[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20100127341A - Coating on the surface of silicate phosphor - Google Patents

Coating on the surface of silicate phosphor Download PDF

Info

Publication number
KR20100127341A
KR20100127341A KR1020090045737A KR20090045737A KR20100127341A KR 20100127341 A KR20100127341 A KR 20100127341A KR 1020090045737 A KR1020090045737 A KR 1020090045737A KR 20090045737 A KR20090045737 A KR 20090045737A KR 20100127341 A KR20100127341 A KR 20100127341A
Authority
KR
South Korea
Prior art keywords
phosphor
organic
coating
coated
sio
Prior art date
Application number
KR1020090045737A
Other languages
Korean (ko)
Other versions
KR101124627B1 (en
Inventor
유중환
이승호
이형석
윤동신
이창희
박미선
Original Assignee
한국세라믹기술원
주식회사 포스포
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국세라믹기술원, 주식회사 포스포 filed Critical 한국세라믹기술원
Priority to KR1020090045737A priority Critical patent/KR101124627B1/en
Publication of KR20100127341A publication Critical patent/KR20100127341A/en
Application granted granted Critical
Publication of KR101124627B1 publication Critical patent/KR101124627B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/18Processes for applying liquids or other fluent materials performed by dipping
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D125/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Coating compositions based on derivatives of such polymers
    • C09D125/02Homopolymers or copolymers of hydrocarbons
    • C09D125/04Homopolymers or copolymers of styrene
    • C09D125/06Polystyrene
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D133/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
    • C09D133/04Homopolymers or copolymers of esters
    • C09D133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09D133/10Homopolymers or copolymers of methacrylic acid esters
    • C09D133/12Homopolymers or copolymers of methyl methacrylate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/60Additives non-macromolecular
    • C09D7/61Additives non-macromolecular inorganic
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/67Particle size smaller than 100 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/40Additives
    • C09D7/66Additives characterised by particle size
    • C09D7/68Particle size between 100-1000 nm
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Nanotechnology (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

PURPOSE: A surface coating of a silicate phosphor containing an organic/inorganic nanocomposite is provided to improve the initial luminance of the phosphor, and to increase the lifetime of the phosphor at the high temperature and humidity. CONSTITUTION: A silicate phosphor is coated with an organic/inorganic nanocomposite on the surface. The organic/inorganic nanocomposite contains the following: a metal oxide selected from the group formed with SiO_2, TiO_2, and MgO; and a polymer selected from the group consisting of polystyrene and polymethylmethacrylate. 0.1~50wt% of organic/inorganic nanocomposite is coated on the phosphor. The average particle diameter of the metal oxide is 3~100 nanometers.

Description

실리케이트 형광체 표면 코팅{COATING ON THE SURFACE OF SILICATE PHOSPHOR}Silicate Phosphor Surface Coatings {COATING ON THE SURFACE OF SILICATE PHOSPHOR}

본 발명은 실리케이트 형광체에 관한 것으로, 더욱 상세하게는 금속산화물과 폴리머로 이루어진 유·무기 나노 복합체를 형광체 표면에 코팅시켜 광효율과 신뢰성을 향상시키는 실리케이트 형광체를 제공하는 것이다.The present invention relates to a silicate phosphor, and more particularly, to provide a silicate phosphor which improves light efficiency and reliability by coating an organic-inorganic nanocomposite composed of a metal oxide and a polymer on a phosphor surface.

물질의 외부 에너지를 흡수하여 가시광을 방출하는 현상을 발광이라고 하고, 이러한 현상을 일으키는 물질을 통틀어 형광체(phosphor)라고 한다. 이러한 형광체는 발광 다이오드의 LED(Light Emitting Diode)의 단파장 에너지 여기에 의해 장파장의 빛으로 발광하는 특성을 갖는 물질로 주로 휴대폰용 백라이트 광원, 표시소자 등에 사용된다. 따라서, 형광체의 효율이 곧 형광체를 적용한 발광 다이오드의 효율과 직접적으로 연관되는 주요 변수이다.The phenomenon of absorbing external energy of a material and emitting visible light is called luminescence, and the substance causing such a phenomenon is called phosphor. Such a phosphor is a material having a characteristic of emitting light with a long wavelength by short wavelength energy excitation of a light emitting diode (LED) of a light emitting diode, and is mainly used for a backlight light source for a mobile phone and a display device. Therefore, the efficiency of the phosphor is a major variable directly related to the efficiency of the light emitting diode to which the phosphor is applied.

