KR20100027701A - Preparing method of gas diffusion layer for fuel cell - Google Patents
Preparing method of gas diffusion layer for fuel cell Download PDFInfo
- Publication number
- KR20100027701A KR20100027701A KR1020080086715A KR20080086715A KR20100027701A KR 20100027701 A KR20100027701 A KR 20100027701A KR 1020080086715 A KR1020080086715 A KR 1020080086715A KR 20080086715 A KR20080086715 A KR 20080086715A KR 20100027701 A KR20100027701 A KR 20100027701A
- Authority
- KR
- South Korea
- Prior art keywords
- gas diffusion
- diffusion layer
- fuel cell
- precursor
- mixture
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0241—Composites
- H01M8/0243—Composites in the form of mixtures
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0234—Carbonaceous material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0239—Organic resins; Organic polymers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0241—Composites
- H01M8/0245—Composites in the form of layered or coated products
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2004/00—Particle morphology
- C01P2004/80—Particles consisting of a mixture of two or more inorganic phases
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- General Chemical & Material Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Composite Materials (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Nanotechnology (AREA)
- Inorganic Chemistry (AREA)
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Abstract
Description
본 발명은 얀(Yarn) 형태인 탄소나노튜브를 기재로 사용하여 종이 형태로 제조되는 연료전지용 기체확산층에 관한 것으로, 상세하게는 각종 물성이 탁월한 탄소나노튜브를 기재로 사용하여 기계적, 전기적 특성이 대폭 향상되는 연료전지용 기체확산층의 제조 방법에 관한 것이다.The present invention relates to a gas diffusion layer for a fuel cell manufactured in paper form using carbon nanotubes in yarn form as a base material, and in detail, mechanical and electrical properties are improved by using carbon nanotubes having excellent physical properties as a base material. The present invention relates to a method for producing a gas diffusion layer for fuel cells, which is greatly improved.
연료전지는 연료 및 산소가 지니고 있는 화학에너지를 전기화학반응에 의해 전기에너지로 변환하는 장치에 관한 것으로, 발전효율이 우수하고, 공해물질의 배출량 및 소음이 작은 친환경적 발전장치이다.The fuel cell relates to a device for converting chemical energy contained in fuel and oxygen into electrical energy by an electrochemical reaction. The fuel cell is an environmentally friendly power generation device with excellent power generation efficiency and low emission and noise of pollutants.
연료전지는 사용되는 전해질의 종류에 따라 고분자 전해질막 연료전지, 인산염 연료전지, 용융탄산염 연료전지, 고체산화물 연료전지 등으로 구분되며, 이들 여로 종류의 연료전지는 각각 고유의 특성을 지니고 있어 다양한 조건에서 운용되며 그 응용분야도 서로 상이하다.Fuel cells are classified into polymer electrolyte membrane fuel cells, phosphate fuel cells, molten carbonate fuel cells, and solid oxide fuel cells, depending on the type of electrolyte used. These fuel cell types have their own characteristics and various conditions. And their applications are different.
이러한 연료전지 중에서도 고분자 전해질막 연료전지는 다른 형태의 연료전지에 비해 전류밀도가 크고, 저온에서도 사용 가능하고, 수소 이외에 메탄올, 천연 가스를 연료로 사용할 수 있서어 자동차의 동력원으로 적합하다는 특성을 지니고 있다.Among these fuel cells, polymer electrolyte membrane fuel cells have the characteristics that they have a higher current density than other types of fuel cells, can be used at low temperatures, and can be used as a power source for automobiles because they can use methanol and natural gas as fuel. have.
고분자 전해질막 연료전지는 고분자 전해질막, 전극 및 분리판으로 구성되어 있으며, 상기 전극은 연료인 기체를 확산시키는 기체확산층 및 촉매로 이루어진 촉매층으로 구성되어 있으며, 상기 기체확산층은 탄소 기재와 마이크로 포러스층으로 구성되어 있다. 고분자 전해질막 연료전지의 전극에 포함되는 기체확산층은 전극에 연료 및 공기를 공급하고, 전기화학반응에 의해 생성된 전기를 모집하고, 전기화학반응에 의하여 발생하는 수분 및 이산화탄소를 배출하는 작용을 수행한다. The polymer electrolyte membrane fuel cell is composed of a polymer electrolyte membrane, an electrode and a separator, the electrode is composed of a gas diffusion layer and a catalyst layer consisting of a catalyst for diffusing a gas, which is fuel, the gas diffusion layer is a carbon substrate and a microporous layer It consists of. The gas diffusion layer included in the electrode of the polymer electrolyte membrane fuel cell supplies fuel and air to the electrode, collects electricity generated by the electrochemical reaction, and discharges water and carbon dioxide generated by the electrochemical reaction. do.
