[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20100039353A - Method and system for producing lng - Google Patents

Method and system for producing lng Download PDF

Info

Publication number
KR20100039353A
KR20100039353A KR1020107001622A KR20107001622A KR20100039353A KR 20100039353 A KR20100039353 A KR 20100039353A KR 1020107001622 A KR1020107001622 A KR 1020107001622A KR 20107001622 A KR20107001622 A KR 20107001622A KR 20100039353 A KR20100039353 A KR 20100039353A
Authority
KR
South Korea
Prior art keywords
gas
fractionation column
heat exchanger
cooling
stream
Prior art date
Application number
KR1020107001622A
Other languages
Korean (ko)
Other versions
KR101568763B1 (en
Inventor
인게 스베레 룬트 닐센
Original Assignee
칸파 아라곤 에이에스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 칸파 아라곤 에이에스 filed Critical 칸파 아라곤 에이에스
Publication of KR20100039353A publication Critical patent/KR20100039353A/en
Application granted granted Critical
Publication of KR101568763B1 publication Critical patent/KR101568763B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0285Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings
    • F25J1/0288Combination of different types of drivers mechanically coupled to the same refrigerant compressor, possibly split on multiple compressor casings using work extraction by mechanical coupling of compression and expansion of the refrigerant, so-called companders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/14Fractional distillation or use of a fractionation or rectification column
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/08Production of synthetic natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/0002Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the fluid to be liquefied
    • F25J1/0022Hydrocarbons, e.g. natural gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0032Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration"
    • F25J1/0035Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work
    • F25J1/0037Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using the feed stream itself or separated fractions from it, i.e. "internal refrigeration" by gas expansion with extraction of work of a return stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/005Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by expansion of a gaseous refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/003Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production
    • F25J1/0047Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle
    • F25J1/0052Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream
    • F25J1/0057Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the kind of cold generation within the liquefaction unit for compensating heat leaks and liquid production using an "external" refrigerant stream in a closed vapor compression cycle by vaporising a liquid refrigerant stream after expansion of the liquid refrigerant stream with extraction of work
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/007Primary atmospheric gases, mixtures thereof
    • F25J1/0072Nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0082Methane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/008Hydrocarbons
    • F25J1/0092Mixtures of hydrocarbons comprising possibly also minor amounts of nitrogen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/006Processes or apparatus for liquefying or solidifying gases or gaseous mixtures characterised by the refrigerant fluid used
    • F25J1/0097Others, e.g. F-, Cl-, HF-, HClF-, HCl-hydrocarbons etc. or mixtures thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0201Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration
    • F25J1/0202Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using only internal refrigeration means, i.e. without external refrigeration in a quasi-closed internal refrigeration loop
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0204Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a single flow SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0203Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle
    • F25J1/0205Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a single-component refrigerant [SCR] fluid in a closed vapor compression cycle as a dual level SCR refrigeration cascade
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0212Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a single flow MCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0211Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle
    • F25J1/0214Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle
    • F25J1/0215Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle
    • F25J1/0216Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process using a multi-component refrigerant [MCR] fluid in a closed vapor compression cycle as a dual level refrigeration cascade with at least one MCR cycle with one SCR cycle using a C3 pre-cooling cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0232Coupling of the liquefaction unit to other units or processes, so-called integrated processes integration within a pressure letdown station of a high pressure pipeline system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • F25J1/0238Purification or treatment step is integrated within one refrigeration cycle only, i.e. the same or single refrigeration cycle provides feed gas cooling (if present) and overhead gas cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0228Coupling of the liquefaction unit to other units or processes, so-called integrated processes
    • F25J1/0235Heat exchange integration
    • F25J1/0237Heat exchange integration integrating refrigeration provided for liquefaction and purification/treatment of the gas to be liquefied, e.g. heavy hydrocarbon removal from natural gas
    • F25J1/0239Purification or treatment step being integrated between two refrigeration cycles of a refrigeration cascade, i.e. first cycle providing feed gas cooling and second cycle providing overhead gas cooling
    • F25J1/0241Purification or treatment step being integrated between two refrigeration cycles of a refrigeration cascade, i.e. first cycle providing feed gas cooling and second cycle providing overhead gas cooling wherein the overhead cooling comprises providing reflux for a fractionation step
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0257Construction and layout of liquefaction equipments, e.g. valves, machines
    • F25J1/0275Construction and layout of liquefaction equipments, e.g. valves, machines adapted for special use of the liquefaction unit, e.g. portable or transportable devices
    • F25J1/0277Offshore use, e.g. during shipping
    • F25J1/0278Unit being stationary, e.g. on floating barge or fixed platform
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J1/00Processes or apparatus for liquefying or solidifying gases or gaseous mixtures
    • F25J1/02Processes or apparatus for liquefying or solidifying gases or gaseous mixtures requiring the use of refrigeration, e.g. of helium or hydrogen ; Details and kind of the refrigeration system used; Integration with other units or processes; Controlling aspects of the process
    • F25J1/0243Start-up or control of the process; Details of the apparatus used; Details of the refrigerant compression system used
    • F25J1/0279Compression of refrigerant or internal recycle fluid, e.g. kind of compressor, accumulator, suction drum etc.
    • F25J1/0294Multiple compressor casings/strings in parallel, e.g. split arrangement
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J3/00Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification
    • F25J3/02Processes or apparatus for separating the constituents of gaseous or liquefied gaseous mixtures involving the use of liquefaction or solidification by rectification, i.e. by continuous interchange of heat and material between a vapour stream and a liquid stream
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2210/00Processes characterised by the type or other details of the feed stream
    • F25J2210/06Splitting of the feed stream, e.g. for treating or cooling in different ways
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2220/00Processes or apparatus involving steps for the removal of impurities
    • F25J2220/60Separating impurities from natural gas, e.g. mercury, cyclic hydrocarbons
    • F25J2220/64Separating heavy hydrocarbons, e.g. NGL, LPG, C4+ hydrocarbons or heavy condensates in general
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/14External refrigeration with work-producing gas expansion loop
    • F25J2270/16External refrigeration with work-producing gas expansion loop with mutliple gas expansion loops of the same refrigerant
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25JLIQUEFACTION, SOLIDIFICATION OR SEPARATION OF GASES OR GASEOUS OR LIQUEFIED GASEOUS MIXTURES BY PRESSURE AND COLD TREATMENT OR BY BRINGING THEM INTO THE SUPERCRITICAL STATE
    • F25J2270/00Refrigeration techniques used
    • F25J2270/90External refrigeration, e.g. conventional closed-loop mechanical refrigeration unit using Freon or NH3, unspecified external refrigeration

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ocean & Marine Engineering (AREA)
  • Organic Chemistry (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

A method is described for production of LNG from an incoming feed gas (1) on an onshore or offshore installation, and it is characterised by the following steps: 1) the feed gas is led through a fractionation column (150) where it is cooled and separated in an overhead fraction with a reduced content of pentane (C5) and heavier components, and a bottom fraction enriched with heavier hydrocarbons, 2) the overhead fraction from the fractionation column is fed to a heat exchanger system (110) and is subjected to a partial condensation to form a two-phase fluid, and the two-phase fluid is separated in a suitable separator (160) into a liquid (5) rich in LPG and pentane (C3-C5) which is re-circulated as cold reflux to the fractionation column (150), while the gas (6) containing lower amounts of C5 hydrocarbons and hydrocarbons heavier than C5 is exported for further processing in the heat exchanger system (110) for liquefaction to LNG with a maximum content of ethane and LPG 3) the cooling circuit for liquefaction of gas in the heat exchanger system comprises an open or closed gas expansion process with at least one gas expansion step. A system for carrying out the method is also described.

Description

LNG를 생산하는 방법 및 시스템 {METHOD AND SYSTEM FOR PRODUCING LNG}METHOD AND SYSTEM FOR PRODUCING LNG

본 발명은 독립항 청구항 1의 전문에서 알 수 있는 바와 같이, 고정식 또는 부유식 해상 설비 상에서의 최적의 LNG 생산 방법에 관한 것이다.The invention relates to an optimal method for producing LNG on a fixed or floating offshore installation, as can be seen in the preamble of the independent claim 1.

본 발명은 또한 공급 가스를 공급하기 위한 분별 컬럼, 상기 분별 컬럼으로부터의 상부 가스 스트림을 냉각시키고 부분 응축시키기 위한 열교환기 시스템, 상기 열교환기 시스템으로부터 2-상 스트림을 분리하기 위한 분리기, 액체를 상기 분리기에서 상기 분별 컬럼으로 되돌려 보내고 이러한 액체를 리플럭스(reflux)로서 컬럼의 상단 부분으로 공급하기 위한 기구, 및 가스를 상기 분리기에서 LNG로의 추가 냉각 및 액화시키기 위한 열교환기 시스템으로 공급시키기 위한 기구를 포함하는, 상기 방법을 수행하기 위한 시스템에 관한 것이다.The invention also provides a fractionation column for supplying a feed gas, a heat exchanger system for cooling and partially condensing an upper gas stream from the fractionation column, a separator for separating a two-phase stream from the heat exchanger system, and A mechanism for returning from the separator to the fractionation column and for supplying this liquid as reflux to the upper part of the column, and for supplying gas to the heat exchanger system for further cooling and liquefaction of the separator from the LNG. It relates to a system for performing the method, including.

본 발명은 천연 가스를 액화시키기 위한 폐쇄 가스 팽창 공정(closed gas expansion process)을 이용하는 것을 목적으로 하는데, 여기서 가스는 먼저 분별 컬럼을 통해 공급되어, 가스가 냉각되고 감소된 함량의 펜탄 (C5) 및 무거운 성분을 지닌 상부 분획, 및 무거운 탄화수소가 풍부한 하부 분획으로 분리되며, 또한 분별 컬럼 리플럭스는 상부 가스를 부분적으로 응축시키는 액화를 위한 시스템의 통합된 부분으로서 생성된다. 본 발명에 따라 액화를 수행함으로써, 최대 함량의 에탄 및 LPG (액체 석유 가스)를 지닌 액화 가스의 생산은, 가스 팽창 공정의 효율이 증가되며 고함량의 에탄, LPG 및 펜탄을 지닌 불안정한/휘발성 액체의 부수적인 생산이 최소화됨과 동시에 달성된다.The present invention aims to use a closed gas expansion process for liquefying natural gas, wherein the gas is first fed through a fractionation column so that the gas is cooled and the reduced content of pentane (C5) and The upper fraction with heavy components, and the lower fraction, rich in heavy hydrocarbons, are separated, and the fractionation column reflux is also produced as an integrated part of the system for liquefaction that partially condenses the upper gas. By carrying out the liquefaction according to the invention, the production of liquefied gas with maximum content of ethane and LPG (liquid petroleum gas) results in an unstable / volatile liquid with a high content of ethane, LPG and pentane, which increases the efficiency of the gas expansion process. Incidental production of is achieved while minimizing.

특히, 본 발명은 가스전(gas field) 또는 가스/오일전(gas/oil field)으로부터 천연 가스 또는 다른 탄화수소 가스를 액화시키기 위한 방법 및 시스템을 포함하며, 이는 공급처로부터 판매처(market)로의 가스의 이동을 용이하게 하기 위해 가스를 액화시키는데 적절하다. 이는 특히 바다의 오일/가스전과 관련이 있다.In particular, the present invention includes methods and systems for liquefying natural gas or other hydrocarbon gases from a gas field or gas / oil field, which is the movement of gas from a source to a market. It is suitable to liquefy the gas in order to facilitate this. This is particularly relevant for sea oil / gas fields.