일반적으로 발광 다이오드용 형광체는 봉지재와 혼합되어 발광 다이오드를 감싸는 형태를 취하는데 이때 형광체가 봉지재 내의 습기 및 불순물에 의해 공격을 받아 활성물질이 산화되거나 형광체의 결정성이 떨어지는 현상이 발생하여 형광체의 효율이 감소하는 문제점이 있다.In general, a phosphor for a light emitting diode is mixed with an encapsulant to surround the light emitting diode. At this time, the phosphor is attacked by moisture and impurities in the encapsulant, so that the active material is oxidized or the crystallinity of the phosphor is inferior. There is a problem that the efficiency of the decrease.

위와 같은 문제를 해결하기 위해 대한민국 등록특허공보 10-0885510호는 투명한 졸-겔 물질을 형광체 표면에 코팅함에 따라 형광체가 봉지재와 혼합된 후 실제 사용되었을 때 코팅층이 방어벽 역할을 하여 광원의 안정적인 색을 유지하여 형광체의 신뢰성을 증진시켰다. 또한, 대한민국 특허공개공보 10-2006-0079746호는 실란계 개질재를 사용하여 황화물 형광체의 표면에 실리콘 산화막을 코팅하는 방법을 개시하고 있으며, 실리콘 산화막을 코팅시켜 황화물 형광체의 화학적 안정성을 향상시켰다. 그러나, 상기 방법들은 코팅층이 두껍고 불균일하게 생성되어 형광체의 초기 휘도가 저하되는 문제점이 있었다. In order to solve the above problems, the Republic of Korea Patent Publication No. 10-0885510 is coated with a transparent sol-gel material on the surface of the phosphor, the phosphor is mixed with the encapsulant and then the coating layer acts as a protective wall when used in practice, the stable color of the light source To maintain the reliability of the phosphor. In addition, Korean Patent Publication No. 10-2006-0079746 discloses a method of coating a silicon oxide film on the surface of a sulfide phosphor using a silane-based modifier, and by coating the silicon oxide film to improve the chemical stability of the sulfide phosphor. However, the above methods have a problem in that the coating layer is thick and unevenly produced, thereby lowering the initial luminance of the phosphor.

따라서, 습기 및 불순물 등에 외부 환경에 대한 형광체의 안정성을 확보하고, 이와 동시에 형광체 휘도 향상을 달성할 수 있는 발광 다이오드용 형광체 개발에 대한 연구가 필요하다.Therefore, there is a need for researches on the development of phosphors for light emitting diodes, which can ensure stability of phosphors against external environments such as moisture and impurities, and at the same time achieve phosphor phosphor improvement.

본 발명은 형광체의 광효율이 향상되고 수명이 연장된 실리케이트 형광체를 제공하고자 한다. The present invention is to provide a silicate phosphor with improved light efficiency and extended life.

본 발명은 SiO2, TiO2, 및 MgO로 이루어진 군에서 선택된 1종 이상의 금속 산화물, 및 폴리스티렌 및 폴리메틸메타크릴레이트로 이루어진 군에서 선택된 1종 이상의 폴리머를 포함하는 유·무기 나노 복합체가 실리케이트 형광체의 표면에 코팅된 것인 실리케이트 형광체를 제공한다. The present invention is an organic-inorganic nanocomposite silicate phosphor comprising at least one metal oxide selected from the group consisting of SiO 2 , TiO 2 , and MgO, and at least one polymer selected from the group consisting of polystyrene and polymethyl methacrylate. It provides a silicate phosphor that is coated on the surface of.

이하, 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 금속산화물과 폴리머로 이루어진 유·무기 나노 복합체를 형광체 입자 표면에 코팅시켜 청색 LED 소자에서 발광하는 빛의 높은 흡수율과 낮은 반사율을 통한 광효율 향상과 봉지재 내의 습기 및 불순물을 차단하여 신뢰성이 우수하고 열화가 적은 발광 다이오드용 형광체를 제공하는 것이다. The present invention coats organic and inorganic nanocomposites composed of metal oxides and polymers on the surface of phosphor particles to improve light efficiency through high absorption and low reflectance of light emitted from blue LED devices, and to block moisture and impurities in the encapsulant, thereby improving reliability. It is to provide a phosphor for a light emitting diode that is excellent and has little deterioration.

상술한 기술적 과제를 달성하기 위하여, 본 발명은 형광체 표면에 SiO2, TiO2, MgO과, 폴리스티렌 또는 폴리메틸메타크릴레이트의 유·무기 나노 복합체를 코팅시키는 방법을 제공한다. In order to achieve the above technical problem, the present invention provides a method for coating an organic-inorganic nanocomposite of SiO 2 , TiO 2 , MgO, polystyrene or polymethyl methacrylate on the surface of the phosphor.

