-650L (M n = 120700 g / mol, M w / M n = 2.20, ethylidene norbornene content = 8.9 wt%) of Kumho Polychem. About 90 ethylidene norbornene units per EPDM chain) were used. Dibenzyl trithiocarbonate (DBTTC) as chain transfer agent was obtained from Arkema. Styrene (99.8 wt%, Aldrich) was vacuum distilled under CaH 2 before use. 2,2'-azobisisobutyronitrile (AIBN, 98 wt%, trielectric chemistry), dicumyl peroxide (DCP, 99 wt%, Aldrich), xylene (98 wt%, trielectric chemistry), acetone (95 wt%, trielectric chemistry), tetrahydrofuran (THF, 98 wt%, trielectric chemistry) and annisole (99 wt%, Aldrich) were used without further purification.
<분석 방법><Analysis method>
겔침투크로마토그래피Gel Penetration Chromatography (( GPCGPC ) 분석) analysis
GPC는 RI-디텍터와 UV-디텍터(RID-10A, SPD-20AV, Shimadzu) 및 세 가지 칼럼(Styragel HR 5, 4, 2)을 사용하였다. 분자량은 폴리스티렌 표준물질(standards)로 보정하였으며, 오븐 온도 40℃, 펌프 압력 5 MPa, 유속 1.0 mL/min의 조건에서 HPLC THF를 용매로 사용한 시료를 40 ㎕ 주입함으로써 분자량을 측정할 수 있었다. GPC used RI-detector and UV-detectors (RID-10A, SPD-20AV, Shimadzu) and three columns (
기체크로마토그래피(Gas Chromatography GCGC ) 분석) analysis
GC(GC-2010, Shimadzu)의 칼럼은 VB-WAX(길이 30 m, 내경 0.32 mm ID, 필름 두께 0.25 ㎛)을 사용하였고, 칼럼의 측정조건은 온도 40℃, 평형시간(equilibration time) 1.5 분이었다. 디텍터는 FID1으로 온도 250℃, 인젝션 모드는 스플릿(split), 샘플링 시간은 1 분이며, 압력 48.3 kPa, 토탈 플로우(total flow) 83.8 mL/min, 퍼지 플로우(puge flow) 3.0 mL/min, 칼럼 플로우(column flow) 1.58 mL/min의 상태에서 순도 99.99%의 N2, H2, 공기(air)를 사용하였다. 기체 플로우(Gas flow)의 조건은 N2 = 30 mL/min, H2 = 40 mL/min, 그리고 공기 = 400 mL/min이었다.The column of GC (GC-2010, Shimadzu) used VB-WAX (length 30 m, inner diameter 0.32 mm ID, film thickness 0.25 μm), and the measurement conditions of the column were 40 ° C. and equilibration time 1.5 minutes. It was. The detector is FID1 with temperature 250 ° C, injection mode is split, sampling time is 1 minute, pressure 48.3 kPa, total flow 83.8 mL / min, purge flow 3.0 mL / min, column N 2 , H 2 , air having a purity of 99.99% was used at a flow of 1.58 mL / min. The condition of gas flow is N 2 = 30 mL / min, H 2 = 40 mL / min, and air = 400 mL / min.
FTFT -- IRIR 및 And 1One H-H- NMRNMR 분석 analysis
푸리에 변환 분광(FT-IR)은 Thermo nicolet 380으로 분석하였다. FT-IR의 시편제조는 PS의 경우 THF에 용해한 시료를 KBr 윈도우(window) 위에 떨어뜨린 뒤, 진공 오븐에서 12 시간 이상 건조하여 제조하였고, EPDM의 경우 핫프레스(hot press)를 이용하여 필름을 제조하였다. 1H-NMR 분광은 500 MHz Bruker avance spectrometer로 측정하였다. 사용한 용매는 d-CDCl이며, TMS(tetramethylsilane)에 의한 피크를 표준피크로 사용하였다. Fourier Transform Spectroscopy (FT-IR) was analyzed by Thermo nicolet 380. FT-IR specimens were prepared by dropping samples dissolved in THF on a KBr window in PS and drying them in a vacuum oven for at least 12 hours. In the case of EPDM, films were prepared using hot press. Prepared. 1 H-NMR spectroscopy was measured with a 500 MHz Bruker avance spectrometer. The solvent used was d-CDCl, and the peak by tetramethylsilane (TMS) was used as the standard peak.
1. One. DBTTCDBTTC 를 이용한 폴리스티렌(Polystyrene using PSPS )의 중합Polymerization of
중합 반응은 200 mL의 Schlenk 플라스크를 사용하였다. 반응온도는 온도조절이 가능한 히터 상의 오일 배스(oil bath)를 이용하여 온도를 유지하였으며, 반 응기 내의 질소 분위기를 유지하였다. 폴리스티렌(PS)을 중합하기 위한 일반적인 실험 절차는 다음과 같았다. The polymerization reaction used a 200 mL Schlenk flask. The reaction temperature was maintained by using an oil bath (heat bath) on the temperature controllable heater, the nitrogen atmosphere in the reactor was maintained. The general experimental procedure for polymerizing polystyrene (PS) was as follows.