본 문맥에서, 천연 가스는 필수적인 부분이 메탄으로 구성된 탄화수소의 혼합물을 의미한다. 천연 가스는 일반적으로 가스를 상당히 냉각시켜 이를 응축시키고 액체가 되게 함으로써 액화된다. LPG가 프로판 및 부탄 (C4, C4 성분)을 포함하는 액체 석유 가스를 의미하는 것이다.In this context, natural gas means a mixture of hydrocarbons whose essential part consists of methane. Natural gas is usually liquefied by significantly cooling the gas to condense it and make it liquid. LPG means liquid petroleum gas containing propane and butane (C4, C4 component).

본 발명의 목적은 장치가 해상에서, 특히 부유식 설비 상에서 사용될 수 있도록 공정이 단순함과 동시에 에너지 효율적인 가스의 액화를 제공하기 위한 것이다. 액화하는 동안 응축물의 부수적인 생산은 최소화되며 효율은 최대화된다(연료 가스에 대한 필요성을 최소화시킴).It is an object of the present invention to provide a liquefaction of energy efficient gases while at the same time simple process so that the apparatus can be used at sea, in particular on floating installations. Incidental production of condensate is minimized during liquefaction and efficiency is maximized (minimizing the need for fuel gas).

본 발명에 따른 방법은 하기의 단계들에 의해 특징된다:The method according to the invention is characterized by the following steps:

1) 공급 가스를 분별 컬럼(150)을 통과시켜 이를 냉각시키고 감소된 함량의 펜탄 (C5) 및 무거운 성분을 지닌 상부 분획과, 보다 무거운 탄화수소가 풍부한 하부 분획으로 분리시키는 단계;1) passing the feed gas through a fractionation column 150 to cool it and separating the upper fraction with reduced content of pentane (C5) and heavy components and the lower fraction enriched with heavier hydrocarbons;

2) 분별 컬럼으로부터의 상부 분획을 열교환기 시스템(110)으로 공급하고, 부분 응축시켜 2-상 유체를 형성시키고, 2-상 유체를 적합한 분리기(160)에서 LPG 및 펜탄 (C3-C5)이 풍부한 액체(5)와, 소량의 C5 탄화수소 및 C5 보다 무거운 탄화수소를 함유한 가스(6)로 분리시키고, 상기 액체(5)를 저온 리플럭스(cold reflux)로서 분별 컬럼(150)으로 재순환시키며, 상기 가스(6)를 최대 함량의 에탄 및 LPG를 지닌 LNG로 액화시키기 위한 열교환기 시스템(110)에서 추가 처리하기 위해 공급하는 단계; 및2) The top fraction from the fractionation column is fed to the heat exchanger system 110, partially condensed to form a two-phase fluid, and the two-phase fluid is transferred to LPG and pentane (C3-C5) in a suitable separator 160. Separated into an abundant liquid (5) and a gas (6) containing a small amount of C5 hydrocarbons and heavier hydrocarbons than C5, and the liquid (5) is recycled to a fractionation column (150) as cold reflux, Feeding the gas (6) for further processing in a heat exchanger system (110) for liquefaction with LNG having a maximum content of ethane and LPG; And

3) 열교환기 시스템에서 가스의 액화를 위한 냉각 순환로는 적어도 하나의 가스 팽창 단계를 갖는 개방 또는 폐쇄 가스 팽창 공정을 포함하는 단계.3) a cooling circuit for liquefaction of gas in the heat exchanger system comprising an open or closed gas expansion process having at least one gas expansion step.

본 방법의 바람직한 구체예는 종속항 청구항 2-10에서 규정되어 있다.Preferred embodiments of the method are defined in the dependent claims 2-10.

본 발명에 따른 시스템은 열교환기 시스템에서 가스의 냉각, 응축 및 액화를 위해 사용되는 냉각 시스템이 적어도 하나의 가스 팽창 단계를 갖는 개방 또는 폐쇄 가스 팽창 공정을 포함함을 특징으로 한다. 본 시스템은 바람직하게는, 시스템의 상부 가스 스트림에는 대부분 부탄 (C4) 및 부탄 보다 낮은 정상 비등점을 갖는 탄화수소가 풍부하며, 분별 컬럼의 하부 생성물에는 대부분 C6 및 C6 보다 높은 정상 비등점을 갖는 성분이 풍부하도록 공급 가스를 분리시키기 위해 디자인되고 배열된다.The system according to the invention is characterized in that the cooling system used for the cooling, condensation and liquefaction of the gas in the heat exchanger system comprises an open or closed gas expansion process with at least one gas expansion step. The system preferably is rich in hydrocarbons having a normal boiling point lower than butane (C4) and mostly butane in the upper gas stream of the system, and components rich in normal boiling points higher than C6 and C6 in most of the bottom products of the fractionation column. And designed to separate the feed gas.

천연 가스의 액화는 가스 팽창 공정의 이용과 함께 수행될 수 있으며, 이러한 공정에서 냉매는 압축, 냉각, 팽창 및 이후 냉각될 유체와의 열교환을 기초로 하는 처리 순환로(processing circuit)를 통해 진행한다. 예를 들어, 천연 가스의 액화를 위해, 가스상의 압축된 냉매, 대개 질소 또는 메탄이 사용될 수 있으며, 이는 미리 냉각되고, 이후 팽창 밸브 또는 터보팽창기를 가로질러 팽창된다. 가스 팽창은 매우 차가운 가스, 또는 가스와 액체의 혼합물을 생성시키며, 이는 이후 천연 가스를 액화시키고 압축된 냉매 가스를 미리 냉각시키기 위해 사용된다. 가스 팽창 공정은 비교적 간단하고, 이에 따라 해상 설비에 대해 매우 적합하다. 그러나, 이러한 공정은 더욱 발달된 공정, 예를 들어 혼합된 냉동제 순환 공정에 비해 다소 낮은 효율을 가지고, 이에 따라 많은 압축 장치 및 많은 에너지를 필요로 한다.Liquefaction of natural gas may be performed with the use of a gas expansion process, in which the refrigerant proceeds through a processing circuit based on compression, cooling, expansion, and heat exchange with the fluid to be subsequently cooled. For example, for the liquefaction of natural gas, gaseous compressed refrigerant, usually nitrogen or methane, can be used, which is pre-cooled and then expanded across an expansion valve or turboexpander. Gas expansion produces very cold gases, or mixtures of gases and liquids, which are then used to liquefy natural gas and precool the compressed refrigerant gas. The gas expansion process is relatively simple and therefore very suitable for offshore installations. However, this process has a somewhat lower efficiency compared to more advanced processes, for example mixed refrigerant circulation processes, thus requiring a lot of compression equipment and a lot of energy.

LNG를 생산하기 위하여, 일반적으로 가스는 비교적 높은 함량의 메탄을 갖는 것이 요구된다. 그러나, 대부분의 공급 가스는 또한 일부 무거운 탄화수소, 예를 들어 에탄, 프로판, 부탄, 펜탄 등을 함유할 것이다. 일반적으로 액화 가스 중 무거운 탄화수소의 함량과 관련한 몇몇 요건들이 존재한다:In order to produce LNG, gas is generally required to have a relatively high content of methane. However, most feed gases will also contain some heavy hydrocarbons such as ethane, propane, butane, pentane and the like. In general, there are several requirements regarding the content of heavy hydrocarbons in liquefied gas:

액화 가스의 입방미터 당 비에너지 함량(specific energy content)은 일반적으로 제공된 판매 사양(sales specification)을 초과하지 않아야 한다.The specific energy content per cubic meter of liquefied gas should generally not exceed the sales specification provided.

액화 가스 중의 펜탄 (C5) 및 C5 보다 큰 탄화수소, 및 방향족 화합물의 함량은 냉각 공정에서의 냉동을 방지하기 위해 규정된 한계치 미만으로 유지되어야 한다.The content of pentane (C5) and hydrocarbons larger than C5, and aromatic compounds in the liquefied gas should be kept below prescribed limits to prevent freezing in the cooling process.

액화 가스 중 무거운 탄화수소의 함량을 한정하는 가장 단순한 방법은 가스를 부분적으로 응축시킨 후에, 가스로부터 응축된 액체를 분리시키는 것이며, 이는 액화를 위해 추가로 냉각된다. 이러한 분리는 대개 통상적으로 0℃ 내지 -60℃의 온도에서 냉각 공정의 통합된 부분으로서 수행된다. 분리된 응축물은 냉동 포텐셜(refrigeration potential)을 이용하여 냉각 공정의 일부로서 다시 가열될 수 있다.The simplest way to limit the content of heavy hydrocarbons in liquefied gas is to partially condense the gas and then separate the condensed liquid from the gas, which is further cooled for liquefaction. This separation is usually carried out as an integrated part of the cooling process, typically at temperatures between 0 ° C and -60 ° C. The separated condensate can be reheated as part of the cooling process using refrigeration potential.

대형 지상 LNG 설비 (소위 "베이스 로드(base load)" 설비)에서, 액화 전 또는 액화의 일부로서, 대부분의 프로판 및 무거운 탄화수소가 대개 제거되고, 많은 경우에서 또한 상당한 부분의 에탄이 제거된다. 이는 판매 사양을 충족시키고, 가치있는 에탄, LPG, 및 응축물/나프타를 생산하고 판매하기 위한 것이다. 종합적인 공정(Comprehensive process)에는 일반적으로 냉각 공정의 일부 및 냉각 시스템 외부의 별도의 유닛 둘 모두로서 저온 분별 컬럼이 사용된다.In large terrestrial LNG plants (so-called "base load" plants), most of the propane and heavy hydrocarbons are usually removed before or as part of liquefaction, and in many cases also a substantial portion of ethane. This is to meet sales specifications and to produce and sell valuable ethane, LPG, and condensate / naphtha. Comprehensive processes typically use cold fractionation columns as part of the cooling process and as separate units outside the cooling system.

그러나, 해상 LNG 생산을 위하여, 액체 천연 가스 이외의 생성물을 조작하는 것은 바람직하지 않다. 그렇지만, 오일 또는 응축물이 또한 생산되는 경우에, 안정화를 위한 응축물의 분리를 허용하고 다른 오일 및/또는 응축물과 함께 배출시킬 수 있다. 그러나, 안정화된 응축물은 대체로 비교적 낮은 함량의 펜탄 및 가벼운 성분들을 지닌 C6+로 구성될 것이다. C6 보다 가벼운 탄화수소는 대개 냉각되거나 압력하에 놓이지 않고는 저장되거나 안전하게 이동될 수 없다. 몇몇 분리된 탄화수소 또는 응축물은 연료로서 사용될 수 있지만, LNG 생성물 중에 이러한 성분들을 보유하는 것이 바람직하다. 보다 작은 LNG 용량 및 큰 LNG 용량으로의 후속 블랜딩 가능성으로 인해, 해양에서 상당히 큰, 및 바람직하게는 최대 함량의 무거운 탄화수소를 갖는 액화 천연 가스를 생산하는데 적절할 수 있다.However, for offshore LNG production, it is not desirable to manipulate products other than liquid natural gas. However, if oil or condensate is also produced, it may be possible to separate the condensate for stabilization and drain it with other oils and / or condensates. However, stabilized condensate will generally consist of C6 + with relatively low content of pentane and light components. Hydrocarbons that are lighter than C6 cannot usually be stored or safely moved without cooling or under pressure. Some separated hydrocarbons or condensates can be used as fuel, but it is desirable to retain these components in the LNG product. Due to the possibility of subsequent blending into smaller LNG capacities and larger LNG capacities, they may be suitable for producing liquefied natural gas with significantly larger, and preferably maximum, heavy hydrocarbons in the ocean.