종래에는 두께 100∼300 ㎛의 다공성 카본소재를 기재로 하고, 수분관리를 위하여 상기 다공성 카본소재를 폴리테트라플루오르에틸렌(PTFE) 등의 방수재로 처리하여 기체확산층을 제조하였으나, 연료효율의 효율을 향상시키기 위해서는 종래의 다공성 카본소재보다 기계적, 전기적 특성이 탁월한 재료를 기재로 사용하여 제조되는 기체확산층에 대한 요구가 절실한 실정이다.Conventionally, a porous carbon material having a thickness of 100 to 300 µm is used as a substrate, and a gas diffusion layer is prepared by treating the porous carbon material with a waterproof material such as polytetrafluoroethylene (PTFE) for moisture management, but improves fuel efficiency. In order to achieve this, there is an urgent need for a gas diffusion layer manufactured using a material having excellent mechanical and electrical properties as a substrate as a conventional porous carbon material.
따라서, 본 발명의 목적은 기계적, 전기적 특성이 우수한 탄소나노튜브를 기재로 사용하여, 종래의 다공성 카본소재에 비해 기계적, 전기적 특성이 대폭 향상되는 연료전지용 기체확산층의 제조 방법을 제공하는데 있다.Accordingly, it is an object of the present invention to provide a method for producing a gas diffusion layer for a fuel cell using carbon nanotubes having excellent mechanical and electrical properties as a base material, in which mechanical and electrical properties are significantly improved compared to conventional porous carbon materials.
상기와 같은 과제를 달성하기 위하여, 본 발명에서는 탄소나노튜브와 폴리비닐알콜 수용액을 혼합하여 혼합물을 형성하는 단계: 상기 혼합물을 초지 건조하여 초지체를 형성하는 단계; 상기 초지체를 페놀수지용액에 함침하고 가열압착하여 전구체를 형성하는 단계; 및 상기 전구체를 500∼1600 ℃로 소성 처리하는 단계를 포함하는 연료전지용 기체확산층의 제조 방법이 제공된다.In order to achieve the above object, the present invention is to form a mixture by mixing a carbon nanotube and a polyvinyl alcohol aqueous solution: forming a papermaking body by drying the mixture; Impregnating the papermaking body with a phenol resin solution and heating and pressing to form a precursor; And it provides a method for producing a gas diffusion layer for a fuel cell comprising the step of firing the precursor at 500 ~ 1600 ℃.
본 발명에 의하여 제조되는 연료전지용 기체확산층은 탄소나노튜브를 기재로 사용하여 기계적, 전기적 특성이 대폭 향상되므로, 이러한 기체확산층을 사용하여 제조되는 연료전지의 연료효율을 크게 상승시키는 효과를 지니고 있다.The gas diffusion layer for a fuel cell manufactured according to the present invention has a significant improvement in mechanical and electrical properties using carbon nanotubes as a base material, and has an effect of greatly increasing fuel efficiency of a fuel cell manufactured using such a gas diffusion layer.
본 발명은 종래의 다공성 카본소재에 비해 기계적, 전기적 특성이 우수한 탄소나노튜브를 기재로 사용하여 구성되는 연료전지용 기체확산층을 제공하는 것을 특징으로 하고 있다.The present invention is characterized by providing a gas diffusion layer for a fuel cell, which is composed of carbon nanotubes excellent in mechanical and electrical properties as compared to conventional porous carbon materials.
미국 공개특허공보 제2008-022129호, 미국 공개특허공보 제2007-016631호, 일본 공개특허공보 제2006-54020호에서는 얀 형태로 이루어지는 탄소나노튜브가 개시되어 있으며, 최근 발표된 다수의 연구논문에서 탄소나노튜브의 각종 기계적, 전기적 특성에 대하여 구체적으로 개시되어 있다. 본 발명에서는 상기와 같이 개시된 탄소나노튜브를 기재로 사용하여 연료전지용 기체확산층을 제조하는 것이다.US Patent Publication No. 2008-022129, US Patent Publication No. 2007-016631, Japanese Patent Application Publication No. 2006-54020 disclose carbon nanotubes in the form of yarns, and a number of recently published research papers Various mechanical and electrical properties of carbon nanotubes are disclosed in detail. In the present invention, a gas diffusion layer for a fuel cell is prepared using the carbon nanotubes disclosed as the above.
본 발명에 의한 연료전지용 기체확산층의 제조 방법에 대하여 실시예를 참조하여 상세하게 설명한다.The manufacturing method of the gas diffusion layer for fuel cells by this invention is demonstrated in detail with reference to an Example.