스티렌(48 mL, 0.42 mol), AIBN(0.42 g, 2.6 x 10-3 mol), DBTTC(0.65 mL, 2.33 x 10-3 mol), 안니솔(스티렌 기준 10% v/v, 중합반응 진행의 GC 모니터링을 위한 표준물질로서 첨가됨)을 Schlenk 플라스크에 자석 교반기와 함께 넣고 질소상태를 유지하였다([Sty]:[AIBN]:[DBTTC] = 180:1.1:1). 3번의 Freeze-Pump-Thaw 사이클을 통해 산소를 제거하였으며, 60℃에서 350 rpm으로 교반하며 중합하였다. 결과물을 메탄올을 사용해 침전하였고, 60℃의 진공 오븐에서 24 시간 동안 건조하였다. 중합반응 중에 0, 1, 2, 3, 4 및 5 시간 간격으로 샘플을 채취하였고, 이를 GC, GPC를 사용하여 스티렌의 고분자로의 전환율 및 수평균분자량, 이론 분자량 그리고 분자량 분포도를 측정하였다. Styrene (48 mL, 0.42 mol), AIBN (0.42 g, 2.6 x 10 -3 mol), DBTTC (0.65 mL, 2.33 x 10 -3 mol), Annisole (10% v / v based on styrene, polymerization progress Added as a standard for GC monitoring) was placed in a Schlenk flask with a magnetic stirrer and kept in nitrogen ([Sty]: [AIBN]: [DBTTC] = 180: 1.1: 1). Oxygen was removed through three Freeze-Pump-Thaw cycles and polymerized with stirring at 350 rpm at 60 ° C. The resultant was precipitated using methanol and dried in a vacuum oven at 60 ° C. for 24 hours. Samples were taken at 0, 1, 2, 3, 4 and 5 hour intervals during the polymerization reaction, and GC and GPC were used to measure the conversion of styrene into polymers, number average molecular weight, theoretical molecular weight and molecular weight distribution.
2. 제조된 2. Manufactured PSPS 의 "Of " 그래프팅Grafting 온투On To (( graftinggrafting -- ontoonto )" 반응에 의한 By reaction EPDMEPDM -- graftgraft -PS의 합성(용액 반응)-PS synthesis (solution reaction)
반응은 100 mL의 Schlenk 플라스크를 사용하였다. 반응온도는 온도조절이 가능한 히터 상의 오일 배스를 이용하여 온도를 유지하였으며, 반응기 내의 질소 분위기를 유지하였다. EPDM-graft-폴리스티렌을 합성하기 위한 일반적인 실험절차는 다음과 같았다.The reaction used a 100 mL Schlenk flask. The reaction temperature was maintained by using an oil bath on a temperature controllable heater, and maintained in a nitrogen atmosphere in the reactor. The general experimental procedure for synthesizing EPDM- graft -polystyrene was as follows.
EPDM(1 g, 8.0 x 10-6 mol), PS(0.96 g, 1.85 x 10-3 mol), 디쿠밀 퍼옥사이드(DCP, 0.05 g, 1.85 x 10-3 mol), 자일렌(40 mL)을 Schlenk 플라스크에 넣고 자석 교반기를 이용하여 교반하며 녹였다. EPDM을 자일렌에 완전히 녹인 후 30 분 간 N2 버블링(bubbling)을 하였다([PS]:[DCP] = 1:1). 혼합물을 138℃에서 4 시간 동안 350 rpm으로 교반하며 반응시켰다. 반응 시간은 DCP의 반감 시간(138℃에서 1시간)을 고려하여 충분히 분해할 수 있는 시간을 선정하였다. 반응 후 미 반응한 PS를 아세톤을 이용하여 추출하고 THF 용액에 녹인 후 다시 아세톤에 침전하였다. 결과물을 40℃의 진공 오븐에서 10 시간 동안 건조하고, FT-IR, 1H-NMR 분석을 시행하였다. 각각의 실험 조건은 아래 표 1에 나타내었다.EPDM (1 g, 8.0 x 10 -6 mol), PS (0.96 g, 1.85 x 10 -3 mol), dicumyl peroxide (DCP, 0.05 g, 1.85 x 10 -3 mol), xylene (40 mL) Was dissolved in a Schlenk flask with stirring using a magnetic stirrer. EPDM was completely dissolved in xylene and subjected to N 2 bubbling for 30 minutes ([PS]: [DCP] = 1: 1). The mixture was reacted with stirring at 350 rpm for 4 hours at 138 ° C. The reaction time was selected in consideration of the half-life time (1 hour at 138 ℃) of the DCP. After the reaction, unreacted PS was extracted using acetone, dissolved in THF solution, and precipitated again in acetone. The result was dried in a vacuum oven at 40 ° C. for 10 hours and subjected to FT-IR, 1 H-NMR analysis. Each experimental condition is shown in Table 1 below.
(g)EPDM
(g)
(g)PS
(g)
(recipe, wt%)PS
(recipe, wt%)
(g)DCP
(g)
3. 제조된 3. manufactured PSPS 의 "Of " 그래프팅Grafting 온투On To (( graftinggrafting -- ontoonto )" 반응에 의한 By reaction EPDMEPDM -- graftgraft -PS의 합성(용융 반응)-PS synthesis (melt reaction)
용융 반응을 통하여 EPDM-graft-PS을 제조하기 위하여 인터널 믹서(internal mixer, Brabender Plasticorder PLE 331)를 이용하였다. 일반적인 실험 절차는 다음과 같았다(도 8 참조). 인터널 믹서 안에 EPDM (140 g, 1.2 x 10-3 mol) 및 제조된 PS (15 g, 2.5 x 10-3 mol)를 넣고 100℃ (resin 온도 120oC)로 승온 시킨 후 rotor의 속도를 20 rpm으로 반죽하였다. 5 분간 섞어준 후 디벤조일 퍼옥사이드(0.6 g, 2.5 x 10-3mol)를 넣고 20 분간 반응시킨켰다([PS]:[di-benzoyl peroxide] = 1:1). 반응 시간은 디벤조일 퍼옥사이드의 반감 시간(100℃에서 1분)을 고려하여 충분히 분해할 수 있는 시간으로 선정하였다. 반응물을 아세톤을 추출용액으로 사용하여 Soxhlet 추출기로 24시간동안 미 반응한 PS를 추출하였고, 최종결과물을 40℃의 진공오븐에서 10 시간 건조시킨 후 구조를 알아보기 위해 FTIR 분석을 하였다. 각각의 실험 조건은 아래 표 2에 나타내었다.An internal mixer (Brabender Plasticorder PLE 331) was used to prepare EPDM- graft- PS through the melting reaction. The general experimental procedure was as follows (see FIG. 8). Put EPDM (140 g, 1.2 x 10 -3 mol) and PS (15 g, 2.5 x 10 -3 mol) in the internal mixer and raise the temperature to 100 ℃ (resin temperature 120 o C). Kneaded at 20 rpm. After mixing for 5 minutes, dibenzoyl peroxide (0.6 g, 2.5 x 10 -3 mol) was added and reacted for 20 minutes ([PS]: [di-benzoyl peroxide] = 1: 1). The reaction time was selected as a time that can be sufficiently decomposed in consideration of the half-life time (1 minute at 100 ℃) of dibenzoyl peroxide. The reactant was extracted with unreacted PS using Soxhlet extractor for 24 hours using acetone as an extraction solution, and the final result was dried for 10 hours in a vacuum oven at 40 ° C. and analyzed by FTIR. Each experimental condition is shown in Table 2 below.