상기 실리케이트 형광체 입자 표면에 유·무기 나노 복합체 코팅 방법은 물 또는 알코올에 산화물과 폴리머를 혼합하여 교반 후 용매를 제거하는 방법을 통해 코팅하는 것을 특징으로 한다. The organic-inorganic nanocomposite coating method on the surface of the silicate phosphor particles is characterized by coating through a method of mixing the oxide and polymer in water or alcohol to remove the solvent after stirring.

본 발명의 유·무기 나노 복합체에서 상기 금속 산화물의 평균 입경은 3 nm 내지 100 nm, 바람직하게는 10 nm 내지 50 nm, 더욱 바람직하게는 10 nm 내지 20 nm가 될 수 있다. 고온고습 안정성 측면에서 상기 금속 산화물의 평균 입경이 3 nm 이상이 바람직하고, 광효율 향상 측면에서 100 nm 이하가 바람직하다. In the organic-inorganic nanocomposite of the present invention, the average particle diameter of the metal oxide may be 3 nm to 100 nm, preferably 10 nm to 50 nm, more preferably 10 nm to 20 nm. The average particle diameter of the metal oxide is preferably 3 nm or more in terms of high temperature and high humidity stability, and 100 nm or less is preferable in view of improving the light efficiency.

또한, 상기 폴리머의 평균 입경은 10 nm 내지 500 nm, 바람직하게는 50 nm 내지 300 nm, 더욱 바람직하게는 100 nm 내지 150 nm가 될 수 있다. 고온고습 안정성 측면에서 상기 폴리머의 평균 입경이 10 nm 이상이 바람직하고, 광효율 향상 측면에서 500 nm 이하가 바람직하다.In addition, the average particle diameter of the polymer may be 10 nm to 500 nm, preferably 50 nm to 300 nm, more preferably 100 nm to 150 nm. The average particle diameter of the polymer is preferably 10 nm or more in terms of high temperature and high humidity stability, and 500 nm or less is preferable in view of improving the light efficiency.

또한, 상기 유·무기 나노 복합체는 그 코팅되는 산화물의 종류와 코팅공정에 따라 다소 차이가 있을 수 있으나, 실리케이트 형광체 중량을 기준으로 하여 유·무기 나노 복합체가 0.1 wt% 내지 50 wt%, 바람직하게는 0.5 wt% 내지 20 wt%로 포함되는 것이 바람직하다. 유·무기 나노 복합체가 0.1 wt% 미만인 경우에는 충분한 코팅효과를 기대하기 어려우며, 50 wt%를 초과할 경우에는 두께가 지나치게 두꺼워지고 불균일하게 코팅되어 형광체 입자와 관련된 휘도 특성이 저하될 수 있기 때문이다. 특정 조건에 따르면, 상기 유·무기 나노 복합체는 3 wt% 내지 10 wt%로 첨가되는 것이 더욱 바람직하다. In addition, the organic-inorganic nanocomposite may vary slightly depending on the type of coating oxide and the coating process, but the organic-inorganic nanocomposite is 0.1 wt% to 50 wt% based on the weight of the silicate phosphor. Is preferably included at 0.5 wt% to 20 wt%. If the organic-inorganic nanocomposite is less than 0.1 wt%, it is difficult to expect a sufficient coating effect. If the organic / inorganic nanocomposite is more than 50 wt%, the thickness may be excessively thick and unevenly coated, resulting in deterioration of luminance characteristics associated with phosphor particles. . According to certain conditions, it is more preferable that the organic-inorganic nanocomposite is added in an amount of 3 wt% to 10 wt%.

여기서, 상기 금속 산화물은 형광체의 중량 기준으로 0.05 wt% 내지 49.05 wt%, 바람직하게는 1 내지 20 wt%, 좀더 바람직하게는 3 내지 10 wt%로 상기 혼합액에 첨가할 수 있다. 고온고습 안정성 측면에서 상기 금속 산화물의 함량은 0.05 wt% 이상이 바람직하고, 광효율 향상 측면에서 49.05 wt% 이하가 바람직하다. Here, the metal oxide may be added to the mixed solution at 0.05 wt% to 49.05 wt%, preferably 1 to 20 wt%, more preferably 3 to 10 wt% based on the weight of the phosphor. The metal oxide content is preferably 0.05 wt% or more in terms of high temperature and high humidity stability, and 49.05 wt% or less in terms of improving light efficiency.