본 발명은 해상 적용을 위해, 및 특히 부유식 유닛 상에서의 상당한 최적화를 나타내며, 여기서 비교적 간단하고 튼튼한 가스 팽창 공정이 천연 가스의 액화를 위해 사용되며, 액화 가스가 에탄과 LPG의 함량을 최대화시킴으로써 최대화됨과 동시에, 및 액화 공정에서 2-생성물로서 분리되는 메탄 보다 무거운 탄화수소의 양이 최소화됨과 동시에 이러한 공정의 에너지 효율이 증가된다.The present invention represents considerable optimization for marine applications, and especially on floating units, where a relatively simple and robust gas expansion process is used for the liquefaction of natural gas, liquefied gas maximized by maximizing the content of ethane and LPG At the same time, the amount of hydrocarbons heavier than methane separated as 2-products in the liquefaction process is minimized while the energy efficiency of this process is increased.

본 발명에 따른 시스템을 포함하는 설비는 이에 의해 종종 공간이 제한 인자인 보드 부유식 해상 설비(board floating offshore installation) 상에서 단순하게 구성되고 설비될 수 있다.The installation comprising the system according to the invention can thereby be simply constructed and installed on board floating offshore installations, where space is often a limiting factor.

공지된 기술 및 다른 문헌에 대한 참조, 및 본 발명과의 비교:Reference to known techniques and other literature, and comparisons with the present invention:

먼저 EP-1.715.267호가 참조되는데, 여기에는 천연 가스를 냉각시키고 분별 컬럼을 통과시켜 상기 가스를 상부 분획과 하부 분획으로 분리시킴을 포함하는 방법이 기술되어 있다. 하부 분획에는 무거운 탄화수소가 풍부하고, 이는 시스템으로부터 배출된다. 상부 분획은 냉각되고 2-상 유체를 형성하고, 이는 분리기에서 분리된다. 액체상은 분별 컬럼으로 재순환되는 반면 가스상은 열교환 시스템으로 추가로 공급된다. 상부 분획의 냉각은 독립 냉각기로 수행된다. 상기 EP 특허는 결론적으로 전통적이고 널리 공지된 증류 공정을 기재하고 있다.Reference is first made to EP-1.715.267, which describes a method comprising cooling a natural gas and passing it through a fractionation column to separate the gas into an upper fraction and a lower fraction. The bottom fraction is rich in heavy hydrocarbons, which are discharged from the system. The upper fraction cools and forms a two-phase fluid, which is separated in the separator. The liquid phase is recycled to the fractionation column while the gas phase is further fed to a heat exchange system. Cooling of the upper fraction is carried out with an independent cooler. The EP patent concludingly describes a traditional and well known distillation process.

또한, 셋업(set-up)은 소위 "베이스 로드" LNG 설비에서 표준 절차이며, 여기서 냉각기(5) 및 냉각기(11) 둘 모두 (상기 EP 특허의 도면 참조)는 공장의 사전-냉각 설비의 일부로서, 이는 일반적으로 다단계 프로판 냉각 설비로서 수행된다. 그러나, EP 특허에서의 셋업은 본 발명이 목적으로 하는 바와 같이 분별 컬럼과 다운스트림 LNG 응축 공정을 통합하지 않는다. 여기서 통합은 두개의 시스템이 함께 단단히 연결되고 하나의 시스템으로써 기능하며, 물질 스트림 및/또는 에너지 스트림이 시스템들 사이에 둘 모두의 방식으로 흐름을 의미한다.In addition, set-up is a standard procedure in a so-called “base load” LNG plant, where both the cooler 5 and the chiller 11 (see the drawings of the EP patent above) are part of a plant's pre-cooling plant. This is usually done as a multistage propane cooling plant. However, the setup in the EP patent does not integrate the fractionation column and the downstream LNG condensation process as the present invention aims. Integration here means that the two systems are tightly connected together and function as one system, where the material stream and / or energy stream flows in both ways between the systems.

EP-1.715.267호에 따르면 상부 분획을 냉각시키고 소위 분별 컬럼에 대한 리플럭스를 생성시키는 냉동 작업(refrigeration work)은 설명에 따르면 천연 가스의 추가 냉각 및 응축을 수행하는 동일한 냉각 순환로가 아니라 명확히 외부 냉각 공정으로부터 초래된 것이다.According to EP-1.715.267, the refrigeration work, which cools the top fraction and produces a reflex for the so-called fractionation column, is clearly not the same cooling circuit that performs further cooling and condensation of natural gas, but clearly outside. Resulting from the cooling process.

국제특허출원 WO-2005/071333호에는 LNG용 저장 탱크로부터 증발 가스(boil off gase)를 액화시키기 위해 사용되는 널리 공지된 이중 가스 팽창이 기술되어 있다. 실제로, 이러한 증발 가스는 단지 메탄 및 질소를 함유한다.International patent application WO-2005 / 071333 describes a well known double gas expansion used for liquefying boil off gase from a storage tank for LNG. Indeed, these evaporating gases only contain methane and nitrogen.

특허공개 US 2006/0260355 A1호 및 US 제6,662,589호에는 본 발명과 외관상 유사하지만 실제로 본 발명과 매우 상이한 시스템이 기술되어 있다. 상기 언급된 공개문에서의 시스템은 천연 가스의 액화와, 메탄 보다 무거운 성분들, 즉 에탄 및 보다 무거운 성분들의 회수/분리를 동시에 수행하기 위한 공정을 포함하며, 여기서 에탄, LPG 및 무거운 성분들은 판매 생성물로 분획되며, 액화 가스는 매우 감소된 함량의 에탄 및 무거운 성분들을 갖는다. 이는 공급 가스를 분별 컬럼에 공급함으로써 달성되는데, 여기서 공급 가스를 에탄 풍부 리플럭스와 접촉시켜 분별 컬럼이 공급물을 매우 감소된 함량의, 메탄 보다 무거운 성분들을 지닌 상부 가스상 분획 및 메탄 보다 무거운 성분들이 매우 풍부한 하부로부터의 액체 스트림으로 분리시킨다. 에탄 풍부 리플럭스는, 분별 컬럼으로부터 가스가 부분 응축되고 또한 분별 컬럼으로부터의 하부 분획의 분별을 위한 분별 트레인(fractionation train)으로부터 재순환되는 에탄이 풍부한 스트림을 냉각시키고 응축시킴으로써, 생성된다.Patent publications US 2006/0260355 A1 and US Pat. No. 6,662,589 describe systems which are similar in appearance to the invention but in fact very different from the invention. The system in the above-mentioned publication includes a process for simultaneously liquefaction of natural gas and recovery / separation of components heavier than methane, ie ethane and heavier components, where ethane, LPG and heavy components are sold. Fractionated into product, the liquefied gas has a very reduced content of ethane and heavy components. This is achieved by feeding the feed gas to the fractionation column, where the feed gas is brought into contact with the ethane rich reflux so that the fractionation column brings the feed in a greatly reduced amount of top gaseous fraction with components heavier than methane and heavier than methane. Separated into a liquid stream from the very rich bottoms. The ethane rich reflux is produced by cooling and condensing the ethane rich stream where the gas is partially condensed from the fractionation column and also recycled from the fractionation train for fractionation of the bottom fraction from the fractionation column.

특허공개 US 6,401,486호, US 6,742,358호 및 WO 2006/115597 A2호에는 천연 가스의 액화 및 메탄 보다 무거운 성분들, 즉 에탄과 보다 무거운 성분들의 회수/분리를 동시에 수행하기 위한 시스템이 기술되어 있다. 상기 방법은 또한 공급 가스가 먼저 가스의 액화를 위한 열교환기(들)에서, 및 플래시 팽창되고 분리된 액체 및 컬럼의 하부로부터의 유체와의 열교환에 의해 냉각되는 본 발명과 상당히 다르고 본 발명 보다 더욱 복잡하다. 또한, 공급 가스 스트림 전체 또는 일부는 분별 컬럼으로 진행되기 전에 터보팽창기 또는 줄-톰슨(Joule-Thompson) 팽창 밸브를 통해 팽창된다.Patent publications US Pat. No. 6,401,486, US Pat. No. 6,742,358 and WO 2006/115597 A2 describe systems for simultaneously performing liquefaction of natural gas and recovery / separation of components heavier than methane, ie ethane and heavier components. The method is also significantly different from and more than the present invention in which the feed gas is first cooled in heat exchanger (s) for liquefaction of the gas and by heat exchange with flash-expanded separated liquid and fluid from the bottom of the column. Complex. In addition, all or part of the feed gas stream is expanded through a turboexpander or Joule-Thompson expansion valve before proceeding to the fractionation column.

특허공개 US 2006/0260355 A1호, US 특허 제6,662,589호, US 특허 제 6,401,486호 및 US 특허 제6,742,358호는 액화 가스 중에 에탄, LPG 및 무거운 탄화수소의 함량을 최소화하기 위한 공정에 관한 것인 반면, 본 발명은 액화 가스 중에 메탄, 에탄 및 LPG의 함량을 최대화하기 위한 시스템 및 방법을 포함한다. US 특허출원 2006/0260355 A1, US 특허 제6,662,589호, US 특허 제6,401,486호 또는 US 특허 제6,742,358호에는 LNG의 생산을 위한 액화 열교환기(들)로부터 C3-C5 중에 풍부한 리플럭스를 수용하는 통합된 분리 컬럼을 이용하여 가스 팽창 공정이 달성될 수 있는 에너지 효율의 증가가 기술되어 있지 않다. Patent publications US 2006/0260355 A1, US Pat. No. 6,662,589, US Pat. No. 6,401,486 and US Pat. No. 6,742,358 relate to processes for minimizing the content of ethane, LPG and heavy hydrocarbons in liquefied gases, while The invention includes systems and methods for maximizing the content of methane, ethane and LPG in liquefied gas. US Patent Application 2006/0260355 A1, US Pat. No. 6,662,589, US Pat. No. 6,401,486 or US Pat. No. 6,742,358 are incorporated to accommodate rich reflux in C3-C5 from liquefied heat exchanger (s) for the production of LNG. The increase in energy efficiency with which a gas expansion process can be achieved using a separation column is not described.