우선, 본 발명의 연료전지용 기체확산층의 제조 방법은 탄소나노튜브와 폴리비닐알콜 수용액을 혼합하여 혼합물을 형성하는 단계가 포함된다.First, the method of manufacturing a gas diffusion layer for a fuel cell of the present invention includes a step of mixing a carbon nanotube and a polyvinyl alcohol aqueous solution to form a mixture.
연료전지용 기체확산층의 기재인 탄소나노튜브, 및 상기 탄소나노튜브를 초지하는데 소요되는 접합력을 부여하는 폴리비닐알콜 수용액을 혼합하고 균일하게 분산하여, 초지체를 제조하기 위한 혼합물을 형성한다.A carbon nanotube, which is a substrate of the gas diffusion layer for a fuel cell, and an aqueous polyvinyl alcohol solution that imparts a bonding force required for papermaking of the carbon nanotube are mixed and uniformly dispersed to form a mixture for producing a papermaking body.
즉, 탄소나노튜브와 폴리비닐알콜 수용액을 혼합하고, 일정한 온도 하에서 초음파를 인가하여 상기 혼합물에 함유된 탄소나노튜브를 분산시키므로써 상기 탄소나노튜브와 폴리비닐알콜 수용액이 균일하게 혼합 분산된 상태인 혼합물을 형성하는 것이다.That is, the carbon nanotubes and the polyvinyl alcohol aqueous solution are mixed, and the carbon nanotubes contained in the mixture are dispersed by applying ultrasonic waves under a constant temperature so that the carbon nanotubes and the polyvinyl alcohol aqueous solution are mixed and dispersed uniformly. To form a mixture.
초지체를 제조하기 위한 혼합물에 포함되는 탄소나노튜브의 두께가 5 ㎛ 미만이면 상기 탄소나노튜브의 가격이 높아지고 이는 결국 기체확산층의 제조원가 상승으로 연결되며, 혼합물에 포함되는 탄소나노튜브의 두께가 20 ㎛를 초과하면 상기 탄소나노튜브의 두께 과다로 인하여 초지체를 구성하는 것이 곤란하게 된다. 또한, 초지체를 제조하기 위한 혼합물에 포함되는 탄소나노튜브의 길이가 1 ㎜ 미만 이면 상기 탄소나노튜브를 함유하는 혼합물이 제대로 초지되지 않으며, 혼합물에 포함되는 탄소나노튜브의 길이가 6 ㎜를 초과하면 상기 탄소나노튜브를 함유하는 혼합물로부터 이루어지는 초지체의 두께 조절이 곤란하게 되기 때문에 두께 5∼20 ㎛, 길이 1∼6 ㎜의 탄소나노튜브를 사용하여 혼합물을 형성하는 것이 바람직하다.If the thickness of the carbon nanotubes included in the mixture for preparing the papermaking body is less than 5 μm, the price of the carbon nanotubes increases, which leads to an increase in the manufacturing cost of the gas diffusion layer, and the thickness of the carbon nanotubes included in the mixture is 20 If the thickness is larger than that, it is difficult to construct a papermaking body due to the excessive thickness of the carbon nanotubes. In addition, when the length of the carbon nanotubes contained in the mixture for producing a papermaking body is less than 1 mm, the mixture containing the carbon nanotubes is not properly papered, and the length of the carbon nanotubes included in the mixture exceeds 6 mm. If it is difficult to control the thickness of the papermaking body made from the mixture containing the carbon nanotubes, it is preferable to form the mixture using carbon nanotubes having a thickness of 5 to 20 µm and a length of 1 to 6 mm.
그리고, 초지체를 제조하기 위한 혼합물에 포함되는 폴리비닐알콜 수용액의 농도가 10 Vol.% 미만이면 상기 폴리비닐알콜 수용액을 함유하는 혼합물로부터 이루어지는 초지체의 형태 유지가 곤란하게 되며, 폴리비닐알콜 수용액의 농도가 50 Vol.%를 초과하면 상기 폴리비닐알콜 수용액을 함유하는 혼합물의 점성 과다로 인하여 초지체를 구성하는 것이 곤란하게 되기 때문에, 농도 10∼50 Vol.%의 폴리비닐알콜 수용액을 사용하여 혼합물을 형성하는 것이 바람직하다.And, if the concentration of the polyvinyl alcohol aqueous solution contained in the mixture for producing a papermaking body is less than 10 Vol.%, It is difficult to maintain the form of the papermaking body made from the mixture containing the polyvinyl alcohol aqueous solution, and the polyvinyl alcohol aqueous solution. If the concentration exceeds 50 Vol.%, It is difficult to form a paper body due to the viscosity of the mixture containing the aqueous solution of polyvinyl alcohol. Therefore, using a polyvinyl alcohol solution having a concentration of 10 to 50 vol.% It is preferable to form a mixture.