또한, 상기 폴리머는 형광체의 중량 기준으로 0.05 wt% 내지 49.05 wt%, 바람직하게는 1 내지 20 wt%, 좀더 바람직하게는 5 내지 10 wt%로 상기 혼합액에 첨가할 수 있다. 고온고습 안정성 측면에서 상기 폴리머의 함량은 0.05 wt% 이상이 바람직하고, 광효율 향상 측면에서 49.05 wt% 이하가 바람직하다.In addition, the polymer may be added to the mixed solution at 0.05 wt% to 49.05 wt%, preferably 1 to 20 wt%, more preferably 5 to 10 wt% based on the weight of the phosphor. The polymer content is preferably 0.05 wt% or more in terms of high temperature and high humidity stability, and 49.05 wt% or less in terms of improving light efficiency.

한편, 본 발명은 전술한 바와 같은 실리케이트 형광체의 표면 코팅 방법을 제공한다. 상기 코팅 방법은 SiO2, TiO2, 및 MgO로 이루어진 군에서 선택된 1종 이상의 금속 산화물, 및 폴리스티렌 및 폴리메틸메타크릴레이트로 이루어진 군에서 선택된 1종 이상의 폴리머와 알콜 계열 용매가 혼합된 혼합액에 형광체를 침지하여 상기 혼합액을 상기 형광체에 표면에 코팅하는 단계, 및 상기 혼합액이 코팅된 형광체를 용매를 제거하는 단계를 포함하는 것이 될 수 있다. On the other hand, the present invention provides a surface coating method of the silicate phosphor as described above. The coating method includes a phosphor in a mixture of at least one metal oxide selected from the group consisting of SiO 2 , TiO 2 , and MgO, and at least one polymer selected from the group consisting of polystyrene and polymethylmethacrylate and an alcohol solvent. Coating the mixture on the surface of the phosphor by dipping, and removing the solvent from the phosphor coated with the mixture.

이러한 형광체의 코팅 공정은 예를 들면, 상기 혼합액의 졸-겔 반응을 통해 이루어질 수 있다. The coating process of the phosphor may be performed through, for example, a sol-gel reaction of the mixed solution.

한편, 형광체 표면에 금속 산화물 및 폴리머를 포함하는 혼합액을 코팅한 후에는, 상기 혼합액이 코팅된 형광체에서 용매를 제거하는 단계를 수행한다. 이때, 상기 용매 제거 단계는 사용된 용매 종류에 따라 상압 또는 감압 하에서 용매의 비등점을 감안하여 최적 온도 범위를 조절하여 수행할 수도 있다. 예를 들면, 증발 건조기(evaporator)를 사용하여 온도 20 ℃ 내지 100 ℃, 바람직하게는 30 내지 80 ℃, 더욱 바람직하게는 40 내지 70 ℃에서 수행할 수 있다. 또한, 이같이 용매를 제거한 코팅 형광체는 선택적으로, 건조단계를 추가로 수행할 수 있다. On the other hand, after coating a mixture containing a metal oxide and a polymer on the surface of the phosphor, the step of removing the solvent from the phosphor coated with the mixture is performed. At this time, the solvent removal step may be performed by adjusting the optimum temperature range in consideration of the boiling point of the solvent under normal pressure or reduced pressure according to the type of solvent used. For example, it can be carried out using an evaporator at a temperature of 20 ° C to 100 ° C, preferably 30 to 80 ° C, more preferably 40 to 70 ° C. In addition, the coating phosphor from which the solvent is removed may optionally be further subjected to a drying step.

여기서, 상기 용매 제거 단계 및 건조 단계는 용매 제거 효율 및 균일한 코팅층 형성 측면에서 하한값 온도 범위를 설정하여, 예컨대, 용매 제거 공정에서 증발 건조기 사용시 20 ℃ 이상의 온도로 수행하는 것이 바람직하고, 금속 산화물과 함께 코팅층에 포함되는 폴리머 나노 입자의 열화 현상을 방지하는 측면에서 상한값을 설정하여, 예컨대, 용매 제거 공정에서 증발 건조시 사용시 100 ℃ 이하의 온도로 수행하는 것이 좀더 바람직하다.Here, the solvent removal step and the drying step is to set the lower limit temperature range in terms of solvent removal efficiency and uniform coating layer formation, for example, it is preferably carried out at a temperature of 20 ℃ or more when using an evaporator in the solvent removal process, It is more preferable to set the upper limit in terms of preventing degradation of the polymer nanoparticles included in the coating layer, for example, at a temperature of 100 ° C. or less when used during evaporation drying in a solvent removal process.

또한, 본 발명은 상기 실리케이트 형광체를 포함하는 발광 다이오드를 제공한다. 상기 실리케이트 형광체는 유·무기 나노 복합체가 균일하게 코팅됨에 따라, 습기 및 불순물 등에 외부 환경에 대한 형광체의 안정성을 확보하고, 이와 동시에 형광체 휘도 향상을 달성할 수 있어, 발광 다이오드 용도로 적용시 우수한 광효율 향상 및 수명 연장 효과를 얻을 수 있다. In addition, the present invention provides a light emitting diode comprising the silicate phosphor. Since the silicate phosphor is uniformly coated with the organic / inorganic nanocomposite, it is possible to secure the stability of the phosphor to the external environment such as moisture and impurities, and at the same time to achieve the improvement of the phosphor brightness. The improvement and the life extension effect can be obtained.

본 발명에 있어서 상기 기재된 내용 이외의 사항은 필요에 따라 가감이 가능한 것이므로, 본 발명에서는 특별히 한정하지 아니한다.In the present invention, matters other than those described above can be added or subtracted as required, and therefore, the present invention is not particularly limited thereto.

본 발명은 소정의 금속산화물과 폴리머로 이루어진 유·무기 나노 복합체를 형광체 표면에 코팅시킴으로써, 광효율과 수명 연장, 및 신뢰성을 향상시킨 실리케이트 형광체를 제공할 수 있다.The present invention can provide a silicate phosphor having an organic-inorganic nanocomposite composed of a predetermined metal oxide and a polymer coated on the surface of the phosphor, thereby improving light efficiency, life span, and reliability.

이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시하나, 하기 실 시예는 본 발명을 예시하는 것일 뿐 본 발명의 범위가 하기 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples are provided to help understanding of the present invention, but the following examples are merely to illustrate the present invention, and the scope of the present invention is not limited to the following examples.

실시예Example 1.  One. SiOSiO 22 -- PSPS /형광체 코팅 방법/ Phosphor coating method

에탄올 100 mL에 실리케이트[(Sr,Ba)SiO4:Eu] 형광체 10 g을 첨가한 후, 상기 용액에 SiO2(3 wt%)와 폴리스티렌(PS, 5 wt%)를 첨가하여 상온에서 교반 후 용매를 제거하여 졸-겔 방법으로 유·무기 복합체로 형광체 표면을 코팅시켰다. 상기 코팅된 형광체는 증발 건조기(evaporator)를 사용하여 40 ℃에서 용매를 제거한 후에 60 ℃에서 12 시간 건조시켜 유·무기 복합체가 코팅된 형광체를 제조하였다. After adding 10 g of silicate [(Sr, Ba) SiO 4 : Eu] phosphor to 100 mL of ethanol, SiO 2 (3 wt%) and polystyrene (PS, 5 wt%) were added to the solution, followed by stirring at room temperature. The solvent was removed and the surface of the phosphor was coated with an organic / inorganic complex by the sol-gel method. The coated phosphor was dried at 60 ° C. for 12 hours after removing the solvent at 40 ° C. using an evaporator to prepare a phosphor coated with an organic / inorganic complex.

실시예Example 2.  2. TiOTiO 22 -- PSPS /형광체 코팅 방법/ Phosphor coating method

에탄올 100 mL에 상기 실리케이트 형광체 10 g을 첨가한 후, 상기 용액에 TiO2(5 wt%)와 폴리스티렌(PS, 5 wt%)를 첨가하여 상온에서 교반한 것을 제외하고는, 실시예 1과 동일한 방법으로 유·무기 복합체가 코팅된 형광체를 제조하였다. 10 g of the silicate phosphor was added to 100 mL of ethanol, and then TiO 2 (5 wt%) and polystyrene (PS, 5 wt%) were added to the solution, followed by stirring at room temperature. An organic-inorganic composite coated phosphor was prepared by the method.

실시예Example 3.  3. MgOMgO -- PSPS /형광체 코팅 방법/ Phosphor coating method

에탄올 100 mL에 상기 실리케이트 형광체 10 g을 첨가한 후, 상기 용액에 MgO(5 wt%)와 폴리스티렌(PS, 5 wt%)를 첨가하여 상온에서 교반한 것을 제외하고는, 실시예 1과 동일한 방법으로 유·무기 복합체가 코팅된 형광체를 제조하였다.10 g of the silicate phosphor was added to 100 mL of ethanol, and then MgO (5 wt%) and polystyrene (PS, 5 wt%) were added to the solution, followed by stirring at room temperature. To prepare a phosphor coated with an organic-inorganic complex.

실시예Example 4.  4. SiOSiO 22 -- PMMAPMMA /형광체 코팅 방법/ Phosphor coating method

에탄올 100 mL에 상기 실리케이트 형광체 10 g을 첨가한 후, 상기 용액에 SiO2(3 wt%)와 PMMA(5 wt%)를 첨가하여 상온에서 교반한 것을 제외하고는, 실시예 1과 동일한 방법으로 유·무기 복합체가 코팅된 형광체를 제조하였다.10 g of the silicate phosphor was added to 100 mL of ethanol, and then SiO 2 (3 wt%) and PMMA (5 wt%) were added to the solution, followed by stirring in room temperature. An organic-inorganic composite coated phosphor was prepared.

실시예Example 5.  5. TiOTiO 22 -- PMMAPMMA /형광체 코팅 방법/ Phosphor coating method

에탄올 100 mL에 상기 실리케이트 형광체 10 g을 첨가한 후, 상기 용액에 TiO2(3 wt%)와 PMMA(5 wt%)를 첨가하여 상온에서 교반한 것을 제외하고는, 실시예 1과 동일한 방법으로 유·무기 복합체가 코팅된 형광체를 제조하였다.10 g of the silicate phosphor was added to 100 mL of ethanol, and then TiO 2 (3 wt%) and PMMA (5 wt%) were added to the solution, followed by stirring in the same manner as in Example 1 An organic-inorganic composite coated phosphor was prepared.

비교예Comparative example 1.  One. SiOSiO 22 /형광체 코팅 방법/ Phosphor coating method

에탄올 100 mL에 상기 실리케이트 형광체 10 g을 첨가한 후, 상기 용액에 SiO2 (5 wt%)를 첨가하여 상온에서 교반 후 용매를 제거하여 졸-겔 방법으로 무기 코팅층을 형광체 표면에 생성시켰다. 10 g of the silicate phosphor was added to 100 mL of ethanol, and then SiO 2 (5 wt%) was added to the solution, followed by stirring at room temperature to remove the solvent, thereby forming an inorganic coating layer on the surface of the phosphor by a sol-gel method.

비교예Comparative example 2.  2. PSPS /형광체 코팅 방법/ Phosphor coating method

에탄올 100 mL에 상기 실리케이트 형광체 10 g을 첨가한 후, 상기 용액에 폴리스티렌(PS, 5 wt%)를 첨가하여 상온에서 교반 후 용매를 제거하여 졸-겔 방법으로 폴리머 코팅층을 형광체 표면에 생성시켰다. After adding 10 g of the silicate phosphor to 100 mL of ethanol, polystyrene (PS, 5 wt%) was added to the solution, and the solvent was removed after stirring at room temperature to form a polymer coating layer on the surface of the phosphor by a sol-gel method.

비교예Comparative example 3 3

에탄올 100 mL에 상기 실리케이트 형광체 10 g을 첨가한 후에, 별도의 코팅층 생성 없이 상온에서 교반 후 용매를 제거하였다. After adding 10 g of the silicate phosphor to 100 mL of ethanol, the solvent was removed after stirring at room temperature without generating a separate coating layer.

상기 실시예 1~5 및 비교예 1~3에 따라 생성된 형광체에 대하여, 하기와 같은 방법을 물성을 평가하여 하기 표 1에 나타내었다. For the phosphors produced according to Examples 1 to 5 and Comparative Examples 1 to 3, the following method was evaluated in physical properties and shown in Table 1 below.

광효율Light efficiency 향상률 Improvement

형광분광계를 이용하여 형광체의 휘도를 측정하고, 비코팅 형광체의 측정값 대비 광효율 향상률을 나타내었다. The luminance of the phosphor was measured using a fluorescence spectrometer, and the light efficiency improvement rate was shown compared to the measured value of the uncoated phosphor.

상대효율Relative efficiency

고온 고습 오븐을 사용하여 85℃, 85Rh%, 500 h 조건 하에서 각각의 형광체의 상대효율을 측정하였다. The relative efficiency of each phosphor was measured under a high temperature, high humidity oven at 85 ° C., 85 Rh%, and 500 h.

코팅층 구성 성분의 평균 입자 크기Average Particle Size of Coating Layer Components

SEM을 사용하여 각 구성 성분의 평균 입자 크기를 측정하였다. SEM was used to determine the average particle size of each component.

구분division 금속산화물
(함량)
Metal oxide
(content)
폴리머
(함량)
Polymer
(content)
폴리머
입자크기
(nm)
Polymer
Particle size
(nm)
금속산화물
입자크기
(nm)
Metal oxide
Particle size
(nm)
광효율
향상률
(%)
Light efficiency
Improvement
(%)
상대효율
(%)
Relative efficiency
(%)
실시예 1Example 1 SiO2
(3 wt%)
SiO 2
(3 wt%)
PS
(5 wt%)
PS
(5 wt%)
150150 1010 109109 102102
실시예 2Example 2 TiO2
(5 wt%)
TiO 2
(5 wt%)
PS
(5 wt%)
PS
(5 wt%)
150150 77 106106 101101
실시예 3Example 3 MgO
(5 wt%)
MgO
(5 wt%)
PS
(5 wt%)
PS
(5 wt%)
150150 2020 108108 9999
실시예 4Example 4 SiO2
(3 wt%)
SiO 2
(3 wt%)
PMMA
(5 wt%)
PMMA
(5 wt%)
100100 1515 108108 9898
실시예 5Example 5 TiO2
(3 wt%)
TiO 2
(3 wt%)
PMMA
(5 wt%)
PMMA
(5 wt%)
100100 1010 104104 9797
비교예 1Comparative Example 1 SiO2
(5 wt%)
SiO 2
(5 wt%)
-- -- 1515 103103 9292
비교예 2Comparative Example 2 -- PS
(5 wt%)
PS
(5 wt%)
150150 -- 9797 9090
비교예 3Comparative Example 3 -- -- -- -- 100100 8585

먼저, 도 1에 나타낸 바와 같이, 실시예 1에 따라 제조된 SiO2-PS/형광체의 SEM 사진을 통하여, PS(150 nm) 입자와 SiO2(10 nm) 입자가 형광체 표면에 균일하게 코팅된 것을 확인할 수 있었다First, as shown in FIG. 1, PS (150 nm) particles and SiO 2 (10 nm) particles are uniformly coated on a surface of a phosphor through SEM photographs of SiO 2 -PS / phosphor prepared according to Example 1 I could confirm that

상기 표 1을 참조하면, 실시예 1내지 5의 유·무기 복합체가 코팅된 형광체의 광효율이 104% ~ 109%으로 향상되었음이 확인되었다. 특히, 도 2에 나타낸 바와 같이, 실시예 1에 따라 제조된 SiO2-PS/형광체의 발광 휘도가 코팅전 형광체 대비 발광 휘도가 109%로 향상되었음을 확인하였다. Referring to Table 1, it was confirmed that the light efficiency of the phosphor coated with the organic-inorganic composite of Examples 1 to 5 was improved to 104% ~ 109%. In particular, as shown in FIG. 2, it was confirmed that the emission luminance of the SiO 2 -PS / phosphor prepared in Example 1 was improved to 109% compared to the phosphor before coating.

이와는 달리, 비교예 1에 따른 SiO2/형광체는 코팅전 형광체 대비 발광 휘도가 103% 향상되는 정도일 뿐이며, 비교예 2에 따른 PS/형광체는 코팅전 형광체 대비 발광 휘도가 97%로 오히려 감소하였음을 알 수 있으며, 비교예 3에 따라 별도의 코팅 없이 진행한 진행된 형광체는 코팅 전 형광체 대비 발광 휘도가 100%로 겨우 유지하였음을 알 수 있다. On the contrary, the SiO 2 / phosphor according to Comparative Example 1 was only about 103% higher than the phosphor before coating, and the PS / phosphor according to Comparative Example 2 was reduced to 97% compared to the phosphor before coating. It can be seen that, according to Comparative Example 3, the proceeding phosphor that proceeded without a separate coating barely maintained the luminescence brightness at 100% compared to the phosphor before coating.

따라서, 본 발명에 따라 유·무기 복합체가 코팅된 실시예 1내지 5의 형광체가 비교예 1및 2에서 각각 SiO2 또는 폴리스티렌이 단독으로 코팅된 형광체보다 우수한 휘도를 나타내는 것을 알 수 있다. Accordingly, it can be seen that the phosphors of Examples 1 to 5 coated with the organic-inorganic composite according to the present invention exhibited superior luminance than those of SiO 2 or polystyrene coated solely in Comparative Examples 1 and 2, respectively.

도 1은 본 발명의 실시예 1에 따른 SiO2-PS/형광체 표면을 나타내는 SEM 사진이다.1 is a SEM photograph showing the surface of SiO 2 -PS / phosphor according to Example 1 of the present invention.

도 2는 본 발명의 실시예 1에 따른 형광체의 빛 방출 스펙트럼으로서, 코팅전 형광체(NOno-coated phosphor)와 SiO2-PS 형광체(SiO2-PS 코팅 형광체)의 광 스펙트럼 변화를 나타낸 그래프이다.2 is a light emission spectrum of a phosphor according to Example 1 of the present invention, which is a graph showing a change in the light spectrum of a phosphor before coating (NOno-coated phosphor) and a SiO 2 -PS phosphor (SiO 2 -PS coated phosphor).

Claims (4)

SiO2, TiO2, 및 MgO로 이루어진 군에서 선택된 1종 이상의 금속 산화물, 및 폴리스티렌 및 폴리메틸메타크릴레이트로 이루어진 군에서 선택된 1종 이상의 폴리머를 포함하는 유·무기 나노 복합체가 실리케이트 형광체의 표면에 코팅된 것인 실리케이트 형광체.An organic-inorganic nanocomposite comprising at least one metal oxide selected from the group consisting of SiO 2 , TiO 2 , and MgO, and at least one polymer selected from the group consisting of polystyrene and polymethylmethacrylate is formed on the surface of the silicate phosphor. A silicate phosphor that is coated. 제1항에 있어서, The method of claim 1, 상기 유·무기 나노 복합체는 형광체의 중량을 기준으로 0.1 wt% 내지 50 wt%로 코팅된 것인 실리케이트 형광체.The organic-inorganic nanocomposite is a silicate phosphor coated with 0.1 wt% to 50 wt% based on the weight of the phosphor. 제1항에 있어서, The method of claim 1, 상기 금속 산화물의 평균 입경은 3 nm 내지 100 nm인 실리케이트 형광체.The silicate phosphor having an average particle diameter of the metal oxide is 3 nm to 100 nm. 제1항에 있어서, The method of claim 1, 상기 폴리머의 평균 입경은 10 nm 내지 500 nm인 실리케이트 형광체. Silicate phosphor of the average particle diameter of the polymer is 10 nm to 500 nm.
KR1020090045737A 2009-05-26 2009-05-26 Coating on the surface of silicate phosphor KR101124627B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020090045737A KR101124627B1 (en) 2009-05-26 2009-05-26 Coating on the surface of silicate phosphor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020090045737A KR101124627B1 (en) 2009-05-26 2009-05-26 Coating on the surface of silicate phosphor

Publications (2)

Publication Number Publication Date
KR20100127341A true KR20100127341A (en) 2010-12-06
KR101124627B1 KR101124627B1 (en) 2012-03-19

Family

ID=43504577

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020090045737A KR101124627B1 (en) 2009-05-26 2009-05-26 Coating on the surface of silicate phosphor

Country Status (1)

Country Link
KR (1) KR101124627B1 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100803620B1 (en) * 2006-12-28 2008-02-19 중앙대학교 산학협력단 Inorganic/organic nano composite coated phosphor powder for pdp or led
KR20090050724A (en) * 2007-11-16 2009-05-20 (주)석경에이.티 Surface coated phosphor by nano sized oxide particles and method for preparing the same

Also Published As

Publication number Publication date
KR101124627B1 (en) 2012-03-19

Similar Documents

Publication Publication Date Title
JP4140541B2 (en) Electroluminescence element
WO2015099084A1 (en) Silica glass member for wavelength conversion, and production method therefor
JP5369295B2 (en) Surface-coated strontium silicate phosphor particles, method for producing the same, and light-emitting diode comprising the phosphor particles
JP4186688B2 (en) Electroluminescence element
KR101436876B1 (en) Method for porducing coated alkaline earth metal silicate phosphor particles
Wang et al. Achieving highly saturated single-color and high color-rendering-index white light-emitting electrochemical cells by CsPbX 3 perovskite color conversion layers
Fang et al. Atomic layer deposition assisted encapsulation of quantum dot luminescent microspheres toward display applications
US20120207923A1 (en) Method for Coating a Silicate Flourescent Substance
JP5036975B2 (en) Nitrogen-containing phosphor, method for producing the same, and light-emitting device
Balakrishna et al. Synthesis, structure and optical studies of ZnO: Eu3+, Er3+, Yb3+ thin films: Enhanced up-conversion emission
US20060159853A1 (en) Surface coating method of sulphide phosphor and surface coated sulphide phosphor
JP6552269B2 (en) Quartz glass member for wavelength conversion and manufacturing method thereof
JP6186201B2 (en) Light emitting device
Zhang et al. Research progress on surface modifications for phosphors used in light-emitting diodes (LEDs)
WO2012063707A1 (en) Process for manufacturing fluorescent material
US20140191652A1 (en) Illuminant and illuminant lamp comprising said illuminant
WO2014021353A1 (en) Fluorescent material, and light-emitting device
KR101124627B1 (en) Coating on the surface of silicate phosphor
Wang et al. In Situ Green Preparation of Highly Stable CsPbBr3–Polyimide Films for Flexible Liquid Crystal Displays
KR20100002649A (en) Phosphor and method of manufacturing the same
KR20130041165A (en) Improvements to phosphors
TW201709566A (en) Light emitting device and method for preparing the same
JP2016034890A (en) Quartz glass member for wavelength conversion and production method thereof
KR101766830B1 (en) Organic/inorganic coating red phosphor and Manufacturing method
US8282986B2 (en) Method of applying phosphor coatings

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150204

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20180322

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20181203

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20200130

Year of fee payment: 9