DE 특허 제10205366호에는 천연 가스의 액화 및 에탄 보다 무거운 성분들의 회수/분리를 동시에 수행하기 위한 공정이 기술되어 있는데, 여기서 분리된 LPG 및 무거운 성분들은 판매 생성물로 분획된다. 이는 먼저 천연 가스의 액화를 위한 응축 설비에서 공급 가스를 부분적으로 냉각시킨 후, 냉각된 공급 가스를 에탄이 풍부한 리플럭스와 접촉시키는 분별 컬럼으로 공급하여 분별 컬럼에서 매우 감소된 함량의 에탄 보다 무거운 성분을 갖는 상부 가스 분획과, 에탄 보다 무거운 성분들이 매우 풍부한 하부로부터의 액체 스트림으로 분리시킴으로써 달성된다. 에탄이 풍부한 리플럭스는, 분별 컬럼으로부터 가스를 부분 응축시키고 이후에 제 2 분별 컬럼에서 C4/C5 스트림과 접촉시킴으로써 생성되며, 여기서, C4/C5 분획은 제 1 분별 컬럼으로부터 하부 생성물의 분별을 위한 분별 트레인으로부터 재순환된다. 다시 말해서 DE 특허 제10,205,366호는 액화 가스 중의 LPG, 및 무거운 탄화수소의 함량을 최소화시키기 위한 공정을 포함하는 반면, 본 발명은 액화 가스 중에 LPG의 함량을 최대화하기 위한 시스템 및 방법을 포함한다. 특허공개 DE 10,205,366호에는 LNG의 생산을 위한 액화 열교환기(들)로부터 C3-C5가 풍부한 리플럭스를 수용하는 통합된 분리 컬럼을 이용하여 가스 팽창 공정에서 달성될 수 있는 에너지 효율의 증가가 기술되어 있지 않다.DE Patent No. 10205366 describes a process for simultaneously performing liquefaction of natural gas and recovery / separation of components that are heavier than ethane, where the separated LPG and heavy components are fractionated into a product for sale. This is achieved by first partially cooling the feed gas in a condensation plant for the liquefaction of natural gas, then feeding the cooled feed gas into a fractionation column that is brought into contact with ethane-rich reflux to produce a heavier component of heavier than ethane in the fractionation column. Upper gaseous fraction with ethylene and components heavier than ethane are achieved by separation into a liquid stream from the bottom, which is very rich. Ethane-rich reflux is produced by partial condensation of gas from the fractionation column and then contacting the C4 / C5 stream in a second fractionation column, where the C4 / C5 fraction is used for fractionation of the bottom product from the first fractionation column. Recycled from the fractionation train. In other words, DE patent 10,205,366 includes a process for minimizing the content of LPG, and heavy hydrocarbons in liquefied gas, while the present invention includes systems and methods for maximizing the content of LPG in liquefied gas. Patent publication DE 10,205,366 describes the increase in energy efficiency achievable in a gas expansion process using an integrated separation column containing C3-C5 rich reflux from liquefied heat exchanger (s) for the production of LNG. Not.

US 특허 제4,690,702호에는 공급 가스가 먼저 LNG 생산을 위한 냉각 설비에서 사전-냉각되고, 이후에 제 1 분별 컬럼에 공급되어 냉각된 에탄 풍부 리플럭스와 접촉시키는 LNG 방법이 기술되어 있으며, 여기서 에탄 풍부 리플럭스는 제 1 컬럼으로부터의 하부 스트림을 분획하기 위해 제 2 분별 컬럼으로부터 재순환된다. 상기 특허는 분별 컬럼을 위한 C3-C5가 풍부한 리플럭스가 LNG 공정의 통합된 부분으로서 분별 컬럼으로부터의 상부 가스 생성물을 부분적으로 응축함으로써 달성되는 시스템을 포함하지 않는다.US Pat. No. 4,690,702 describes an LNG method wherein the feed gas is first pre-cooled in a cooling plant for LNG production, and then fed to the first fractionation column and brought into contact with the cooled ethane rich reflux, wherein the ethane rich Reflux is recycled from the second fractionation column to fractionate the bottoms stream from the first column. The patent does not include a system in which C3-C5 rich reflux for a fractionation column is achieved by partially condensing the top gas product from the fractionation column as an integrated part of the LNG process.

US 특허 제7,010,937호에는 천연가스의 액화 및 메탄 보다 무거운 성분들의 회수/분리를 동시에 수행하기 위한 시스템이 기술되어 있다. 상기 특허에 따르면, 가스 공급물은 사전-냉각되고, 액체 스트림이 분리기에서 분리될 수 있도록 부분적으로 응축되며, 여기서 이러한 액체 스트림은 제 1 분별 컬럼에서 분획되어 상부 가스를 발생시키고, 이는 제 2 분별 컬럼을 위한 리플럭스를 형성시키기 위해 냉각된다. 분리기로부터의 가스 흐름은 가스 팽창기를 가로질러 팽창되고, 제 2 분별 컬럼으로 공급된다. 이에 따라, 상기 US 특허는 이후의 청구범위에서 규정된 바와 같이 본 발명과 공통된 것이 거의 없다.US Pat. No. 7,010,937 describes a system for simultaneously performing liquefaction of natural gas and recovery / separation of components heavier than methane. According to the patent, the gas feed is pre-cooled and partially condensed so that the liquid stream can be separated in the separator, where this liquid stream is fractionated in the first fractionation column to generate a top gas, which is the second fractionation. Cooled to form a reflux for the column. The gas flow from the separator is expanded across the gas expander and fed to the second fractionation column. As such, the US patent has little in common with the present invention as defined in the following claims.

본 발명의 설명:Description of the invention:

본 발명은 첨부된 도면을 참고로 하여 더욱 상세히 기술될 것이다:The invention will be described in more detail with reference to the accompanying drawings:

도 1은 주요 구성요소 및 주요 기능을 나타내는 제 1 구체예를 도시한 것이다.1 shows a first embodiment showing main components and main functions.

도 2는 본 발명의 다른 구체예를 도시한 것이다.2 shows another embodiment of the present invention.

도 3은 분리되는 무거운 탄화수소(응축물)의 추가 안정화를 포함하는 본 발명의 다른 구체예를 도시한 것이다.Figure 3 illustrates another embodiment of the present invention that includes further stabilization of the heavy hydrocarbons (condensates) that are separated.

도 4는 이중 가스 팽창 공정을 이용하여 수행되는 본 발명을 상세하게 도시한 것이다.Figure 4 illustrates in detail the invention carried out using a dual gas expansion process.

도 5는 가스 팽창 루프 및 액체 팽창 루프를 구비한 하이브리드 냉각 순환로를 이용하여 수행되는 본 발명을 도시한 것이다.Figure 5 illustrates the invention carried out using a hybrid cooling circuit with a gas expansion loop and a liquid expansion loop.

도 6은 통상적인 질소 팽창 사이클에 대한 고온 곡선 및 저온 곡선 (복합 곡선)의 일 예를 도시한 것이다.6 shows an example of a high and low temperature curve (composite curve) for a conventional nitrogen expansion cycle.

도 7은 본 발명을 이용하여 얻어진 질소 팽창 사이클에 대한 고온 곡선 및 저온 곡선 (복합 곡선)의 일 예를 도시한 것이다.Figure 7 shows an example of a high temperature curve and a low temperature curve (composite curve) for the nitrogen expansion cycle obtained using the present invention.

도 8은 도 6 및 도 7에 도시된 곡선의 비교를 도시한 것이다.8 shows a comparison of the curves shown in FIGS. 6 and 7.

도 1을 참조로 하여, 가스의 최적화된 액화를 위한 시스템은 최소한으로 하기 주요 구성요소를 포함한다:Referring to FIG. 1, the system for the optimized liquefaction of gas comprises at least the following major components:

- 냉각되고 액화되는 유입 가스 스트림(1),An inlet gas stream (1) to be cooled and liquefied,

- 유입 가스를 냉각시키고 감소된 함량의 펜탄 및 무거운 성분을 지닌 상부 분획(2), 및 무거운 탄화수소 성분이 풍부한 하부 분획(3)으로 분리시키는 분별 컬럼(150),A fractionation column 150 which cools the inlet gas and separates it into an upper fraction (2) with reduced content of pentane and heavy components, and a lower fraction (3) rich in heavy hydrocarbon components,

- 유입 가스를 냉각시키고, 무거운 탄화수소의 분리, 및 추가 냉각 및 액화를 위해 부분적으로 응축시키는 열교환기의 시스템(110),A system 110 of heat exchanger which cools the inlet gas and partially condenses it for the separation of heavy hydrocarbons and for further cooling and liquefaction,

- 냉각되고 액화된 가스를 포함한 생성물 스트림(11),A product stream 11 comprising cooled and liquefied gas,

- 주로 펜탄 및 무거운 탄화수소를 포함하는 생성물 스트림(3), 및A product stream 3 comprising mainly pentane and heavy hydrocarbons, and

- 가스상 냉매 스트림(20), 적어도 하나의 사이클 압축기(100), 적어도 하나의 후부냉각기(aftercooler)(130), 적어도 하나의 가스 팽창기(120)를 포함하는, 가스의 냉각 및 액화를 위한 냉각 시스템.A cooling system for cooling and liquefying gas, comprising a gaseous refrigerant stream 20, at least one cycle compressor 100, at least one aftercooler 130 and at least one gas expander 120. .

세정된 유입 공급 가스(1), 예를 들어 메탄 풍부 탄화수소 가스는 먼저 분별 컬럼(150)에 공급되며, 여기서 가스는 보다 저온의 리플럭스 유체와 접촉하여 냉각된다. 냉각 및 저온의 유체와의 향류 접촉 동안에, 공급 가스는 감소된 함량의, 펜탄 (C5) 보다 큰 분자량을 갖는 탄화수소를 갖는 상부 분획(2), 및 C6 및 C6 보다 큰 분자량을 갖는 탄화수소가 풍부한 하부 분획(3)으로 분리된다. 분별 컬럼으로부터의 상부 분획(2)은 이후 열교환기 시스템(110)으로 진행되며, 여기서 가스는 냉각되고 부분적으로 응축되어 얻어진 2-상 유체(4)가 적합한 분리기(160)에서 분리될 수 있도록 한다. 분리기(160)에서 분리되는 LPG 및 펜탄 (C3-C5)이 풍부한 액체(5)는 저온 리플럭스로서 분별 컬럼(150)으로 재순환된다 [참조: Her er det feil i originalteksten (150 / 160) men det bør vaere opplagt for behandlende instans at dette er skrivefeil og at meningen ikke forandres]. 이러한 유체가 냉각에 의한 응축에 의해 생성됨에 따라, 리플럭스 유체(5)는 공급 가스(1) 보다 낮은 온도를 가질 것이다. 분리기(160)로부터의 가스(6)는 C5 탄화수소 및 C5 보다 큰 탄화수소의 함량을 추가로 감소시킨다. 이러한 가스는 이후 추가 냉각, 응축 및 서브-냉각을 위해 열교환기 시스템(110)으로 다시 진행된다. 액화된 가스(11)는 대안적으로 작동 압력을 제어하는 제어 밸브 (140)를 통해 진행되고, 시스템을 통해 흐른다.The cleaned inlet feed gas 1, for example methane rich hydrocarbon gas, is first supplied to the fractionation column 150, where the gas is cooled in contact with the colder reflux fluid. During the countercurrent contact with the cooling and low temperature fluids, the feed gas is reduced content of the upper fraction (2) with a hydrocarbon having a molecular weight greater than pentane (C5), and a hydrocarbon-rich lower with a molecular weight greater than C6 and C6. Fraction (3). The upper fraction 2 from the fractionation column then proceeds to a heat exchanger system 110 where the gas is cooled and partially condensed so that the resulting two-phase fluid 4 can be separated in a suitable separator 160. . LPG and pentane (C3-C5) -rich liquid (5) separated in separator (160) is recycled to fractionation column (150) as a low temperature reflux (see Her er det feil i originalteksten (150/160) men det). bør vaere opplagt for behandlende instans at dette er skrivefeil og at meningen ikke forandres]. As this fluid is produced by condensation by cooling, the reflux fluid 5 will have a lower temperature than the feed gas 1. Gas 6 from separator 160 further reduces the content of C5 hydrocarbons and hydrocarbons larger than C5. This gas then proceeds back to the heat exchanger system 110 for further cooling, condensation and sub-cooling. The liquefied gas 11 alternatively proceeds through a control valve 140 that controls the operating pressure and flows through the system.

바람직한 일 구체예에서, 가스 공급 스트림(10)은 적합한 외부 냉매, 예를 들어 입수가능한 공기, 물, 바닷물 또는 별도의 적합한 냉동 시스템/사전-냉각 시스템에 의해 사전-냉각된다. 후자의 외부 냉각법에 대하여, 프로판, 암모니아 또는 다른 적절한 냉동제를 갖는 별도의 폐쇄형 기계적 냉동 시스템이 종종 사용된다.In a preferred embodiment, the gas feed stream 10 is pre-cooled by a suitable external refrigerant, for example available air, water, sea water or a separate suitable refrigeration system / pre-cooling system. For the latter external cooling method, separate closed mechanical refrigeration systems with propane, ammonia or other suitable refrigerants are often used.