이러한 두께 5∼20 ㎛, 길이 1∼6 ㎜의 탄소나노튜브와 농도 10∼50 Vol.%의 폴리비닐알콜 수용액을 혼합한 상태에서, 30∼40 ℃에서 초음파를 1∼3 시간동안 인가하여 상기 탄소나노튜브를 분산시키므로써 상기 탄소나노튜브와 폴리비닐알콜 수용액이 균일하게 혼합 분산된 상태인 혼합물을 형성하는 것이 바람직하다.In a state where the carbon nanotubes having a thickness of 5 to 20 µm and a length of 1 to 6 mm and a polyvinyl alcohol aqueous solution having a concentration of 10 to 50 Vol.% Are mixed, ultrasonic waves are applied at 30 to 40 ° C. for 1 to 3 hours. By dispersing the carbon nanotubes, it is preferable to form a mixture in which the carbon nanotubes and the polyvinyl alcohol aqueous solution are uniformly mixed and dispersed.
탄소나노튜브와 폴리비닐알콜 수용액을 혼합한 상태에서 폴리비닐알콜 수용액 중에 탄소나노튜브를 분산시키도록 초음파를 인가할 때의 온도조건이 30 ℃ 미만이면 상기 탄소나노튜브가 제대로 분산되지 않으며, 폴리비닐알콜 수용액 중에 탄소나노튜브를 분산시키도록 초음파를 인가할 때의 온도조건이 40 ℃를 초과하면 상기 탄소나노튜브를 분산시키는 초음파의 효과가 저하될 수 있다. 또한, 탄소나노튜브와 폴리비닐알콜 수용액을 혼합한 상태에서 폴리비닐알콜 수용액 중에 탄소나 노튜브를 분산시키도록 초음파를 인가하는 시간이 1시간 미만이면 상기 탄소나노튜브가 제대로 분산되지 않으며, 폴리비닐알콜 수용액 중에 탄소나노튜브를 분산시키도록 초음파를 인가하는 시간이 3시간을 초과하면 상기 탄소나노튜브가 더 이상 분산되지 않는다.When the temperature condition when applying ultrasonic waves to disperse the carbon nanotubes in the polyvinyl alcohol aqueous solution in a state in which the carbon nanotubes and the polyvinyl alcohol aqueous solution is mixed, the carbon nanotubes are not properly dispersed, and the polyvinyl vinyl When the temperature condition when applying ultrasonic waves to disperse the carbon nanotubes in an aqueous alcohol solution exceeds 40 ℃, the effect of the ultrasonic waves to disperse the carbon nanotubes may be reduced. In addition, the carbon nanotubes are not properly dispersed when the time of applying ultrasonic waves to disperse the carbon or the tube in the polyvinyl alcohol aqueous solution in the state of mixing the carbon nanotubes and the polyvinyl alcohol aqueous solution, the polyvinyl alcohol When the time for applying ultrasonic waves to disperse the carbon nanotubes in the aqueous solution exceeds 3 hours, the carbon nanotubes are no longer dispersed.
상기와 같이 탄소나노튜브와 폴리비닐알콜 수용액을 혼합하고 일정한 온도 하에서 초음파를 인가하여 이루어지는 혼합물을 초지하므로써 페이퍼 형태를 이루는 초지체를 형성하는 것이다.By mixing the carbon nanotubes and the polyvinyl alcohol aqueous solution as described above and applying a ultrasonic wave under a constant temperature to form a paper-like papermaking body by forming a mixture.
또한, 본 발명의 연료전지용 기체확산층의 제조 방법은 상기 혼합물을 초지 건조하여 초지체를 형성하는 단계가 포함된다.In addition, the manufacturing method of the gas diffusion layer for a fuel cell of the present invention includes the step of forming a papermaking body by drying the mixture.
구체적으로 탄소나노튜브와 폴리비닐알콜 수용액이 균일하게 혼합 분산된 상태인 혼합물을 초지하여 두께 200∼300 ㎛의 웹을 형성하고, 상기 웹의 표면에서 액상 성분이 잔류하지 않도록 고온 하에서 충분히 건조하여 연료전지의 전극의 기체확산층의 탄소 기재인 초지체를 형성하는 것이다.Specifically, a carbon nanotube and a polyvinyl alcohol aqueous solution are mixed with a uniformly dispersed state to form a web having a thickness of 200 to 300 µm, and dried sufficiently under high temperature so that liquid components do not remain on the surface of the web to be fueled. The papermaking body which is a carbon base material of the gas diffusion layer of the electrode of a battery is formed.
