[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20100045759A - Floor vibration damping system of steel structure - Google Patents

Floor vibration damping system of steel structure Download PDF

Info

Publication number
KR20100045759A
KR20100045759A KR1020080104848A KR20080104848A KR20100045759A KR 20100045759 A KR20100045759 A KR 20100045759A KR 1020080104848 A KR1020080104848 A KR 1020080104848A KR 20080104848 A KR20080104848 A KR 20080104848A KR 20100045759 A KR20100045759 A KR 20100045759A
Authority
KR
South Korea
Prior art keywords
cheolgolbo
ratio
iron plate
upper flange
concrete slab
Prior art date
Application number
KR1020080104848A
Other languages
Korean (ko)
Other versions
KR100997191B1 (en
Inventor
이기장
이정원
홍갑표
윤광섭
전호민
이성수
김영빈
Original Assignee
삼성중공업 주식회사
홍갑표
전호민
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성중공업 주식회사, 홍갑표, 전호민 filed Critical 삼성중공업 주식회사
Priority to KR1020080104848A priority Critical patent/KR100997191B1/en
Publication of KR20100045759A publication Critical patent/KR20100045759A/en
Application granted granted Critical
Publication of KR100997191B1 publication Critical patent/KR100997191B1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/92Protection against other undesired influences or dangers
    • E04B1/98Protection against other undesired influences or dangers against vibrations or shocks; against mechanical destruction, e.g. by air-raids
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B5/00Floors; Floor construction with regard to insulation; Connections specially adapted therefor
    • E04B5/43Floor structures of extraordinary design; Features relating to the elastic stability; Floor structures specially designed for resting on columns only, e.g. mushroom floors
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C3/00Structural elongated elements designed for load-supporting
    • E04C3/02Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces
    • E04C3/04Joists; Girders, trusses, or trusslike structures, e.g. prefabricated; Lintels; Transoms; Braces of metal
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04FFINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
    • E04F15/00Flooring
    • E04F15/18Separately-laid insulating layers; Other additional insulating measures; Floating floors
    • E04F15/20Separately-laid insulating layers; Other additional insulating measures; Floating floors for sound insulation

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Environmental & Geological Engineering (AREA)
  • Vibration Prevention Devices (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

PURPOSE: A floor vibration damping system for a steel structure is provided to maximize vibration damping effect using a vibration absorber, and to reduce material waste by appropriately selecting a material. CONSTITUTION: A floor vibration damping system for a steel structure comprises a steel beam(10), a shear stud(30), a concrete slab(40), and a vibration isolator(20). The steel beam has an upper flange(11). The shear stud is installed on the upper flange of the steel beam. The concrete slab embeds the shear stud, and is formed on the steel beam. The vibration isolator is installed between the top flange of the steel beam and the bottom surface of the concrete slab.

Description

철골조 구조물의 바닥진동 감쇠시스템{Floor vibration damping system of steel structure}Floor vibration damping system of steel structure

본 발명은 철골조의 구조물에서 바닥진동을 저감시키기 위한 바닥진동 감쇠시스템에 관한 것으로, 더욱 상세하게는 바닥진동 감쇠효과를 극대화할 수 있는 물성특징의 방진재를 이용한 바닥진동 감쇠시스템에 관한 것이다.The present invention relates to a floor vibration damping system for reducing floor vibration in a steel frame structure, and more particularly, to a floor vibration damping system using a vibration damper having physical properties that can maximize the floor vibration damping effect.

최근 건설 생산성의 향상을 통한 공기 단축 및 경제성 제고를 위해 습식공법(콘크리트 현장 타설 방식)에서 탈피하여 건식공법이 많이 적용되고 있다. 즉, 보 또는 기둥과 같은 주요 구조부재들을 단위 부재화하고 현장에서 이들을 조립하여 건축물을 구축함으로써 시공 효율성 향상과 함께 품질 관리의 용이, 인력 절감 등의 효과를 꾀하는 것이다.Recently, the dry method has been applied a lot away from the wet method (concrete on-site casting method) to shorten the air and improve the economic efficiency by improving the construction productivity. In other words, the main structural members such as beams or columns are unitized and assembled at the site to build a structure, thereby improving construction efficiency, facilitating quality control, and reducing manpower.

가장 일반적인 건식공법으로는 철골구조가 있다. 철골구조는 공장(경우에 따라서는 현장)에서 제작한 철골부재를 고력볼트 또는 용접 등의 접합방식에 의해 조립한 구조를 말하며, 시공 효율성은 물론, 고층 건물 및 대규모 스팬 건축물에 유용하게 적용할 수 있으며 아울러 설계 및 내부 평면구성이 자유롭고 증,개축이 용이하다는 등의 장점이 있다. 그러나, 철골구조는 진동에 취약하다는 문제가 있으며, 특히 넓은 공간으로 설계되는 건물에는 칸막이벽 등의 방진효과를 발휘하는 비구조재의 설치가 줄어들게 되어 바닥진동 문제가 크게 부각된다.The most common dry method is steel structure. Steel structure refers to a structure in which steel members manufactured in factories (in some cases on-site) are assembled by joining methods such as high-strength bolts or welding, and can be usefully applied to high-rise buildings and large-scale span structures as well as construction efficiency. In addition, it has advantages such as free design and internal planar configuration and easy expansion and reconstruction. However, there is a problem that the steel structure is vulnerable to vibration, especially in a building designed to a large space, the installation of non-structural material that exhibits the anti-vibration effect such as partition walls is reduced, so the floor vibration problem is highlighted.

바닥진동 문제를 해결하는 방법으로는 골조의 규격을 키우는 방법이 가장 일반적이다. 즉, 콘크리트슬래브나 철골보의 단면을 키워 골조의 강성을 증대시킴으로써 감쇠효과를 최대화한 것이다. 하지만, 이 방법은 골조의 단면확대에 따라 자재비 증가가 불가피하고 또한 동일 층고 대비 천정고가 낮아져 공간효율성이 떨어지는 등의 문제가 있다. 이에, 최근에는 골조에 방진층(damping layer)을 도입하는 방법이 제안된 바 있으며, 이 방법은 도 1에서와 같이 방진층의 전단변형을 통해 진동에너지를 소산시켜 결과적으로 전체 골조의 방진효과를 향상시키는 원리에 따른 것이다. The most common way to solve the floor vibration problem is to increase the frame size. That is, the damping effect is maximized by increasing the rigidity of the frame by increasing the cross section of the concrete slab or cheolgolbo. However, this method inevitably increases the cost of materials due to the enlargement of the cross section of the frame, and also has a problem of low space efficiency due to a lower ceiling height compared to the same floor height. Therefore, recently, a method of introducing a damping layer into a frame has been proposed, and this method dissipates vibration energy through shear deformation of the dustproof layer as shown in FIG. The principle is to improve.