바람직한 일 구체예에서, 분별 컬럼(150) 및 분리기(160)는 완전한 시스템 (분별 컬럼(150) 및 리플럭스 분리기(160))이 -120℃ 내지 60℃의 정상 비등점 영역 (NBP)에서 성분 분할/분리점을 생성시킬 수 있는 압력 및 온도에서 작동된다. 이는 예를 들어, -12℃ 내지 0℃의 정상 비등점을 갖는 부탄 (C4)인 분리를 위한 가벼운 주요 성분, 및 50℃ 내지 70℃의 비등점을 갖는 C6 성분인 무거운 주요 성분에 해당할 수 있다. 시스템의 상부 가스 스트림 (6)에는 이후 대부분의 부탄 (C4) 및 부탄 보다 낮은 정상 비등점을 갖는 탄화수소이 풍부할 것이다. 분별 컬럼으로부터의 하부 생성물 (3)에는 대부분의 C6 및 C6 보다 높은 정상 비등점을 갖는 성분이 풍부할 것이며, 펜탄 (C5, NBP = 28-36℃)은 시스템의 가스 생성물 및 분별 컬럼의 하부 생성물 중에 분포된 전이 성분(transition component)이다.In a preferred embodiment, the fractionation column 150 and separator 160 are characterized in that the complete system (fractionation column 150 and reflux separator 160) divides the components in the normal boiling point region (NBP) of -120 ° C to 60 ° C. Operate at pressures and temperatures that can create a split point. This may correspond, for example, to the light main component for separation, which is butane (C4) with a normal boiling point of −12 ° C. to 0 ° C., and the heavy main component which is a C6 component with a boiling point of 50 ° C. to 70 ° C. The upper gas stream 6 of the system will then be rich in most butanes (C4) and hydrocarbons having a normal boiling point lower than butane. The bottom product (3) from the fractionation column will be rich in components with a normal boiling point higher than most of C6 and C6, and pentane (C5, NBP = 28-36 ° C.) is contained in the gas product of the system and in the bottom product of the fractionation column. It is a distributed transition component.

열교환 시스템(110)에서 공급 가스의 냉각 및 응축은 폐쇄형 또는 개방형 가스 팽창 공정에 의해 제공된다. 고압, 바람직하게는 3 내지 10 MPa에서 가스 또는 가스의 혼합물 (예를 들어, 순수한 질소, 메탄, 탄화수소 혼합물, 또는 질소와 탄화수소의 혼합물)을 포함하는 냉매(21)가 열교환 시스템(110)에 공급되고 0℃ 내지 -120℃의 온도로 냉각시키는 냉각 공정이 개시되지만, 이에 이러한 냉매 스트림은 주로 기제 압력(prevailing pressure) 및 온도(31)에서 가스 형태이도록 한다. 사전-냉각된 냉매(31)는 가스 팽창기(121)로 진행하는데, 여기서 가스는 유입구 압력의 5% 내지 40%, 바람직하게는 유입구 압력의 10% 내지 30%의 낮은 압력으로 팽창되며, 이에 냉각제는 주로 가스상이다. 가스 팽창기는 일반적으로 터보팽창기라 불리워지는 팽창 터빈이지만, 다른 타입의 가스용 팽창 장비, 예를 들어 밸브가 사용될 수 있다. 사전 냉각된 냉각제의 흐름은 가스 팽창기(121)에서 높은 등엔트로피 효율(isentropic efficiency)로 팽창되어, 온도를 크게 떨어뜨린다. 본 발명의 특정 구체예에서, 일부 액체는 이러한 팽창에서 분리될 수 있지만, 이는 공정에 대한 요건이 아니다. 냉각제(32)의 저온 스트림은 이후 열교환기(110)로 다시 진행되는데, 여기서 이는 냉각되고, 응축되고, 서브-냉각되는 가스 및 다른 따뜻한 유입 냉매를 냉각시키고 대안적으로 응축시키기 위해 사용된다.Cooling and condensation of the feed gas in the heat exchange system 110 is provided by a closed or open gas expansion process. A refrigerant 21 comprising a gas or a mixture of gases (eg, pure nitrogen, methane, a hydrocarbon mixture, or a mixture of nitrogen and hydrocarbons) at high pressure, preferably 3 to 10 MPa, is supplied to the heat exchange system 110. And a cooling process is disclosed that cools to a temperature between 0 ° C. and −120 ° C., but this refrigerant stream is primarily in gaseous form at prevailing pressure and temperature 31. The pre-cooled refrigerant 31 proceeds to the gas expander 121 where the gas expands to a low pressure of 5% to 40% of the inlet pressure, preferably 10% to 30% of the inlet pressure, whereby the coolant Is mainly gaseous. Gas expanders are generally expansion turbines called turboexpanders, but other types of expansion equipment for gases, such as valves, may be used. The flow of precooled coolant expands at high isentropic efficiency in the gas expander 121, which significantly lowers the temperature. In certain embodiments of the invention, some liquids may be separated at this expansion, but this is not a requirement for the process. The cold stream of coolant 32 then proceeds back to heat exchanger 110 where it is used to cool and alternatively condense the cooled, condensed, sub-cooled gas and other warm inlet refrigerant.

저온 냉매 스트림(32)이 열교환 시스템(110)에서 가열된 후에, 냉매는 가스 스트림(51)으로서 존재할 것이며, 이는 닫혀진 루프 구체예에서 재순환을 위한 적절한 방식으로 다시 압축되고, 외부 냉매, 예를 들어 공기, 물, 해수 또는 적절한 냉동 유닛으로 냉각된다.After the cold refrigerant stream 32 has been heated in the heat exchange system 110, the refrigerant will be present as the gas stream 51, which in a closed loop embodiment is again compressed in an appropriate manner for recycling, and an external refrigerant, for example Cooled with air, water, sea water or a suitable refrigeration unit.

대안적으로, 냉각 시스템은 개방형 구체예에서 적절한 공급원으로부터, 예를 들어 처리되고 냉각되는 공급 가스로부터 얻어진 고압에서 가스 또는 가스의 혼합물로 구성된 냉매(21)를 사용할 것이다. 또한, 상기 개방형 구체예는 저압 냉매 스트림(51)이 다른 목적을 위하여 사용되거나, 적절한 방식으로 다시 압축되어 처리되고 냉각될 공급 가스와 혼합되는 것을 포함한다.Alternatively, the cooling system will use a refrigerant 21 composed of a gas or a mixture of gases at a high pressure obtained from a suitable source, for example from a feed gas being treated and cooled in an open embodiment. The open embodiment also includes the low pressure refrigerant stream 51 being used for other purposes, or mixed with the feed gas to be compressed and treated and cooled again in a suitable manner.

바람직한 일 구체예에서, 냉매 스트림(51)을 회수하는 것은 열교환기(110)로부터 팽창 터빈(121)에 의해 구동되는 별도의 압축기(101)로 진행된다. 이러한 방식으로, 팽창 작업(expansion work)이 이용되며, 상기 공정의 에너지 효율이 개선된다. 압축기(101) 이후에, 냉각제는 스트림이 사이클 압축기(100)에서 추가로 압축되기 전에 열교환기(131)에서 추가로 냉각된다. 사이클 압축기(100)는 하나 이상의 유닛일 수 있으며, 대안적으로 한 유닛 당 하나 이상의 스테이지(stage)일 수 있다. 사이클 압축기에는 또한 압축기 스테이지 사이에 내부 냉각기(132)가 장착될 수 있다. 압축된 냉매(20)는 이후 후부냉각기(130)에서 적절한 외부 냉매, 예를 들어 공기, 물, 해수 또는 적합한 별도의 냉동 사이클을 이용하여 열교환에 의해 냉각되어, 닫혀진 루프에서 압축된 냉매(21)로서 재사용된다.In a preferred embodiment, the recovery of the refrigerant stream 51 proceeds from the heat exchanger 110 to a separate compressor 101 driven by the expansion turbine 121. In this way, expansion work is used and the energy efficiency of the process is improved. After the compressor 101, the coolant is further cooled in the heat exchanger 131 before the stream is further compressed in the cycle compressor 100. The cycle compressor 100 may be one or more units, alternatively one or more stages per unit. The cycle compressor may also be equipped with an internal cooler 132 between the compressor stages. The compressed refrigerant 20 is then cooled by heat exchange using a suitable external refrigerant, for example air, water, sea water or a suitable separate refrigeration cycle, in the aftercooler 130 to compress the refrigerant 21 in a closed loop. As reused.

바람직한 일 구체예에서, 열교환기(110)의 시스템은 동일한 유닛에 수많은 다른 "따뜻한" 스트림 및 "차가운" 스트림을 포함하는 하나의 열교환기 (소위, 다중 스트림 열교환기)이다.In one preferred embodiment, the system of heat exchanger 110 is one heat exchanger (so-called multi-stream heat exchanger) comprising a number of different "warm" and "cold" streams in the same unit.

도 2는 대안적인 구체예를 도시한 것으로서, 여기서 다중 스트림 열교환기는 차가운 스트림과 따뜻한 스트림 간의 필수적인 열교환이 수행될 수 있는 방식으로 함께 연결된다. 도 2는 여러 열교환기를 직렬로 포함하는 열교환 시스템(110)을 도시한 것이다. 그러나, 본 발명은 특정 타입의 열교환기 또는 열교환기의 숫자와 관련되어 있지 않지만, 고온 공정 스트림 및 저온 공정 스트림의 필수적인 숫자를 조작할 수 있는 여러 개의 상이한 타입의 열교환 시스템에서 수행될 수 있다.2 shows an alternative embodiment, wherein the multi-stream heat exchangers are connected together in such a way that the necessary heat exchange between the cold and warm streams can be carried out. 2 illustrates a heat exchange system 110 that includes several heat exchangers in series. However, the present invention is not related to the specific type of heat exchanger or the number of heat exchangers, but may be carried out in several different types of heat exchange systems capable of manipulating the required number of hot and cold process streams.

도 3은 대안적인 구체예를 도시한 것으로서, 여기서 분별 컬럼(150)에는 분리(가벼운 성분과 무거운 성분들의 명확한 분할)를 추가로 개선시키고, 또한 컬럼에서 하부 분획의 휘발성을 감소시키기 위해 리보일러(135)가 장착되어 있다. 이는 주위 온도 및 대기압에서 안정적인 응축물을 직접 생산하기 위해 사용될 수 있다.3 illustrates an alternative embodiment, wherein fractionation column 150 further includes reboilers to further improve separation (clear division of light and heavy components) and also to reduce the volatility of the bottom fraction in the column. 135). It can be used to directly produce stable condensate at ambient temperature and atmospheric pressure.