탄소나노튜브와 폴리비닐알콜 수용액이 초지되어 이루어지는 웹의 두께가 200 ㎛ 미만이면 상기 웹으로부터 이루어지는 기체확산층이 전기화학반응에 의해 생성된 전기의 모집 기능이 저하되며, 탄소나노튜브와 폴리비닐알콜 수용액이 초지되어 이루어지는 웹의 두께가 300 ㎛를 초과하면 상기 웹으로부터 이루어지는 기체확산층이 연료인 기체의 확산 기능 및 전기화학반응에 의하여 발생하는 수분, 이산화탄소의 배출 기능이 저하된다.When the thickness of the web made of carbon nanotubes and polyvinyl alcohol aqueous solution is less than 200 μm, the gas diffusion layer formed from the web is reduced in the electricity collection function generated by the electrochemical reaction, and the carbon nanotube and polyvinyl alcohol aqueous solution When the thickness of the web made of the paper sheet exceeds 300 µm, the gas diffusion layer formed from the web has a function of diffusing the gas, which is a fuel, and the discharge function of water and carbon dioxide generated by an electrochemical reaction.
상기와 같이 두께 200∼300 ㎛로 초지된 웹을 고온 하에서 충분히 건조하여 초지체를 형성하고, 상기 초지 건조된 초지체를 사용하여 본 발명의 연료전지용 기체확산층의 전 단계인 전구체를 형성하는 것이다.As described above, the paper rolled to a thickness of 200 to 300 µm is sufficiently dried at high temperature to form a paper stock, and the paper dried sheet is used to form a precursor which is a previous step of the gas diffusion layer for a fuel cell of the present invention.
또한, 본 발명의 연료전지용 기체확산층의 제조 방법은 상기 초지체를 페놀수지용액에 함침하고 가열압착하여 전구체를 형성하는 단계가 포함된다.In addition, the method of manufacturing a gas diffusion layer for a fuel cell of the present invention includes the step of impregnating the paper body in a phenol resin solution and heat-pressed to form a precursor.
연료전지의 전극의 기체확산층은 탄소 기재와 마이크로 포러스층으로 구성된다. The gas diffusion layer of the electrode of the fuel cell is composed of a carbon substrate and a microporous layer.
따라서, 본 발명의 연료전지용 기체확산층에 마이크로 포러스층을 제공하기 위하여, 초지체를 형성하는 단계에서 형성된 초지체를 페놀수지용액에 함침하고, 상기 페놀수지용액에 함침된 초지체를 150∼300 ℃, 50∼100 ㎏f/㎠으로 가열압착하므로써, 상기 초지체의 표면에 마이크로 포러스층을 형성하기 위한 페놀수지층이 도핑 처리된 전구체를 구성한다.Therefore, in order to provide a microporous layer in the gas diffusion layer for a fuel cell of the present invention, the papermaking body formed in the step of forming the papermaking body is impregnated with the phenolic resin solution, and the papermaking body impregnated with the phenolic resin solution is 150 to 300 ° C. , By hot pressing at 50-100 kgf / cm 2, the phenolic resin layer for forming the microporous layer on the surface of the papermaking body constitutes the doped precursor.
초지체의 표면에 페놀수지층을 도핑 처리하기 위하여 페놀수지용액에 함침된 초지체를 가열압착하는 온도가 150 ℃ 미만이면 상기 초지체의 표면에 페놀수지층이 제대로 도핑되지 않으며, 페놀수지용액에 함침된 초지체를 가열압착하는 온도가 300 ℃를 초과하면 상기 초지체의 표면에 도핑된 페놀수지층이 변성될 수 있다. 또한, 초지체의 표면에 페놀수지층을 도핑 처리하기 위하여 페놀수지용액에 함침된 초지체를 가열압착하는 압력이 50 ㎏f/㎠ 미만이면 상기 초지체의 표면에 도핑된 페놀수지층이 탈리될 수 있으며, 페놀수지용액에 함침된 초지체를 가열압착하는 압력이 100 ㎏f/㎠를 초과하면 상기 초지체 및 페놀수지층의 기공률이 저하되고 이는 결국 기체확산층의 기체의 확산 기능 및 전기화학반응에 의하여 발생하는 수분, 이 산화탄소의 배출 기능의 저하로 연결된다.In order to doping the phenolic resin layer on the surface of the papermaking body, when the temperature of the papermaking body impregnated with the phenolic resin solution is lower than 150 ° C., the phenolic resin layer may not be properly doped on the surface of the papermaking body. When the temperature for hot pressing the impregnated paper stock exceeds 300 ° C., the phenol resin layer doped on the surface of the paper stock may be modified. In addition, when the pressure for heating and pressing the paper body impregnated in the phenolic resin solution to doping the phenolic resin layer on the surface of the paper body is less than 50 kgf / cm 2, the phenol resin layer doped on the surface of the paper body may be detached. When the pressure for heating and pressing the paper body impregnated in the phenolic resin solution exceeds 100 kgf / cm 2, the porosity of the paper body and the phenolic resin layer is lowered, which results in the diffusion function of the gas in the gas diffusion layer and the electrochemical reaction. Water generated by this leads to a decrease in the emission function of this carbon oxide.
