[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20100006272A - High performance organic semiconductors based on anthracene backbone with vinyl group and the organic semiconductor thin film and organic thin film electronic devices using thereof - Google Patents

High performance organic semiconductors based on anthracene backbone with vinyl group and the organic semiconductor thin film and organic thin film electronic devices using thereof Download PDF

Info

Publication number
KR20100006272A
KR20100006272A KR1020080066434A KR20080066434A KR20100006272A KR 20100006272 A KR20100006272 A KR 20100006272A KR 1020080066434 A KR1020080066434 A KR 1020080066434A KR 20080066434 A KR20080066434 A KR 20080066434A KR 20100006272 A KR20100006272 A KR 20100006272A
Authority
KR
South Korea
Prior art keywords
group
substituted
alkyl
formula
organic semiconductor
Prior art date
Application number
KR1020080066434A
Other languages
Korean (ko)
Other versions
KR101280592B1 (en
Inventor
엄명철
홍종인
장준혁
김장주
Original Assignee
재단법인서울대학교산학협력재단
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 재단법인서울대학교산학협력재단, 삼성전자주식회사 filed Critical 재단법인서울대학교산학협력재단
Priority to KR1020080066434A priority Critical patent/KR101280592B1/en
Publication of KR20100006272A publication Critical patent/KR20100006272A/en
Application granted granted Critical
Publication of KR101280592B1 publication Critical patent/KR101280592B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/02Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
    • C07D409/10Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a carbon chain containing aromatic rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/08Hydrogen atoms or radicals containing only hydrogen and carbon atoms
    • C07D333/10Thiophene
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D409/00Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
    • C07D409/14Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing three or more hetero rings
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/615Polycyclic condensed aromatic hydrocarbons, e.g. anthracene
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/60Organic compounds having low molecular weight
    • H10K85/649Aromatic compounds comprising a hetero atom
    • H10K85/655Aromatic compounds comprising a hetero atom comprising only sulfur as heteroatom

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE: An organic semiconductor compound having high performance based on anthracene having vinyl group is provided to ensure high electrical characteristic and high thermal stability. CONSTITUTION: An organic semiconductor compound with vinyl group is synthesized by reacting phosphonate derivative of chemical formula 1 and aldehyde derivative of chemical formula 2. In chemical formulas 1 and 2, A is substituted or non-substituted cyclic alkyl group, substituted or non-substituted aryl group, substituted or non-substituted thiophenyl group, substituted or non-substituted pyridinyl group, substituted or non-substituted pyrrolyly group or substituted or non-substituted furanyl group. The organic semiconductor compound is denoted by one among chemical formula 3 to 6.

Description

비닐그룹을 갖는 안트라센 뼈대에 기초한 고성능 유기 반도체 화합물 및 이를 이용한 유기 반도체 박막 및 유기 박막 전자 소자{High Performance Organic Semiconductors Based on Anthracene Backbone with Vinyl Group and the Organic Semiconductor Thin Film and Organic Thin Film Electronic Devices using thereof}High performance organic semiconductors based on anthracene backbone with vinyl group and the organic semiconductor thin film and organic thin film electronic devices using according to the anthracene skeleton having a vinyl group

본 발명은 비닐그룹을 갖는 안트라센 뼈대에 기초한 고성능 유기 반도체 화합물 및 이를 이용한 유기 반도체 박막 및 유기 박막 전자 소자에 관한 보다 상세하게는 대칭적으로 치환된 형태의 신규의 유기 반도체 화합물로서 각종 유기 전자용 소재에 적용시 높은 필드-이펙트 이동도(field-effect mobilities; 전하이동도)와 같은 좋은 전기적 특성을 보여주며, 대량으로 쉽게 합성될 수 있고, 또한 낮은 기판 증착 온도에서도 적용가능한 유기 플렉서블 전자공학(organic flexible electronics)에 응용에 대해서 전도유망한 고성능 유기 반도체 화합물에 관한 것이다. The present invention relates to a high performance organic semiconductor compound based on an anthracene skeleton having a vinyl group, and an organic semiconductor thin film and an organic thin film electronic device using the same. Organic flexible electronics that exhibit good electrical properties, such as high field-effect mobilities, can be easily synthesized in large quantities and are also applicable at low substrate deposition temperatures. A high performance organic semiconductor compound that is promising for applications in flexible electronics.

과거 몇 십년 동안에, 아센과 티오펜 올리고머는 FETs(M. H. Yoon, S. A. DiBenedetto, A. Facchetti, T. J. Mark, J. Am. Chem . Soc., 2006, 128, 9598. , K. Takimiya, Y. Kunugi, Y. Konda, H. Ebata, Y. Toyoshima, T. Otsubo, J. Am. Chem. Soc., 2006, 128, 3044. , C. D. Dimitrakopoulos, R. L. Malenfant, Adv . Mater., 2002, 14, 99.), OLEDs(R. H. Friend, R. W. Gymer, A. B. Holmes, J. H. Burrouhes, R. N. Marks, C. Taliani, D. D. C. Bardley, D. A. DosSantos, J. L. Bredas, M, Logdlund, W. R. Salanek, Nature., 1999, 397, 121), 광전지(a) C. J. Brabec, N. S. Sariciftci, J. C. Hummelen, Adv . Funct . Mater., 2001, 11, 15; b) K. M. Coakley, M. D. McGhee, Chem . Mat., 2004, 16, 4533.), 센서(a) B. Crone, A. Dodabalapur, Y. -Y. Lin, R. W. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. E. Katz, W. Li, Nature., 2000, 403, 521; b) Y, -Y. Lin, A. Dodabalapur, R. Sarpeshkar, Z. Bao, W. Li, K. Baldwin, V. R. Raju, H. E. Katz, Appl . Phys. Lett., 1999, 74, 2714. ), 그리고 RF-ID 태그(a) A. T. Brown, A. Pomp, C. M. Hart, D. M. Deleeuw, Science., 1995, 270, 972; b) C. J. Drury, C. M. Mutsaers, C. M. Hart, M. Matters, D. M. de Leeuw, Appl . Phys. Lett., 1998, 73, 108.) 와 같은 장치들에서 유기 반도체들로 사용하기 위하여 광범위하게 연구되어 오고 있다. 지금까지 펜타센은 매우 높은 필드-이펙트 모빌리티(0.3-0.7 cm2/Vs on a Si/SiO2 기판, 1.5 cm2/Vs on 화학적으로 개질된 Si/SiO2 기판, 그리고 3.0 cm2/Vs on 개질된 알루미나 기판)( D. J. Gundlach, Y. Y. Lin, T. N. Jackson, S. F. Nelson, D. G. Schlom, IEEE Electron Device Lett., 1997, 18, 87., Y. Y. Lin, D. J. Gundlach, S. F. Nelson, T. N. Jackson, IEEE Electron Device Lett ., 1997, 18, 606., T.W. Kelly, Y. Lin, D. J. Gundlach, S. F. Nelson, T. N. Jackson, J. Phys. Chem . B., 2003, 107, 5877.)를 가지는 가장 좋은 박막 물질로서 주목할 만한 특성을 보여주고 있으며 그리고 루브렌(rubrene)은 가장 좋은 단일-크리스탈 물질로서의 특성을 보여주었다(15.4cm2/Vs)( a) V. C. Sundar, J. Zaumseil, V. Podzorov, E. Menard, R. L. Willett, T. Someya, M. E. Gershenson, J. A. Rogers, Science., 2004, 303, 1644; b) V. Podzordov, S. E, Sysoev, E. Loginova, V. M. Pudalov, C. E. Gershenoon, Appl . Phys. Lett . B., 2003, 83107, 3504.). 그러나, 펜타센에 기초한 장치들은 좋지 않은 공기 안정성과 빠른 장치 성능 저하를 나타내고 있다(M. Yamada, I. Ikemoto, H. Kuroda, Bull. Chem . Soc. Jpn ., 1988, 61, 1057.). 따라서, 낮은 기판 온도에서 증착될 수 있으며, 주위환경적으로 안정하고, 높은 이동도와 온/오프 전류비를 갖는 유기 반도체 물질들이 여전히 필요로 되고 있다. In the past decades, asenes and thiophene oligomers have been described as FETs (MH Yoon, SA DiBenedetto, A. Facchetti, TJ Mark, J. Am. Chem . Soc ., 2006, 128 , 9598., K. Takimiya, Y. Kunugi, Y. Konda, H. Ebata, Y. Toyoshima, T. Otsubo, J. Am. Chem. Soc ., 2006, 128 , 3044., CD Dimitrakopoulos, RL Malenfant, Adv . Mater ., 2002, 14 , 99.), OLEDs (RH Friend, RW Gymer, AB Holmes, JH Burrouhes, RN Marks, C. Taliani, DDC Bardley, DA Dos Santos, JL Bredas, M, Logdlund, WR Salanek, Nature. , 1999, 397 , 121), photovoltaic cells (a) CJ Brabec, NS Sariciftci, JC Hummelen, Adv . Funct . Mater., 2001, 11 , 15; b) KM Coakley, MD McGhee, Chem . Mat., 2004, 16 , 4533.), sensor (a) B. Crone, A. Dodabalapur, Y.-Y. Lin, RW Filas, Z. Bao, A. La Duca, R. Sarpeshkar, HE Katz, W. Li, Nature., 2000, 403 , 521; b) Y, -Y. Lin, A. Dodabalapur, R. Sarpeshkar, Z. Bao, W. Li, K. Baldwin, VR Raju, HE Katz, Appl . Phys. Lett ., 1999, 74 , 2714.), and RF-ID tags (a) AT Brown, A. Pomp, CM Hart, DM Deleeuw, Science., 1995, 270 , 972; b) CJ Drury, CM Mutsaers, CM Hart, M. Matters, DM de Leeuw, Appl . Phys. Lett., 1998, 73 , 108.) has been extensively studied for use as organic semiconductors in devices. To date, pentacene has been characterized by very high field-effect mobility (0.3-0.7 cm 2 / Vs on a Si / SiO 2 substrate, 1.5 cm 2 / Vs on chemically modified Si / SiO 2 substrates, And 3.0 cm 2 / Vs on modified alumina substrate) (DJ Gundlach, YY Lin, TN Jackson, SF Nelson, DG Schlom, IEEE Electron Device Lett., 1997, 18 , 87., YY Lin, DJ Gundlach, SF Nelson, TN Jackson, IEEE Electron Device Lett ., 1997, 18 , 606., TW Kelly, Y. Lin, DJ Gundlach, SF Nelson, TN Jackson, J. Phys. Chem . B., 2003, 107 , 5877. Remarkable properties as the best thin film material and rubrene as the best single-crystal material (15.4 cm 2 / Vs) (a) VC Sundar, J. Zaumseil, V. Podzorov , E. Menard, RL Willett, T. Someya, ME Gershenson, JA Rogers, Science., 2004, 303 , 1644; b) V. Podzordov, S. E, Sysoev, E. Loginova, VM Pudalov, CE Gershenoon, Appl . Phys. Lett . B., 2003, 83107 , 3504.). However, pentacene-based devices show poor air stability and rapid deterioration of device performance (M. Yamada, I. Ikemoto, H. Kuroda, Bull. Chem . Soc. Jpn ., 1988, 61 , 1057.). Therefore, there is still a need for organic semiconductor materials that can be deposited at low substrate temperatures, are environmentally stable, and have high mobility and on / off current ratios.

매우 최근에는, 몇몇 연구 그룹들이 컨쥬게이티드된 비닐렌-기초한 올리고머를 선택함으로서 높은 안정성과 전도도를 갖는 반도체를 발전시키고 있다(a) C. Videlot-Ackermann, J. Ackermann, H. Brisset, K. Kawamura, N. Yoshimoto, P. Raynal, A. EI Dassmi, F. Fages, J. Am. Chem . Soc ., 2005, 127, 16346; b) N. Drolet, J. F. Morin, N. Leclerc, S. Wakim, Y. Tao, M. Leclerc, Adv . Funct . Mater., 2005, 15, 1671; c) T. C. Gorjanc, I. Levesque. M. Dlori, Appl . Phys. Lett., 2004, 84, 930.). 사실, 정의된 분자 구성의 더블 본드의 존재는 첫째, 평면 구조의 전체적 방향족 특성을 감소시켜 π-전자 로우컬화를 증가시키고, 둘째, 고유한 회전 자유도를 감소시키고(a) G. Distefano, M. Da Colle, D. Jones, M. Zambianchi, L. Favvafetto, A. Modelli, J. Phys. Chem ., 1993, 97, 3504; b) E. Orti, P. M. Viruela, J. Sanchez-Marin, F. Tomas, J. Phys. Chem., 1995, 99, 4955.) 그것은 에너지 밴드 갭을 증가시킨다. 비닐렌 단위의 올리고머 구조에의 도입은, 확장된 π-컨쥬게이티드 길이를 갖는 코플랜너 분자들을 구성하기 방법이며, 그것은 박막에서 분자들의 구성을 최대화하는데 도움을 준다. 스타이릴(styryl) 단위를 갖는 엔드-캡된 올리고티오펜으로부터 유도한 장치들은 비교적 높은 필드-이펙트 이동도와 온/오프 비율을 보여 줄 뿐만 아니라 대기적 조건하에서 예외적으로 긴 수명과 지속적 작동하에 안정적인 것으로 밝혀졌다. 그러나, 이러한 물질들의 연구는 여전히 부족하며, 이들에 대한 지속적인 연구와 보다 개선된 성능을 갖는 물질들의 발굴이 지속적으로 요청되고 있다. Very recently, several research groups have developed semiconductors with high stability and conductivity by selecting conjugated vinylene-based oligomers (a) C. Videlot-Ackermann, J. Ackermann, H. Brisset, K. Kawamura, N. Yoshimoto, P. Raynal, A. EI Dassmi, F. Fages, J. Am. Chem . Soc ., 2005, 127 , 16346; b) N. Drolet, JF Morin, N. Leclerc, S. Wakim, Y. Tao, M. Leclerc, Adv . Funct . Mater., 2005, 15 , 1671; c) TC Gorjanc, I. Levesque. M. Dlori, Appl . Phys. Lett., 2004, 84 , 930.). In fact, the presence of double bonds of defined molecular composition firstly decreases the overall aromatic character of the planar structure to increase π-electron localization, and secondly, to reduce inherent rotational degrees of freedom (a) G. Distefano, M. Da Colle, D. Jones, M. Zambianchi, L. Favvafetto, A. Modelli, J. Phys. Chem ., 1993, 97 , 3504; b) E. Orti, PM Viruela, J. Sanchez-Marin, F. Tomas, J. Phys. Chem., 1995, 99 , 4955.) It increases the energy band gap. The introduction of vinylene units into the oligomer structure is a method of constructing coplanar molecules with extended π-conjugated length, which helps to maximize the composition of the molecules in the thin film. Devices derived from end-captured oligothiophenes with styryl units show relatively high field-effect mobility and on / off ratios, and are found to be stable under exceptionally long life and continuous operation under atmospheric conditions. lost. However, the research of these materials is still insufficient, and there is a continuous demand for continuous research on them and the discovery of materials with improved performance.

본 발명자들은 주위환경적으로 안정하고, 높은 이동도와 온/오프 전류비를 갖는 유기 반도체 물질들의 필요에 부응한 새로운 유기 반도체 물질들을 제공하고자 한다. The present inventors seek to provide new organic semiconductor materials that are environmentally stable and meet the needs of organic semiconductor materials with high mobility and on / off current ratios.

또한, 상기의 유기 반도체 물질들을 포함하여 고도로 정렬된 유기 반도체 박막을 형성할 수 있도록 하며, 이를 유기 활성층으로 사용하여 고 성능의 유기 박막 트랜지스터를 제공하고자 한다. In addition, it is possible to form a highly aligned organic semiconductor thin film including the above organic semiconductor materials, and to use this as an organic active layer to provide a high performance organic thin film transistor.

이를 위하여 본 발명자는 비닐그룹을 갖는 안트라센 뼈대에 기초한 유기 반도체 화합물들을 합성하였다. 보다 구체적인 예로, 2,6-비스-(2-티에닐비닐)안트라센(2,6-bis(2-thienylvinyl)anthracene ; TVAnt) 뼈대를 갖는 새로운 유기 반도체 화합물을 합성하였다. 상기 물질을 기초로 하여 알킬 치환된 TVAnt를 합성하고 이들에 대하여 전기적 특성 등을 평가하였다. 보다 구체적인 실시예로 TVAnt와 헥실(hexyl) 치환된 HTVAnt를 대상으로 유기 반도체 소자에 적용하여 본 발명의 기술적 사상을 보여주지만 본 발명의 기술적 사상은 실시예에 의해 한정되지는 않는다. To this end, the present inventors synthesized organic semiconductor compounds based on anthracene skeletons having vinyl groups. As a more specific example, a new organic semiconductor compound having a 2,6-bis- (2-thienylvinyl) anthracene (2,6-bis (2-thienylvinyl) anthracene; TVAnt) skeleton was synthesized. Based on the above materials, alkyl-substituted TVAnts were synthesized and their electrical properties and the like were evaluated. As a more specific embodiment shows the technical spirit of the present invention by applying the TVAnt and hexyl-substituted HTVAnt to the organic semiconductor device, the technical spirit of the present invention is not limited by the embodiment.

본 발명은 하기 화학식 1로 표시되는 포스포네이트 유도체와 화학식 2로 표시되는 알데하이드 유도체간의 반응에 의하여 비닐 그룹을 형성하여 합성되는 유기 반도체 화합물을 제공한다. The present invention provides an organic semiconductor compound synthesized by forming a vinyl group by a reaction between a phosphonate derivative represented by Formula 1 below and an aldehyde derivative represented by Formula 2.

<화학식 1><Formula 1>

Figure 112008049419032-PAT00003
Figure 112008049419032-PAT00003

<화학식 2><Formula 2>

Figure 112008049419032-PAT00004
Figure 112008049419032-PAT00004

상기 식에서 A는 사이클릭 알킬기, 페닐기, C1 내지 C12의 알킬기치환된 페닐기, 티오페닐기, C1 내지 C12의 알킬치환된 티오페닐기, 나프틸기, C1 내지 C12의 알킬치환된 나프틸기, 비페닐기, C1 내지 C12의 알킬치환된 비페닐기, 안트라세닐기, C1 내지 C12의 알킬치환된 안트라세닐기, 페난트레닐기, C1 내지 C12의 알킬치환된 페난트레닐기, 플루오레닐기, C1 내지 C12의 알킬치환된 플루오레닐기, 피리디닐기, C1 내지 C12의 알킬치환된 피리디닐기, 피롤릴기, C1 내지 C12의 알킬치환된 피롤릴기,푸라닐기, 및 C1 내지 C12의 알킬치환된 푸라닐기로 이루어진 군으로부터 선택된 것이다(C1의 알킬기는 탄소수 1인 메틸기를 일컫는 표현임). 보다 구체적으로는 다음의 화학식 3 내지 화학식 6으로 표시되는 유기 반도체 화합물일 수 있다. Wherein A is a cyclic alkyl group, a phenyl group, a C1-C12 alkyl group, a substituted phenyl group, a thiophenyl group, a C1-C12 alkyl-substituted thiophenyl group, a naphthyl group, a C1-C12 alkyl-substituted naphthyl group, a biphenyl group, C1-C12 C12 alkyl substituted biphenyl group, anthracenyl group, C1 to C12 alkyl substituted anthracenyl group, phenanthrenyl group, C1 to C12 alkyl substituted phenanthrenyl group, fluorenyl group, C1 to C12 alkyl substituted flu Orenyl group, pyridinyl group, C1-C12 alkyl-substituted pyridinyl group, pyrrolyl group, C1-C12 alkyl-substituted pyrrolyl group, furanyl group, and C1-C12 alkyl-substituted furanyl group (The alkyl group of C1 is an expression referring to a methyl group having 1 carbon atom). More specifically, it may be an organic semiconductor compound represented by the following Chemical Formulas 3 to 6.

<화학식 3> <Formula 3>

Figure 112008049419032-PAT00005
Figure 112008049419032-PAT00005

상기 식에서 R은 H 및 C1 내지 C12의 알킬기로 이루어진 군으로부터 선택됨.Wherein R is selected from the group consisting of H and alkyl groups of C1 to C12.

<화학식 4><Formula 4>

Figure 112008049419032-PAT00006
Figure 112008049419032-PAT00006

상기 식에서 m은 1 내지 5이며, n은 0 내지 11임. Wherein m is 1 to 5 and n is 0 to 11.

<화학식 5><Formula 5>

Figure 112008049419032-PAT00007
Figure 112008049419032-PAT00007

상기 식에서 R은 H 및 C1 내지 C12의 알킬기로 이루어진 군으로부터 선택됨.Wherein R is selected from the group consisting of H and alkyl groups of C1 to C12.

<화학식 6><Formula 6>

Figure 112008049419032-PAT00008
Figure 112008049419032-PAT00008

상기 식에서 R은 H 및 C1 내지 C12의 알킬기로 이루어진 군으로부터 선택됨.Wherein R is selected from the group consisting of H and alkyl groups of C1 to C12.

그리고 본 발명은 상기한 유기 반도체 화합물을 이용하여 제조된 유기 반도체 박막과 상기 유기 반도체 박막을 캐리어 수송층으로 포함하는 전자 소자를 제공한다. The present invention also provides an organic semiconductor thin film manufactured using the organic semiconductor compound described above, and an electronic device including the organic semiconductor thin film as a carrier transport layer.

그리고, 하기 화학식 1로 표시되는 포스포네이트 유도체와 화학식 2로 표시되는 알데하이드 유도체간의 반응에 의하여 비닐 그룹을 형성하는 단계를 포함하는 것을 특징으로 하는 유기 반도체 화합물의 제조방법도 제공한다. In addition, the present invention also provides a method for producing an organic semiconductor compound, comprising the step of forming a vinyl group by a reaction between a phosphonate derivative represented by Formula 1 and an aldehyde derivative represented by Formula 2.

<화학식 1><Formula 1>

Figure 112008049419032-PAT00009
Figure 112008049419032-PAT00009

<화학식 2><Formula 2>

Figure 112008049419032-PAT00010
Figure 112008049419032-PAT00010

상기 식에서 A는 치환 또는 비치환된 사이클릭 알킬기, 치환 또는 비치환된 아릴기, 치환 또는 비치환된 티오페닐기, 치환 또는 비치환된 피리디닐기, 치환 또는 비치환된 피롤릴기, 및 치환 또는 비치환된 푸라닐기 로 이루어진 군으로부터 선택된 것이다. Wherein A is a substituted or unsubstituted cyclic alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted thiophenyl group, a substituted or unsubstituted pyridinyl group, a substituted or unsubstituted pyrrolyl group, and a substituted or unsubstituted group It is selected from the group consisting of a ring furanyl group.

본 발명의 유기 반도체 화합물의 제조과정의 개략은 아래 그림과 같다. An outline of the manufacturing process of the organic semiconductor compound of the present invention is as follows.

Figure 112008049419032-PAT00011
Figure 112008049419032-PAT00011

본 발명의 유기 반도체 화합물의 합성은 이소프렌과 p-benzoquinone의 디엘스-앨더반응으로부터 2,6-dimethylanthraquinone의 제조로부터 시작된다. 환류 온도에서 촉매적 양의 2,2'-azobis(2-methylpropionitrile) (AIBN)의 존재하에 과도한 양의 sulfuryl chloride 를 2,6-dimethylanthraquinone에 처리하면 2,6- bis(chloromethyl)anthraquinone을 제공할 수 있고, 그것은 안트라센 유도체들의 제조를 위한 핵심적 중간체이다. 물과 Me2SO의 혼합물에 2,6-bis(chloromethyl)anthraquinone을 환류시키는 것은 알코올 유도체를 만들어 내고, 그것은 Zn 과 NH4OH 를 사용하여 환원되어 좋은 수율로2,6-bis(hydroxymethyl)anthracene 을 제공한다. 상온에서DMF 내 PBr3로 결과물 디올을 처리하면, 2,6-bis(bromomethyl)anthracene 을 만들어 낸다. Horner-Emmons olefination의 전구체의 하나인, 2,6-bis(diethylphosphorylmethyl)anthracene은 triethylphosphite와 dibromide의 반응에 의해 제조된다. 박막에 올리고머를 조립하는 것은 비닐렌 단위를 도입함으로써 극대화될 수 있다. 반도체 물질들은 상기 그림에서 보여지는 바와 같이 포스포네이트와 알데하이드 유도체간의 Horner-Emmons 커플링 반응에 의해 합성되었다. Horner-Emmons 커플링 반응은 모든 트랜스 배열을 형성하기 위한 수단으로 알려져 있다. 상기 마지막 유기 반도체 화합물에서 R은 H 및 C1 내지 C12의 알킬기로 이루어진 군으로부터 선택된다. 본 발명의 기술적 사상을 R이 수소인 경우(TVAnt)와 R이 헥실기인 경우(HTVAnt)를 구체적으로 예로 하여 보다 자세히 설명하겠다. The synthesis of the organic semiconductor compound of the present invention starts with the preparation of 2,6-dimethylanthraquinone from the Diels-Alder reaction of isoprene and p- benzoquinone. Treatment of excessive amounts of sulfuryl chloride with 2,6-dimethylanthraquinone in the presence of catalytic amounts of 2,2'-azobis (2-methylpropionitrile) (AIBN) at reflux temperature will give 2,6-bis (chloromethyl) anthraquinone. And it is a key intermediate for the preparation of anthracene derivatives. Refluxing 2,6-bis (chloromethyl) anthraquinone in a mixture of water and Me 2 SO yields an alcohol derivative, which is reduced using Zn and NH 4 OH to yield a good yield of 2,6-bis (hydroxymethyl) anthracene To provide. Treatment of the resulting diol with PBr 3 in DMF at room temperature yields 2,6-bis (bromomethyl) anthracene. One of the precursors of the Horner-Emmons olefination, 2,6-bis (diethylphosphorylmethyl) anthracene, is produced by the reaction of triethylphosphite with dibromide. Assembly of the oligomer to the thin film can be maximized by introducing vinylene units. Semiconductor materials were synthesized by the Horner-Emmons coupling reaction between phosphonates and aldehyde derivatives as shown in the figure above. Horner-Emmons coupling reactions are known as a means for forming all trans arrays. R in the last organic semiconductor compound is selected from the group consisting of H and C1 to C12 alkyl groups. The technical concept of the present invention will be described in more detail with reference to the case where R is hydrogen (TVAnt) and R is hexyl group (HTVAnt).

승화에 의해 정제된 TVAnt 와 HTVAnt는 high resolution mass spectrometry 과 원소분석방법에 의해 식별되었고 그들의 열적 안정성은 열중량분석( thermal gravimetric analysis ;TGA )에 의해 조사되었다(도 1). 열 분해 온도는 336 ℃ (TVAnt) 및 376 ℃(HTVAnt)인 반면에, 펜타센은 260 ℃ 에서 분해되기 시작하였다 (승화때문).이는 (H)TVAnt 화합물의 높은 열적 안정성을 확인해 주는 것이다. TVAnt and HTVAnt purified by sublimation were identified by high resolution mass spectrometry and elemental analysis, and their thermal stability was investigated by thermal gravimetric analysis (TGA) (FIG. 1). The thermal decomposition temperatures were 336 ° C. (TVAnt) and 376 ° C. (HTVAnt), while pentacene began to decompose at 260 ° C. (sublimation), confirming the high thermal stability of the (H) TVAnt compound.

도 2의 HTVAnt에 대한 DSC(Differential scanning calorimetry) 측정은 19 ℃ (10.1 kJ/mol), 100 ℃ (4.5 kJ/mol), 255 ℃ (30.5kJ/mol, melting), 289 ℃, 및 295 ℃에서 상 전이를 보여주는 반면에 이소트로픽 상 전이는 295 ℃를 지나서 관찰되었다. 전형적인 포우컬 원뿔형의 구조와 팬 형상의 구조가 265 ℃ 에서 관찰되었고, 이는 HTVAnt가 스멕틱 상과 같이 잘 정렬된, 액체 크리스탈 구조를 보인다는 것을 지시한다. 도 2의 아랫그림은 냉각 공정동안 265℃에서의 HTVAnt의편광광학현미경 사진을 보여준다. 255 ℃ 이하의 고체-고체 상 전이들은 아직까지 식별되지 않았다. Differential scanning calorimetry (DSC) measurements for the HTVAnt of FIG. 2 were obtained at 19 ° C. (10.1 kJ / mol), 100 ° C. (4.5 kJ / mol), 255 ° C. (30.5 kJ / mol, melting), 289 ° C., and 295 ° C. While showing phase transition, isotropic phase transition was observed beyond 295 ° C. Typical focal conical and fan-shaped structures were observed at 265 ° C., indicating that HTVAnt exhibits a well-aligned, liquid crystal structure like the smectic phase. The lower figure of FIG. 2 shows a polarized light micrograph of HTVAnt at 265 ° C. during the cooling process. Solid-solid phase transitions below 255 ° C. have not yet been identified.

도 3과 도 4는 각각 톨루엔과 막(필름)상에서의 (H)TVAnt의 UV-vis 스펙트럼을 보여준다. 톨루엔 내의 TVAnt의 묽은 용액의 UV-vis spectrum은 426, 400, 345 and 328 nm에서 흡수 피크를 보여주었고, 그것은 HTVAnt 의 스펙트럼과 비슷하다. 두 화합물의 막(필름)에서의 장-파장 흡수는 용액에서의 그것들과 비교하여 약간의 레드-시프트( red-shifts )를 보여주었다. 3 and 4 show UV-vis spectra of (H) TVAnt on toluene and film (film), respectively. The UV-vis spectrum of the diluted solution of TVAnt in toluene showed absorption peaks at 426, 400, 345 and 328 nm, which is similar to the spectrum of HTVAnt. The long-wavelength absorption of the two compounds in the film (film) showed some red-shifts compared to those in solution.

흥미롭게도, PL 스펙트럼에서, TVAnt 및 HTVAnt 의 용액과 막(필름)상태의 최대 방출 차이는 각각 100과 70 nm였고, 이는 막 상태에서 매우 강한 분자간 인력이 존재함을 지시한다. 이를 도 5에 나타내었다. 박막에 증착되었을 때, TVAnt 및 HTVAnt 의 UV-vis 스펙트럼은 486 및 477 nm 에서 각각 장-파장 흡수 에지를 보여주었는데, 이는 2.55 와2.59 eV의 호모-루모 에너지 갭에 해당하며, 그리고 그것은 펜타센의 그것(2.2 eV)보다도 의미있게 높은 것이다. Interestingly, in the PL spectrum, the maximum emission difference between the solution of the TVAnt and HTVAnt and the membrane (film) states was 100 and 70 nm, respectively, indicating that there is a very strong intermolecular attraction in the membrane state. This is shown in FIG. 5. When deposited on the film, the UV-vis spectra of TVAnt and HTVAnt showed long-wavelength absorption edges at 486 and 477 nm, respectively, corresponding to homo-lumo energy gaps of 2.55 and 2.59 eV, and that of pentacene It is significantly higher than that (2.2 eV).

이러한 화합물들의 전기적 특성에 대한 보다 깊은 통찰은 싸이클릭 볼타메트리(CV)에 의해 제공되었다. 0.1 M Bu4N+PF6 -/dichlorobenzene 용액에서의 TVAnt 및 HTVAnt의 CV 측정은 비가역적 산화 피크를 보여주었다. 산화의 온셋 포텐셜은 페로센(FOC) 대비 0.62 eV 및0.4 eV 에 위치하였다. FOC/ferrocenium reference (-4.8 eV)의 에너지 레벨과 관련하여, TVAnt 및 HTVAnt 의 호모 에너지 레벨은 각각 -5.42 and -5.20 eV 이었고, 그것은 펜타센의 그것보다 더 낮은 것이고, 따라서 그들의 높은 산화적 안정성을 의미한다(도 6).Deeper insight into the electrical properties of these compounds was provided by cyclic voltammetry (CV). CV measurements of TVAnt and HTVAnt in 0.1 M Bu 4 N + PF 6 / dichlorobenzene solution showed an irreversible oxidation peak. Onset potential of oxidation was located at 0.62 eV and 0.4 eV relative to ferrocene (FOC). Regarding the energy level of the FOC / ferrocenium reference (-4.8 eV), the homo energy levels of TVAnt and HTVAnt were -5.42 and -5.20 eV, respectively, which are lower than that of pentacene, and thus their high oxidative stability (FIG. 6).

형태학상 특성은 엑스레이 회절(XRD)에 의해 조사되었다(도 7). TVAnt의 박막 XRD 패턴은 2 θ= 4.34 °(d-spacing 20.34 Å)에서 주요(첫째) 회절 피크를 디스플레이하였고, 둘째, 셋째 그리고 넷째 순서의 회절 피크는 각각 2 θ= 8.56 °, 12.70 °및 16.88 °에서 보여주었다. 강한 강도의 X-레이 회절 피크는 라멜라 배열의 형성과 기판위의 결정화를 가리킨다. 첫째 반사 피크로부터 얻은 TVAnt의 d-스페이싱은 20.34Å 로서, MM2 계산으로부터 얻은 분자 길이 (21.28 Å)와 필적한다. 이러한 스페이싱은 도 8과 도 9에서 보여지는 AFM (atomic forcemicroscopy)에 의해 얻은 단일 분자 층 두께와 부합하며, 그것은 기판 표면에 대한 분자들의 거의 수직인 정렬을 가리킨다. 한편으로, HTVAnt 막(필름)의 XRD 결과들은, 5.55°에서 2차 회절 피크를 갖는 TVAnt보다 더 약한 반사 피크를 보여줬다. 막은 3°이하의 다소 강한 1차 회절 피크를 갖는데, 그것은 풀기 어려운데, 왜냐하면, 일시적인 X-레이가 회절된 빔과 오버랩되었기 때문이다. 플레인으로부터 얻은 HTVAnt의 d-스페이싱은 31.8 °이었고, 이는 2.78°의 1차 회절과 부합한다. d-스페이싱은 MM2 계산으로부터 얻은 분자 길이 (36.38 Å)보다 약간 작았으며, 그것은 분자들이 약 30° 정도 법선으로부터 층(layer)으로 경사져 있다는 것을 가리킨다. 약한 강도는, 특별히 높은 차수의 피크들에서, HTVAnt의 긴 범위 차수는 TVAnt의 그것만큼 좋지 않다는 것을 가리키며, TVAnt의 그것과 비교하였을 때, HTVAnt에 대한 더 낮은 이동도를 제시하는 것이다. 이것은 또한 장치들의 구현에서도 일치한다. 유기 박막 트랜지스터(OTFTs)에 채널 반도체로 사용되었을 때, HTVAnt 는 TVAnt와 비교하였을 때 낮은 FET 이동도를 보여주었다. Morphological characteristics were examined by X-ray diffraction (XRD) (FIG. 7). Thin film XRD patterns of TVAnt displayed the main (first) diffraction peaks at 2 θ = 4.34 ° ( d- spacing 20.34 μs), and the second, third and fourth order diffraction peaks were 2 θ = 8.56 °, 12.70 ° and 16.88, respectively. Showed at °. Strong intensity X-ray diffraction peaks indicate the formation of lamellar arrays and crystallization on the substrate. The d-spaced TVAnt obtained from the first reflection peak is 20.34 ms, comparable to the molecular length (21.28 ms) obtained from the MM2 calculation. This spacing is consistent with the single molecule layer thickness obtained by atomic force microscopy (AFM) shown in FIGS. 8 and 9, which indicates an almost perpendicular alignment of the molecules to the substrate surface. On the one hand, XRD results of the HTVAnt film (film) showed a weaker reflection peak than TVAnt with second order diffraction peak at 5.55 °. The film has a rather strong first-order diffraction peak of less than 3 °, which is difficult to solve because the temporary X-rays overlap with the diffracted beam. The d -spaced HTVAnt from the plane was 31.8 °, which is consistent with the first order diffraction of 2.78 °. The d- spacing was slightly smaller than the molecular length (36.38 mm 3) obtained from the MM2 calculation, indicating that the molecules are inclined from the normal to the layer by about 30 °. Weak intensity indicates that, at particularly high order peaks, the long range order of HTVAnt is not as good as that of TVAnt, suggesting a lower mobility for HTVAnt as compared to that of TVAnt. This is also consistent in the implementation of the devices. When used as a channel semiconductor in organic thin-film transistors (OTFTs), HTVAnt showed low FET mobility compared to TVAnt.

TVAnt 및 HTVAnt 의 OTFTs 는 Au 전극을 갖는 탑 컨택트 구조를 사용하여 제조되었다. 새도우 마스크를 통해 유기 층위에 금 소스 및 드래인 컨택트(50 nm)가 증착되었다. 채널 길이(L) 및 폭 (W)은 각각 50 및 500 ㎛이다. 2개의 컨쥬게이티드된 올리고머의 박막들은 다양한 온도 (Tsub = 25 , 50 및 75 ℃)에서 (OTS)-코팅된 Si/SiO2 기판이나 처리되지 않은 기판상에 진공 증착 (vacuum evaporation )시킴으로서 형성되었다. 모든 OTFTs 는 전형적인 p-채널 TFT 특성들을 보여주었다. OTFTs of TVAnt and HTVAnt were prepared using a top contact structure with Au electrodes. A gold source and a drain contact (50 nm) were deposited on the organic layer through a shadow mask. Channel length L and width W are 50 and 500 μm, respectively. Thin films of two conjugated oligomers are formed by vacuum evaporation on (OTS) -coated Si / SiO 2 substrates or untreated substrates at various temperatures ( T sub = 25, 50 and 75 ° C.). It became. All OTFTs showed typical p -channel TFT characteristics.

도 10은 드레인 전류(IDS) 대 드레인 소스 전압(VDS)과, 75 ℃의 기판 온도(Tsub)에서 성장한 TVAnt 및 HTVAnt TFTs 의 이동 특성들을 보여준다. 전기적 이동 특성들로부터, 우리는 각 장치들에 대한 다음의 파라미터들을 추출하였고 이를 테이블 1에 요약하였다: 캐리어 이동도(the carrier mobility), 점멸 전류비(on/off current ratio), 역치전압(threshold voltage), 및 부역치스 윙(subthreshold swing). 다양한 조건들하에서 제조된 TVAnt 장치들은 대기조건하에서 0.1 cm2/Vs이상의 FET 및 점멸비 > 105-107 를 보여주었다. 특히, 0.44 cm2/Vs 보다 높은 FET (포화상태에서 측정), 및 점멸비 > 105 를 포함하는 뛰어난 FET 특성들이 Tsub = 75 ℃에서 OTS-처리된 기판에 제조된 TVAnt 장치들에서 관찰되었다.FIG. 10 shows drain currents I DS to drain source voltages V DS and the movement characteristics of TVAnt and HTVAnt TFTs grown at substrate temperature T sub of 75 ° C. FIG. From the electrophoretic characteristics, we extracted the following parameters for each device and summarized it in Table 1: the carrier mobility, the on / off current ratio and the threshold voltage. voltage, and a subthreshold swing. TVAnt devices fabricated under various conditions showed FETs and flashing ratios> 10 5 -10 7 of greater than 0.1 cm 2 / Vs under atmospheric conditions. In particular, excellent FET characteristics including FETs (measured at saturation) higher than 0.44 cm 2 / Vs, and flashing ratio> 10 5 were observed in TVAnt devices fabricated on OTS-treated substrates at T sub = 75 ° C. .

Figure 112008049419032-PAT00012
Figure 112008049419032-PAT00012

우리는 TFT 성능은 활성물질의 사이드 체인의 길이에 임계적으로 의존한다는 것을 알았다. 전형적으로, 알킬 체인(헥실)의 첨가는 막의 구조적 정렬을 증가시키는 것으로 기대되고, 따라서 전하 수송을 활성화시킨다. 우리의 경우, 그러나, TVAnt의 이동도가 HTVAnt 의이동도보다 3배가 높았다. OTFTs에서 채널 반도체로서 사용되었을 때, HTVAnt 는 TVAnt 와 비교하여 낮은 FET 이동도를 보였다. 이것은 놀라운 것이 아닌데, 유기 반도체에서 전하 수송은 크리스탈 구조에 의해 지배를 받기 때문이며, 그리고 덜-정렬된 HTVAnt가 높은 이동도를 나타낼 것으로 기대되지 않기 때문이다. We found that TFT performance is critically dependent on the length of the side chain of the active material. Typically, the addition of alkyl chains (hexyl) is expected to increase the structural alignment of the membrane, thus activating charge transport. In our case, however, the mobility of TVAnt was three times higher than that of HTVAnt. When used as a channel semiconductor in OTFTs, HTVAnt showed lower FET mobility compared to TVAnt. This is not surprising because charge transport in organic semiconductors is governed by the crystal structure, and less-aligned HTVAnt is not expected to exhibit high mobility.

도 8에서는 75 ℃에서 OTS-treated SiO2/Si 기판에 증착된 30 nm 두께의 올리고머의 막의 AFM 이미지를 보여준다. 이 온도에, 분자들은 보다 잘 정렬되고, TVAnt 샘플에 대하여 내부연결된 그레인들의 네트워크가 관찰되었다. TVAnt 그레인(75 ℃ 에서 증착된 막으로부터 얻어진 것)의 라멜라 구조에 대한 AFM 스텝 하이트는 XRD 결과들과 계산된 분자 길이로부터 얻어진 d-스페이싱과 잘 부합되었다. 8 shows an AFM image of a film of a 30 nm thick oligomer deposited on an OTS-treated SiO 2 / Si substrate at 75 ° C. FIG. At this temperature, the molecules were better aligned and a network of interlinked grains was observed for the TVAnt sample. The AFM step height for the lamellar structure of the TVAnt grain (obtained from the film deposited at 75 ° C.) was in good agreement with the d-spaced obtained from the XRD results and the calculated molecular length.

본 발명에서는 TVAnt와 알킬 치환된 TVAnt라는 신규한 유기 반도체 화합물을 합성하였으며, 이 유기 반도체 화합물은 유기 전자 소자에 적용시 높은 필드-이펙트 이동도와 온/오프 전류비를 나타내었다. 특히 비슷한 조건하에서 비닐 그룹을 가지지 않는 dithiophen-2'-yl-2,6-anthracene (DTAnt)과 대비하여 볼 때, TVAnt는 7 배나 높은 이동도를 갖는다. 나아가, TVAnt and HTVAnt는 TGA에 의해 측정한 결과 펜타센에 기초한 유기 반도체와 비교하였을 때 높은 열적 안정성을 보여주고 있 다. 그리고, 본 발명의 유기 반도체 화합물은 낮은 기판 증착 온도에서 사용이 가능하고, 대량 생산이 용이한 장점이 있다. In the present invention, a novel organic semiconductor compound called TVAnt and alkyl-substituted TVAnt was synthesized, and the organic semiconductor compound exhibited high field-effect mobility and on / off current ratio when applied to organic electronic devices. In particular, under similar conditions, TVAnt has seven times higher mobility compared to dithiophen-2'-yl-2,6-anthracene (DTAnt), which does not contain vinyl groups. Furthermore, TVAnt and HTVAnt show high thermal stability when measured by TGA as compared to pentacene-based organic semiconductors. In addition, the organic semiconductor compound of the present invention can be used at a low substrate deposition temperature, there is an advantage that mass production is easy.

이하, 본 발명을 하기 실시예에 의거하여 보다 상세하게 설명하고자 한다. 단, 하기 실시예는 본 발명을 예시하기 위한 것일 뿐, 본 발명은 하기 실시예에 의해 한정되는 것이 아니고, 본 발명의 기술적 사상을 벗어나지 않는 범위 내에서 치환 및 균등한 타 실시예로 변경할 수 있음은 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 있어서 명백할 것이다.Hereinafter, the present invention will be described in more detail based on the following examples. However, the following examples are only for illustrating the present invention, and the present invention is not limited to the following examples and may be changed to other embodiments equivalent to substitutions and equivalents without departing from the technical spirit of the present invention. Will be apparent to those of ordinary skill in the art.

1H 및 13C NMR 스펙트럼은 CDCl3내 Advance 300 MHz Bruker spectrometer를 사용하여 기록되었다. CHCl3(7.27 ppm)에 상대적인 CDCl31H NMR 화학적 이동(chemical shifts)을, CHCl3(77.23 ppm)에 상대적인 CDCl313C NMR 화학적 이동을 측정하였다. 1 H and 13 C NMR spectra were recorded using an Advance 300 MHz Bruker spectrometer in CDCl 3 . 1 H NMR chemical shifts in CDCl 3 relative to CHCl 3 (7.27 ppm) were measured and 13 C NMR chemical shifts in CDCl 3 relative to CHCl 3 (77.23 ppm).

<물리적 측정 방법(Physical measurement)><Physical measurement>

TGA 분석은 질소 대기하 10℃min-1에서 TGA Q50 TA 기구에서 수행되었다. DSC 분석은 질소 유동(flow)하 10℃min-1에서 DSC2910 TA 기구에서 수행되었다. UV-vis 흡수 스펙트럼은 2.5 ㎝ 통과-길이 수정셀(path-length quartz cells)을 사 용한 BECKMAN COULTER DU 800 스펙트로포토미터에서 기록되었다. 고체-상태 측정을 위하여, 올리고머를 수정판(quartz plates)위 진공챔버(vacuum chamber)내에서 열적으로 증발시켜 0.5 Ås-1의 점착률(deposition rate)에서 300 Å 두께의 필름을 형성시켰다. XPD 분석은 50 kV 및 100 mA에서 X-레이 소스(source)로 CuKα 방사를 사용한 Mac Science(M18XHF-22) diffraction meter를 갖고 실온에서 수행되었다. 데이터는 300 Å 동안 0.5 Å s-1에서 SiO2/Si 기질위 진공챔버에서 열적으로 증발된 박막 필름으로부터 종래의 θ-2θ 구조(2.5-30°)에서 수집되었다. 동일한 진공-점착된 박막 필름의 AFM 상은 PSIA XE-100 Advanced Scanning Microscope를 사용하여 얻어졌다. 사용된 전압전류계 기구는 CH Instruments model 700C electrochemical workstation이었다. CVs(Cyclic voltammograms)은 100 mV/s의 스캔 속도에서 지지 전해질(supporting electrolyte)로서 Bu4N+PF6-(tetrabutylammonium hexafluorophosphate) 0.1 M을 포함하는 디클로로벤젠(dicholrobenzene)내 작동 전극(Au), 기준 전극(Ag/AgCl), 및 대조 전극(Pt)를 갖는 3-전극셀내 실온에서 얻어졌다. 모든 포텐셜은 표준 ferrocene/ferrocenium redox couple(측정된 E = +0.41 V)을 갖고 캘리브레이션(calibration)되었다.TGA analysis was performed on a TGA Q50 TA instrument at 10 ° C. min −1 under a nitrogen atmosphere. DSC analysis was performed on a DSC2910 TA instrument at 10 ° C. min −1 under nitrogen flow. UV-vis absorption spectra were recorded on a BECKMAN COULTER DU 800 spectrophotometer using 2.5 cm path-length quartz cells. For solid-state measurements, the oligomers were thermally evaporated in a vacuum chamber on quartz plates to form a film of 300 kPa thick at a deposition rate of 0.5 kS-1. XPD analysis was performed at room temperature with a Mac Science (M18XHF-22) diffraction meter using CuKα radiation as X-ray source at 50 kV and 100 mA. Data was collected from a conventional θ-2θ structure (2.5-30 °) from a thin film thermally evaporated in a vacuum chamber on a SiO2 / Si substrate at 0.5 kPa s-1 for 300 kPa. AFM images of the same vacuum-bonded thin film were obtained using a PSIA XE-100 Advanced Scanning Microscope. The voltammeter instrument used was a CH Instruments model 700C electrochemical workstation. Cyclic voltammograms (CVs) are the working electrode (Au) in dichlororobenzene (Au) and reference electrode (Ag) containing 0.1 M Bu4N + PF6- (tetrabutylammonium hexafluorophosphate) as a supporting electrolyte at a scan rate of 100 mV / s. / AgCl), and at room temperature in a three-electrode cell with a control electrode (Pt). All potentials were calibrated with standard ferrocene / ferrocenium redox couple (measured E = +0.41 V).

<TFT 장치들이 제조(Fabrication of TFT devices)>Fabrication of TFT devices

필드-이펙트 측정은 탑-컨택트(top-contact) FETs를 사용하여 수행되었다. 50 ㎛의 채널 길이(L) 및 1000 ㎛의 채널 폭(W)을 갖는 TFT 장치는 열적으로 산화되고, 대단히 n-돕(dop)된 실리콘 기질에서 제작되었다. SiO2 gate dielectric는 300 ㎚ 두께였다. 유기 반도체(300 A)는 선처리(pretreatment) 없거나 OTS-선처리된 옥사이드(oxide) 표면위에 증발되었다(0.1 Å s-1 at 1 x 10-6 torr). 금 소스 및 드레인(drain) 전극은 새도우 마스크(shadow mask)를 통한 필름의 위쪽에서 증발되었다. 모든 측정은 4155C Agilent semiconductor parameter analyzer를 사용한 실온에서 수행되었고, 모빌리트(μ)는 도식 : μsat = (2I DS L)/(WC(V g - V th)2)를 사용하여 포화영역(saturation regime)에서 측정되었고, 이때 I DS 는 소스-드레인 ㅍ포화전류(source-drain saturation current)이고; C(1.18 x 10-8 F)는 산화커패시턴스(oxide capacitance)이고, V g 는 게이트 전압(gate voltage)이고, V th는 역치(threshold voltage)이다.Field-effect measurements were performed using top-contact FETs. TFT devices having a channel length (L) of 50 μm and a channel width (W) of 1000 μm were fabricated from thermally oxidized, highly n-dop silicon substrates. The SiO 2 gate dielectric was 300 nm thick. The organic semiconductor 300 A was evaporated on a pretreatment free or OTS-pretreated oxide surface (0.1 μs s-1 at 1 × 10 −6 torr). Gold source and drain electrodes were evaporated on top of the film through a shadow mask. All measurements were performed at room temperature using a 4155C Agilent semiconductor parameter analyzer, with the mobility (μ) being plotted: μsat = (2 I DS L ) / ( WC ( V g- V th ) 2 ) was used in the saturation regime, where I DS is the source-drain saturation current; C (1.18 x 10-8 F) is the oxide capacitance, V g is the gate voltage, and V th is the threshold voltage.

<유기 반도체 화합물의 합성>Synthesis of Organic Semiconductor Compound

모든 케미컬은 Aldrich 및 Lancaster로부터 구입하여 사용하였다. All chemicals were purchased from Aldrich and Lancaster.

5-5- 헥실Hexyl -2-티오펜카르복스알데히드(5-2-thiophenecarboxaldehyde (5- hexylhexyl -2--2- thiophencarboxaldehydethiophencarboxaldehyde ))

2-헥실티오펜(2.4g, 13.26 mmol)을 함유하고 있는 스터링되고 있는 THF(20 mL)용액에, 질소분위기하의 0℃ 에서 6.8 mL의 n-BuLi(2.5 M in hexanes, 25mmol)을 천천히 첨가하고, 용액을 15분간 저어준다. DMF (1.56g, 21.39 mmol)를 첨가하고, 혼합물을 상온까지 되도록 데워준다. 혼합물을 암모늄클로라이드(1N) 수용액에 쏟고, CH2Cl2 로 추출한다. 유기층은 물로 씻고, MgSO4 상에서 건조하고 증발시킨다. 잔류물은 칼럼 크로마토그래피로 정제하여 2.7 g (97%)의 노란색 오일을 얻는다. 1H NMR (300 MHz, CDCl3): 9.82 (s, 1H), 7.55 (d, 1H, J = 4 Hz), 6.83(d, 1H, J = 4 Hz), 2.85 (t, 1H, J = 7.5 Hz), 1.0-1.28 (m, 8H), 0.87(t, 3H, J = 6.5Hz).To sterling THF (20 mL) solution containing 2-hexylthiophene (2.4 g, 13.26 mmol), slowly add 6.8 mL of n-BuLi (2.5 M in hexanes, 25 mmol) at 0 ° C. under nitrogen atmosphere. And stir the solution for 15 minutes. DMF (1.56 g, 21.39 mmol) is added and the mixture is warmed to room temperature. The mixture is poured into aqueous ammonium chloride (1N) solution and extracted with CH 2 Cl 2 . The organic layer is washed with water, dried over MgSO 4 and evaporated. The residue is purified by column chromatography to give 2.7 g (97%) of yellow oil. 1 H NMR (300 MHz, CDCl 3): 9.82 (s, 1H), 7.55 (d, 1H, J = 4 Hz), 6.83 (d, 1H, J = 4 Hz), 2.85 (t, 1H, J = 7.5 Hz ), 1.0-1.28 (m, 8H), 0.87 (t, 3H, J = 6.5 Hz).

2,6-2,6- 비스(클로로메틸)안트라퀸논Bis (chloromethyl) anthraquinone (2,6-(2,6- BisBis (( cholormethylcholormethyl )anthraquinone)) anthraquinone)

2,6-디메틸안트라퀸논(2,6-dimethylanthraquinone) (3.8 g, 16.09 mmol), SO2Cl2 (50 mL), 그리고 2,2'-아조비스(2-메틸 프로피온니트릴(2,2'-azobis(2-methyl propionitrile) (0.16 g, 0.96 mmol) 의 혼합물을 24시간 동안 리플럭스(reflux; 환류)시켰다. 과도한 SO2Cl2 는 진공하에서 증류시켜 제거하였다. 고상의 잔류물은 여과시키고, 석유에테르에 수차례 씻고, 그리고 DMF로부타 재결정화하여 3.8 g (78%)의 2,6-비스(클로로메틸)안트라퀸논을 얻었다. 1H NMR (300 MHz, CDCl3): δ8.41 (m, 4H), 7.98 (s, 2H), 5.00 (s, 4H). High-resolution mass spectrometry (HRMS): Calcd. for C16H10Cl2O2 304.0057. Found: 304.0034.2,6-dimethylanthraquinone (3.8 g, 16.09 mmol), SO 2 Cl 2 (50 mL), and 2,2'-azobis (2-methyl propionitrile (2,2 ') A mixture of -azobis (2-methyl propionitrile) (0.16 g, 0.96 mmol) was refluxed for 24 h Excess SO 2 Cl 2 was removed by distillation under vacuum The solid residue was filtered off Washed several times with petroleum ether and recrystallized with DMF to give 3.8 g (78%) of 2,6-bis (chloromethyl) anthraquinone 1 H NMR (300 MHz, CDCl 3 ): δ8.41 (m, 4H), 7.98 (s, 2H), 5.00 (s, 4H) .High-resolution mass spectrometry (HRMS): Calcd. for C 16 H 10 Cl 2 O 2 304.0057. Found: 304.0034.

2,6-2,6- 비스(하이드록시메틸)안트라퀸논Bis (hydroxymethyl) anthraquinone (2,6-Bis((2,6-Bis ( hydroxymethylhydroxymethyl )anthraquinone)) anthraquinone)

300 mL의 물과 400 mL의 DMSO에 2,6-비스(클로로메틸)안트라퀸논(3.5g, 11.47 mmol)의 현탁액을 격렬한 저어줌과 함께 환류시켰다. 4시간 가열하면, 맑은 용액이 얻어진다. 반응 혼합물은 38시간 동안 환류시키고 그 다음 상온으로 냉각시킨다. 결정질의 산물은 여가를 통해 수집하고 DMF로부터 재결정화하여 3.0 g (98%)의 2,6-bis(hydroxymethyl)anthraquinone을 얻었다. 1H NMR (300 MHz, DMSO-d6): δ8.17 (m, 4H), 7.85 (d, 2H, J = 10.7 Hz), 5.57 (s, 2H), 4.70 (s, 4H). High-resolution mass spectrometry (HRMS): Calcd. for C16H12O4 268.0735. Found:268.0749.A suspension of 2,6-bis (chloromethyl) anthraquinone (3.5 g, 11.47 mmol) in 300 mL of water and 400 mL of DMSO was refluxed with vigorous stirring. When heated for 4 hours, a clear solution is obtained. The reaction mixture is refluxed for 38 hours and then cooled to room temperature. The crystalline product was collected at leisure and recrystallized from DMF to yield 3.0 g (98%) of 2,6-bis (hydroxymethyl) anthraquinone. 1 H NMR (300 MHz, DMSO-d 6 ): δ 8.17 (m, 4H), 7.85 (d, 2H, J = 10.7 Hz), 5.57 (s, 2H), 4.70 (s, 4H). High-resolution mass spectrometry (HRMS): Calcd. for C 16 H 12 O 4 268.0735. Found: 268.0749.

2,6-2,6- 비스(디하이드록시메틸)안In bis (dihydroxymethyl) 트라센(2,6-Thracene (2,6- BisBis (( dihydroxymethyldihydroxymethyl )anthracene)anthracene)

진한 수산화암모늄(70 mL) 에 2,6-bis(hydroxymethyl)anthraquinone (2.8 g 10.43 mmol) 가 들어있는 용액에 아연 파우더(6.0g)을 첨가한다. 반응은 밤새도록 환류시킨다. 녹지 않는 물질은 여과하여 제거시키고 뜨거운 DMSO로 씻는다. 용액은 1N HCl 200 mL에 침전시킨다. 여과시켜 수집된 산물은 1.86 g (75%) 의 2,6-bis(dihydroxymethyl)anthracene이다. 1H NMR (300 MHz, DMSO-d6): δ8.49 (s, 2H), 8.04 (d, 2H, J = 8.7 Hz), 7.94 (s, 2H), 7.46 (d, 2H, J = 8.7 Hz), 5.40 (t, 2H, J = 5.6 Hz ), 4.69 (d, 4H, J = 5.6 Hz). High-resolution mass spectrometry (HRMS): Calcd. for C16H14O2 238.0994. Found: 238.1003.Zinc powder (6.0 g) is added to a solution containing 2,6-bis (hydroxymethyl) anthraquinone (2.8 g 10.43 mmol) in concentrated ammonium hydroxide (70 mL). The reaction is refluxed overnight. Insoluble material is filtered off and washed with hot DMSO. The solution is precipitated in 200 mL of 1N HCl. The product collected by filtration is 1.86 g (75%) of 2,6-bis (dihydroxymethyl) anthracene. 1 H NMR (300 MHz, DMSO-d 6 ): δ 8.49 (s, 2H), 8.04 (d, 2H, J = 8.7 Hz), 7.94 (s, 2H), 7.46 (d, 2H, J = 8.7 Hz), 5.40 (t, 2H, J = 5.6 Hz), 4.69 (d, 4H, J = 5.6 Hz). High-resolution mass spectrometry (HRMS): Calcd. for C 16 H 14 O 2 238.0994. Found: 238.1003.

2,6-2,6- 비스(디브로모메틸)안In bis (dibromomethyl) 트라센(2,6-Thracene (2,6- BisBis (( dibromomethyldibromomethyl )anthracene)anthracene)

0 ℃ 에서 DMF (30 mL)에 2,6-bis(dihydroxymethyl)anthracene (1.5 g, 6.29 mmol)이 있는 현탁액에 PBr3(4.4 g, 16.30 mmol )를 방울져 떨어뜨려 첨가시킨다. 노란색 침전물이 형성되면, 혼합물을 상온까지 가열하고 4시간 동안 저어준다. 고체물질을 여과하여 얻고 물과 헥산을 사용하여 씻어서 노란색 고체(2.2 g, 98%) 의 2,6-bis(dibromomethyl)anthracene을 얻는다. 산물을 DMF로부터 재결정화하여 좀더 순수한 물질을 얻는다. 1H NMR (400 MHz, DMSO): δ8.56 (s, 2H), 8.15 (s, 2H), 8.12 (d, 2H, J = 11.5 Hz), 4.93 (s, 4H). High-resolution mass spectrometry (HRMS): Calcd. for C16H12Br2361.9306. Found: 361.9277.PBr 3 (4.4 g, 16.30 mmol) is added dropwise to a suspension with 2,6-bis (dihydroxymethyl) anthracene (1.5 g, 6.29 mmol) in DMF (30 mL) at 0 ° C. Once a yellow precipitate forms, heat the mixture to room temperature and stir for 4 hours. The solid was filtered off and washed with water and hexane to give 2,6-bis (dibromomethyl) anthracene as a yellow solid (2.2 g, 98%). The product is recrystallized from DMF to obtain a more pure substance. 1 H NMR (400 MHz, DMSO): δ 8.56 (s, 2H), 8.15 (s, 2H), 8.12 (d, 2H, J = 11.5 Hz), 4.93 (s, 4H). High-resolution mass spectrometry (HRMS): Calcd. for C 16 H 12 Br 2 361.9306. Found: 361.9277.

2,5-2,5- 비스(디에틸포스포릴메틸)안트라센Bis (diethylphosphorylmethyl) anthracene

(2,6-(2,6- BisBis (( diethylphosphorylmethyldiethylphosphorylmethyl )anthracene)anthracene)

2,6-bis(dibromomethyl)anthracene (2.2 g, 6.04 mmol)을 트리에틸포스파이트(triethylphosphite)(50 mL)에 첨가하고, 결과 용액을 12시간 동안 환류시킨다. 용매는 진공하에서 제거하고, 나머지들은 용류액으로 ethyl acetate/dichloromethane (2:1)을 사용한 실리카겔상의 칼럼 크로마토그래피로 정제시킨다. 수율은 90%이다. 1H NMR (300 MHz, CDCl3): δ8.49 (s, 2H), 8.04 (d, 2H, J = 8.7 Hz), 7.94 (s, 2H), 7.46 (d, 2H, J = 8.7 Hz), 5.40 (t, 2H, J = 5.6 Hz ), 4.69 (d, 4H, J = 5.6 Hz). 13C NMR (300 MHz, CDCl3): 131.54, 130.83, 128.75, 128. 61, 128.39, 127. 84, 125. 67, (62.26, 62.16), (35.10, 33.27), (16.44, 16.30). MS (EI) m/z: (M+) calcd for C24H32O6P2 478.16; found 478. 2,6-bis (dibromomethyl) anthracene (2.2 g, 6.04 mmol) is added to triethylphosphite (50 mL) and the resulting solution is refluxed for 12 h. The solvent is removed in vacuo and the remainder is purified by column chromatography on silica gel using ethyl acetate / dichloromethane (2: 1) as eluent. The yield is 90%. 1 H NMR (300 MHz, CDCl 3 ): δ 8.49 (s, 2H), 8.04 (d, 2H, J = 8.7 Hz), 7.94 (s, 2H), 7.46 (d, 2H, J = 8.7 Hz) , 5.40 (t, 2H, J = 5.6 Hz), 4.69 (d, 4H, J = 5.6 Hz). 13 C NMR (300 MHz, CDCl 3 ): 131.54, 130.83, 128.75, 128. 61, 128.39, 127. 84, 125. 67, (62.26, 62.16), (35.10, 33.27), (16.44, 16.30). MS (EI) m / z : (M + ) calcd for C 24 H 32 O 6 P 2 478.16; found 478.

2,6-2,6- 비스(2-티에닐비닐)안트라센Bis (2-thienylvinyl) anthracene

(2,6-(2,6- BisBis (2-(2- thienylvinylthienylvinyl )anthracene) () anthracene) ( TVAntTVAnt ))

질소분위기하의 -78 ℃ 에서 무수 THF (50 mL)에 2,6-bis(diethylphosphorylmethyl)anthracene(1.0 g, 2.09 mmol)가 있는 스터링되고 있는 용액에 LDA(1.5 M in cylohexane, 2.9 mL, 5.22 mmol)을 방울져 떨어뜨려 첨가한다. 혼합물은 1시간 동안 저어주고, 10분 주기로 티오펜-2-카르발데히드(thiophene-2-carbaldehyde)(0.58 g, 5.22 mmol) in THF (10 mL)를 방울져 떨어뜨려 첨가한다. -78 ℃에서 2시간 동안, 그리고 상온에서 12시간 동안 혼합물을 저어준고 난 후, 5 mL 의 물을 첨가하고, 용매를 증발시킨다. 잔류물은 물과 메탄올로 씻는다. 원하는 산물은 승화에 의해 분리된다. 고해상도 질량스펙트로메트리(HRMS): Calcd. for C16H10Cl2O2 394.0850. Found: 394.0852, Anal. Calcd for CHS: C, 79.15; H, 4.60; S, 16.25; Found : C, 79.24 ; H, 4.56; S, 16,21. LDA (1.5 M in cylohexane, 2.9 mL, 5.22 mmol) in a stirred solution with 2,6-bis (diethylphosphorylmethyl) anthracene (1.0 g, 2.09 mmol) in dry THF (50 mL) at -78 ° C under nitrogen atmosphere. Drop it and add it. Stir the mixture for 1 hour and add dropwise thiophene-2-carbaldehyde (0.58 g, 5.22 mmol) in THF (10 mL) every 10 minutes. After stirring the mixture at −78 ° C. for 2 hours and at room temperature for 12 hours, 5 mL of water is added and the solvent is evaporated. The residue is washed with water and methanol. The desired product is separated by sublimation. High resolution mass spectrometry (HRMS): Calcd. for C 16 H 10 Cl 2 O 2 394.0850. Found: 394.0852, Anal. Calcd for CHS: C, 79.15; H, 4. 60; S, 16.25; Found: C, 79.24; H, 4.56; S, 16, 21.

2,6-비스[2-(5-2,6-bis [2- (5- 헥실티에닐Hexylthienyl )비닐]안트라센) Vinyl] anthracene

(2,6-Bis[2-(5-(2,6-Bis [2- (5- hexylthienylhexylthienyl )vinyl]) vinyl] anthraceneanthracene ) () ( HTVAntHTVAnt ))

질소분위기하의 -78 ℃에서 무수 THF (50 mL)에 2,6-bis(diethylphosphorylmethyl)anthracene (1.2 g, 2.50 mmol)가 있는 스터링되고 있는 용액에 LDA (1.5 M in cylohexane, 3.2 mL, 5.75 mmol) 을 방울져 떨어뜨려 첨가한다. 혼합물은 1시간 동안 저어주고, 10분 주기로 5-헥실티오펜-2-카르발데히드(5-hexylthiophene-2-carbaldehyde) (1.47 g, 7.50 mmol) in THF (20 mL)를 방울져 떨어뜨려 첨가한다. -78 ℃ 에서 2시간 동안, 그리고 상온에서 12시간 동안 혼합물을 저어준고 난 후, 5 mL 의 물을 첨가하고, 용매를 증발시킨다. 잔류물은 물과 메탄올로 씻는다. 원하는 산물은 승화에 의해 분리된다. High-resolution mass spectrometry (HRMS): Calcd. for C38H42S2 562.2728. Found: 562.2728. Anal. Calcd.: C, 81.09; H, 7.52; S, 11.39; Found: C, 80.99; H, 7.03; S, 11.63.LDA (1.5 M in cylohexane, 3.2 mL, 5.75 mmol) in a stirred solution with 2,6-bis (diethylphosphorylmethyl) anthracene (1.2 g, 2.50 mmol) in dry THF (50 mL) at -78 ° C under nitrogen atmosphere. Drop it and add it. Stir the mixture for 1 hour and add dropwise 5-hexylthiophene-2-carbaldehyde (1.47 g, 7.50 mmol) in THF (20 mL) every 10 minutes. do. After stirring the mixture at −78 ° C. for 2 hours and at room temperature for 12 hours, 5 mL of water is added and the solvent is evaporated. The residue is washed with water and methanol. The desired product is separated by sublimation. High-resolution mass spectrometry (HRMS): Calcd. for C 38 H 42 S 2 562.2728. Found: 562.2728. Anal. Calcd .: C, 81.09; H, 7.52; S, 11.39; Found: C, 80.99; H, 7.03; S, 11.63.

2,6-비스[2-(5-2,6-bis [2- (5- 도데실티에닐Dodecylthienyl )비닐]안트라센) Vinyl] anthracene

(2,6-bis[2-(5-(2,6-bis [2- (5- dodecylthienyldodecylthienyl )vinyl]) vinyl] anthraceneanthracene ) () ( DOTVAnTDOTVAnT ) )

질소분위기하에서 -78℃에서 무수 THF (50 mL)내 2,6-bis(diethylphosphorylmethyl)anthracene(1.4 g, 2.92 mmol)이 있는 젓고 있는 용액에 LDA (1.5 M in cylohexane, 3.2 mL, 5.75 mmol)를 방울져 떨어뜨려 첨가한다. 혼합물을 1시간 동안 저어주고, THF (20 mL)내 5-도데실티오펜-2-카르발데히드(5-dodecylthiophene-2-carbaldehyde)(2.30 g, 8.20 mmol)를 10분 주기로 방울져 떨어 뜨린다. 혼합물을 -78℃에서 2시간 동안 저어주고, 상온에서 12시간 동안 저어준ㅎ후, 5 mL의 물을 첨가하고, 용매를 증발시킨다. 잔류물은 물과 MeOH로 씻는다. 원하는 산물은 씻어서 분리한다. High-resolution mass spectrometry (HRMS): Calcd. for C50H66S2 730.4606. Found: 730.4604. Anal. Calcd.: C, 82.13; H, 9.10; S, 8.77; Found: C, 82.11; H, 9.06; S, 8.83.To a stirring solution with 2,6-bis (diethylphosphorylmethyl) anthracene (1.4 g, 2.92 mmol) in dry THF (50 mL) at -78 ° C under nitrogen atmosphere, add LDA (1.5 M in cylohexane, 3.2 mL, 5.75 mmol). Drop it and add it. Stir the mixture for 1 hour and drop 5-dodecylthiophene-2-carbaldehyde (2.30 g, 8.20 mmol) in THF (20 mL) in 10 minute cycles. Stir the mixture at -78 ° C for 2 hours, stir at room temperature for 12 hours, then add 5 mL of water and evaporate the solvent. The residue is washed with water and MeOH. The desired product is washed off. High-resolution mass spectrometry (HRMS): Calcd. for C50H66S2 730.4606. Found: 730.4604. Anal. Calcd .: C, 82.13; H, 9. 10; S, 8.77; Found: C, 82.11; H, 9.06; S, 8.83.

유사한 방법을 통하여 TVAnt 뼈대에 알킬 치환된 화합물들이 합성될 수 있으며, 이러한 것들은 다소의 차이는 있겠으나 전반적으로 유사한 성질을 보여줄 것으로 예상된다. 알킬치환의 방법 및 기타 다른 치환기들의 도입은 당업자의 수준에서 이해될 수 있을 것이며, 명세서의 간결함을 위하여 구체적인 기술은 생략하나 이 또한 본 발명의 기술적 범위내의 것이다. Through similar methods, alkyl-substituted compounds in the TVAnt skeleton can be synthesized, which are expected to show similar properties in general, although somewhat different. The method of alkyl substitution and the introduction of other substituents will be understood at the level of those skilled in the art, and the specific description is omitted for the sake of brevity of the specification but is also within the technical scope of the present invention.

도 1은 (H)TVAnt의 TGA 분석 그래프이다. 1 is a graph of TGA analysis of (H) TVAnt.

도 2는 가열공정과 냉각공정동안의 HTVAnt의 DSC(상)와 냉각공정 동안의 POM사진(하)를 보여준다. 2 shows the DSC (top) of the HTVAnt during the heating and cooling processes and the POM picture (bottom) during the cooling process.

도 3과 4는 각각, 톨루엔 용액과 필름(막)상의 (H)TVAnt의 UV-vis 스펙트럼을 보여준다. 3 and 4 show UV-vis spectra of (H) TVAnt on toluene solution and film (membrane), respectively.

도 5는 톨루엔과 필름 상의 PL 방출 스펙트럼을 나타낸다. 5 shows the PL emission spectrum on toluene and film.

도 6은 (H)TVAnt의 사이클릭 볼타모그램을 보여준다. 6 shows the cyclic voltammogram of (H) TVAnt.

도 7은 Tsub = 75℃에서 OTS-처리된 SiO2/Si 기판상에 진공증착된 (H)TVAnt 박막의 XRD 패턴을 보여준다. FIG. 7 shows the XRD pattern of a (H) TVAnt thin film vacuum deposited on an OTS-treated SiO 2 / Si substrate at T sub = 75 ° C. FIG.

도 8은 a)TVAnt b)HTVAnt의 난컨택트 모드의 AFM 이미지를 보여준다. 8 shows an AFM image of a non-contact mode of a) TVAnt b) HTVAnt.

도 9는 TVAnt의 비처리된(bare) 기판상 박막의 AFM이미지를 보여준다. 9 shows AFM images of thin films on bare substrates of TVAnt.

도 10은 OTS-처리된 SiO2 기판에 증착온도 75℃에서 (H)TVAnt를 사용한 탑-컨택트 필드 이펙트 트랜지스터에 대하여 다양한 게이트볼트에서 소스드래인 전류와 소스트래인 전압을 나타낸 것이다. FIG. 10 shows the source drain currents and source train voltages at various gate volts for top-contact field effect transistors using (H) TVAnt at 75 ° C. deposition temperature on an OTS-treated SiO 2 substrate.

Claims (5)

하기 화학식 1로 표시되는 포스포네이트 유도체와 화학식 2로 표시되는 알데하이드 유도체간의 반응에 의하여 비닐 그룹을 형성하여 합성되는 유기 반도체 화합물.An organic semiconductor compound synthesized by forming a vinyl group by a reaction between a phosphonate derivative represented by Formula 1 and an aldehyde derivative represented by Formula 2. <화학식 1><Formula 1>
Figure 112008049419032-PAT00013
Figure 112008049419032-PAT00013
<화학식 2><Formula 2>
Figure 112008049419032-PAT00014
Figure 112008049419032-PAT00014
상기 식에서 A는 사이클릭 알킬기, 페닐기, C1 내지 C12의 알킬기치환된 페닐기, 티오페닐기, C1 내지 C12의 알킬치환된 티오페닐기, 나프틸기, C1 내지 C12의 알킬치환된 나프틸기, 비페닐기, C1 내지 C12의 알킬치환된 비페닐기, 안트라세닐기, C1 내지 C12의 알킬치환된 안트라세닐기, 페난트레닐기, C1 내지 C12의 알킬치환된 페난트레닐기, 플루오레닐기, C1 내지 C12의 알킬치환된 플루오레닐기, 피리디닐기, C1 내지 C12의 알킬치환된 피리디닐기, 피롤릴기, C1 내지 C12의 알킬치 환된 피롤릴기,푸라닐기, 및 C1 내지 C12의 알킬치환된 푸라닐기로 이루어진 군으로부터 선택된 것이다. Wherein A is a cyclic alkyl group, a phenyl group, a C1-C12 alkyl group, a substituted phenyl group, a thiophenyl group, a C1-C12 alkyl-substituted thiophenyl group, a naphthyl group, a C1-C12 alkyl-substituted naphthyl group, a biphenyl group, C1-C12 C12 alkyl substituted biphenyl group, anthracenyl group, C1 to C12 alkyl substituted anthracenyl group, phenanthrenyl group, C1 to C12 alkyl substituted phenanthrenyl group, fluorenyl group, C1 to C12 alkyl substituted flu Orenyl group, pyridinyl group, C1-C12 alkyl-substituted pyridinyl group, pyrrolyl group, C1-C12 alkyl-substituted pyrrolyl group, furanyl group, and C1-C12 alkyl-substituted furanyl group .
하기 화학식 3 내지 화학식 6으로 표시되는 유기 반도체 화합물.An organic semiconductor compound represented by the following Chemical Formulas 3 to 6. <화학식 3> <Formula 3>
Figure 112008049419032-PAT00015
Figure 112008049419032-PAT00015
상기 식에서 R은 H 및 C1 내지 C12의 알킬기로 이루어진 군으로부터 선택됨.Wherein R is selected from the group consisting of H and alkyl groups of C1 to C12. <화학식 4><Formula 4> 상기 식에서 m은 1 내지 5이며, n은 0 내지 11임. Wherein m is 1 to 5 and n is 0 to 11. <화학식 5><Formula 5>
Figure 112008049419032-PAT00017
Figure 112008049419032-PAT00017
상기 식에서 R은 H 및 C1 내지 C12의 알킬기로 이루어진 군으로부터 선택됨.Wherein R is selected from the group consisting of H and alkyl groups of C1 to C12. <화학식 6><Formula 6>
Figure 112008049419032-PAT00018
Figure 112008049419032-PAT00018
상기 식에서 R은 H 및 C1 내지 C12의 알킬기로 이루어진 군으로부터 선택됨.Wherein R is selected from the group consisting of H and alkyl groups of C1 to C12.
제 1항 또는 제 2의 유기 반도체 화합물를 이용하여 제조된 유기 반도체 박막.An organic semiconductor thin film manufactured using the organic semiconductor compound of claim 1 or 2. 제 3항의 유기 반도체 박막을 캐리어 수송층으로 포함하는 전자 소자.An electronic device comprising the organic semiconductor thin film of claim 3 as a carrier transport layer. 하기 화학식 1로 표시되는 포스포네이트 유도체와 화학식 2로 표시되는 알데하이드 유도체간의 반응에 의하여 비닐 그룹을 형성하는 단계를 포함하는 것을 특징으로 하는 유기 반도체 화합물의 제조방법.A method for producing an organic semiconductor compound, comprising the step of forming a vinyl group by a reaction between a phosphonate derivative represented by Formula 1 and an aldehyde derivative represented by Formula 2. <화학식 1><Formula 1>
Figure 112008049419032-PAT00019
Figure 112008049419032-PAT00019
<화학식 2><Formula 2>
Figure 112008049419032-PAT00020
Figure 112008049419032-PAT00020
상기 식에서 A는 치환 또는 비치환된 사이클릭 알킬기, 치환 또는 비치환된 아릴기, 치환 또는 비치환된 티오페닐기, 치환 또는 비치환된 피리디닐기, 치환 또는 비치환된 피롤릴기, 및 치환 또는 비치환된 푸라닐기 로 이루어진 군으로부터 선택된 것이다. Wherein A is a substituted or unsubstituted cyclic alkyl group, a substituted or unsubstituted aryl group, a substituted or unsubstituted thiophenyl group, a substituted or unsubstituted pyridinyl group, a substituted or unsubstituted pyrrolyl group, and a substituted or unsubstituted group It is selected from the group consisting of a ring furanyl group.
KR1020080066434A 2008-07-09 2008-07-09 High Performance Organic Semiconductors Based on Anthracene Backbone with Vinyl Group and the Organic Semiconductor Thin Film and Organic Thin Film Electronic Devices using thereof KR101280592B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020080066434A KR101280592B1 (en) 2008-07-09 2008-07-09 High Performance Organic Semiconductors Based on Anthracene Backbone with Vinyl Group and the Organic Semiconductor Thin Film and Organic Thin Film Electronic Devices using thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080066434A KR101280592B1 (en) 2008-07-09 2008-07-09 High Performance Organic Semiconductors Based on Anthracene Backbone with Vinyl Group and the Organic Semiconductor Thin Film and Organic Thin Film Electronic Devices using thereof

Publications (2)

Publication Number Publication Date
KR20100006272A true KR20100006272A (en) 2010-01-19
KR101280592B1 KR101280592B1 (en) 2013-07-02

Family

ID=41815464

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080066434A KR101280592B1 (en) 2008-07-09 2008-07-09 High Performance Organic Semiconductors Based on Anthracene Backbone with Vinyl Group and the Organic Semiconductor Thin Film and Organic Thin Film Electronic Devices using thereof

Country Status (1)

Country Link
KR (1) KR101280592B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2531046A (en) * 2014-10-08 2016-04-13 Tend Ltd Transit packaging for food

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6998068B2 (en) * 2003-08-15 2006-02-14 3M Innovative Properties Company Acene-thiophene semiconductors
DE102006035041A1 (en) * 2006-07-28 2008-01-31 Merck Patent Gmbh 1,4-bis (2-thienylvinyl) benzene derivatives and their use

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2531046A (en) * 2014-10-08 2016-04-13 Tend Ltd Transit packaging for food
GB2531046B (en) * 2014-10-08 2017-06-07 Tend Ltd Transit packaging for food

Also Published As

Publication number Publication date
KR101280592B1 (en) 2013-07-02

Similar Documents

Publication Publication Date Title
US7964650B2 (en) Carbonyl-functionalized thiophene compounds and related device structures
KR101622303B1 (en) High-Performance Organic Semiconductors Based on 2,7-Bis-(vinyl)[1]benzothieno[3,2-b]benzothiophene Backbone and the Organic Semiconductor Thin-Film using the same and Organic Thin-Film Transistors using thereof
EP2966077B1 (en) Chalcogen-containing organic compound and use therefor
KR101599688B1 (en) Novel heterocyclic compound, method for producing intermediate therefor, and use thereof
EP2818464A1 (en) Novel chalcogen-containing organic compound and use thereof
Schmidt et al. Highly soluble acenes as semiconductors for thin film transistors
KR20120043009A (en) Novel organic semiconductive material and electronic device using the same
Qiao et al. Incorporation of pyrrole to oligothiophene-based quinoids endcapped with dicyanomethylene: a new class of solution processable n-channel organic semiconductors for air-stable organic field-effect transistors
KR20110132615A (en) Tetrathiafulvalene derivative, and organic film and organic transistor using the same
Ahmed et al. Thieno [3, 2-b] thiophene oligomers and their applications as p-type organic semiconductors
Hoang et al. Organic field-effect transistors based on semiconducting porphyrin single crystals
Um et al. High-performance organic semiconductors for thin-film transistors based on 2, 6-bis (2-thienylvinyl) anthracene
US9029840B2 (en) Organic nanofiber structure based on self-assembled organogel, organic nanofiber transistor using the same, and method of manufacturing the organic nanofiber transistor
Um et al. High-performance organic semiconductors for thin-film transistors based on 2, 7-divinyl [1] benzothieno [3, 2-b] benzothiophene
KR20120092052A (en) Semiconductor compound
Duan et al. Organic field-effect transistors based on two phenylene–thiophene oligomer derivatives with a biphenyl or fluorene core
Zhu et al. The synthesis of 2, 6-dialkylphenyldithieno [3, 2-b: 2′, 3′-d] thiophene derivatives and their applications in organic field-effect transistors
KR101280592B1 (en) High Performance Organic Semiconductors Based on Anthracene Backbone with Vinyl Group and the Organic Semiconductor Thin Film and Organic Thin Film Electronic Devices using thereof
Hoang et al. New semiconducting multi-branched conjugated molecules based on π-extended triphenylene and its application to organic field-effect transistor
JP4826081B2 (en) Organic semiconductor material, semiconductor device using the same, and field effect transistor
US8513466B2 (en) Class of soluble, photooxidatively resistant acene derivatives
KR100865703B1 (en) Organic semiconductor containing arylacetylene group, and Organic thin film transistor
Um et al. Organic thin-film transistors based on 2, 6-bis (2-arylvinyl) anthracene: high-performance organic semiconductors
JP7521742B2 (en) Organic transistor material and organic transistor
Liu et al. Novel functional sulfur-bridged neutral annulene: Structure, physical properties and progress on field-effect performance

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170322

Year of fee payment: 4

R401 Registration of restoration
FPAY Annual fee payment

Payment date: 20170524

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20190902

Year of fee payment: 7