도 4는 더욱 발달된 구체예에서 적용된 본 발명을 상세히 도시한 것으로서, 여기서 이중 가스 팽창 공정이 사용된다. 본 구체예에서, 압축된 냉매 스트림(21)은 먼저 중간 정도의 온도로 냉각된다. 이러한 온도에서, 냉각제 스트림은 두 부분으로 나뉘어지며, 여기서 한 부분(31)은 열교환기로부터 취득되고 가스 팽창기(121)에서 저압 가스 스트림(32)으로 팽창된다. 다른 부분(41)은 추가로 사전-냉각되어 가스 팽창기(122)에서 스트림(32)에서의 압력과 필수적으로 동일한 압력으로 팽창된다. 팽창된 저온 냉각제 스트림(32, 42)은 열교환 시스템(110) 상에서 상이한 유입구 위치로 회수되고, 이러한 교환기에서 하나의 스트림으로 합쳐진다. 가열된 냉각제(51)는 이후 재압축으로 회수된다. 도 3에서의 시스템에 대한 또다른 구체예에서, 이중 가스 팽창 순환로에서 압축된 냉각제 스트림(20)은 열교환기(110) 앞에서 두개의 스트림으로 분할되어 열교환기(110)에서의 별도의 흐름 채널에서 상이한 온도로 냉각될 수 있다.4 details the invention as applied in more developed embodiments, where a dual gas expansion process is used. In this embodiment, the compressed refrigerant stream 21 is first cooled to moderate temperatures. At this temperature, the coolant stream is divided into two parts, where one part 31 is obtained from the heat exchanger and expands in the gas expander 121 to the low pressure gas stream 32. The other portion 41 is further pre-cooled to expand to essentially the same pressure as the pressure in the stream 32 in the gas expander 122. The expanded low temperature coolant streams 32 and 42 are withdrawn to different inlet locations on the heat exchange system 110 and combined into one stream in this exchanger. The heated coolant 51 is then recovered by recompression. In another embodiment of the system in FIG. 3, the compressed coolant stream 20 in the dual gas expansion circuit is split into two streams in front of the heat exchanger 110 in a separate flow channel in the heat exchanger 110. It can be cooled to different temperatures.

회수된 저온 냉각제 스트림(32, 42)의 가열에 대해 동일하게 적용된다. 본 구체예는 다른 점에서 도 3에 따른다.The same applies to the heating of the recovered cold coolant streams 32, 42. This embodiment is in accordance with FIG. 3 in another respect.

도 5는 하이브리드 냉각 루프의 사용과 함께 수행된 본 발명을 상세히 도시한 것으로서, 여기서 하나의 냉매는 순수한 가스상 및 순수한 액체상 둘 모두로 사용된다. 본 구체예에서, 닫혀진 냉각 루프는 열교환 시스템(110)에서 공급 가스의 냉각을 제공한다. 상기 냉각 사이클은 메탄, 또는 메탄과 질소의 혼합물에 의해 개시되며, 상기 혼합물에서 메탄이 적어도 50 부피%를 구성하며, 이는 압축된 냉매 스트림(21)으로 압축되고 후냉각되며, 여기서 이러한 냉매 스트림은 사전 냉각되며, 냉매 스트림의 적어도 일부(31)는 가스상으로 사용되어 가스 팽창기(121)를 가로 질러 팽창되며, 냉각제 스트림의 적어도 일부(41)는 액체로 응축되고, 밸브 또는 액체 팽창기(141)를 가로질러 팽창된다.Figure 5 illustrates in detail the invention carried out with the use of a hybrid cooling loop, wherein one refrigerant is used in both the pure gas phase and the pure liquid phase. In this embodiment, the closed cooling loop provides cooling of the feed gas in the heat exchange system 110. The cooling cycle is initiated by methane, or a mixture of methane and nitrogen, in which the methane constitutes at least 50% by volume, which is compressed into a compressed refrigerant stream 21 and after-cooled, where such refrigerant stream is Pre-cooled, at least a portion 31 of the refrigerant stream is used in the gas phase to expand across the gas expander 121, at least a portion 41 of the coolant stream condenses into liquid, and the valve or liquid expander 141 Inflates across.

본 발명의 구체예는 단지 상술된 냉각 공정으로 제한되지 않고, 천연 가스 또는 다른 탄화수소 가스의 액화를 위해 가스 팽창 냉각 공정과 함께 사용될 수 있다는 것이 강조되며, 여기서 냉각은 주로 하나 이상의 팽창 가스 스트림을 사용함으로써 달성된다.It is emphasized that embodiments of the present invention are not limited to the cooling process described above, but can be used in conjunction with a gas expansion cooling process for the liquefaction of natural gas or other hydrocarbon gases, wherein the cooling mainly uses one or more expansion gas streams. Is achieved.

본 발명에 따라 천연 가스의 액화를 수행함으로써, 최대 함량의 메탄, 에탄 및 LPG를 갖지만, 동시에 50-60℃ 초과의 정상 비등점을 갖는 펜탄 및 보다 무거운 탄화수소의 허용 수준을 초과하게 함유하지 않는 액화된 가스의 생성물이 생산된다. 동시에, 상당한 함량의 에탄, 프로판 및 부탄을 지닌 휘발성 탄화수소의 부수적 생산은 최소화되거나 제거되며, 여기서 이러한 부수적 생산은 LNG 생산을 위한 해상 설비 상에서 조작하기 어렵게 할 것이다. 동시에, 보다 많은 액화 천연 가스는, 또한 냉각 공정으로부터 차갑고 LPG 풍부한 리플럭스(reflux)를 수용하는 분별 컬럼 없이 배열된 유사한 냉각 사이클에 대한 것 보다 적은 에너지 소비와 함께 생산될 것이다 [참조: Her er det skrivefeil i originaltekst].By carrying out the liquefaction of natural gas in accordance with the present invention, liquefaction has a maximum content of methane, ethane and LPG, but at the same time does not exceed the acceptable levels of pentane and heavier hydrocarbons having a normal boiling point above 50-60 ° C. The product of the gas is produced. At the same time, the incidental production of volatile hydrocarbons with significant amounts of ethane, propane and butane will be minimized or eliminated, which will make it difficult to operate on offshore installations for LNG production. At the same time, more liquefied natural gas will also be produced with less energy consumption than for similar cooling cycles arranged without a fractionation column to accept cold and LPG-rich reflux from the cooling process. See Her er det. skrivefeil i originaltekst].

천연 가스를 액화시키기 위한 가스 팽창 공정에 대한 에너지 소비가 통합된 분리 컬럼이 존재하지 않는 유사한 냉각 공정과 비교하여 본 발명에서 감소되는 이유는 여러 양상들을 갖는다:The reasons why the energy consumption for a gas expansion process for liquefying natural gas is reduced in the present invention compared to a similar cooling process in which there is no integrated separation column has several aspects:

액화 동안 동결을 방지하기 위해 필수적으로 분리되는 무거운 탄화수소는 응축되고 통상적인 방법에서 보다 상당히 높은 온도에서 분리될 것이며, 많은 응축이 분별 컬럼에서 수행된다. 이는 냉각 부하가 보다 높은 온도 범위로 이동되는 냉각 공정에서 에너지 손실을 감소시킨다.Heavy hydrocarbons which are essentially separated to prevent freezing during liquefaction will be condensed and will be separated at considerably higher temperatures than conventional methods, and much condensation is carried out in the fractionation column. This reduces energy losses in the cooling process where the cooling load is moved to a higher temperature range.

냉각 공정의 열교환 시스템(100)은 스트림(2)으로서 액화되는 가스 (분별 컬럼에서의 오버해드 가스 스트림)을 수용하며, 이는 실제 가스 공급 스트림(1)과 관련하여 감소된 온도를 갖는다. 가스 팽창 공정은 웜 냉각 곡선(warm cooling curve) 및 콜드 냉각 곡선(cold cooling curve)이 냉매로서 사용되는 다량의 가스에 의해 조절됨을 특징으로 한다. 이러한 가스 스트림은 선형 냉각 곡선을 형성한다. 열교환기로의 감소된 공급 온도는 웜 냉각 곡선 (냉각되는 스트림의 합계) 상에서 "분기점(break point)"을 형성시켜, 웜 냉각 곡선과 콜드 냉각 곡선 사이의 거리의 일반적인 감소를 얻는 것이 가능하게 한다. 이는 보다 양호한 온도 적응, 에너지 손실의 감소, 및 이에 따른 냉각 공정을 구동시키기 위한 에너지 소비 감소를 제공한다.The heat exchange system 100 of the cooling process receives the gas liquefied as stream 2 (overhead gas stream in the fractionation column), which has a reduced temperature in relation to the actual gas feed stream 1. The gas expansion process is characterized by the warm cooling curve and the cold cooling curve being controlled by a large amount of gas used as the refrigerant. This gas stream forms a linear cooling curve. The reduced feed temperature to the heat exchanger forms a "break point" on the worm cooling curve (sum of streams cooled), making it possible to obtain a general decrease in the distance between the worm cooling curve and the cold cooling curve. This provides better temperature adaptation, reduced energy loss, and thus reduced energy consumption to drive the cooling process.

예비 분석 및 비교에서는 생산되는 1 kg의 액화 천연 가스 당 필수적인 압축기 일이 통상적인 방법과 비교하여 본 발명에 따라 수행된 가스 팽창 사이클에 대해 5 내지 15% 정도 감소될 수 있는 것으로 나타난다.Preliminary analysis and comparison shows that the necessary compressor work per 1 kg of liquefied natural gas produced can be reduced by 5-15% for the gas expansion cycle performed according to the present invention compared to conventional methods.

도 6은 본 발명 및 냉각 시스템으로서 이중 질소 팽창 공정에 따라 수행된 열교환 시스템(110)에 대한 웜 냉각 곡선 및 콜드 냉각 곡선 (웜 복합 곡선(warm composite curve) 및 콜드 복합 곡선(cold composite curve), 즉 냉각되는 모든 따뜻한 스트림의 합계 및 가열될 모든 차가운 스트림의 합계 각각)을 도시한 것이다. 도 7은 동일한 공급물을 갖는 상응하는 냉각 공정에 대한 상응하는 웜 냉각 곡선 및 콜드 냉각 곡선을 도시한 것이지만, 분별 컬럼 없이 통상적인 방식으로 수행된 것이다. 상기 곡선은 유사해 보이지만, 동일한 곡선에서의 섹션 및 두가지 시스템을 도시한 도 8을 고려하여[참조: skrivefeil i originaltekst], "분기점" 및 보다 양호한 적응이 명확하게 확인될 수 있다.FIG. 6 shows a warm cooling curve and a cold cooling curve (warm composite curve and cold composite curve) for a heat exchange system 110 performed according to the dual nitrogen expansion process as the present invention and cooling system. Ie the sum of all warm streams to be cooled and the sum of all cold streams to be heated). FIG. 7 shows the corresponding worm cooling curves and cold cooling curves for the corresponding cooling process with the same feed, but was performed in a conventional manner without a fractionation column. The curves look similar, but with the view of FIG. 8 showing sections and two systems in the same curve (skrivefeil i originaltekst), the "branch point" and better adaptation can be clearly identified.

실시예Example

하기 실시예는 90.4 부피%의 메탄을 지닌 천연 가스가 액화되는 것을 나타낸 것으로서, 본 발명은 액화 가스의 양을 최대화하고 동시에 고함량이 에탄, 프로판 및 부탄을 갖는 불안정한 탄화수소 액체의 부산물을 최소화하기 위해 사용된다. 스트림 데이타는 도 1, 2, 3, 4 또는 5에 나타내었다.The following examples illustrate the liquefaction of natural gas with 90.4% by volume of methane, and the present invention provides a solution for maximizing the amount of liquefied gas and at the same time minimizing the byproducts of unstable hydrocarbon liquids with high contents of ethane, propane and butane. Used. Stream data is shown in Figures 1, 2, 3, 4 or 5.

Figure pct00001

Figure pct00001

Claims (12)

육상 설비 또는 해상 설비 상에서 유입 공급 가스(1)로부터 LNG를 생산하는 방법으로서,
1) 공급 가스를 분별 컬럼(150)에 통과시켜 이를 냉각시키고 감소된 함량의 펜탄 (C5) 및 무거운 성분을 지닌 상부 분획과, 보다 무거운 탄화수소가 풍부한 하부 분획으로 분리시키며;
2) 상기 분별 컬럼의 상부 분획을 열교환기 시스템(110)으로 들어가게 하고, 부분 응축시켜 2-상 유체를 형성시키고, 상기 2-상 유체를 적합한 분리기(160)에서 LPG와 펜탄 (C3-C5)이 풍부한 유체(5)와, 소량의 C5 탄화수소 및 C5 보다 무거운 탄화수소를 함유한 가스(6)로 분리시키고, 상기 유체(5)를 저온 리플럭스(cold reflux)로서 분별 컬럼(150)으로 재순환시키며, 상기 가스(6)를 최대 함량의 에탄 및 LPG를 지닌 LNG로 액화시키기 위한 열교환기 시스템(110)에서 추가 처리를 위해 제거하며;
3) 열교환기 시스템에서 가스의 액화를 위한 냉각 순환로(cooling circuit)가 하나 이상의 가스 팽창 단계를 갖는 개방 또는 폐쇄형 가스 팽창 공정을 포함함을 특징으로 하는 방법.
As a method of producing LNG from the inlet feed gas (1) on land or offshore facilities,
1) the feed gas is passed through a fractionation column 150 to cool it and separated into a lower fraction enriched with heavier hydrocarbons and an upper fraction with reduced content of pentane (C5) and heavy components;
2) The upper fraction of the fractionation column is introduced into a heat exchanger system 110, partially condensed to form a two-phase fluid, and the two-phase fluid is LPG and pentane (C3-C5) in a suitable separator 160. This rich fluid (5) is separated into a gas (6) containing a small amount of C5 hydrocarbons and heavier hydrocarbons than C5, and the fluid (5) is recycled to the fractionation column (150) as cold reflux. Removing the gas (6) for further processing in a heat exchanger system (110) to liquefy the gas (6) with LNG having a maximum content of ethane and LPG;
3) a cooling circuit for liquefaction of gas in a heat exchanger system comprising an open or closed gas expansion process having at least one gas expansion step.
제 1항에 있어서, 분별 컬럼(150) 및 분리기(160)가 -12℃ 내지 60℃의 정상 비등점 범위 (NBP)에서 성분 분할/분리점을 발생시키는 완전한 시스템(complete system)(분별 컬럼(150) 및 환류 분리기(160))에 이르게 하는 압력 및 온도에서 작동됨을 특징으로 하는 방법.The complete system (fractionation column 150) according to claim 1, wherein fractionation column 150 and separator 160 generate component splits / separation points in the normal boiling point range (NBP) of -12 ° C to 60 ° C. And reflux separator (160). 제 1항 또는 제 2항에 있어서, 분리시키기 위한 가벼운 중요 성분이 -12℃ 내지 0℃의 정상 비등점을 갖는 부탄 (C4)이며, 무거운 중요 성분이 50℃ 내지 70℃의 비등점을 갖는 C6 성분이며, 이에 의해 시스템의 상부 가스 스트림(6)은 매우 감소된 함량의 n-부탄 및 n-부탄 보다 낮은 정상 비등점을 갖는 탄화수소를 포함할 것이며, 시스템의 거부 스트림(reject stream)은 대부분 C6 및 C6 보다 높은 정상 비등점을 갖는 성분들을 포함함을 특징으로 하는 방법.The light major component for separation is butane (C4) having a normal boiling point of -12 ° C to 0 ° C, and the heavy key component is a C6 component having a boiling point of 50 ° C to 70 ° C. Whereby the top gas stream 6 of the system will comprise a significantly reduced content of n-butane and hydrocarbons having a normal boiling point lower than n-butane, and the reject stream of the system is mostly more than C6 and C6. A component having a high normal boiling point. 제 1항 내지 제 3항 중 어느 한 항에 있어서, 분별 컬럼(150) 및 분리기(160)가, 펜탄 (C5, NBP = 28∼36℃)이 시스템의 상부 가스 스트림(6)과 시스템의 거부 스트림(3) 둘 모두에 분포되는 전이 성분(transition component)이 되도록 작동됨을 특징으로 하는 방법.4. The fractionation column (150) and the separator (160) of claim 1, wherein the fractionation column (150) and the separator (160) are pentane (C5, NBP = 28-36 ° C) the system's top gas stream (6) and rejection of the system. Operating to be a transition component distributed in both streams (3). 제 1항 내지 제 4항 중 어느 한 항에 있어서, 공급 가스의 온도가, 열교환기 시스템(110)으로 공급될 때의 가스의 온도가 열교환기 시스템의 고온 단부에서 냉매 가스 스트림의 온도(고온 핀치 포인트 온도(hot pinch point temperature)) 보다 낮도록 분별 컬럼(150)을 통하여 감소됨을 특징으로 하는 방법.The temperature of the gas when the temperature of the feed gas is supplied to the heat exchanger system 110 is the temperature of the refrigerant gas stream at the hot end of the heat exchanger system (high temperature pinch). Reduced through fractionation column (150) to be lower than hot pinch point temperature. 제 1항 내지 제 5항 중 어느 한 항에 있어서, 리보일러(reboiler)(135)가, 하부 생성물의 증기압을 감소시키기 위해 분별 컬럼(150)에 연결됨을 특징으로 하는 방법.6. The method according to claim 1, wherein the reboiler is connected to the fractionation column to reduce the vapor pressure of the bottom product. 7. 제 1항 내지 제 6항 중 어느 한 항에 있어서, 액화 (LNG 생산)를 위한 열교환기가 하나 이상의 다중 스트림 열교환기를 포함함을 특징으로 하는 방법.The method according to any one of claims 1 to 6, characterized in that the heat exchanger for liquefaction (LNG production) comprises at least one multi-stream heat exchanger. 제 1항 내지 제 7항 중 어느 한 항에 있어서, 하나 이상의 질소 팽창기를 이용하는 폐쇄 가스 팽창 공정(closed gas expansion process)으로 수행됨을 특징으로 하는 방법.8. A method according to any one of the preceding claims, characterized in that it is carried out in a closed gas expansion process using one or more nitrogen expanders. 제 1항 내지 제 8항 중 어느 한 항에 있어서, 냉각제로서 메탄/질소를 이용하는 폐쇄 하이브리드 냉각 공정(closed hybrid cooling process)으로 수행되며, 여기서 상기 냉각제는 가스상 및 액체상 둘 모두로 사용되며, 냉각 순환로(cooling circuit)는 하나 이상의 가스 팽창기, 및 액체상의 냉매의 팽창을 위한 하나 이상의 기구(device)를 구비함을 특징으로 하는 방법.The process according to any one of claims 1 to 8, which is carried out in a closed hybrid cooling process using methane / nitrogen as the coolant, wherein the coolant is used in both gas and liquid phases The cooling circuit comprises at least one gas expander and at least one device for expansion of the refrigerant in the liquid phase. 제 1항 내지 제 9항 중 어느 한 항에 있어서, 하나 이상의 가스 팽창기를 이용하는 개방 가스 팽창 공정으로 수행되며, 여기서 고압의 적합한 가스가 냉각 가스로서 사용되며, 저압의 팽창된 가스가 재순환을 위해 재압축되지 않지만 다른 목적을 위해 사용됨을 특징으로 하는 방법.10. The process according to any one of claims 1 to 9, which is carried out in an open gas expansion process using one or more gas expanders, wherein a suitable high pressure gas is used as the cooling gas and a low pressure expanded gas is recycled for recirculation. Characterized in that it is not compressed but is used for other purposes. 공급 가스를 수용하기 위한 분별 컬럼(150), 상기 분별 컬럼의 상부 가스 스트림을 냉각시키고 부분 응축시키기 위한 열교환기 시스템(110), 상기 열교환기 시스템으로부터 2-상 스트림을 분리하기 위한 분리기(160), 유체를 상기 분리기에서 상기 분별 컬럼으로 재순환시키고 이러한 유체를 리플럭스로서 컬럼의 상단 부분으로 도입시키기 위한 기구, 및 가스를 상기 분리기에서 LNG로의 추가 냉각 및 액화시키기 위한 열교환기 시스템으로 공급시키기 위한 기구를 포함하며, 열교환기 시스템에서 가스의 냉각, 응축 및 액화를 위해 사용되는 냉각 시스템이 하나 이상의 가스 팽창 단계를 갖는 개방 또는 폐쇄 가스 팽창 공정을 포함함을 특징으로 하는 제 1항 내지 제 10항 중 어느 한 항에 따른 방법을 수행하기 위한 시스템.Fractionation column 150 for receiving feed gas, heat exchanger system 110 for cooling and partially condensing the top gas stream of the fractionation column, separator 160 for separating a two-phase stream from the heat exchanger system A mechanism for recirculating fluid from the separator to the fractionation column and introducing such fluid as reflux into the top portion of the column, and for supplying gas to the heat exchanger system for further cooling and liquefaction of gas from the separator to LNG. The cooling system used for cooling, condensation and liquefaction of a gas in a heat exchanger system, wherein the cooling system comprises an open or closed gas expansion process having at least one gas expansion step. A system for performing the method according to any one of the preceding claims. 제 11항에 있어서, 시스템이, 공급 가스를 분리시켜 시스템의 상부 가스 스트림 (6)에는 대부분의 부탄 (C4) 및 부탄 보다 낮은 정상 비등점을 갖는 탄화수소가 풍부하며, 분별 컬럼에서의 하부 생성물에는 대부분의 C6 및 C6 보다 높은 정상 비등점을 갖는 성분들이 풍부하도록 디자인되고 배열됨을 특징으로 하는 시스템.12. The system according to claim 11, wherein the system separates the feed gas so that the upper gas stream (6) of the system is rich in most butanes (C4) and hydrocarbons having a normal boiling point lower than butane, and most of the bottom products in the fractionation column. And are designed to be rich in components having a normal boiling point higher than C6 and C6 of.
KR1020107001622A 2007-06-22 2008-06-20 Method and system for producing lng KR101568763B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
NO20073245A NO329177B1 (en) 2007-06-22 2007-06-22 Process and system for forming liquid LNG
NO20073245 2007-06-22

Publications (2)

Publication Number Publication Date
KR20100039353A true KR20100039353A (en) 2010-04-15
KR101568763B1 KR101568763B1 (en) 2015-11-12

Family

ID=40304530

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020107001622A KR101568763B1 (en) 2007-06-22 2008-06-20 Method and system for producing lng

Country Status (10)

Country Link
US (1) US20100132405A1 (en)
EP (1) EP2165140A1 (en)
KR (1) KR101568763B1 (en)
CN (1) CN101711335B (en)
AU (1) AU2008283102B2 (en)
BR (1) BRPI0813297A2 (en)
CA (1) CA2692213A1 (en)
MY (1) MY163902A (en)
NO (1) NO329177B1 (en)
WO (1) WO2009017414A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150101579A (en) * 2014-02-27 2015-09-04 삼성중공업 주식회사 Natural gas liquefaction apparatus