상기와 같이 초지체가 페놀수지용액에 함침되고 가열압착되어 이루어지는 전구체를 소성 처리하여 기체확산층을 구성하는 것이다.As described above, the precursor is impregnated with the phenol resin solution and heated and pressed to form a gas diffusion layer.
또한, 본 발명의 연료전지용 기체확산층의 제조 방법은 상기 전구체를 500∼1600 ℃로 소성 처리하는 단계가 포함된다.In addition, the manufacturing method of the gas diffusion layer for a fuel cell of the present invention includes the step of firing the precursor at 500 ~ 1600 ℃.
기계적, 전기적 특성이 향상된 연료전지용 기체확산층을 제공하는 본 발명의 목적을 달성하기 위해서는, 전구체를 고온으로 소성 처리하여 강도, 기공률 등의 기계적 물성, 저항치 등과 같은 전기적 물성을 증가시키는 동시에, 상기 전구체의 표면에 도핑처리된 페놀수지층을 다공화하는 것이 필수적이다.In order to achieve the object of the present invention to provide a gas diffusion layer for fuel cells with improved mechanical and electrical properties, the precursor is calcined at a high temperature to increase the electrical properties such as mechanical properties such as strength, porosity, resistance, and the like. It is essential to pore the phenolic resin layer doped on the surface.
이를 위하여, 상기 전구체의 형성 단계에서 형성된 전구체를 500∼1600 ℃로 소성 처리하는데, 상기 전구체를 500 ℃에서 1600 ℃까지 100 ℃/min의 승온속도로 서서히 승온시켜서 소성 처리하는 것이, 소성 처리 과정에서 순간적인 고열 노출로 인한 전구체의 손상, 수축이나 열화 현상 등을 방지할 수 있다는 측면에서 바람직하다.To this end, the precursor formed in the step of forming the precursor is calcined at 500 to 1600 ° C, wherein the precursor is gradually calcined at a temperature rising rate of 100 ° C / min from 500 ° C to 1600 ° C in the calcining process. It is preferable in view of preventing damage to the precursor, shrinkage or deterioration due to instantaneous high heat exposure.
연료전지용 기체확산층을 제조하기 위하여 전구체를 소성 처리하는 온도가 500 ℃ 미만이면 상기 전구체가 제대로 소성 처리되지 않으며, 전구체를 소성 처리하는 온도가 1600 ℃를 초과하면 상기 전구체가 더 이상 소성 처리되지 않을 뿐만 아니라 상기 전구체의 표면에 도핑처리된 페놀수지층이 열화되어 마이크로 포러스층이 형성되지 않는다.When the temperature for firing the precursor is less than 500 ° C. to prepare a gas diffusion layer for a fuel cell, the precursor is not calcined properly. When the temperature for firing the precursor exceeds 1600 ° C., the precursor is no longer calcined. However, the phenolic resin layer doped on the surface of the precursor is deteriorated, so that no microporous layer is formed.
상기와 같이 전구체가 소성 처리되어 이루어지는 기체확산층을 상온에서 서 냉하여 본 발명의 연료전지용 기체확산층을 제조한다.As described above, the gas diffusion layer in which the precursor is calcined is cooled at room temperature to prepare a gas diffusion layer for a fuel cell of the present invention.
본 발명의 연료전지용 기체확산층의 제조 방법에 대하여 구체적인 실시예를 참조하여 상세하게 설명한다. 단, 다음에 기술되는 실시예들은 본 발명을 구체적으로 예시하기 위한 것일 뿐이며, 본 발명을 제한하는 것은 아니다.The manufacturing method of the gas diffusion layer for fuel cells of this invention is demonstrated in detail with reference to a specific Example. However, the embodiments described below are merely for illustrating the present invention in detail, and do not limit the present invention.