(g)EPDM
(g)
(g)PS
(g)
(recipe, wt%)PS
(recipe, wt%)
(g)DBP b
(g)
4. 분석 결과4. Analysis result
DBTTCDBTTC 를 이용한 폴리스티렌(Polystyrene using PSPS )의 중합Polymerization of
전술한 바와 같이, EPDM-graft-폴리스티렌를 "grafting - onto"반응을 통하여 제조하기 위해 사슬이동제(RAFT agent)인 DBTTC를 사용하여 그래프트 사슬인 폴리스티렌을 중합하였다. As described above, EPDM- graft-polriseutirenreul - using the "grafting onto" DBTTC the chain transfer agent (RAFT agent) for the production through the polymerization reaction is a graft chain of polystyrene.
도 1에서는 스티렌의 시간에 따른 고분자로의 전환율과 스티렌의 전환율에 따른 폴리스티렌 분자량의 증가를 나타내었다([Sty]:[AIBN]:[DBTTC] = 180:1.1 :1, [스티렌]0 = 7.90 mol/L, 온도 = 60℃). 도 1a에서 보여지는 것과 같이 스티렌의 전환율이 시간에 따라 선형적으로 증가함을 알 수 있었다. 도 1b에서는 수평균 분자량이 스티렌의 전환율과 선형적인 관계를 가지며 증가하는 것을 확인하였으며 분자량 분포도 ∼1.2를 나타내었다. 이상의 결과로 중합은 리빙 중합의 성격을 띠며 성공적으로 제조되었음을 확인할 수 있었다. 도 1b에서의 이론적 분자량은 아래의 식에 의해 계산하였으며, 실제 분자량과 비교하였을 때 크게 차이를 보이지 않았다. In Figure 1, the conversion of styrene into the polymer with time and the increase in the polystyrene molecular weight according to the conversion of styrene ([Sty]: [AIBN]: [DBTTC] = 180: 1.1: 1, [styrene] 0 = 7.90) mol / L, temperature = 60 ° C.). As shown in Figure 1a it can be seen that the conversion rate of styrene increases linearly with time. In Figure 1b it was confirmed that the number average molecular weight increases in a linear relationship with the conversion of styrene, showing a molecular weight distribution of ~ 1.2. As a result, it was confirmed that the polymerization was successfully produced with the characteristics of living polymerization. The theoretical molecular weight in Figure 1b was calculated by the following formula, and did not show a significant difference when compared with the actual molecular weight.
Mn , th = MDBTTC + [(스티렌의 전환율) x [스티렌]0 / ([DBTTC]0 + [AIBN]0 x (1 - e - kini x t))] x M스티렌 M n , th = M DBTTC + [(Conversion of Styrene) x [Styrene] 0 / ([DBTTC] 0 + [AIBN] 0 x (1-e - kini xt ))] x M Styrene
여기서, MDBTTC(296 g/mol) 및 M스티렌(104.15 g/mol)은 각각 DBTTC와 스티렌의 분자량이고, [스티렌]0, [DBTTC]0 및 [AIBN]0은 각각 스티렌 단량체, DBTTC 및 AIBN의 초기 농도이며, e - kini 는 AIBN의 분해에 관한 상수 값으로 0.9 L/mol·min이고, t는 중합시간을 나타낸다.Where M DBTTC (296 g / mol) And M styrene (104.15 g / mol) are the molecular weight of DBTTC and styrene, respectively, [styrene] 0 , [DBTTC] 0 and [AIBN] 0 are the initial concentrations of styrene monomer, DBTTC and AIBN, respectively, and e - kini Is a constant value for the decomposition of AIBN, 0.9 L / mol · min, and t represents the polymerization time.
분자량을 조절할 수 있는 리빙 중합의 성격을 이용하여 스티렌의 첨가량과 반응시간을 변화하여 중합을 시행하였다. 도 2에서 변화된 조건([Sty]:[AIBN]:[DBTTC] = 955:1.1:1, [스티렌]0 = 7.90 mol/L, 온도 = 80℃)에서의 스티렌의 시간에 따른 고분자로의 전환율과 스티렌의 전환율에 따른 폴리스티렌 분자량의 증가를 나타내었고, 도 2에서의 결과와 같이 수평균 분자량이 스티렌의 전환율과 선형적인 관계를 가지며 증가하였고 분자량 분포도 ∼1.2를 나타내며 리빙 중합 성격을 띠었다. 이로써 분자량과 분자량 분포를 조절한 리빙라디칼 중합이 성공적으로 이루어졌음을 확인하였고, 각각의 실험 조성과 분자량, 분자량 분포는 아래 표 3에 나타내었다.The polymerization was carried out by changing the amount of styrene added and the reaction time by using the nature of living polymerization which can control the molecular weight. Conversion rate of styrene into polymers over time under the changed conditions ([Sty]: [AIBN]: [DBTTC] = 955: 1.1: 1, [styrene] 0 = 7.90 mol / L, temperature = 80 ° C) in FIG. Polystyrene molecular weight was increased according to the conversion of and styrene, and as shown in FIG. 2, the number average molecular weight increased linearly with the conversion of styrene, and the molecular weight distribution was ~ 1.2. As a result, it was confirmed that the living radical polymerization was successfully controlled by adjusting the molecular weight and the molecular weight distribution, and each experimental composition, molecular weight, and molecular weight distribution are shown in Table 3 below.
(mL)Styrene
(mL)
(g)AIBN
(g)
(mL)DBTTC
(mL)
(℃)Temperature
(℃)
제조된 Manufactured PSPS 의 "Of " 그래프팅Grafting 온투On To (( graftinggrafting -- ontoonto )" 반응에 의한 By reaction EPDMEPDM -- graftgraft -- PSPS 의 합성(용액 반응)Synthesis (solution reaction)
전술한 바와 같이, 사슬이동제(DBTTC)를 이용하여 중합된 PS의 트리티오카보네이트 구조를 이용하여 EPDM에 그래프팅시키는 실험을 시행하였다. 반응계의 용매로 자일렌을 사용하였고, EPDM의 수소를 떼어내기 위해 디쿠밀 퍼옥사이드(DCP) 를 DBTTC로부터 중합된 PS와 넣어 일정한 온도에서 반응시켰다. 각각 조건에서 PS와 퍼옥사이드의 양을 변화시키며 그에 따른 결과를 살펴보았다. As described above, an experiment was performed in which the trithiocarbonate structure of PS polymerized using a chain transfer agent (DBTTC) was grafted to EPDM. Xylene was used as a solvent of the reaction system, and dicumyl peroxide (DCP) was added to the polymerized PS from DBTTC and reacted at a constant temperature to remove hydrogen of EPDM. In each condition, the amount of PS and peroxide was changed and the results were examined.
전술한 반응식 3에서와 같이 퍼옥사이드의 존재 하에 EPDM과 PS를 반응시키면 EPDM에 생성된 라디칼로 인해 트리티오카보네이트 구조를 가진 PS가 사슬이동제 역할을 하여 EPDM에 그래프팅하게 된다. 이때 트리티오카보네이트 구조를 가진 PS는 분자량과 분자량 분포가 조절된 것으로, 1NMR 분석방법을 통하여 그래프팅 되었을 때 EPDM 사슬 당 가지 화된 PS의 정량적 분석이 가능하다. When the EPDM reacts with the PS in the presence of a peroxide as in
1H-NMR 분석으로 정량적 분석이 가능하지만 반응 시 퍼옥사이드나 열로 인해 고무가 부분 경화되었을 경우 용매에 녹지 않아 분석이 불가능하다. 이런 이유로 FT-IR 분석방법을 통해 정량적 분석을 시도하였다. Although quantitative analysis is possible by 1 H-NMR analysis, when the rubber is partially cured due to peroxide or heat during the reaction, it cannot be dissolved because it is insoluble in the solvent. For this reason, FT-IR method was used for quantitative analysis.
도 3에서는 EPDM과 PS의 FT-IR 분석 결과를 나타내었다. 각각의 FT-IR 분석을 통하여 확인한 EPDM(C-C stretches, 1160cm-1)과 PS(aromatic C=C stretches (four bands), 1590cm-1)의 특성피크를 확인하였다. 도 4에서는 EPDM과 PS를 물리적으로 혼합한 후 PS의 함량에 따른 피크 높이의 비를 계산하여 보정(calibration) 곡선으로 표현하였다. 이때 PS의 함량에 따른 피크 높이의 비가 경향성을 보였으며, 이 곡선을 통하여 결과물의 가지와 정도를 추측하였다. 3 shows the results of FT-IR analysis of EPDM and PS. The characteristic peaks of EPDM (CC stretches, 1160cm -1 ) and PS (aromatic C = C stretches (four bands), 1590cm -1 ) confirmed through the FT-IR analysis were confirmed. In FIG. 4, after the EPDM and PS are physically mixed, the ratio of peak heights according to the content of PS is calculated and expressed as a calibration curve. At this time, the ratio of the peak height according to the content of PS showed a tendency, and the branch and degree of the result were estimated through this curve.
PS가 그래프트된 EPDM에 대한 FT-IR 분석 결과를 도 5에 나타내었으며(sE-S01 (a), sE-S02 (b), sE-S03 (c), sE-S04 (d), 샘플 조성 및 명칭은 아래 표 4 참조), PS가 그래프트된 EPDM을 1H-NMR으로 분석하여 그 결과를 도 6에 보였다. 도 6에서 볼 수 있듯이, 6.3 ∼ 7.5 ppm에서 도출된 피크는 PS의 방향족 프로톤들에 대한 것이며, 4.9 ppm과 5.2 ppm에서 도출된 피크는 EPDM의 에틸디엔 노르보넨 단위 중 =CH-의 프로톤들에 대한 것이다. GPC 분석에 의해 확인된 EPDM의 분자량(Mn =120700)과 EPDM 사슬 중 에틸디엔 노르보넨의 함량(ENB 함량 = 8.9wt%)에 의하여 계산된 에틸디엔 노르보넨의 수(90 units/chain)를 알 수 있었고, 미 반응한 PS가 전부 추출되었다는 가정 하에 각각 도출된 PS의 방향족 프로톤의 피크와 EPDM의 에틸디엔 노르보넨 단위 중 =CH-의 프로톤 피크의 적분 값에 의하여 PS의 가지화 정도를 계산하였다. 표 4에서는 실험 조성에 따라 FT-IR과 1H-NMR으로 분석한 EPDM에 그래프트된 PS의 중량과 사슬 개수를 나타내었다.The results of FT-IR analysis on EP-grafted EPDM are shown in FIG. 5 (sE-S01 (a), sE-S02 (b), sE-S03 (c), sE-S04 (d), sample composition and The name is shown in Table 4), and the PS-grafted EPDM was analyzed by 1 H-NMR and the results are shown in FIG. 6. As can be seen in Figure 6, the peaks derived from 6.3 to 7.5 ppm are for the aromatic protons of PS, and the peaks derived from 4.9 ppm and 5.2 ppm are for the protons of = CH- in the ethyldiene norbornene units of EPDM. It is about. The number of ethyldiene norbornenes (90 units / chain) calculated by the molecular weight of the EPDM identified by GPC analysis (Mn = 120700) and the content of ethyldiene norbornene (ENB content = 8.9 wt%) in the EPDM chain was determined. Under the assumption that all unreacted PS were extracted, the degree of branching of PS was calculated by the integral value of the aromatic proton peak of PS and the proton peak of = CH- in the ethyldiene norbornene unit of EPDM. . Table 4 shows the weight and chain number of PS grafted to EPDM analyzed by FT-IR and 1 H-NMR according to the experimental composition.
(g)EPDM
(g)
(g)PS
(g)
(recipe, wt%)PS
(recipe, wt%)
(g)DCP
(g)
(FT-IR, wt%)PS
(FT-IR, wt%)
(FT-IR)PS chain number
(FT-IR)
(1H-NMR, wt%)PS
( 1 H-NMR, wt%)
(1H-NMR)PS chain number
( 1 H-NMR)
아래 표 5에서는 표 4에서 나타낸 EPDM에 그래프트된 PS의 정량적 분석 결과를 바탕으로 그래프팅 효율(grafting efficiency, GE)을 계산하였다. In Table 5 below, the grafting efficiency (GE) was calculated based on the quantitative analysis of PS grafted to EPDM shown in Table 4.
(FT-IR, wt%)a PS
(FT-IR, wt%) a
(FT-IR)PS chain number
(FT-IR)
(FT-IR,%)GE
(FT-IR,%)
(1H-NMR, wt%)b PS
( 1 H-NMR, wt%) b
(1H-NMR)PS chain number
( 1 H-NMR)
(1H-NMR, %)GE
( 1 H-NMR,%)
상기 그래프팅 효율(GE)은 다음의 식을 이용하여 계산하였다. The grafting efficiency (GE) was calculated using the following equation.
상기 식에서 반응에 사용된 PS의 중량은 실험 조성에 의해 결정하였고, 그래프트된 PS의 중량은 FT-IR과 1H-NMR의 분석 결과에 의해 결정되었다.The weight of PS used for the reaction in the above formula was determined by the experimental composition, the weight of the grafted PS was determined by the analysis results of FT-IR and 1 H-NMR.
상기 표 4 및 표 5에서 나타난 바와 같이, 퍼옥사이드가 증가하면 EPDM의 사슬 내에 PS가 가지화될 수 있는 자리가 많아지고, 그에 따라 PS가 더 많이 가지화되었음을 추측할 수 있고, PS의 양이 증가하였을 때는 반응시 사슬이동제가 풍부하여 PS가 더 많이 가지화됨을 추측할 수 있었다.As shown in Table 4 and Table 5, as the peroxide increases, there are more sites where the PS can be branched in the chain of EPDM, and thus, more PS is branched, and the amount of PS When increased, the chain transfer agent was abundant in the reaction, and it could be assumed that more PS was branched.
표 5에서 나타낸 FT-IR과 1H-NMR 분석을 통해 계산된 sE-S 02와 sE-S 03의 그래프팅 효율을 살펴보면 반응 조성에서 sE-S 03보다 PS의 양이 1/2이고, 퍼옥사이드를 2 배 사용한 sE-S 02가 오히려 그래프팅 효율이 떨어지는 것이 관찰된다. 이러한 결과는 퍼옥사이드가 EPDM 사슬의 수소를 떼어내어 라디칼을 형성하는 효율과 사슬 이동제 구조를 포함한 PS가 EPDM 사슬의 라디칼로 사슬 이동하는 반응에 대한 연구가 필요하며, 사용하는 peroxide 종류와 양, 사슬 이동제 구조를 포함한 PS의 양에 대한 정밀한 조절이 필요할 것으로 판단된다.The grafting efficiency of sE-S 02 and sE-S 03 calculated by FT-IR and 1 H-NMR analysis shown in Table 5 shows that the amount of PS in reaction composition is 1/2, It is observed that sE-S 02 using twice the oxide is rather inferior in grafting efficiency. These results are necessary to study the efficiency of peroxide decomposing hydrogen from EPDM chain to form radicals and the reaction of PS to chain transfer to radicals of EPDM chain, including chain transfer agent structure. Precise control of the amount of PS, including the transport agent structure, is necessary.
도 7에서는 "grafting - onto" 반응 전의 EPDM의 GPC 결과와 반응 후의 GPC 결과를 나타내었다. 중합 전의 GPC 곡선과 중합 후의 GPC 곡선을 비교하였을 때 곡선이 이동함을 확인할 수 있었다. In FIG. 7, the GPC results of the EPDM before the " grafting - onto " reaction and the GPC results after the reaction are shown. When the GPC curve before the polymerization and the GPC curve after the polymerization were confirmed, the curve shifted.
제조된 Manufactured PSPS 의 "Of " 그래프팅Grafting 온투On To (( graftinggrafting -- ontoonto )" 반응에 의한 By reaction EPDMEPDM -- graftgraft -- PSPS 의 합성(용융 반응) Synthesis (melting reaction)
용액반응은 용매의 사용으로 환경적으로나 비용문제, 대량생산의 어려움이 따를 수 있다. 이런 습식반응의 문제점을 개선하고자 용융반응법을 연구하였다. 습식반응과 달리 용매를 사용하지 않고 개질 원료들을 인터널 믹서 안에서 반응시키는 방법을 이용하였다. 실험조성은 상기 표 2와 같이 하였으며, 여러 온도에서 혼합한 결과 믹서의 온도가 100℃, 개질원료의 온도가 120℃ 일 때 육안 상으로 잘 섞이는 것을 알 수 있었다. 믹서의 온도를 100℃로 하여 실험하였고, 결과물을 THF 용액에 녹여본 결과, 반응과정 중 부분적으로 경화가 되었음을 알 수 있었다. 경화의 정도는 퍼옥사이드의 양을 많이 첨가한 것과 PS을 적게 첨가한 것일수록 심하였다. 이것은 PS양이 증가하면 사슬이동제로 작용할 수 있는 트리티오카보네이트 구조가 많아져 EPDM 사슬끼리의 가교를 막아주는 것으로 생각된다. 반응 후 미반응한 PS을 제거하기 위해 아세톤을 추출용액으로 사용하여 Soxhlet추출기로 24시간동안 미반응한 PS를 추출하였다. 최종결과물은 건조시킨 후 구조와 가지화 정도를 알아보기 위해 FTIR 분석을 하였다. FT-IR 분석의 결과, 용융 반응법으로 제조한 EPDM-graft-PS에서도 용액 반응법에서처럼 PS의 특성피크가 나타남을 알 수 있었고, 이로써 PS가 가지화되었음을 알 수 있었다. Solution reactions can be environmentally, costly, and difficult to mass-produce due to the use of solvents. In order to improve the problems of this wet reaction, the melting reaction method was studied. Unlike the wet reaction, the reforming raw materials were reacted in an internal mixer without using a solvent. Experimental composition was performed as shown in Table 2 above, and when mixed at various temperatures, it was found that the mixers were well mixed with the naked eye when the temperature of the mixer was 100 ° C and the temperature of the reforming material was 120 ° C. The experiment was conducted at a temperature of 100 ° C., and the result was dissolved in THF solution, indicating that the reaction was partially cured. The degree of hardening was more severe with higher amounts of peroxide and less PS. It is thought that the increase in the amount of PS increases the trithiocarbonate structure which can act as a chain transfer agent, thereby preventing crosslinking between EPDM chains. After removal of the unreacted PS, the unreacted PS was extracted for 24 hours using a Soxhlet extractor using acetone as an extraction solution. The final product was dried and subjected to FTIR analysis to determine the structure and degree of branching. As a result of the FT-IR analysis, it can be seen that the characteristic peaks of PS appear in the EPDM- graft -PS prepared by the melt reaction method, as in the solution reaction method.
전술한 바와 같이, 에틸렌-프로필렌-디엔 삼원공중합체-그래프트-폴리스티렌(EPDM-graft-PS) 공중합체를, 디벤질 트리티오카보네이트(DBTTC)을 사용한 가역적 첨가-분절 연쇄이동(RAFT) 프로세스를 통한 스티렌의 중합 반응과, 라디칼 생성제로서 디쿠밀 퍼옥사이드(DCP)의 존재하에서 PS의 사슬이동 반응의 2단계 반응으로 성공적으로 제조하였고, 이에 따라 EPDM 당 1~5개의 PS 그래프트 가지를 가진 그래프트 공중합체를 수득하였다. As mentioned above, the ethylene-propylene-diene terpolymer-graft-polystyrene (EPDM- graft -PS) copolymer is subjected to a reversible addition-fragmentation chain transfer (RAFT) process using dibenzyl trithiocarbonate (DBTTC). It was successfully prepared by the polymerization of styrene and the two-step reaction of chain transfer reaction of PS in the presence of dicumyl peroxide (DCP) as a radical generator, thus graft air having 1-5 PS graft branches per EPDM. The coalescence was obtained.
EPDM 당 PS 사슬의 수 및 조성은 2가지 변수, 라디칼 생성제 및 PS의 양을 제어함으로써 조절되었다. 라디칼 생성제 및 PS의 양이 증가할수록 그래프트 공중합체는 더 높은 PS 사슬의 농도를 얻을 수 있었다. 라디칼 생성제 및 PS의 양이 증가할수록 그래프팅 효울(GE)도 증가하였다. RAFT 프로세스 중에서 PS의 분자량을 용이하게 조절할 수 있기 때문에, 상기 결과는 그래프트 공중합체의 3가지 변수(즉, 그래프트 가지의 길이, 그래프트 가지의 수 및 그래프팅 효율)이 모두 조절될 수 있음을 보여주었다.The number and composition of PS chains per EPDM were controlled by controlling two variables, the radical generator and the amount of PS. As the amount of radical generator and PS increased, the graft copolymer could obtain higher PS chain concentrations. As the amount of radical generator and PS increased, the grafting efficiency (GE) also increased. Since the molecular weight of PS can be easily controlled during the RAFT process, the results showed that all three parameters of the graft copolymer (ie, the length of the graft branch, the number of graft branches and the grafting efficiency) can be controlled. .
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.The foregoing description of the present invention is intended for illustration, and it will be understood by those skilled in the art that the present invention may be easily modified in other specific forms without changing the technical spirit or essential features of the present invention. will be. It is therefore to be understood that the above-described embodiments are illustrative in all aspects and not restrictive. For example, each component described as a single type may be implemented in a distributed manner, and similarly, components described as distributed may be implemented in a combined form.
본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.The scope of the present invention is shown by the following claims rather than the above description, and all changes or modifications derived from the meaning and scope of the claims and their equivalents should be construed as being included in the scope of the present invention. do.
도 1은 본 발명의 일 실시예에 따른 스티렌의 중합과정에서의 전환율 및 분자량의 증가와 관계를 나타낸 그래프이고, 1 is a graph showing the relationship between the conversion and the increase in molecular weight of the styrene polymerization process according to an embodiment of the present invention,
도 2는 본 발명의 일 실시예에 따른 도 1과 상이한 조건의 스티렌의 중합과정에서의 전환율 및 분자량의 증가와 관계를 나타낸 그래프이며, 2 is a graph showing a relationship between an increase in conversion rate and a molecular weight in a polymerization process of styrene under different conditions according to an embodiment of the present invention.
도 3은 EPDM 및 PS의 FT-IR 스펙트럼을 나타낸 그래프이고, 3 is a graph showing the FT-IR spectrum of EPDM and PS,
도 4는 EPDM과 PS를 물리적으로 혼합한 후 PS의 함량에 따른 피크 높이의 비를 계산하여 보정(calibration) 곡선으로 표현한 그래프이며, 4 is a graph showing the calibration curve by calculating the ratio of the peak height according to the content of PS after physically mixing EPDM and PS.
도 5는 본 발명의 일 실시예에 따른 PS가 그래프트된 EPDM에 대한 FT-IR 스펙트럼을 나타낸 그래프이고, 5 is a graph showing the FT-IR spectrum for the EP-grafted EPDM according to an embodiment of the present invention,
도 6은 본 발명의 일 실시예에 따른 PS가 그래프트된 EPDM에 대한 1H-NMR 스펙트럼을 나타낸 그래프이며, FIG. 6 is a graph showing 1 H-NMR spectra of PS-grafted EPDM according to an embodiment of the present invention.
도 7은 본 발명의 일 실시예에 따른 그래프팅 반응 전의 EPDM의 GPC 결과와 반응 후의 GPC 결과를 나타낸 그래프이다. 7 is a graph showing the GPC results of the EPDM before the grafting reaction and the GPC results after the reaction according to an embodiment of the present invention.
도 8은 본 발명의 일 실시예에 따른 용융 반응을 통한 EPDM-graft-PS의 합성 반응 개요도이다. 8 is a schematic diagram of the synthesis of EPDM graft -PS through a melt reaction according to an embodiment of the present invention.
Claims (12)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090072879A KR101093676B1 (en) | 2009-08-07 | 2009-08-07 | Method for preparing segmented polyolefin copolymers |
US13/387,159 US20120123057A1 (en) | 2009-08-07 | 2010-08-02 | Method for preparing olefin-based segmented copolymers |
JP2012523561A JP2013501822A (en) | 2009-08-07 | 2010-08-02 | Process for producing olefin-based segmented copolymer |
CN2010800335397A CN102858820A (en) | 2009-08-07 | 2010-08-02 | Method for preparing olefin-based segmented copolymers |
EP10806630.9A EP2463319A4 (en) | 2009-08-07 | 2010-08-02 | Method for preparing olefin-based segmented copolymers |
PCT/KR2010/005077 WO2011016656A2 (en) | 2009-08-07 | 2010-08-02 | Method for preparing olefin-based segmented copolymers |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020090072879A KR101093676B1 (en) | 2009-08-07 | 2009-08-07 | Method for preparing segmented polyolefin copolymers |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20110015252A true KR20110015252A (en) | 2011-02-15 |
KR101093676B1 KR101093676B1 (en) | 2011-12-15 |
Family
ID=43544771
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020090072879A KR101093676B1 (en) | 2009-08-07 | 2009-08-07 | Method for preparing segmented polyolefin copolymers |
Country Status (6)
Country | Link |
---|---|
US (1) | US20120123057A1 (en) |
EP (1) | EP2463319A4 (en) |
JP (1) | JP2013501822A (en) |
KR (1) | KR101093676B1 (en) |
CN (1) | CN102858820A (en) |
WO (1) | WO2011016656A2 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015057002A1 (en) * | 2013-10-18 | 2015-04-23 | 주식회사 엘지화학 | Analysis method for polyolefin branches and system using same |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102604310B (en) * | 2012-03-09 | 2014-04-02 | 同济大学 | Water-phase preparing method of silica-coating polymer nano particles |
CN103044642B (en) * | 2012-12-21 | 2014-09-17 | 翔瑞(泉州)纳米科技有限公司 | Preparation method of surface amino-modified nano self-assembled aggregate |
JP6394075B2 (en) * | 2014-06-03 | 2018-09-26 | Jsr株式会社 | Method for producing graft copolymer |
CN104031192B (en) * | 2014-06-17 | 2017-01-04 | 东华大学 | A kind of method of RAFT method synthesis Thermo-sensitive homopolymer |
CN106366263B (en) * | 2016-08-31 | 2018-11-13 | 中山安康德美生物科技有限公司 | Linear block copolymers, dendritic nano-silver composite material and preparation method |
US11396572B2 (en) | 2017-07-31 | 2022-07-26 | Denka Company Limited | Block copolymer and production method for block copolymer |
CN108373516A (en) * | 2017-10-23 | 2018-08-07 | 陈晨特 | A kind of amphipathic RAFT reagents of sulfonic acid type trithiocarbonate and preparation method thereof |
CN109721694A (en) * | 2017-10-27 | 2019-05-07 | 中国石油化工股份有限公司 | Segmented copolymer and its preparation method and application and lubricant compositions |
CN108976426B (en) * | 2018-06-26 | 2020-09-25 | 南通纺织丝绸产业技术研究院 | High-grafting-density ring comb polymer and preparation method thereof |
CN109160974B (en) * | 2018-07-27 | 2020-12-15 | 天津安浩生物科技有限公司 | Aqueous phase preparation method of maleic anhydride-conjugated diene copolymer |
CN111101240B (en) * | 2018-10-25 | 2023-07-25 | 中国石油化工股份有限公司 | Polyacrylonitrile carbon fiber with low defects and high strength and preparation method thereof |
CN110760029A (en) * | 2019-09-29 | 2020-02-07 | 江苏学泰印务有限公司 | Preparation method of polymer for bridging layer |
US20230074040A1 (en) * | 2020-03-26 | 2023-03-09 | Denka Company Limited | Chloroprene-based block copolymer, latex, latex composition, and rubber composition |
CN111662544B (en) * | 2020-06-17 | 2021-10-29 | 定远县鑫宇体育股份有限公司 | Bonded basketball formed based on polyurethane resin at high temperature and preparation method thereof |
CN112831006B (en) * | 2020-12-31 | 2022-11-25 | 苏州中世惠华合成材料有限公司 | Binary block copolymer, acrylic pressure-sensitive adhesive composition containing binary block copolymer and soft PVC (polyvinyl chloride) adhesive tape/protective film |
CN117940508A (en) * | 2021-09-22 | 2024-04-26 | 阿朗新科荷兰有限公司 | Ethylene-alpha-olefin-non-conjugated diene copolymers having a high diene content per polymer chain and blends thereof |
CN115746173B (en) * | 2022-11-04 | 2024-04-09 | 万华化学集团股份有限公司 | Block chain transfer agent, preparation method and application thereof, and preparation method of ABS grafted latex |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1007901B (en) | 1974-04-12 | 1976-10-30 | Montedison Spa | PROCEDURE FOR THE PRODUCTION OF IMPACT RESISTANT POLYSTEROL |
WO1998001478A1 (en) * | 1996-07-10 | 1998-01-15 | E.I. Du Pont De Nemours And Company | Polymerization with living characteristics |
AUPR404801A0 (en) | 2001-03-28 | 2001-04-26 | Polymerat Pty Ltd | A method of polymerization |
JP4027742B2 (en) * | 2001-07-30 | 2007-12-26 | 株式会社カネカ | Block copolymer |
DE10157695A1 (en) * | 2001-11-24 | 2003-06-05 | Tesa Ag | Production of polymers useful in contact adhesives comprises reacting a terminal functional group on a poly(meth)acrylate with a terminal functional group on another compound |
US7402632B2 (en) * | 2001-11-24 | 2008-07-22 | Tesa Aktiengesellschaft | 2-Component crosslink of end-functionalized polyacrylates |
US7528204B2 (en) * | 2004-05-17 | 2009-05-05 | The Goodyear Tire & Rubber Company | Hydrogenation and epoxidation of polymers made by controlled polymerization |
US20080262160A1 (en) * | 2004-07-01 | 2008-10-23 | Universiteit Gent | Monodisperse Polymers Containing (Alkyl)Acrylic Acid Moieties, Precursors and Methods for Making them and their Applications |
ES2545531T3 (en) | 2004-10-25 | 2015-09-11 | The Lubrizol Corporation | Process to prepare lubricant compositions |
JP5016829B2 (en) * | 2006-03-02 | 2012-09-05 | 日本テルペン化学株式会社 | Dibenzyltrithiocarbonate derivative, process for producing the same and polymer using the same |
FR2910475B1 (en) * | 2006-12-22 | 2009-02-20 | Arkema France | COPOLYMERS BASED ON METHACRYLATE UNITS, PROCESS FOR THEIR PREPARATION AND USES THEREOF |
-
2009
- 2009-08-07 KR KR1020090072879A patent/KR101093676B1/en active IP Right Grant
-
2010
- 2010-08-02 US US13/387,159 patent/US20120123057A1/en not_active Abandoned
- 2010-08-02 JP JP2012523561A patent/JP2013501822A/en active Pending
- 2010-08-02 CN CN2010800335397A patent/CN102858820A/en active Pending
- 2010-08-02 EP EP10806630.9A patent/EP2463319A4/en not_active Withdrawn
- 2010-08-02 WO PCT/KR2010/005077 patent/WO2011016656A2/en active Application Filing
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2015057002A1 (en) * | 2013-10-18 | 2015-04-23 | 주식회사 엘지화학 | Analysis method for polyolefin branches and system using same |
US10241065B2 (en) | 2013-10-18 | 2019-03-26 | Lg Chem, Ltd. | Analysis method for polyolefin branches and system using same |
Also Published As
Publication number | Publication date |
---|---|
CN102858820A (en) | 2013-01-02 |
EP2463319A4 (en) | 2013-12-25 |
KR101093676B1 (en) | 2011-12-15 |
EP2463319A2 (en) | 2012-06-13 |
US20120123057A1 (en) | 2012-05-17 |
JP2013501822A (en) | 2013-01-17 |
WO2011016656A3 (en) | 2011-06-09 |
WO2011016656A2 (en) | 2011-02-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101093676B1 (en) | Method for preparing segmented polyolefin copolymers | |
KR100483088B1 (en) | Synthesis method of branched polymer | |
US8569441B2 (en) | Process for transforming the end groups of polymers | |
US9487614B2 (en) | Process for radical grafting of a diene elastomer | |
KR101282844B1 (en) | Method for preparing segmented conjugated diene copolymers | |
EP1399488B1 (en) | Improved heterocycle containing control agents for living-type free radical polymerization | |
JP2003522816A (en) | S, S′-bis- (α, α′-disubstituted-α ″ -acetic acid) -trithiocarbonates and their derivatives as initiators, chain transfer agents or chain terminators for controlled radical polymerization and How to make them | |
Koiry et al. | Reversible addition–fragmentation chain transfer (RAFT) polymerization of 2, 2, 3, 3, 4, 4, 4-heptafluorobutyl acrylate (HFBA) | |
WO2011140336A1 (en) | Method of producing macrocyclic polymers | |
JP4593786B2 (en) | Method for producing a polymer containing N → O end groups | |
KR20130139233A (en) | Curable compositions with moisture-curable functionality clusters near the chain ends | |
KR20010093181A (en) | Oligomerization, Polymerization and Copolymerization of Substituted and Unsubstituted α-Methylene-γ-Butyrolactones and Products Thereof | |
Zhao et al. | Synthesis of Poly (methyl acrylate) Grafted onto Silica Particles by Z‐supported RAFT Polymerization | |
Hub et al. | Blue light-induced iniferter RAFT polymerization in aqueous-alcoholic media as a universal tool for the homopolymerization of various monomer families: kinetic investigations on different scales | |
US8883941B2 (en) | Methods and apparatus for controlled single electron transfer living radical polymerization | |
Hui et al. | Reversible-deactivation radical polymerization of chloroprene and the synthesis of novel polychloroprene-based block copolymers by the RAFT approach | |
EP2812363A2 (en) | Process for the treatment of a polymer | |
KR102374081B1 (en) | Initiator comprising sulfonyl azide group, polyolefin graft copolymer prepared using same, and method of preparing same | |
KR20120030949A (en) | Method for preparing segmented olefin copolymers using reversible addition-fragmentation chain transfer | |
RU2537002C1 (en) | Method of obtaining triblockcopolymers of methacrylic monomers | |
KR20120030950A (en) | Method for preparing segmented ethylene-propylene-diene copolymers | |
Kohsaka et al. | Precise anionic polymerization of methyl methacrylate: simultaneous control of molecular weight, stereoregularity and end-structure | |
TWI540126B (en) | Compound, and polymer prepared thererfrom | |
JP2007297526A (en) | Method for producing polymer | |
EP3880718A1 (en) | Removal of thiocarbonylthio end groups from polymers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20141002 Year of fee payment: 4 |
|
FPAY | Annual fee payment |
Payment date: 20151201 Year of fee payment: 5 |
|
FPAY | Annual fee payment |
Payment date: 20161125 Year of fee payment: 6 |
|
FPAY | Annual fee payment |
Payment date: 20171124 Year of fee payment: 7 |
|
FPAY | Annual fee payment |
Payment date: 20191014 Year of fee payment: 9 |