Families Citing this family (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100018248A1 (en) * 2007-01-19 2010-01-28 Eleanor R Fieler Controlled Freeze Zone Tower
US8650906B2 (en) * 2007-04-25 2014-02-18 Black & Veatch Corporation System and method for recovering and liquefying boil-off gas
US9243842B2 (en) 2008-02-15 2016-01-26 Black & Veatch Corporation Combined synthesis gas separation and LNG production method and system
GB0812699D0 (en) 2008-07-11 2008-08-20 Johnson Matthey Plc Apparatus and process for treating offshore natural gas
WO2009117787A2 (en) * 2008-09-19 2009-10-01 Woodside Energy Limited Mixed refrigerant compression circuit
US8464551B2 (en) * 2008-11-18 2013-06-18 Air Products And Chemicals, Inc. Liquefaction method and system
US9151537B2 (en) 2008-12-19 2015-10-06 Kanfa Aragon As Method and system for producing liquefied natural gas (LNG)
WO2010123598A1 (en) 2009-04-20 2010-10-28 Exxonmobil Upstream Research Company Cryogenic system for removing acid gases from a hyrdrocarbon gas stream, and method of removing acid gases
SG10201404635RA (en) 2009-09-09 2014-10-30 Exxonmobil Upstream Res Co Cryogenic system for removing acid gases from a hydrocarbon gas stream with solid co2 recovery
EP2525892A4 (en) 2010-01-22 2014-01-22 Exxonmobil Upstream Res Co Removal of acid gases from a gas stream, with co2 capture and sequestration
US10113127B2 (en) 2010-04-16 2018-10-30 Black & Veatch Holding Company Process for separating nitrogen from a natural gas stream with nitrogen stripping in the production of liquefied natural gas
EP2588822B1 (en) * 2010-06-30 2021-04-14 Shell Internationale Research Maatschappij B.V. Method of treating a hydrocarbon stream comprising methane, and an apparatus therefor
US8635885B2 (en) 2010-10-15 2014-01-28 Fluor Technologies Corporation Configurations and methods of heating value control in LNG liquefaction plant
US9777960B2 (en) 2010-12-01 2017-10-03 Black & Veatch Holding Company NGL recovery from natural gas using a mixed refrigerant
DE102011015433A1 (en) * 2011-03-29 2012-10-04 Linde Ag heat exchanger system
WO2013015907A1 (en) * 2011-07-22 2013-01-31 Exxonmobil Upstream Research Company Helium recovery from natural gas streams
JP6140713B2 (en) 2011-10-21 2017-05-31 シングル ブイ ムーリングス インコーポレイテッド Multiple nitrogen expansion process for LNG production
GB201120327D0 (en) * 2011-11-24 2012-01-04 Compactgtl Plc Oil well product treatment
US10139157B2 (en) 2012-02-22 2018-11-27 Black & Veatch Holding Company NGL recovery from natural gas using a mixed refrigerant
AU2013235610B2 (en) 2012-03-21 2015-11-19 Exxonmobil Upstream Research Company Separating carbon dioxide and ethane from a mixed stream
CN103773529B (en) * 2012-10-24 2015-05-13 中国石油化工股份有限公司 Pry-mounted associated gas liquefaction system
US10563913B2 (en) 2013-11-15 2020-02-18 Black & Veatch Holding Company Systems and methods for hydrocarbon refrigeration with a mixed refrigerant cycle
US9562719B2 (en) 2013-12-06 2017-02-07 Exxonmobil Upstream Research Company Method of removing solids by modifying a liquid level in a distillation tower
AU2014357665B2 (en) 2013-12-06 2017-06-22 Exxonmobil Upstream Research Company Method and device for separating a feed stream using radiation detectors
US9823016B2 (en) 2013-12-06 2017-11-21 Exxonmobil Upstream Research Company Method and system of modifying a liquid level during start-up operations
AU2014357666B2 (en) 2013-12-06 2017-08-10 Exxonmobil Upstream Research Company Method and system of dehydrating a feed stream processed in a distillation tower
AU2014357663B2 (en) 2013-12-06 2016-12-22 Exxonmobil Upstream Research Company Method and device for separating hydrocarbons and contaminants with a spray assembly
WO2015084495A2 (en) 2013-12-06 2015-06-11 Exxonmobil Upstream Research Company Method and system of maintaining a liquid level in a distillation tower
US10139158B2 (en) 2013-12-06 2018-11-27 Exxonmobil Upstream Research Company Method and system for separating a feed stream with a feed stream distribution mechanism
US9874395B2 (en) 2013-12-06 2018-01-23 Exxonmobil Upstream Research Company Method and system for preventing accumulation of solids in a distillation tower
US9874396B2 (en) 2013-12-06 2018-01-23 Exxonmobil Upstream Research Company Method and device for separating hydrocarbons and contaminants with a heating mechanism to destabilize and/or prevent adhesion of solids
CN103865601B (en) * 2014-03-13 2015-07-08 中国石油大学(华东) Heavy hydrocarbon recovery method of propane precooling and deethanizer top reflux
US9574822B2 (en) 2014-03-17 2017-02-21 Black & Veatch Corporation Liquefied natural gas facility employing an optimized mixed refrigerant system
AU2016223296B2 (en) 2015-02-27 2018-11-08 Exxonmobil Upstream Research Company Reducing refrigeration and dehydration load for a feed stream entering a cryogenic distillation process
WO2017048346A1 (en) 2015-09-18 2017-03-23 Exxonmobil Upstream Research Company Heating component to reduce solidification in a cryogenic distillation system
US11255603B2 (en) 2015-09-24 2022-02-22 Exxonmobil Upstream Research Company Treatment plant for hydrocarbon gas having variable contaminant levels
US10323495B2 (en) 2016-03-30 2019-06-18 Exxonmobil Upstream Research Company Self-sourced reservoir fluid for enhanced oil recovery
CN105716371B (en) * 2016-04-12 2017-11-10 成都赛普瑞兴科技有限公司 A kind of method and device of azeotrope refrigeration natural gas lighter hydrocarbons recovery
FR3053771B1 (en) 2016-07-06 2019-07-19 Saipem S.P.A. METHOD FOR LIQUEFACTING NATURAL GAS AND RECOVERING LIQUID EVENTS OF NATURAL GAS COMPRISING TWO NATURAL GAS SEMI-OPENING REFRIGERANT CYCLES AND A REFRIGERANT GAS REFRIGERANT CYCLE
WO2019008107A1 (en) * 2017-07-07 2019-01-10 Global Lng Services As Large scale coastal liquefaction
WO2020005553A1 (en) 2018-06-29 2020-01-02 Exxonmobil Upstream Research Company (Emhc-N1.4A.607) Mixing and heat integration of melt tray liquids in a cryogenic distillation tower
US11306267B2 (en) 2018-06-29 2022-04-19 Exxonmobil Upstream Research Company Hybrid tray for introducing a low CO2 feed stream into a distillation tower
GB2581135A (en) * 2019-01-30 2020-08-12 Linde Ag Cooling method for liquefying a feed gas

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1135871A (en) * 1965-06-29 1968-12-04 Air Prod & Chem Liquefaction of natural gas
US3559417A (en) * 1967-10-12 1971-02-02 Mc Donnell Douglas Corp Separation of low boiling hydrocarbons and nitrogen by fractionation with product stream heat exchange
US4445916A (en) * 1982-08-30 1984-05-01 Newton Charles L Process for liquefying methane
FR2571129B1 (en) * 1984-09-28 1988-01-29 Technip Cie PROCESS AND PLANT FOR CRYOGENIC FRACTIONATION OF GASEOUS LOADS
US4701200A (en) * 1986-09-24 1987-10-20 Union Carbide Corporation Process to produce helium gas
US5325673A (en) * 1993-02-23 1994-07-05 The M. W. Kellogg Company Natural gas liquefaction pretreatment process
US6401486B1 (en) * 2000-05-18 2002-06-11 Rong-Jwyn Lee Enhanced NGL recovery utilizing refrigeration and reflux from LNG plants
US6412302B1 (en) * 2001-03-06 2002-07-02 Abb Lummus Global, Inc. - Randall Division LNG production using dual independent expander refrigeration cycles
US6742358B2 (en) * 2001-06-08 2004-06-01 Elkcorp Natural gas liquefaction
TWI314637B (en) * 2003-01-31 2009-09-11 Shell Int Research Process of liquefying a gaseous, methane-rich feed to obtain liquefied natural gas
US6889523B2 (en) * 2003-03-07 2005-05-10 Elkcorp LNG production in cryogenic natural gas processing plants
US6662589B1 (en) * 2003-04-16 2003-12-16 Air Products And Chemicals, Inc. Integrated high pressure NGL recovery in the production of liquefied natural gas
NO323496B1 (en) * 2004-01-23 2007-05-29 Hamwrothy Kse Gas System As Process for recondensing decoction gas
US7866184B2 (en) * 2004-06-16 2011-01-11 Conocophillips Company Semi-closed loop LNG process
BRPI0512212A (en) * 2004-06-18 2008-02-19 Exxonmobil Upstream Res Co methods of producing liquefied natural gas, designing a liquefied natural gas liquefaction plant, designing an expanded processing capacity of a liquefied natural gas liquefaction plant and operating a liquefied natural gas liquefaction plant, and liquefaction of liquefied natural gas
FR2884303B1 (en) * 2005-04-11 2009-12-04 Technip France METHOD FOR SUB-COOLING AN LNG CURRENT BY COOLING USING A FIRST REFRIGERATION CYCLE AND ASSOCIATED INSTALLATION
EP1715267A1 (en) * 2005-04-22 2006-10-25 Air Products And Chemicals, Inc. Dual stage nitrogen rejection from liquefied natural gas
US20060260355A1 (en) * 2005-05-19 2006-11-23 Roberts Mark J Integrated NGL recovery and liquefied natural gas production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150101579A (en) * 2014-02-27 2015-09-04 삼성중공업 주식회사 Natural gas liquefaction apparatus

Also Published As

Publication number Publication date
NO20073245L (en) 2008-12-23
AU2008283102B2 (en) 2013-02-07
CA2692213A1 (en) 2009-02-05
EP2165140A1 (en) 2010-03-24
NO329177B1 (en) 2010-09-06
CN101711335B (en) 2014-10-15
WO2009017414A1 (en) 2009-02-05
CN101711335A (en) 2010-05-19
US20100132405A1 (en) 2010-06-03
AU2008283102A1 (en) 2009-02-05
KR101568763B1 (en) 2015-11-12
MY163902A (en) 2017-11-15
BRPI0813297A2 (en) 2014-12-30

Similar Documents

Publication Publication Date Title
KR101568763B1 (en) Method and system for producing lng
RU2641778C2 (en) Complex method for extraction of gas-condensate liquids and liquefaction of natural gas
JP4607990B2 (en) Nitrogen removal equipment from condensed natural gas
RU2215952C2 (en) Method of separation of pressurized initial multicomponent material flow by distillation
KR100338879B1 (en) Improved process for liquefaction of natural gas
US8250883B2 (en) Process to obtain liquefied natural gas
KR101269914B1 (en) Method and apparatus for liquefying a natural gas stream
AU2015201965B2 (en) Integrated nitrogen removal in the production of liquefied natural gas using dedicated reinjection circuit
AU2009319191B2 (en) Method of rejecting nitrogen from a hydrocarbon stream to provide a fuel gas stream and an apparatus therefor
KR101712496B1 (en) Method and system for producing liquified natural gas
US10539363B2 (en) Method and apparatus for cooling a hydrocarbon stream
EP1939564A1 (en) Process to obtain liquefied natural gas
JP2008545819A (en) Integrated NGL recovery and liquefied natural gas production
RU2763101C2 (en) Methods for cold supply in installations for extraction of gas condensate liquids
US7096688B2 (en) Liquefaction method comprising at least a coolant mixture using both ethane and ethylene
WO2009064952A2 (en) Dual-refluxed heavies removal column in an lng facility
RU2423653C2 (en) Method to liquefy flow of hydrocarbons and plant for its realisation

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20181101

Year of fee payment: 4