< 실시예 1 ><Example 1>
1. 평균두께 10 ㎛, 평균길이 3 ㎜의 탄소나노튜브 100 중량부, 농도 10 Vol.%의 폴리비닐알콜 수용액 10 중량부를 혼합하여 혼합물을 형성하였다.1. A mixture was formed by mixing 100 parts by weight of carbon nanotubes having an average thickness of 10 μm and an average length of 3 mm, and 10 parts by weight of an aqueous polyvinyl alcohol solution having a concentration of 10 Vol.%.
2. 상기 혼합물을 초지하여 두께 1 ㎜의 웹을 형성하고, 상기 웹을 200 ℃에서 10분간 건조하여 초지체를 형성하였다.2. The mixture was papermaking to form a web having a thickness of 1 mm, and the web was dried at 200 ° C. for 10 minutes to form a papermaking body.
3. 상기 초지체를 페놀수지용액에 함침하고, 150 ℃, 50 ㎏f/㎠으로 가열압착하여 전구체를 형성하였다.3. The papermaking body was impregnated with a phenolic resin solution and heated and pressed at 150 캜 and 50 kgf / cm 2 to form a precursor.
4. 상기 전구체를 질소 분위기 하에서 500 ℃에서 1600 ℃까지 100 ℃/min의 승온속도로 승온하고, 1600 ℃에서 10 분간 소성하여 기체확산층을 제조하였다.4. The precursor was heated at a temperature increase rate of 100 ° C./min from 500 ° C. to 1600 ° C. under a nitrogen atmosphere, and calcined at 1600 ° C. for 10 minutes to prepare a gas diffusion layer.
< 실시예 2 ><Example 2>
평균두께 10 ㎛, 평균길이 3 ㎜의 탄소나노튜브 100 중량부, 농도 10 Vol.%의 폴리비닐알콜 수용액 50 중량부를 혼합하여 혼합물을 형성하는 것 이외에는 상기 실시예 1과 동일하다.The same procedure as in Example 1 was carried out except that 100 parts by weight of carbon nanotubes having an average thickness of 10 µm and an average length of 3 mm and 50 parts by weight of a polyvinyl alcohol aqueous solution having a concentration of 10 Vol.% Were mixed to form a mixture.
< 실시예 3 ><Example 3>
초지체를 페놀수지용액에 함침하고, 300 ℃, 100 ㎏f/㎠으로 가열압착하여 전구체를 형성하는 것 이외에는 상기 실시예 1과 동일하다.The paper body was impregnated with a phenol resin solution and heated and pressed at 300 캜 and 100 kgf / cm 2 to form a precursor, which was the same as in Example 1.
< 비교예 1 ><Comparative Example 1>
실시예1에 있어서 탄소섬유(도레이社 제조, TGP-H-060)를 이용한 것을 제외하고 실시예1과 같이 하였다.In Example 1 was the same as in Example 1 except that the carbon fiber (TGP-H-060, manufactured by Toray Industries, Inc.) was used.
< 비교예 2 ><Comparative Example 2>
실시예3에 있어서 탄소섬유(도레이社 제조, TGP-H-060)를 이용한 것을 제외하고 실시예3과 같이 하였다.In Example 3, it was the same as in Example 3 except that the carbon fiber (TGP-H-060, manufactured by Toray Industries, Inc.) was used.
상기 실시예 1 내지 3, 비교예 1, 2에 의거하여 제조된 기체확산층의 공정 조건 및 물성을 다음의 표 1에 나타낸다.Process conditions and physical properties of the gas diffusion layers prepared according to Examples 1 to 3 and Comparative Examples 1 and 2 are shown in Table 1 below.
< 표 1 > 기체확산층의 공정 조건 및 물성 비교<Table 1> Process condition and physical property comparison of gas diffusion layer
상기 표 1에서 본 발명의 실시예에 의한 기체확산층이, 비교예에 의한 기체확산층 보다 기계적, 전기적 물성이 탁월하여, 연료전지의 전극 재료로 사용하는데 적당한 것으로 나타났다.Table 1 shows that the gas diffusion layer according to the embodiment of the present invention is superior to the gas diffusion layer according to the comparative example in terms of mechanical and electrical properties, and is suitable for use as an electrode material of a fuel cell.
본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 특허청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by those skilled in the art without departing from the gist of the present invention as claimed in the claims. Of course, such changes will fall within the scope of the claims.