통상 철골구조에서 방진층은 철골보의 하부플랜지에 도입하거나 슬래브 표면에 도입해 왔다. 그러나, 철골보의 하부플랜지에 방진층을 도입하는 방식은 전단변형보다는 휨변형에 의해 진동에너지를 소산시키는 개념으로 진동저감 효과가 미미하며, 슬래브 표면에 방진층을 도입하는 방법은 방진재의 설치면적이 넓어져 작업량이 과다해지는 문제가 있다. 이러한 문제를 개선하기 위해 본 발명자는 철골보와 콘크리트슬래브 사이에 방진장치를 설치하는 방법을 개발하여 특허 제787492호로 등록받은 바 있다. 하지만, 특허 제787492호를 비롯한 지금까지의 바닥진동 감쇠를 위한 각종 기술들은 방진재의 설치위치에 주안점을 둔 연구결과에 머물 뿐 이어서, 적합한 방진재의 재료적 특성에 관한 연구는 미흡한 실정이다. 이에 본 발명자는 방진재를 구성하는 점탄성재료의 물성과 바닥진동 감쇠효과의 연관성을 연구하여 본 발명을 개발하기에 이르렀다. In the steel frame structure, the dustproof layer has been introduced into the lower flange of the steel frame, or introduced into the slab surface. However, the method of introducing the anti-vibration layer into the lower flange of the cheolgolbo is the concept of dissipating the vibration energy by the bending deformation rather than the shear deformation, and the vibration reduction effect is insignificant, and the method of introducing the anti-vibration layer on the surface of the slab is the installation area of the anti-vibration material. There is a problem that the work load becomes excessive. In order to improve this problem, the present inventor has developed a method of installing a dustproof device between cheolgolbo and concrete slab and has been registered as a patent No. 878792. However, various technologies for damping floor vibrations up to now, including Patent No. 878792, remain only in the research result focused on the installation location of the vibration isolator, and thus, studies on the material properties of the appropriate vibration isolator are insufficient. Therefore, the present inventors have developed the present invention by studying the relationship between the physical properties of the viscoelastic material constituting the vibration damper and the floor vibration damping effect.

본 발명은 상기한 종래의 문제를 개선하고자 개발된 것으로서, 특정 물성의 방진재를 이용하여 바닥진동 감쇠효과를 극대화한 바닥진동 감쇠시스템을 제공하는데 기술적 과제가 있다.The present invention has been developed to improve the above-mentioned conventional problems, there is a technical problem to provide a floor vibration damping system that maximizes the floor vibration damping effect by using a dustproof material of a specific physical property.

상기한 기술적 과제를 해결하기 위해 본 발명은, 상부플랜지를 갖는 철골보; 상기 철골보의 상부플랜지 상부표면에 접합 설치되는 전단스터드; 상기 전단스터드를 매입시키면서 철골보 위로 시공되는 콘크리트슬래브; 및, 상기 철골보의 상부플랜지와 상기 콘크리트슬래브의 하부면 사이에 설치되는 방진장치;를 포함하여 구성되되, 상기 방진장치가, 상부철판; 하부철판; 상기 상부철판과 하부철판 사이에 위치하며 특정의 물성특징(탄성계수(E), 포아송비(υ), 재료감쇠비(ξ))을 가지는 점탄성 재료에 의한 방진재;를 포함하여 구성된 방진장치임을 특징으로 하는 바닥진동 감쇠시스템을 제공한다. The present invention to solve the above technical problem, cheolgolbo having an upper flange; Shear studs are bonded to the upper surface of the upper flange of the cheolgolbo; Concrete slab is constructed on the cheolgolbo while buying the shear studs; And an anti-vibration device installed between the upper flange of the cheolgolbo and the lower surface of the concrete slab, wherein the anti-vibration device comprises: an upper steel plate; Lower iron plate; It is located between the upper iron plate and the lower iron plate and characterized in that the dust-proof device comprising a; dust-proof material by a viscoelastic material having a specific physical properties (elastic coefficient (E), Poisson's ratio (υ), material damping ratio (ξ)); It provides a floor vibration damping system.

이때, 상기 특정의 물성특징을 가지는 점탄성 재료라 함은, (ⅰ)탄성계수(E) 가 5.0×105~1.1×106Pa이고 포아송비(υ)가 0.3~0.499이며 재료감쇠비(ξ)가 0.05~0.35인 점탄성 재료, (ⅱ)탄성계수(E)가 1.0×105~5.0×105Pa이고 포아송비(υ)가 0.3~0.4이며 재료감쇠비(ξ)가 0.15~0.35인 점탄성 재료, (ⅲ)탄성계수(E)가 1.0×105~5.0×105Pa이고 포아송비(υ)가 0.4~0.499이며 재료감쇠비(ξ)가 0.25~0.35인 점탄성 재료, (ⅳ)탄성계수가 1.1×106~1.3×106Pa이고 포아송비(υ)가 0.3~0.499이며 재료감쇠비(ξ)가 0.05~0.25인 점탄성 재료, (ⅴ)탄성계수가 1.3×106~2.5×106Pa이고 포아송비(υ)가 0.3~0.499이며 재료감쇠비(ξ)가 0.05~0.15인 점탄성 재료 중 어느 하나의 점탄성 재료를 의미한다.In this case, the viscoelastic material having the specific physical properties includes (i) the elastic modulus (E) of 5.0 × 10 5 to 1.1 × 10 6 Pa, the Poisson's ratio (υ) of 0.3 to 0.499, and the material damping ratio (ξ). Viscoelastic material having 0.05 to 0.35, (ii) viscoelastic material having elastic modulus (E) of 1.0 × 10 5 to 5.0 × 10 5 Pa, Poisson's ratio of 0.3 to 0.4 and material damping ratio of 0.15 to 0.35 (I) a viscoelastic material having an elastic modulus (E) of 1.0 × 10 5 to 5.0 × 10 5 Pa, a Poisson's ratio of 0.4 to 0.499, and a material damping ratio of 0.25 to 0.35, (i) an elastic modulus Viscoelastic material with 1.1 × 10 6 to 1.3 × 10 6 Pa, Poisson's ratio 0.3 to 0.499, and material damping ratio ξ 0.05 to 0.25, (v) elastic modulus of 1.3 × 10 6 to 2.5 × 10 6 Pa And a Poisson's ratio (υ) of 0.3 to 0.499 and a material damping ratio (ξ) of 0.05 to 0.15.

본 발명에 따르면 다음과 같은 효과를 기대할 수 있다.According to the present invention, the following effects can be expected.

첫째, 최적화한 물성의 점탄성 재료로 구성된 방진재를 전단응력이 최대로 나타나는 중립축에 근접하게 설치하여 철골과 콘크리트의 합성 바닥골조를 완성하기 때문에, 바닥진동 감쇠효과를 극대화할 수 있다. First, the vibration damping material composed of optimized viscoelastic material is installed close to the neutral axis where shear stress is maximized to complete the composite floor frame of steel and concrete, thereby maximizing floor vibration damping effect.

둘째, 방진재를 구성하는 점탄성 재료를 최적화한 물성으로 제안하기 때문에, 바닥진동 감쇠에 일정 효과를 나타내는 적합한 자재를 용이하게 선택할 수 있음은 물론 자재효율성을 극대화하여 재료낭비를 막으면서 효율적으로 바닥진동 감쇠시스템을 구현할 수 있다. Second, since the viscoelastic material constituting the dustproof material is proposed as the optimized physical property, it is possible to easily select a suitable material having a certain effect on the floor vibration damping, and to maximize the material efficiency to effectively reduce floor vibration while preventing material waste. You can implement the system.

본 발명은, 상부플랜지(11)를 갖는 철골보(10); 상기 철골보의 상부플랜지(11) 상부표면에 접합 설치되는 전단스터드(30); 상기 전단스터드(30)를 매입시키면서 철골보(10) 위로 시공되는 콘크리트슬래브(40); 및, 상기 철골보의 상부플랜지(11)와 상기 콘크리트슬래브(40)의 하부면 사이에 설치되며, 상부철판(22a)과 하부철판(22b) 및 상부철판과 하부철판 사이에 위치하는 점탄성 재료에 의한 방진재(21)로 구성되는 방진장치(20);를 포함하여 구성되는 철골조 구조물의 바닥진동 감쇠시스템에 관한 것으로서, 상기 방진장치(20)로 바닥진동 감쇠효과를 극대화할 수 있는 특별한 방진재(21)를 포함시켜 구성한 것을 이용한다는데 기술적 특징이 있다. The present invention, the cheolgolbo 10 having an upper flange (11); Shear studs 30 are attached to the upper surface of the upper flange 11 of the cheolgolbo; Concrete slab 40 is constructed on the cheolgolbo 10 while buying the shear stud 30; And a viscoelastic material disposed between the upper flange 11 of the cheolgolbo and the lower surface of the concrete slab 40 and positioned between the upper iron plate 22a and the lower iron plate 22b and the upper iron plate and the lower iron plate. It relates to a floor vibration damping system of a steel frame structure comprising a; a dustproof device (20) consisting of a dustproof material (21), a special dustproof material (21) to maximize the floor vibration damping effect with the dustproof device (20). There is a technical feature to use the one configured to include.

본 발명에서 방진장치(20)는 철골보(10)와 콘크리트슬래브(40) 사이에 설치되는데, 이는 철골보(10)와 콘크리트슬래브(40)의 합성구조에서 합성단면의 중립축이 철골보(10)와 콘크리트슬래브(40)의 경계와 거의 동일한 위치에 있게 되어 철골보(10)와 콘크리트슬래브(40)의 경계 부근에서 전단응력이 최대로 나타나게 된다는 점을 감안한 것이다. 즉, 전단응력이 최대로 나타나는 중립축 부근(철골보와 콘크리트슬래브의 경계)에 방진장치(20)를 설치하여 방진재(21)의 전단변형을 최대로 유도함으로써 진동에너지 소모율을 최대화하여 구조물의 바닥진동 감쇠효과를 극대화한 것이다. In the present invention, the anti-vibration device 20 is installed between the cheolgolbo 10 and the concrete slab 40, which is the neutral axis of the composite section in the composite structure of the cheolgolbo 10 and the concrete slab 40 is the cheolgolbo 10 and concrete It is considered that the shear stress is maximized in the vicinity of the boundary between the cheolgolbo 10 and the concrete slab 40 is to be at the same position as the boundary of the slab 40. That is, by installing the vibration isolator 20 near the neutral axis (the boundary between the steel beam and the concrete slab) where the shear stress is maximum, the shear deformation of the vibration isolator 21 is maximized, thereby maximizing the vibration energy consumption and damping the floor vibration of the structure. The effect is maximized.

나아가, 본 발명은 특별한 방진재를 이용함으로써 바닥진동 감쇠효과를 더욱 향상시키고 있다. 다시 말해, 방진장치(20)에서 방진재(21)를 구성하는 점탄성 재료의 물성(탄성계수, 포아송비, 감쇠비) 또는 두께를 변화시키면서 바닥진동 저감효과를 확인하고 그 결과를 정리함으로써 최적의 방진장치(20)를 제시하고 있는 것이다. 구체적으로 실시예를 통한 해석결과로서, 본 발명은 방진장치(20)에서 방진재(21)를 구성하는 점탄성 재료가, 탄성계수(E)가 5.0×105~1.1×106Pa이고 포아송비(υ)가 0.3~0.499이며 재료감쇠비(ξ)가 0.05~0.35인 점탄성 재료이거나, 탄성계수(E)가 1.0×105~5.0×105Pa인 점탄성 재료로서 포아송비(υ)가 0.3~0.4이며 재료감쇠비(ξ)가 0.15~0.35이거나 포아송비(υ)가 0.4~0.499이며 재료감쇠비(ξ)가 0.25~0.35인 점탄성 재료이거나, 탄성계수가 1.1×106~1.3×106Pa이고 포아송비(υ)가 0.3~0.499이며 재료감쇠비(ξ)가 0.05~0.25인 점탄성 재료이거나, 탄성계수가 1.3×106~2.5×106Pa이고 포아송비(υ)가 0.3~0.499이며 재료감쇠비(ξ)가 0.05~0.15인 점탄성 재료일 것을 제안한다.Furthermore, the present invention further improves the floor vibration damping effect by using a special dustproof material. In other words, the optimum vibration isolator by checking the floor vibration reduction effect and arranging the results while changing the physical properties (elastic coefficient, Poisson's ratio, damping ratio) or thickness of the viscoelastic material constituting the vibration isolator 21 in the vibration isolator 20 (20) is presented. Specifically, as an analysis result through the embodiment, the present invention is a viscoelastic material constituting the vibration isolator 21 in the vibration isolator 20, the elastic modulus (E) is 5.0 × 10 5 ~ 1.1 × 10 6 Pa and Poisson's ratio ( (v) is 0.3 to 0.499 and viscoelastic material having material damping ratio (ξ) of 0.05 to 0.35, or viscoelastic material having elastic modulus (E) of 1.0 × 10 5 to 5.0 × 10 5 Pa. Viscoelastic material with a material damping ratio (ξ) of 0.15 to 0.35 or Poisson's ratio (0.4) of 0.4 to 0.499 and a material damping ratio (ξ) of 0.25 to 0.35, or an elastic modulus of 1.1 × 10 6 to 1.3 × 10 6 Pa and a Poisson Viscoelastic material with ratio (υ) of 0.3 to 0.499 and material damping ratio (ξ) of 0.05 to 0.25, or elastic modulus of 1.3 × 10 6 to 2.5 × 10 6 Pa and Poisson's ratio (υ) of 0.3 to 0.499 It is proposed that viscoelastic material having ξ) is 0.05 to 0.15.

특히, 본 발명에서는 철골보(10)의 길이방향 양단부에 방진장치(20)를 설치하고 중앙부에 전단스터드(30)를 설치하여 중앙부에서만 철골보(10)와 콘크리트슬래브(40)의 합성 거동시킬 것을 제안하는데, 이는 철골보(10)와 콘크리트슬래브(40)의 합성구조의 요구내력 곡선에 대응한 형태로 방진장치(20)의 최적화된 설치가 된다. 이때, 전단스터드(30)에 의한 합성구간은 최소한의 정모멘트 구간을 포함하는 것이 바람직하다. Particularly, in the present invention, it is proposed to install the anti-vibration device 20 at both ends in the longitudinal direction of the cheolgolbo 10 and to install the shear stud 30 at the center to synthesize the behavior of the cheolgolbo 10 and concrete slab 40 only in the center. This is an optimized installation of the anti-vibration device 20 in the form corresponding to the required strength curve of the composite structure of the cheolgolbo 10 and the concrete slab 40. At this time, it is preferable that the composite section by the shear stud 30 includes a minimum static moment section.

한편, 본 발명에 따른 바닥진동 감쇠시스템에서 상기 콘크리트슬래브(40)는, 상기 방진장치(20)의 상부철판(22a)과 철골보(10)의 중앙부에 위치한 상부플랜지(11)에 거치되어 철골보(10) 상호간을 연결하도록 설치되는 철판데크(41);와, 상기 철판데크(41) 위로 타설되는 현장콘크리트(42);를 포함하여 구성할 수 있다. 이때, 상기 철판데크(41)는 철판을 골형으로 절곡하여 제작한 골데크, 철판에 트러스철근이 접합된 트러스데크 등을 채택할 수 있다. 또한 상기 철판데크(41)는 철골보(10)의 중앙부에 위치한 상부플랜지(11)에 스폿용접 등의 방법으로 접합하여 거치상태를 고정할 수 있다.On the other hand, in the floor vibration damping system according to the present invention, the concrete slab 40 is mounted on the upper flange 11 located in the center of the upper steel plate 22a and the cheolgolbo 10 of the dustproof device 20 is cheolgolbo ( 10) the iron plate deck 41 is installed so as to connect with each other; and, the site concrete 42 is poured onto the iron plate deck 41; can be configured to include. At this time, the iron plate deck 41 may be adopted in the bone deck made by bending the iron plate, truss deck bonded to the truss reinforcement to the iron plate. In addition, the iron plate deck 41 may be bonded to the upper flange 11 located in the center of the cheolgolbo 10 by spot welding or the like to fix the mounting state.

이와 같이 본 발명은 철골보(10)와 콘크리트슬래브(40)의 경계에 방진장치(20)를 설치하는 것으로 바닥진동 감쇠시스템을 완성하므로, 종래의 철골보(10)를 그대로 적용할 수 있는 것은 물론 종래의 시공방법을 따르면서 간편하게 현장 적용할 수 있다.As such, the present invention completes the floor vibration damping system by installing the vibration isolator 20 at the boundary between the cheolgolbo 10 and the concrete slab 40, so that the conventional cheolgolbo 10 can be applied as it is. It can be easily applied on site while following construction method.

이하에서는 진동해석을 통한 실시예에 의거하여 본 발명을 살펴본다. Hereinafter, look at the present invention based on the embodiment through the vibration analysis.

[실시예]EXAMPLE

1. 해석방법1. Method of interpretation

(1)해석기법(1) Analysis technique

앤시스(ANSYS)를 이용하여 해석을 수행하였다. 특히, 점탄성재료 부분의 접촉(contact) 모델링방법은 merge, contact(bonded), MPC(Multi Point Contact) 등의 옵션 가운데 예비해석 결과 가장 유사한 거동을 나타내는 것으로 판단되는 contact(bonded) 옵션으로 입력하였다. 점탄성재료의 비선형 물성치는 실험에 의해 도출되므로 해석에서는 선형재료로 가정해서 입력하였으며, 기하선형/비선형해석을 수행한 결과 응답들이 비슷한 양상을 나타내어 기하선형으로 해석하였다. The analysis was performed using ANSYS. In particular, the contact modeling method of the viscoelastic material portion was entered as a contact (bonded) option that is considered to have the most similar behavior as a result of preliminary analysis among the options such as merge, contact (bonded), and multi point contact (MPC). Since the nonlinear properties of viscoelastic materials are derived from experiments, they are assumed to be linear materials in the analysis. The results of the geometric and nonlinear analyzes show that the responses are similar and are interpreted geometrically.

(2)해석모델(2) Analysis model

도 2a 내지 도 2c에서와 같이 양단부에만 방진장치를 설치하는 단순보를 모델로 하중재하를 통해 해석을 수행하였으며, 해석모델에 대한 물성특성은 [표 1]과 [표 2]와 같다. 한편, 방진장치를 적용하지 아니한 구조체(Fully composite)의 고유진동수는 4.99Hz이고, 방진장치를 적용한 구조체(50% composite)의 고유진동수는 방진재의 점탄성 재료의 탄성계수에 따라 변화가 생긴다.As shown in Figures 2a to 2c, the analysis was carried out through the load of a simple beam having a vibration isolator installed only at both ends as a model, the physical properties of the analysis model is shown in [Table 1] and [Table 2]. On the other hand, the natural frequency of the structure (Fully composite) without the vibration isolator is 4.99Hz, the natural frequency of the structure (50% composite) with the vibration isolator changes depending on the elastic modulus of the viscoelastic material of the vibration isolator.

구조체 특성Structure properties 슬래브 Slab 콘크리트 concrete 폭(3m), 두께(150mm), 길이(12m)Width (3m), Thickness (150mm), Length (12m) E=24000MPa, 프와송비=0.167, 질량=2.4ton/㎥, 재료감쇠비=0.01E = 24000MPa, Poisson's ratio = 0.167, Mass = 2.4ton / ㎥, material damping ratio = 0.01 데크 Deck 평데크Flat deck E=206000MPa, 프와송비=0.3, 질량=7.85ton/㎥, 재료감쇠비=0.002E = 206000MPa, Poisson's ratio = 0.3, Mass = 7.85ton / ㎥, material damping ratio = 0.002 철골보Cheolgolbo H- 450 * 200 * 9 * 14H-450 * 200 * 9 * 14 E=206000MPa, 프와송비=0.3, 질량=7.85ton/㎥, 재료감쇠비=0.002E = 206000MPa, Poisson's ratio = 0.3, Mass = 7.85ton / ㎥, material damping ratio = 0.002

방진장치 특성Dustproof device characteristics 방진장치(sandwich 형식)=하부철판(1㎜)+방진재(점탄성재료)+상부철판(1mm)Anti-vibration device (sandwich type) = lower steel plate (1 mm) + dustproof material (viscoelastic material) + upper steel plate (1 mm) 점탄성 재료 Viscoelastic material 두께(Thk)Thickness 탄성계수(E)Modulus of elasticity (E) 포아송비(υ)Poisson's Ratio (υ) 재료감쇠비(ξ)Material Attenuation Ratio (ξ) 1 ㎜1 mm 1.0e5 Pa 5.0e5 Pa 1.0e6 Pa 2.5e6 Pa 5.0e6 Pa 1.0e7 Pa 5.0e7 Pa1.0e5 Pa 5.0e5 Pa 1.0e6 Pa 2.5e6 Pa 5.0e6 Pa 1.0e7 Pa 5.0e7 Pa 0.3 0.4 0.499 0.3 0.4 0.499 0.05 0.15 0.25 0.350.05 0.15 0.25 0.35 1 ㎜ 2 ㎜ 3 ㎜1 mm 2 mm 3 mm 5.0e5 Pa5.0e5 Pa 0.4990.499 0.250.25 1.0e6 Pa1.0e6 Pa 0.40.4 0.150.15

2. 해석결과2. Result of Analysis

(1)점탄성 재료의 물성 변화에 따른 해석결과(1) Analysis results according to the change of physical properties of viscoelastic material

일정 두께(1㎜)의 점탄성 재료의 물성(탄성계수, 포아송비, 재료감쇠비)을 변화시키면서 해석한 결과는 [표 3], [표 4], [표 5]와 같이 나타났다. The analysis results while changing the physical properties (elastic coefficient, Poisson's ratio, material damping ratio) of the viscoelastic material having a predetermined thickness (1 mm) are shown in Tables 3, 4, and 5.

점탄성 재료의 물성 변화에 따른 해석결과1Analysis Results According to Variation of Physical Properties of Viscoelastic Material 1 E (탄성계수) E (elastic coefficient) 1.0e5 Pa1.0e5 Pa 5.0e5 Pa5.0e5 Pa υ (포아송비) υ (Poisson's Ratio) ζ (재료 감쇠비) ζ (material damping ratio) ζ (구조 감쇠비) (%) ζ (structural damping ratio) (%) max. Accel. (최대'가속도) (m/s2) max. Accel. (Maximum'acceleration) (m / s 2 ) Basic (감쇠장치 미적용)Basic (without damper) ζ (구조 감쇠비) ζ (structural damping ratio) max. Accel. (최대 가속도) (m/s2) max. Accel. (Maximum acceleration) (m / s 2 ) Basic (감쇠장치 미적용)Basic (without damper) ζ(%) (구조 감쇠비) 0.91ζ (%) (structural damping ratio) 0.91 max. Accel. (m/s2) 0.0295max. Accel. (m / s 2 ) 0.0295 ζ(%) (구조 감쇠비) 0.91ζ (%) (structural damping ratio) 0.91 max. Accel. (m/s2) 0.0295max. Accel. (m / s 2 ) 0.0295 Additional damping(%)Additional damping (%) 응답값 저감율(%)Response value reduction rate (%) Additional damping(%)Additional damping (%) 응답값 저감율(%)Response value reduction rate (%) 0.30.3 0.050.05 2.12.1 0.01940.0194 1.21.2 34.1234.12 3.13.1 0.01260.0126 2.22.2 57.2557.25 0.150.15 3.03.0 0.01470.0147 2.12.1 50.0350.03 5.25.2 0.00940.0094 4.34.3 68.1468.14 0.250.25 3.93.9 0.01130.0113 3.03.0 61.6461.64 5.05.0 0.00900.0090 4.14.1 69.4469.44 0.350.35 4.64.6 0.01000.0100 3.73.7 66.1266.12 4.44.4 0.01080.0108 3.53.5 63.2563.25 0.40.4 0.050.05 1.91.9 0.02160.0216 1.01.0 26.8126.81 2.92.9 0.01380.0138 2.02.0 53.3853.38 0.150.15 2.82.8 0.01610.0161 1.91.9 45.4245.42 5.15.1 0.00960.0096 4.24.2 67.5667.56 0.250.25 3.73.7 0.01270.0127 2.82.8 57.0757.07 5.25.2 0.00880.0088 4.34.3 70.2470.24 0.350.35 4.44.4 0.01000.0100 3.53.5 66.1366.13 4.64.6 0.01040.0104 3.73.7 64.9164.91 0.4990.499 0.050.05 1.41.4 0.02680.0268 0.50.5 9.079.07 2.72.7 0.01410.0141 1.81.8 52.3052.30 0.150.15 2.42.4 0.01810.0181 1.51.5 38.7638.76 5.05.0 0.00980.0098 4.14.1 66.9266.92 0.250.25 3.33.3 0.01370.0137 2.42.4 53.7353.73 5.25.2 0.00870.0087 4.34.3 70.5970.59 0.350.35 4.14.1 0.01060.0106 3.23.2 64.1064.10 4.74.7 0.01020.0102 3.83.8 65.3065.30

점탄성 재료의 물성 변화에 따른 해석결과2Analysis Results According to Variation of Physical Properties of Viscoelastic Material2 EE 1.0e6 Pa1.0e6 Pa 2.5e6 Pa2.5e6 Pa 5.0e6 Pa5.0e6 Pa υυ ζζ ζ ζ max. Accel. max. Accel. BasicBasic ζ ζ max. Accel. max. Accel. BasicBasic ζ ζ max. Accel. max. Accel. BasicBasic ζ 0.91ζ 0.91 max. Accel. 0.0295max. Accel. 0.0295 ζ 0.91ζ 0.91 max. Accel. 0.0295max. Accel. 0.0295 ζ 0.91ζ 0.91 max. Accel. 0.0295max. Accel. 0.0295 Add. dampingAdd. damping 응답값 저감률Response value reduction rate Add. damping Add. damping 응답값 저감률Response value reduction rate Add. dampingAdd. damping 응답값 저감률Response value reduction rate 0.30.3 0.050.05 3.63.6 0.01270.0127 2.72.7 56.9456.94 3.23.2 0.01240.0124 2.32.3 57.9657.96 2.52.5 0.01790.0179 1.61.6 39.3239.32 0.150.15 4.34.3 0.01070.0107 3.43.4 63.7363.73 2.52.5 0.01620.0162 1.61.6 45.0845.08 1.91.9 0.02050.0205 1One 30.5030.50 0.250.25 3.43.4 0.01340.0134 2.52.5 54.5854.58 2.02.0 0.01910.0191 1.11.1 35.2535.25 1.51.5 0.02240.0224 0.60.6 24.0624.06 0.350.35 2.82.8 0.01490.0149 1.91.9 49.4949.49 1.71.7 0.02070.0207 0.80.8 29.8329.83 1.21.2 0.02370.0237 0.30.3 19.6619.66 0.40.4 0.050.05 3.53.5 0.01280.0128 2.62.6 56.6156.61 3.33.3 0.0120.012 2.42.4 59.3259.32 2.52.5 0.01750.0175 1.61.6 40.6740.67 0.150.15 4.54.5 0.010.01 3.63.6 66.166.1 2.72.7 0.01580.0158 1.81.8 46.4446.44 1.81.8 0.02050.0205 0.90.9 30.5030.50 0.250.25 3.63.6 0.01290.0129 2.72.7 56.2756.27 2.02.0 0.01910.0191 1.11.1 35.2535.25 1.51.5 0.02220.0222 0.60.6 24.7424.74 0.350.35 2.92.9 0.01440.0144 22 51.1951.19 1.71.7 0.0210.021 0.80.8 28.8128.81 1.31.3 0.02340.0234 0.40.4 20.6720.67 0.4990.499 0.050.05 3.43.4 0.01320.0132 2.52.5 55.2555.25 3.33.3 0.0120.012 2.42.4 59.3259.32 2.62.6 0.01730.0173 1.71.7 41.3541.35 0.150.15 4.54.5 0.01020.0102 3.63.6 65.4265.42 2.82.8 0.01560.0156 1.91.9 47.1147.11 1.91.9 0.02050.0205 1One 30.5030.50 0.250.25 3.73.7 0.01260.0126 2.82.8 57.2957.29 2.22.2 0.01880.0188 1.31.3 36.2736.27 1.51.5 0.02180.0218 0.60.6 26.1026.10 0.350.35 3.03.0 0.0140.014 2.12.1 52.5452.54 1.81.8 0.02030.0203 0.90.9 31.1831.18 1.31.3 0.02320.0232 0.40.4 21.3521.35

점탄성 재료의 물성 변화에 따른 해석결과3Analysis Results According to Variation of Physical Properties of Viscoelastic Material3 EE 1.0e7 Pa1.0e7 Pa 5.0e7 Pa5.0e7 Pa υυ ζζ ζ ζ max. Accel. max. Accel. BasicBasic ζ ζ max. Accel. max. Accel. BasicBasic ζ 0.91ζ 0.91 max. Accel. 0.0295max. Accel. 0.0295 ζ 0.91ζ 0.91 max. Accel. 0.0295max. Accel. 0.0295 Add. dampingAdd. damping 응답값 저감률Response value reduction rate Add. dampingAdd. damping 응답값 저감률Response value reduction rate 0.30.3 0.050.05 1.71.7 0.02210.0221 0.790.79 25.0825.08 1.01.0 0.0270.027 0.090.09 8.478.47 0.150.15 1.31.3 0.02370.0237 0.390.39 19.6619.66 0.90.9 0.02830.0283 -0.01-0.01 4.064.06 0.250.25 1.11.1 0.0250.025 0.190.19 15.2515.25 0.90.9 0.0280.028 -0.01-0.01 5.085.08 0.350.35 1.01.0 0.0260.026 0.090.09 11.8611.86 0.80.8 0.02820.0282 -0.11-0.11 4.404.40 0.40.4 0.050.05 1.81.8 0.02170.0217 0.890.89 26.4426.44 1.11.1 0.02780.0278 0.190.19 5.765.76 0.150.15 1.31.3 0.02340.0234 0.390.39 20.6720.67 0.90.9 0.02820.0282 -0.01-0.01 4.404.40 0.250.25 1.11.1 0.02490.0249 0.190.19 15.5915.59 0.90.9 0.02790.0279 -0.01-0.01 5.425.42 0.350.35 1.01.0 0.02580.0258 0.090.09 12.5412.54 0.80.8 0.0280.028 -0.11-0.11 5.085.08 0.4990.499 0.050.05 1.91.9 0.02150.0215 0.990.99 27.1127.11 1.11.1 0.02810.0281 0.190.19 4.744.74 0.150.15 1.31.3 0.02360.0236 0.390.39 2020 0.90.9 0.02830.0283 -0.01-0.01 4.064.06 0.250.25 1.11.1 0.02470.0247 0.190.19 16.2716.27 0.90.9 0.02790.0279 -0.01-0.01 5.425.42 0.350.35 1.01.0 0.02560.0256 0.090.09 13.2213.22 0.80.8 0.02810.0281 -0.11-0.11 4.744.74

상기 [표 3], [표 4], [표 5]의 해석결과를 정리하면 도 3a 내지 도 3c와 같은 그래프 양상으로 나타낼 수 있다.If the analysis results of the above [Table 3], [Table 4], [Table 5] can be summarized as shown in Figure 3a to 3c.

도 3a에서 보는 바와 같이 점탄성 재료에 의한 방진재를 구비하면 전반적으로 최대 가속도 응답이 작아져 바닥진동 감쇠효과가 나타남을 알 수 있다. 특히, 점탄성 재료의 탄성계수(E)가 작을수록 점탄성 재료의 재료감쇠비와 포아송비에 무관하게 최대 가속도 응답이 작아져 바닥진동 감쇠효과가 우수함을 알 수 있다. As shown in FIG. 3A, when the vibration isolator is made of a viscoelastic material, the maximum acceleration response is generally reduced, resulting in the damping effect of the floor vibration. In particular, as the elastic modulus (E) of the viscoelastic material is smaller, the maximum acceleration response becomes smaller regardless of the material damping ratio and the Poisson's ratio of the viscoelastic material.

다만, 일반적으로 철골조 건물의 바닥진동은 최대가속도 응답이 2.5~3.5gal(cm/sec2) 내외(해석모델에서는 2.95gal)로서 일반적인 사람들이 약하게 인지하는 수준에 해당(민감한 사람들에게는 강하게 인지되는 수준)하고 1.5gal 이하일 때 대부분의 사람들이 진동을 인지하지 못하는 수준(2004년 건교부 R&D 보고서 "고층건물의 수직·수평진동 측정 및 제한기준 개발" 참조)에 해당하므로, 이를 감안하여 본 발명에서는 최대가속도 응답이 대략 1.5gal 이하(응답값 저감률 대략 50% 이상)로 나타나는 점탄성 재료를 제안하다. However, in general, the floor vibration of steel frame buildings has a maximum acceleration response of about 2.5 ~ 3.5gal (cm / sec 2 ) (2.95gal in the analysis model), which corresponds to the level that general people are weakly perceived (strongly recognized by sensitive people). And 1.5 gallons or less, most people are not aware of vibration (see 2004 R & D Report "Development of Limits and Measurements of Vertical and Horizontal Vibration of Tall Buildings"). A viscoelastic material is proposed which exhibits a response of approximately 1.5 gal or less (a response rate reduction rate of approximately 50% or more).

[표 1], [표 2], [표 3], 그리고 도 3b와 도 3c를 종합할 때, 최대가속도가 1.5gal 이하(응답값 저감률 대략 50% 이상)로 나타나는 점탄성 재료는, (ⅰ)탄성계수(E)가 5.0×105~1.1×106Pa이고 포아송비(υ)가 0.3~0.499이며 재료감쇠비(ξ)가 0.05~0.35인 점탄성 재료, (ⅱ)탄성계수(E)가 1.0×105~5.0×105Pa이고 포아송비(υ)가 0.3~0.4이며 재료감쇠비(ξ)가 0.15~0.35인 점탄성 재료, (ⅲ)탄성계수(E)가 1.0×105~5.0×105Pa이고 포아송비(υ)가 0.4~0.499이며 재료감쇠비(ξ)가 0.25~0.35인 점탄성 재료, (ⅳ)탄성계수가 1.1×106~1.3×106Pa이고 포아송비(υ)가 0.3~0.499이며 재료감쇠비(ξ)가 0.05~0.25인 점탄성 재료, (ⅴ)탄성계수가 1.3×106~2.5×106Pa이고 포아송비(υ)가 0.3~0.499이며 재료감쇠비(ξ)가 0.05~0.15인 점탄성 재료를 들 수 있다.When combining Table 1, Table 2, Table 3, and FIGS. 3B and 3C, the viscoelastic material exhibiting a maximum acceleration of 1.5 gal or less (response reduction rate of approximately 50% or more) is (ⅰ). Viscoelastic material (E) of 5.0 × 10 5 to 1.1 × 10 6 Pa, Poisson's ratio (υ) of 0.3 to 0.499 and material damping ratio (ξ) of 0.05 to 0.35, (ii) Elastic modulus (E) of Viscoelastic material with 1.0 × 10 5 to 5.0 × 10 5 Pa, Poisson's ratio 0.3 to 0.4 and material attenuation ratio 0.15 to 0.35, (e) elastic modulus (E) 1.0 × 10 5 to 5.0 × Viscoelastic material with 10 5 Pa, Poisson's ratio 0.4 to 0.499, material damping ratio ξ 0.25 to 0.35, (v) elastic modulus of 1.1 × 10 6 to 1.3 × 10 6 Pa and Poisson's ratio (υ) Viscoelastic material with a material damping ratio (ξ) of 0.05 to 0.25, viscoelastic coefficient of 1.3 × 10 6 to 2.5 × 10 6 Pa, Poisson's ratio of 0.3 to 0.499, and material damping ratio of The viscoelastic material which is 0.05-0.15 is mentioned.

(2)점탄성 재료의 두께에 따른 해석결과(2) Analysis results according to the thickness of the viscoelastic material

일정 물성의 점탄성 재료의 두께를 변화시키면서 해석한 결과, [표 6]과 같이 나타났다. 앞서 점탄성 재료의 물성에 따른 해석결과에서 가장 우수한 것으로 확인된 물성의 점탄성 재료를 선택하고 이에 대한 해석을 수행한 결과이다.As a result of analyzing the thickness of the viscoelastic material of a certain physical property, it appeared as [Table 6]. It is the result of selecting the viscoelastic material of the physical property which was confirmed as the most excellent in the analysis result according to the physical property of the viscoelastic material, and analyzing it.

점탄성 재료의 두께에 따른 해석결과Analysis result according to thickness of viscoelastic material EE 5.0e5 Pa5.0e5 Pa 1.0e6 Pa1.0e6 Pa υ υ ζ ζ Thk (mm)Thk (mm) ζ ζ max. Accel. max. Accel. Basic Basic ζ ζ max. Accel. max. Accel. Basic Basic ζ 0.91 ζ 0.91 max. Accel. 0.0295 max. Accel. 0.0295 ζ 0.91 ζ 0.91 max. Accel. 0.0295 max. Accel. 0.0295 Add. dampingAdd. damping 응답값 저감률Response value reduction rate Add. dampingAdd. damping 응답값 저감률Response value reduction rate 0.4990.499 0.250.25 1mm1 mm 5.25.2 0.00870.0087 4.34.3 70.5970.59 4.54.5 0.01020.0102 3.593.59 65.3065.30 2mm2 mm 5.25.2 0.00890.0089 4.34.3 69.6769.67 5.15.1 0.00950.0095 4.194.19 67.7667.76 3mm3 mm 4.44.4 0.00990.0099 3.53.5 66.3366.33 4.84.8 0.00940.0094 3.893.89 68.2468.24

상기 [표 6]의 해석결과를 정리하면 도 4와 같은 그래프 양상으로 나타낼 수 있다. [표 6]과 도 4에서 보는 바와 같이 점탄성 재료의 두께는 최대가속도 응답에 큰 영향을 미치지 못하는 것으로 나타났다. 다만, 시공성과 경제성을 고려한다면 점탄성 재료의 두께는 1㎜가 바람직하겠다.In summary, the analysis results of Table 6 may be represented in a graph form as shown in FIG. 4. As shown in Table 6 and Figure 4, the thickness of the viscoelastic material did not appear to have a significant effect on the maximum acceleration response. However, considering the workability and economy, the thickness of the viscoelastic material is preferably 1 mm.

이상에서 본 발명은 구체적인 실시예를 참조하여 상세히 설명되었으나, 실시예는 본 발명의 예시하기 위한 것일 뿐이므로, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 치환, 부가 및 변형된 실시 형태들 역시 아래에 첨부한 특허청구범위에 의하여 정하여지는 본 발명의 보호범위에 속한다고 할 것이다.The present invention has been described in detail above with reference to specific embodiments, but since the embodiments are only intended to illustrate the present invention, the embodiments substituted, added, and modified within the scope without departing from the spirit of the present invention are also described below. It will be said to belong to the protection scope of the present invention as defined by the claims appended hereto.

도 1은 방진층에 의한 방진효과의 개념을 도시한다.1 shows the concept of the dustproof effect by the dustproof layer.

도 2a 내지 도 2c는 점탄성 재료의 방진효과를 위한 확인하기 위한 해석조건을 보여준다.Figures 2a to 2c shows the analysis conditions for checking for the dustproof effect of the viscoelastic material.

도 3a 내지 도 3c는 점탄성 재료의 물성에 따른 해석결과를 보여준다.3A to 3C show analysis results according to physical properties of viscoelastic materials.

도 4는 점탄성 재료의 두께에 따른 해석결과를 보여준다.Figure 4 shows the analysis results according to the thickness of the viscoelastic material.

<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>

10: 철골보 10: Cheolgolbo

11: 상부플랜지11: upper flange

20: 방진장치 20: dustproof device

21: 방진재21: dustproof material

22a: 상부철판 22a: upper plate

22b: 하부철판22b: bottom plate

30: 전단스터드30: Shear Stud

40: 콘크리트슬래브40: concrete slab

41: 철판데크41: iron plate deck

42: 현장콘크리트42: Field Concrete

Claims (6)

상부플랜지(11)를 갖는 철골보(10); Cheolgolbo (10) having an upper flange (11); 상기 철골보의 상부플랜지(11) 상부표면에 접합 설치되는 전단스터드(30);Shear studs 30 are attached to the upper surface of the upper flange 11 of the cheolgolbo; 상기 전단스터드(30)를 매입시키면서 철골보(10) 위로 시공되는 콘크리트슬래브(40); 및,Concrete slab 40 is constructed on the cheolgolbo 10 while buying the shear stud 30; And, 상기 철골보의 상부플랜지(11)와 상기 콘크리트슬래브(40)의 하부면 사이에 설치되는 방진장치(20);를 포함하여 구성되되,And a dustproof device (20) installed between the upper flange (11) of the cheolgolbo and the lower surface of the concrete slab (40). 상기 방진장치(20)는,The dustproof device 20, 상부철판(22a);Upper plate 22a; 하부철판(22b);Lower iron plate 22b; 상기 상부철판(22a)과 하부철판(22b) 사이에 위치하며, 탄성계수(E)가 5.0×105~1.1×106Pa이고 포아송비(υ)가 0.3~0.499이며 재료감쇠비(ξ)가 0.05~0.35인 점탄성 재료에 의한 방진재(21);Located between the upper iron plate 22a and the lower iron plate 22b, the elastic modulus (E) is 5.0 × 10 5 ~ 1.1 × 10 6 Pa, Poisson's ratio (υ) 0.3 ~ 0.499 and material damping ratio (ξ) Dust-proof material 21 by a viscoelastic material that is 0.05 to 0.35; 를 포함하여 구성된 것임을 특징으로 하는 철골조 구조물의 바닥진동 감쇠시스템.Floor vibration damping system of a steel frame structure, characterized in that configured to include. 상부플랜지(11)를 갖는 철골보(10); Cheolgolbo (10) having an upper flange (11); 상기 철골보의 상부플랜지(11) 상부표면에 접합 설치되는 전단스터드(30);Shear studs 30 are attached to the upper surface of the upper flange 11 of the cheolgolbo; 상기 전단스터드(30)를 매입시키면서 철골보(10) 위로 시공되는 콘크리트슬래브(40); 및,Concrete slab 40 is constructed on the cheolgolbo 10 while buying the shear stud 30; And, 상기 철골보의 상부플랜지(11)와 상기 콘크리트슬래브(40)의 하부면 사이에 설치되는 방진장치(20);를 포함하여 구성되되,And a dustproof device (20) installed between the upper flange (11) of the cheolgolbo and the lower surface of the concrete slab (40). 상기 방진장치(20)는,The dustproof device 20, 상부철판(22a);Upper plate 22a; 하부철판(22b);Lower iron plate 22b; 상기 상부철판(22a)과 하부철판(22b) 사이에 위치하며, 탄성계수(E)가 1.0×105~5.0×105Pa인 점탄성 재료로서 포아송비(υ)가 0.3~0.4이며 재료감쇠비(ξ)가 0.15~0.35이거나 포아송비(υ)가 0.4~0.499이며 재료감쇠비(ξ)가 0.25~0.35인 점탄성 재료에 의한 방진재(21);A viscoelastic material having an elastic modulus (E) of 1.0 × 10 5 to 5.0 × 10 5 Pa, which is located between the upper iron plate 22a and the lower iron plate 22b, and has a Poisson's ratio (υ) of 0.3 to 0.4 and a material damping ratio ( dust-proof material 21 made of viscoelastic material having ξ) of 0.15 to 0.35 or Poisson's ratio of 0.4 to 0.499 and a material attenuation ratio of 0.25 to 0.35; 를 포함하여 구성된 것임을 특징으로 하는 철골조 구조물의 바닥진동 감쇠시스템.Floor vibration damping system of a steel frame structure, characterized in that configured to include. 상부플랜지(11)를 갖는 철골보(10); Cheolgolbo (10) having an upper flange (11); 상기 철골보의 상부플랜지(11) 상부표면에 접합 설치되는 전단스터드(30);Shear studs 30 are attached to the upper surface of the upper flange 11 of the cheolgolbo; 상기 전단스터드(30)를 매입시키면서 철골보(10) 위로 시공되는 콘크리트슬 래브(40); 및,Concrete slab 40 is constructed on the cheolgolbo 10 while buying the shear stud 30; And, 상기 철골보의 상부플랜지(11)와 상기 콘크리트슬래브(40)의 하부면 사이에 설치되는 방진장치(20);를 포함하여 구성되되,And a dustproof device (20) installed between the upper flange (11) of the cheolgolbo and the lower surface of the concrete slab (40). 상기 방진장치(20)는,The dustproof device 20, 상부철판(22a);Upper plate 22a; 하부철판(22b);Lower iron plate 22b; 상기 상부철판(22a)과 하부철판(22b) 사이에 위치하며, 탄성계수가 1.1×106~1.3×106Pa이고 포아송비(υ)가 0.3~0.499이며 재료감쇠비(ξ)가 0.05~0.25인 점탄성 재료에 의한 방진재(21);Located between the upper iron plate (22a) and the lower iron plate (22b), the elastic modulus is 1.1 × 10 6 ~ 1.3 × 10 6 Pa, Poisson's ratio (υ) is 0.3 ~ 0.499, material damping ratio (ξ) is 0.05 ~ 0.25 A dustproof material 21 made of a phosphorus viscoelastic material; 를 포함하여 구성된 것임을 특징으로 하는 철골조 구조물의 바닥진동 감쇠시스템.Floor vibration damping system of a steel frame structure, characterized in that configured to include. 상부플랜지(11)를 갖는 철골보(10); Cheolgolbo (10) having an upper flange (11); 상기 철골보의 상부플랜지(11) 상부표면에 접합 설치되는 전단스터드(30);Shear studs 30 are attached to the upper surface of the upper flange 11 of the cheolgolbo; 상기 전단스터드(30)를 매입시키면서 철골보(10) 위로 시공되는 콘크리트슬래브(40); 및,Concrete slab 40 is constructed on the cheolgolbo 10 while buying the shear stud 30; And, 상기 철골보의 상부플랜지(11)와 상기 콘크리트슬래브(40)의 하부면 사이에 설치되는 방진장치(20);를 포함하여 구성되되,And a dustproof device (20) installed between the upper flange (11) of the cheolgolbo and the lower surface of the concrete slab (40). 상기 방진장치(20)는,The dustproof device 20, 상부철판(22a);Upper plate 22a; 하부철판(22b);Lower iron plate 22b; 상기 상부철판(22a)과 하부철판(22b) 사이에 위치하며, 탄성계수가 1.3×106~2.5×106Pa이고 포아송비(υ)가 0.3~0.499이며 재료감쇠비(ξ)가 0.05~0.15인 점탄성 재료에 의한 방진재(21);Located between the upper iron plate (22a) and the lower iron plate (22b), the elastic modulus is 1.3 × 10 6 ~ 2.5 × 10 6 Pa, Poisson's ratio (υ) 0.3 ~ 0.499, material damping ratio (ξ) is 0.05 ~ 0.15 A dustproof material 21 made of a phosphorus viscoelastic material; 를 포함하여 구성된 것임을 특징으로 하는 철골조 구조물의 바닥진동 감쇠시스템.Floor vibration damping system of a steel frame structure, characterized in that configured to include. 제1항 내지 제4항 중 어느 한 항에서,The method according to any one of claims 1 to 4, 상기 방진장치(20)는 상기 철골보(10)의 길이방향 양단부에만 설치되며,The vibration isolator 20 is installed only at both ends of the longitudinal direction of the cheolgolbo 10, 상기 전단스터드(30)는 상기 방진장치(20)가 설치되지 아니한 철골보(10)의 길이방향 중앙부에만 설치되는 것을 특징으로 하는 철골조 구조물의 바닥진동 감쇠시스템.The shear stud 30 is the bottom vibration damping system of the steel frame structure, characterized in that is installed only in the longitudinal center portion of the cheolgolbo 10 is not installed. 제5항에서,In claim 5, 상기 콘크리트슬래브(40)는,The concrete slab 40, 상기 방진장치의 상부철판(22a)과 철골보(10)의 중앙부에 위치한 상부플랜지(11)에 거치되어 철골보(10) 상호간을 연결하도록 설치되는 철판데크(41);와,Iron plate deck (41) mounted on the upper flange (11) located in the center of the upper steel plate (22a) and the cheolgolbo 10 of the anti-vibration device to be connected to each other cheolgolbo 10; 상기 철판데크(41) 위로 타설되는 현장콘크리트(42);On-site concrete 42 is poured over the iron plate deck (41); 를 포함하여 구성된 것임을 특징으로 하는 철골조 구조물의 바닥진동 감쇠시스템.Floor vibration damping system of a steel frame structure, characterized in that configured to include.
KR1020080104848A 2008-10-24 2008-10-24 Floor vibration damping system of steel structure KR100997191B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080104848A KR100997191B1 (en) 2008-10-24 2008-10-24 Floor vibration damping system of steel structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080104848A KR100997191B1 (en) 2008-10-24 2008-10-24 Floor vibration damping system of steel structure

Publications (2)

Publication Number Publication Date
KR20100045759A true KR20100045759A (en) 2010-05-04
KR100997191B1 KR100997191B1 (en) 2010-11-29

Family

ID=42273360

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080104848A KR100997191B1 (en) 2008-10-24 2008-10-24 Floor vibration damping system of steel structure

Country Status (1)

Country Link
KR (1) KR100997191B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113718978A (en) * 2021-09-07 2021-11-30 中国科学院武汉岩土力学研究所 Damping beam structure based on rubber concrete damping layer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101434479B1 (en) * 2012-11-29 2014-09-18 삼성중공업 주식회사 Vibration proof structure for floor of ship

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4355302B2 (en) 2005-05-24 2009-10-28 大成建設株式会社 Floating floor vibration control structure
KR100787492B1 (en) 2007-03-15 2007-12-21 삼성중공업 주식회사 Composite system of steel beam-concrete slab for damping

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113718978A (en) * 2021-09-07 2021-11-30 中国科学院武汉岩土力学研究所 Damping beam structure based on rubber concrete damping layer

Also Published As

Publication number Publication date
KR100997191B1 (en) 2010-11-29

Similar Documents

Publication Publication Date Title
CN101864846B (en) Embedded shock-absorption steel frame for seismic hardening
Kian The use of outrigger and belt truss system for high-rise concrete buildings
CN106436558A (en) Three-way limiting buffering bridge anti-seismic stop dog structure and arranging and installing method
CN106368349A (en) Fabricated buckling-resistant steel plate damping wall capable of being combined in parallel flexibly
CN108590301B (en) Electric eddy current type coupling beam damper
KR100997191B1 (en) Floor vibration damping system of steel structure
JP5338050B2 (en) Damping building, Building damping method, Reinforced concrete building, Reinforced concrete building lengthening method
JP5403331B2 (en) Seismic control frame
JP2014111864A (en) Beam reinforcing member and installation structure of stud in existing building
KR100787492B1 (en) Composite system of steel beam-concrete slab for damping
JP5615599B2 (en) Vibration control device and building
KR20100102406A (en) Floor structure for reducing impact sound by heavyweight bodies
JP4272253B1 (en) Reinforcement structure of existing building
JPH09170353A (en) Damping structure for existing building
JP5236574B2 (en) Steel structure floor structure system
JP2005133533A (en) Damping wall
CN104480849A (en) Rail transit noise reduction box type bridge and external bonding noise reduction method of rail transit box type bridge
JPH03235856A (en) Earthquake-isolating steel structural beam
JP5028999B2 (en) Double floor structure
JP5235530B2 (en) Damping structure with damping damper
JP2004300912A (en) Vibration control damper coping with habitability
CN215926430U (en) Assembled floor shock attenuation sound insulation structure
JP5464814B2 (en) Composite structure building
JP2008038559A (en) Vibration control wall
CN106049956B (en) Precast construction node energy-dissipating and shock-absorbing T-type damper

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20131113

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20141119

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20151001

Year of fee payment: 6

FPAY Annual fee payment

Payment date: 20161004

Year of fee payment: 7

LAPS Lapse due to unpaid annual fee