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080086715A KR20100027701A (en) | 2008-09-03 | 2008-09-03 | Preparing method of gas diffusion layer for fuel cell |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080086715A KR20100027701A (en) | 2008-09-03 | 2008-09-03 | Preparing method of gas diffusion layer for fuel cell |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20100027701A true KR20100027701A (en) | 2010-03-11 |
Family
ID=42178637
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020080086715A KR20100027701A (en) | 2008-09-03 | 2008-09-03 | Preparing method of gas diffusion layer for fuel cell |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20100027701A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150046975A (en) * | 2013-10-23 | 2015-05-04 | 영텍 주식회사 | Electrolytic ionized water Cell and the manufacture Method using Resin |
CN108862278A (en) * | 2018-05-29 | 2018-11-23 | 木林森活性炭江苏有限公司 | A kind of production method of drinks special-purpose activated charcoal |
-
2008
- 2008-09-03 KR KR1020080086715A patent/KR20100027701A/en not_active Application Discontinuation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20150046975A (en) * | 2013-10-23 | 2015-05-04 | 영텍 주식회사 | Electrolytic ionized water Cell and the manufacture Method using Resin |
CN108862278A (en) * | 2018-05-29 | 2018-11-23 | 木林森活性炭江苏有限公司 | A kind of production method of drinks special-purpose activated charcoal |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6053251B2 (en) | Solid polymer fuel cell gas diffusion layer | |
EP1950826A1 (en) | Gas diffusion electrode substrate, gas diffusion electrode and process for its production, and fuel cell | |
KR20150046102A (en) | Gas-diffusion electrode base material for fuel cell | |
KR101392227B1 (en) | Carbon fiber web comprising polymer nanofiber | |
US20120141914A1 (en) | Gas Diffusion Layer Member For Solid Polymer Fuel Cells, and Solid Polymer Fuel Cell | |
KR102321252B1 (en) | Complex electrolyte membrane, manufacturing method thereof and membrane electrode assembly containing the same | |
JP2011192653A (en) | Gas diffusion media, and fuel cell | |
JP2002358981A (en) | Current collector for fuel cell and its manufacturing method | |
KR101550204B1 (en) | Preparation method of carbon paper for fuel cell gas diffusion layer by addition of conducting polymers and carbon paper for fuel cell gas diffusion layer using the same | |
KR100997418B1 (en) | Method of preparing gas diffusion layer having carbon nanotube and carbon compound for fuel cell | |
JP2010015908A (en) | Substrate for gas diffusion electrode and method for manufacturing the same, and membrane-electrode assembly | |
JP2004296176A (en) | Solid polymer fuel cell | |
JP5328407B2 (en) | Moisture management sheet, gas diffusion sheet, membrane-electrode assembly, and polymer electrolyte fuel cell | |
EP4131519A1 (en) | Method for producing gas diffusion electrode substrate | |
KR20100027701A (en) | Preparing method of gas diffusion layer for fuel cell | |
KR102568615B1 (en) | Gas Diffusion Layer and method thereof | |
CN113882186A (en) | Carbon fiber paper and preparation method and application thereof | |
KR102212933B1 (en) | composite for production of perfluorinated sulfonic acid ionomer, perfluorinated sulfonic acid ionomer using the same, complex electrolyte membrane for PEMFC containing the same and membrane electrode assembly for PEMFC containing the same | |
KR102212937B1 (en) | composite for production of perfluorinated sulfonic acid ionomer, perfluorinated sulfonic acid ionomer using the same, complex electrolyte membrane for PEMFC containing the same and membrane electrode assembly for PEMFC containing the same | |
KR102212935B1 (en) | composite for production of perfluorinated sulfonic acid ionomer, perfluorinated sulfonic acid ionomer using the same, complex electrolyte membrane for PEMFC containing the same and membrane electrode assembly for PEMFC containing the same | |
KR102212936B1 (en) | composite for production of perfluorinated sulfonic acid ionomer, perfluorinated sulfonic acid ionomer using the same, complex electrolyte membrane for PEMFC containing the same and membrane electrode assembly for PEMFC containing the same | |
KR102300431B1 (en) | composite for production of perfluorinated sulfonic acid ionomer, perfluorinated sulfonic acid ionomer using the same, complex electrolyte membrane for PEMFC containing the same and membrane electrode assembly for PEMFC containing the same | |
KR102300430B1 (en) | composite for production of perfluorinated sulfonic acid ionomer, perfluorinated sulfonic acid ionomer using the same, complex electrolyte membrane for PEMFC containing the same and membrane electrode assembly for PEMFC containing the same | |
KR102321255B1 (en) | Complex electrolyte membrane, manufacturing method thereof and membrane electrode assembly containing the same | |
KR102321256B1 (en) | Complex electrolyte membrane for PEMFC, manufacturing method thereof and membrane electrode assembly containing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |