KR20100002064A - Sc-fdma 시스템에서 전송 다이버시티를 이용한 데이터 전송장치 및 방법 - Google Patents
Sc-fdma 시스템에서 전송 다이버시티를 이용한 데이터 전송장치 및 방법 Download PDFInfo
- Publication number
- KR20100002064A KR20100002064A KR1020080134255A KR20080134255A KR20100002064A KR 20100002064 A KR20100002064 A KR 20100002064A KR 1020080134255 A KR1020080134255 A KR 1020080134255A KR 20080134255 A KR20080134255 A KR 20080134255A KR 20100002064 A KR20100002064 A KR 20100002064A
- Authority
- KR
- South Korea
- Prior art keywords
- fdma
- symbol
- symbols
- subcarrier
- space
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0667—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal
- H04B7/0669—Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of delayed versions of same signal using different channel coding between antennas
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L1/00—Arrangements for detecting or preventing errors in the information received
- H04L1/02—Arrangements for detecting or preventing errors in the information received by diversity reception
- H04L1/06—Arrangements for detecting or preventing errors in the information received by diversity reception using space diversity
- H04L1/0618—Space-time coding
- H04L1/0625—Transmitter arrangements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L27/00—Modulated-carrier systems
- H04L27/26—Systems using multi-frequency codes
- H04L27/2601—Multicarrier modulation systems
- H04L27/2614—Peak power aspects
- H04L27/2615—Reduction thereof using coding
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/003—Arrangements for allocating sub-channels of the transmission path
- H04L5/0042—Arrangements for allocating sub-channels of the transmission path intra-user or intra-terminal allocation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L5/00—Arrangements affording multiple use of the transmission path
- H04L5/0001—Arrangements for dividing the transmission path
- H04L5/0014—Three-dimensional division
- H04L5/0023—Time-frequency-space
Landscapes
- Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Computer Networks & Wireless Communication (AREA)
- Mobile Radio Communication Systems (AREA)
- Radio Transmission System (AREA)
Abstract
SC-FDMA 시스템에서 전송 다이버시티를 이용한 데이터 전송장치를 제공한다. 상기 장치는 정보비트를 부호화하고 성상맵핑하여 변조심벌을 생성하는 데이터 처리부, 상기 변조심벌에 DFT(Discrete Fourier Transform)를 수행하여 주파수 영역 심벌을 생성하는 DFT부, 상기 주파수 영역 심벌에 대해 STBC(Space Time Block Coding)를 수행하여 제1 및 제2 시공간 블록 부호열로 구성된 시공간 블록 부호를 생성하는 STBC 처리부, 상기 제1 시공간 블록 부호열을 제1 부반송파에 맵핑하고, 상기 제2 시공간 블록 부호열을 제2 부반송파에 맵핑하는 부반송파 맵퍼, 여기서 상기 제1 부반송파는 제1 자원블록에 속하고, 상기 제2 부반송파는 제2 자원블록에 속하되, 상기 제1 및 제2 자원블록은 서로 다른 슬롯의 동일한 주파수 대역에 속함. 상기 제1 부반송파에 IFFT(Inverse Fast Fourier Transform)를 수행하여 제1 SC-FDMA 심벌(symbol)을 생성하고, 상기 제2 부반송파에 IFFT를 수행하여 제2 SC-FDMA 심벌을 생성하는 IFFT부, 및 상기 제1 및 제2 SC-FDMA 심벌을 전송하는 복수의 송신 안테나를 포함한다. SC-FDMA 시스템에 STBC 기법이 효율적으로 적용되어 PAPR이 줄어들고 단일-반송파 특성이 유지될 수 있다.
Description
본 발명은 무선통신에 관한 것으로서, 보다 상세하게는 SC-FDMA 시스템에서 전송 다이버시티를 적용하여 데이터를 전송하는 장치 및 방법에 관한 것이다.
최근들어 무선 데이터 서비스에 대한 폭발적인 수요의 증가가 있어왔다. 그리고 무선 음성 서비스에서 무선 데이터 서비스로의 진화는 무선 용량(wireless capacity)의 점진적인 증가를 요구하고 있다. 이러한 요구는 무선 서비스 사업자들과 무선장비 제조업자들로 하여금 무선 시스템의 데이터 전송률의 향상을 모색하도록 하며, 막대한 연구에 대한 동기를 부여한다.
무선채널(wireless channel)은 경로손실(path loss), 쉐도우잉(shadowing), 페이딩(fading), 잡음(noise), 한정된 대역폭(limited bandwidth), 단말의 전력한계, 다른 사용자간의 간섭과 같은 여러가지 문제를 겪는다. 이러한 한계는 무선 채널을 데이터의 빠른 흐름을 저해하는 좁은 파이프와 유사한 형태를 갖게 하며, 고속 데이터 전송을 제공하는 무선통신의 효율적인 대역폭의 설계를 어렵게 한다. 무 선 시스템의 설계에 있어서 또 다른 난점들(challenges)은 자원할당, 급변하는 물리채널과 관련한 이동성 문제들(mobility issues), 휴대가능성(portability), 및 안전성(security)과 프라이버시(privacy) 제공의 설계를 포함한다.
전송채널이 큰 페이딩(deep fading)을 겪을 때, 수신기는 전송되는 신호의 다른 버젼(version)이나 복사본(replica)이 별도로 전송되지 않는 경우 상기 전송되는 신호를 결정하기 어렵다. 이러한 별도의 다른 버젼이나 복사본에 해당하는 자원은 다이버시티(diversity)라 불리며, 무선채널에 걸쳐 신뢰성있는 전송에 기여하는 가장 중요한 요소 중 하나이다. 이러한 다이버시티를 이용하면 데이터 전송 용량 또는 데이터 전송 신뢰도를 극대화할 수 있는데, 다중 송신안테나 및 다중 수신 안테나로써 다이버시티를 구현하는 시스템을 다중입출력(Multiple Input Multiple Output; MIMO) 시스템이라 한다. MIMO 시스템을 다중안테나(Multiple antenna) 시스템이라고도 한다.
MIMO 시스템에서 다이버시티를 구현하기 위한 기법에는 SFBC(Space Frequency Block Code), STBC(Space Time Block Code), CDD(Cyclic Delay Diversity), FSTD(frequency switched transmit diversity), TSTD(time switched transmit diversity), PVS(Precoding Vector Switching), 공간 다중화(Spatial Multiplexing; SM), GCDD(Generalized Cyclic Delay Diversity), S-VAP(Selective Virtual Antenna Permutation) 등이 있다.
한편, 3세대 이후의 시스템에서 고려되는 있는 시스템 중 하나가 낮은 복잡도로 심벌간 간섭(inter-symbol interference) 효과를 감쇄시킬 수 있는 직교 주파 수 분할 다중(Orthogonal Frequency Division Multiplexing; OFDM) 시스템이다. OFDM은 직렬로 입력되는 데이터를 N개의 병렬 데이터로 변환하여, N개의 직교 부반송파(subcarrier)에 실어 전송한다. 부반송파는 주파수 차원에서 직교성을 유지한다. 직교 주파수 분할 다중 접속(Orthogonal Frequency Division Multiple Access; OFDMA)은 OFDM을 변조 방식으로 사용하는 시스템에 있어서 이용가능한 부반송파의 일부를 각 사용자에게 독립적으로 제공하여 다중 접속을 실현하는 다중 접속 방법을 말한다.
그런데, OFDM/OFDMA 시스템의 주된 문제점 중 하나는 PAPR(Peak-to-Average Power Ratio)이 매우 클 수 있다는 것이다. PAPR 문제는 전송 신호의 최대 진폭(peak amplitude)이 평균 진폭보다 매우 크게 나타나는 것으로, OFDM 심벌이 서로 다른 부반송파 상에서 N개의 정현파 신호(sinusoidal signal)의 중첩이라는 사실에 기인한다. PAPR은 특히 배터리의 용량과 관련되어 전력 소모에 민감한 단말에서 문제가 된다. 전력 소모를 줄이기 위해서는 PAPR을 낮추는 것이 필요하다.
PAPR을 낮추기 위해 제안되고 있는 시스템 중 하나가 단일 반송파 주파수 분할 다중 접속(Single Carrier-Frequency Division Multiple Access; SC-FDMA)이다. SC-FDMA는 SC-FDE(Single Carrier-Frequency Division Equalization) 방식에 FDMA(Frequency Division Multiple Access)를 접목한 형태이다. SC-FDMA는 데이터를 시간 영역 및 주파수 영역에서 변조 및 복조한다는 점에서 OFDMA와 유사한 특성을 갖지만, 이산 푸리에 변환(Discrete Fourier Transform; DFT)을 이용하므로써 전송 신호의 PAPR이 낮아 전송 전력 절감에 유리하다. 특히 배터리 사용과 관련하 여 전송 전력에 민감한 단말에서 기지국으로 통신하는 상향링크에 유리하다고 할 수 있다. 단말이 기지국으로 데이터를 전송할 때, 중요한 점은 전송하는 데이터의 대역폭은 크지 않은 대신 파워를 집중할 수 있는 넓은 커버리지(coverage)이다. SC-FDMA 시스템은 신호의 변화량이 작도록 만들어 주어, 동일한 전력 증폭기(power amplifier)를 사용했을 때 다른 시스템보다 더 넓은 커버리지를 가진다. 한편, SC-FDMA 기법과 달리, clustered DFT-S-OFDM은 DFT 확산된 N 심볼열 중 M(<N) 심볼열은 연속된 부반송파에 할당(또는 맵핑)하고, 나머지 N-M 심볼열은 M 심볼열이 할당(또는 맵핑)된 부반송파에서 일정 간격 떨어진 연속된 부반송파에 할당(또는 맵핑)한다. clustered DFT-S-OFDM을 사용할 경우, 주파수 선택적 스케줄링(frequency selective scheduling)을 할 수 있는 장점이 있다.
그런데, 이러한 SC-FDMA 방식을 적용함에 있어서 주의해야할 것은 단일-반송파 특성(single-carrier property)를 만족시켜야 한다는 점이다. 무선통신 시스템은 SC-FDMA 방식 또는 clustered DFT-S-OFDM 방식을 이용함으로써 PAPR을 낮추는 전송 다이버시티(transmit diversity)를 제공할 수 있어야 한다. 앞서 언급된 전송 다이버시티 기법 중 하나인 STBC는 공간 영역과 시간 영역에서 선택성을 적용함으로써 다이버시티 이득을 얻는 기법이다. STBC를 이용하되, PAPR을 낮추는 전송다이버시티를 제공할 수 있는 데이터 전송장치 및 방법이 요구된다.
본 발명의 기술적 과제는 STBC를 이용한 전송 다이버시티를 제공하면서, PAPR을 낮출 수 있는 데이터 전송장치 및 방법을 제공함에 있다.
본 발명의 일 양태에 따르면, SC-FDMA 시스템에서 전송 다이버시티를 제공하는 데이터 전송장치를 제공한다. 상기 장치는 정보비트를 부호화하고 성상맵핑하여 변조심벌을 생성하는 데이터 처리부, 상기 변조심벌에 DFT(Discrete Fourier Transform)를 수행하여 주파수 영역 심벌을 생성하는 DFT부, 상기 주파수 영역 심벌에 대해 STBC(Space Time Block Coding)를 수행하여 제1 및 제2 시공간 블록 부호열로 구성된 시공간 블록 부호를 생성하는 STBC 처리부, 상기 제1 시공간 블록 부호열을 제1 부반송파에 맵핑하고, 상기 제2 시공간 블록 부호열을 제2 부반송파에 맵핑하는 부반송파 맵퍼, 여기서 상기 제1 부반송파는 제1 자원블록에 속하고, 상기 제2 부반송파는 제2 자원블록에 속하되, 상기 제1 및 제2 자원블록은 서로 다른 슬롯의 동일한 주파수 대역에 속함; 상기 제1 부반송파에 IFFT(Inverse Fast Fourier Transform)를 수행하여 제1 SC-FDMA 심벌(symbol)을 생성하고, 상기 제2 부반송파에 IFFT를 수행하여 제2 SC-FDMA 심벌을 생성하는 IFFT부, 및 상기 제1 및 제2 SC-FDMA 심벌을 전송하는 복수의 송신 안테나를 포함한다.
본 발명의 다른 양태에 따르면, SC-FDMA 시스템에서 전송 다이버시티를 이용한 데이터 전송방법을 제공한다. 상기 방법은 정보비트를 부호화하고 성상맵핑하여 변조심벌을 생성하는 단계, 상기 변조심벌에 DFT를 수행하여 주파수 영역 심벌을 생성하는 단계, 상기 주파수 영역 심벌에 대해 STBC를 수행하여 시공간 블록 부호를 생성하는 단계, 상기 시공간 블록 부호를 대응되는 복수의 SC-FDMA 심벌에 각각 맵핑하는 단계, 여기서, 상기 복수의 SC-FDMA 심벌은 모두 동일한 주파수 대역의 부반송파에 대해 IFFT를 수행하여 생성됨, 및 상기 복수의 SC-FDMA 심벌을 전송하는 단계를 포함한다.
SC-FDMA 시스템에 STBC 기법이 효율적으로 적용되어 PAPR이 줄어들고 단일-반송파 특성이 유지될 수 있다.
도 1은 무선통신 시스템을 나타낸 블록도이다. 무선통신 시스템은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다.
도 1을 참조하면, 무선통신 시스템은 단말(10; User Equipment, UE) 및 기지국(20; Base Station, BS)을 포함한다. 단말(10)은 고정되거나 이동성을 가질 수 있으며, MS(Mobile Station), UT(User Terminal), SS(Subscriber Station), 무선기기(wireless device) 등 다른 용어로 불릴 수 있다. 기지국(20)은 일반적으로 단말(10)과 통신하는 고정된 지점(fixed station)을 말하며, 노드-B(Node-B), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다. 하나의 기지국(20)에는 하나 이상의 셀이 존재할 수 있다.
이하에서 하향링크(downlink; DL)는 기지국(20)에서 단말(10)로의 통신을 의 미하며, 상향링크(uplink; UL)는 단말(10)에서 기지국(20)으로의 통신을 의미한다. 하향링크에서, 송신기는 기지국(20)의 일부일 수 있고 수신기는 단말(10)의 일부일 수 있다. 상향링크에서, 송신기는 단말(10)의 일부일 수 있고 수신기는 기지국(20)의 일부일 수 있다.
무선통신 시스템에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), SC-FDMA(Single-Carrier FDMA), OFDMA(Orthogonal Frequency Division Multiple Access) 또는 공지된 다른 변조 기술들과 같은 다중 접속 기법들에 기초할 수 있다. 이들 변조 기법들은 통신 시스템의 다중 사용자들로부터 수신된 신호들을 복조하여 통신 시스템의 용량을 증가시킨다.
하향링크와 상향링크 전송을 위한 다중 접속 방식은 서로 다를 수 있다. 예를 들어, 하향링크는 OFDMA(Orthogonal Frequency Division Multiple Access)를 사용하고, 상향링크는 SC-FDMA(Single Carrier-Frequency Division Multiple Access) 또는 clustered DFT S-OFDM 를 사용할 수 있다. 일반적인 SC-FDMA 기법은 DFT 확산된 심볼열을 연속된 부반송파 또는 등간격을 갖는 부반송파에 할당(또는 맵핑)하는 것을 의미하는데, clustered DFT-S-OFDM은 DFT 확산된 N 심볼열 중 M(<N) 심볼열은 연속된 부반송파에 할당(또는 맵핑)하고, 나머지 N-M 심볼열은 M 심볼열이 할당(또는 맵핑)된 부반송파에서 일정 간격 떨어진 연속된 부반송파에 할당(또는 맵핑)한다. clustered DFT-S-OFDM을 사용할 경우, 주파수 선택적 스케줄링(frequency selective scheduling)을 할 수 있는 장점이 있다.
도 2는 무선 프레임 구조의 일 예를 나타낸다.
도 2를 참조하면, 무선 프레임(radio frame)은 10개의 서브프레임(subframe)으로 구성되고, 하나의 서브프레임은 2개의 슬롯(slot)을 포함할 수 있다. 하나의 슬롯은 시간 영역에서 복수의 SC-FDMA 심벌(또는 OFDM 심벌)과 주파수 영역에서 적어도 하나의 부반송파를 포함할 수 있다. 슬롯은 시간 영역과 주파수 영역에서 무선 자원을 할당하기 위한 단위라 할 수 있다.
하나의 슬롯에 포함되는 SC-FDMA 심벌의 수는 CP(Cyclic Prefix)의 구성(configuration)에 따라 달라질 수 있다. CP에는 확장된 CP(extended CP)와 일반 CP(normal CP)가 있다. 예를 들어, SC-FDMA 심벌이 일반 CP에 의해 구성된 경우, 하나의 슬롯에 포함되는 SC-FDMA 심벌의 수는 7개일 수 있다. SC-FDMA 심벌이 확장된 CP에 의해 구성된 경우, 한 SC-FDMA 심벌의 길이가 늘어나므로, 한 슬롯에 포함되는 SC-FDMA 심벌의 수는 일반 CP인 경우보다 적다. 예를 들어, 하나의 슬롯에 포함되는 SC-FDMA 심벌의 수는 6개일 수 있다. 확장된 CP는 단말이 빠른 속도로 이동하는 등의 경우와 같이 채널상태가 불안정한 경우, 심벌간 간섭을 더욱 줄이기 위해 사용될 수도 있고, 멀티미디어 브로드캐스트 멀티캐스트 서비스(Multimedia Broadcast Multicast Service; MBMS)를 제공하기 위해 사용될 수도 있다.
무선 프레임의 구조는 예시에 불과하고, 무선 프레임에 포함되는 서브프레임의 수, 서브프레임에 포함되는 슬롯의 수 및 슬롯에 포함되는 SC-FDMA 심벌의 수는 다양하게 변경될 수 있다.
도 3은 서브프레임의 일 예를 나타낸다. 이는 SC-FDMA 심벌이 일반 CP로 구성된 경우이다.
도 3을 참조하면, 서브프레임은 2개의 슬롯을 포함한다. SC-FDMA 심벌이 일반 CP로 구성되므로, 하나의 슬롯은 시간 영역에서 7개의 SC-FDMA 심벌을 포함한다. 따라서, 하나의 서브프레임은 총 14개의 SC-FDMA 심벌을 포함한다. 한편, 주파수 영역에서 복수의 자원블록(resource block; RB)을 포함한다. 1개의 SC-FDMA 심벌과 1개의 부반송파로 이루어진 단위를 자원 요소라 한다. 하나의 자원블록이 12 부반송파를 포함한다고 할 때, 하나의 자원블록은 12×7 자원요소를 포함한다. 각 슬롯에서 하나의 SC-FDMA 심벌은 데이터의 복조에 사용되는 복조 기준신호(DeModulation Reference Signal; DMRS)의 전송을 위해 할당된다. 나머지 SC-FDMA 심벌은 데이터의 전송을 위해 할당되므로, 한 서브프레임내에서 총 12개의 SC-FDMA 심벌이 데이터 전송을 위해 할당된다. 만약, 복조 기준신호외에, 상향링크 채널 추정을 위한 사운딩 기준신호(Sounding Reference Signal; SRS)가 1개의 SC-FDMA 심벌상으로 전송된다면, 한 서브프레임내에서 총 11개의 SC-FDMA 심벌이 데이터 전송을 위해 할당된다. 사운딩 기준신호는 2번째 슬롯의 마지막 SC-FDMA 심벌상으로 전송될 수 있다.
서브프레임의 구조는 예시에 불과하고, 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 SC-FDMA 심벌의 수 및 복조 기준신호가 전송되는 SC-FDMA 심벌의 위치는 다양하게 변경될 수 있다.
도 4는 서브프레임의 다른 예를 나타낸다. 이는 SC-FDMA 심벌이 확장된 CP로 구성된 경우이다.
도 4를 참조하면, 도 3에서의 서브프레임 구조와 달리, SC-FDMA 심벌이 일반 CP로 구성되므로, 하나의 슬롯은 시간 영역에서 6개의 SC-FDMA 심벌을 포함한다. 따라서, 하나의 서브프레임은 총 12개의 SC-FDMA 심벌을 포함한다. 하나의 서브프레임이 1 TTI(Transmission Time Interval)이고, 1 TTI는 1ms이다. 각 슬롯은 0.5ms 길이이다. 각 슬롯에서 하나의 SC-FDMA 심벌은 데이터의 복조에 사용되는 복조 기준신호의 전송을 위해 할당된다. 나머지 SC-FDMA 심벌은 데이터의 전송을 위해 할당되므로, 한 서브프레임내에서 총 10개의 SC-FDMA 심벌이 데이터 전송을 위해 할당된다. 만약, 복조 기준신호외에, 상향링크 채널 추정을 위한 사운딩 기준신호가 1개의 SC-FDMA 심벌상으로 전송된다면, 한 서브프레임내에서 총 9개의 SC-FDMA 심벌이 데이터 전송을 위해 할당된다. 사운딩 기준신호는 2번째 슬롯의 마지막 SC-FDMA 심벌상으로 전송될 수 있다. 서브프레임의 구조는 예시에 불과하고, 서브프레임에 포함되는 슬롯의 수, 슬롯에 포함되는 SC-FDMA 심벌의 수 및 복조 기준신호가 전송되는 SC-FDMA 심벌의 위치는 다양하게 변경될 수 있다.
무선통신 시스템은 다중안테나(multiple antenna) 시스템일 수 있다. 다중안테나 시스템은 다중입출력(multiple-input multiple-output; MIMO) 시스템일 수 있다. 또는 다중안테나 시스템은 다중 입력 싱글 출력(multiple-input single-output; MISO) 시스템 또는 싱글 입력 싱글 출력(single-input single-output; SISO) 시스템 또는 싱글 입력 다중 출력(single-input multiple-output; SIMO) 시스템일 수도 있다. MIMO 시스템은 다수의 송신안테나와 다수의 수신 안테나를 사용 한다. MISO 시스템은 다수의 송신안테나와 하나의 수신 안테나를 사용한다. SISO 시스템은 하나의 송신안테나와 하나의 수신 안테나를 사용한다. SIMO 시스템은 하나의 송신안테나와 다수의 수신 안테나를 사용한다.
다중 안테나 시스템의 운영(operation)을 위해 사용되는 다중 안테나 송수신 기법(scheme)은 STBC(Space Time Block Code), SFBC(Space Frequency Block Code), FSTD(frequency switched transmit diversity), CDD(Cyclic Delay Diversity), TSTD(time switched transmit diversity) 등이 사용될 수 있다. STBC에서 신호는 시간과 공간 영역에서 분리되어 전송되며, 각 안테나별로 수신된 신호들은 최대 우도 결합(Maximum Likelihood Combining) 기법에 의해 결정된다.
도 5는 STBC 기법이 적용되는 무선통신 시스템을 설명하는 설명도이다.
도 5를 참조하면, STBC가 적용되는 무선통신 시스템은 전송기(100)와 수신기(200)를 포함한다. 전송기(100)는 데이터 처리부(data processor, 110), SC-FDMA 변조기(SC-FDMA modulator, 120), 제어부(130), RF부(Radio Frequency Unit; 140) 및 송신안테나(150-1, 150-2,..., 150-N)를 포함한다.
데이터 처리부(110)는 입력되는 정보비트(information bit)를 채널부호화(channel coding)하여 부호어(codeword)를 생성하고, 상기 부호어를 성상맵핑(constellation mapping)하여 변조심벌(modulation symbol)을 생성한다. 정보비트는 수신기(200)로 보낼 사용자 평면의 정보를 포함한다. 또한, 정보비트는 사용자 평면의 정보의 전송 또는 무선자원 할당과 관련된 제어평면의 정보를 포함할 수 있다.
SC-FDMA 변조부(120)는 데이터 심벌에 STBC를 수행하여 시공간 블록 부호를 생성하고, SC-FDMA 변조 방식으로 변조하여 SC-FDMA 심벌을 생성한다. 제어평면의 정보는 사용자 평면의 정보와 별도로 변조되어 SC-FDMA 변조부(120)로 입력될 수 있다. 제어부(130)는 데이터 처리부(110)와 SC-FDMA 변조부(120)의 동작을 제어한다. RF부(140)는 입력되는 SC-FDMA 심벌을 아날로그 신호로 변환한다. 변환된 아날로그 신호는 송신안테나(150-1, 150-2,..., 150-N)를 통하여 무선 채널로 전파된다.
수신기(200)는 RF부(210), SC-FDMA 복조부(220), 데이터 처리부(230), 제어부(240) 및 수신안테나(250-1, 250-2,... 250-M)를 포함한다.
RF부(210)는 수신안테나(250-1, 250-2,... 250-M)에서 수신한 신호를 디지털화된 신호로 변환한다. SC-FDMA 복조부(220)는 디지털화된 신호에서 SC-FDMA 변조부(120)에 대응하는 동작을 수행하여 데이터 심벌을 출력한다. 데이터 처리부(230)는 데이터 심벌로부터 정보비트를 복원한다. 제어부(240)는 SC-FDMA 복조부(220) 및 데이터 처리부(230)의 처리과정을 제어한다.
도 6은 SC-FDMA 변조부의 일 예를 도시한 블록도이다. 이는 STBC 기법이 적용되는 SC-FDMA 변조부이다. 여기서, 송신안테나는 2개라고 가정한다.
도 6을 참조하면, SC-FDMA 변조부(120)는 DFT(Discrete Fourier Transform)를 수행하는 DFT부(121), STBC 처리부(STBC processor; 122), 부반송파 맵퍼(subcarrier mapper, 123) 및 IFFT(Inverse Fast Fourier Transform)를 수행하는 IFFT부(124)를 포함한다.
DFT부(121)는 입력되는 2N개의 데이터 심벌열 S1, S2,..., SN, SN +1,..., S2N에 DFT를 수행하여 주파수 영역 심벌열 X1, X2,..., XN, XN +1,..., X2N을 출력한다. DFT의 크기가 N이면, 한번에 N개씩 DFT 확산된다. DFT부(121)에 입력되는 데이터 심벌열은 제어평면의 정보 및/또는 사용자 평면의 정보일 수 있다. DFT 크기는 할당된 자원블록의 크기만큼 고정된 것일 수도 있고, 시스템에 따라 가변적일 수도 있다.
STBC 처리부(122)는 주파수 영역 심벌열 X1, X2,..., XN, XN +1,..., X2N을 STBC 기법에 의해 안테나 및 시간별로 블록화하여 시공간 블록 부호 [(X1, X2,..., XN), (-X* N+1, -X* N+2,..., -X* 2N), (XN +!, XN +2,..., X2N), (X* 1, X* 2,..., X* N)]를 생성한다. 제1 시공간 블록 부호열 (X1, X2,..., XN), (-X* N+1, -X* N+2,..., -X* 2N)는 제i SC-FDMA 심벌의 부반송파에 대응되고, 제2 시공간 블록 부호열 (XN +!, XN +2,..., X2N), (X* 1, X* 2,..., X* N)는 제j SC-FDMA 심벌의 부반송파에 대응된다(i<j). STBC 처리부(123)에 의한 시공간 블록 부호는 크기 p×nT인 전송행렬 G에 의해 정의된다. 여기서, p는 시공간 블록 부호의 길이이며, nT는 송신안테나의 개수이다. G는 심벌(symbol) x1, x2,..., xp와 이들의 공액 복소수의 선형 조합으로 구성된다. 각각의 송신안테나로 다른 부호어들이 동시에 전송된다. 시공간 블록 부호의 길이가 2이고, 2개의 송신 안테나를 갖는 STBC 시스템에서의 전송행렬 G는 수학식 1과 같다.
이렇게 생성되는 시공간 블록 부호열과 송신안테나, SC-FDMA 심벌간의 맵핑관계를 보면, 표 1과 같다.
제i SC-FDMA 심벌 | 제j SC-FDMA 심벌 | |
제1 송신안테나 | X1, X2,..., XN | XN +!, XN +2,..., X2N |
제2 송신안테나 | -X* N+1, -X* N+2,..., -X* 2N | X* 1, X* 2,..., X* N |
표 1을 참조하면, 제i SC-FDMA 심벌에 제1 시공간 블록 부호열 (X1, X2,..., XN), (-X* N+1, -X* N+2,..., -X* 2N)이 맵핑되는데, 이 중 (X1, X2,..., XN)는 제1 송신안테나를 통해 전송되고, (-X* N+1, -X* N+2,..., -X* 2N)는 제2 송신안테나를 통해 전송된다. 또한, 제j SC-FDMA 심벌에 제2 시공간 블록 부호열 (XN +!, XN +2,..., X2N), (X* 1, X* 2,..., X* N)이 맵핑되는데, 이 중 (XN +!, XN +2,..., X2N)는 제1 송신안테나를 통해 전송되고, (X* 1, X* 2,..., X* N)은 제2 송신안테나를 통해 전송된다.
부반송파 맵퍼(123)는 스케줄링 정보에 따라 할당되는 부반송파에 시공간 블록 부호어 (X1, X2,..., XN), (-X* N+1, -X* N+2,..., -X* 2N), (XN +!, XN +2,..., X2N), (X* 1, X* 2,..., X* N)를 각각 맵핑한다. 여기서, 할당되는 부반송파는 매 슬롯마다 주파수 호핑(hopping)됨이 없이 모두 동일한 주파수 대역에 위치한다. 예를 들어, 송신기에 복수의 자원블록이 할당되는 경우, 각 자원블록은 연속된 슬롯상에서 모두 동일한 주파수 대역을 점유한다. 여기서, 자원블록은 복수의 부반송파를 포함하는 물리자원을 의미한다.
IFFT부(124)는 시공간 블록 부호어가 맵핑된 부반송파에 대해 IFFT를 수행하여 시간 영역 심벌인 SC-FDMA 심벌을 출력한다. 시간순서에 따라 제i SC-FDMA 심벌과 제j SC-FDMA 심벌이 생성된다. 하나의 IFFT부(124)만이 도시되었으나, 이는 예시일 뿐, 송신안테나의 개수에 따라 IFFT부(124)의 개수가 달라질 수 있음은 물론이다. DFT와 IFFT를 결합하여 변조하는 방식을 SC-FDMA라 하고, 이는 IFFT만을 사용하는 OFDM에 비해 PAPR(Peak-to-Average Power Ratio)을 낮추는 데 유리하다. 단일 반송파의 특성(Single Carrier Property)을 갖기 때문이다.
이와 같이 SC-FDMA 시스템에 STBC 기법을 적용하기 위해서는 단일 반송파 특성를 만족시켜야 한다. 전송행렬 G에 의한 시공간 블록 부호에 있어서, 단일 반송파 특성이 만족되려면 동일한 주파수 대역의 SC-FDMA 심벌들이 짝(pair)을 이룰 것이 요구된다. 즉, 전송되는 SC-FDMA 심벌의 개수가 짝수(even number)이어야 한다. 그런데 도 4와 같은 경우, 한 슬롯은 5개의 데이터용 SC-FDMA 심벌을 포함한다. 따라서, 한 슬롯내에서 1개의 SC-FDMA 심벌은 짝을 이룰 수 없다.
이와 같이 한 슬롯내에서 전송되는 SC-FDMA 심벌이 짝을 이루지 못하는 경우 SC-FDMA 시스템에서 단일 반송파 특성이 만족되지 못하므로 STBC 기법이 SC-FDMA 시스템에 적용될 수 없다. 이를 해결하기 위해 무선자원의 스케줄링시 2개 슬롯단위로(on a 2-slot basis) 할당하되, 2개의 슬롯에 걸쳐 할당되는 2개의 자원블록은 그 주파수의 위치가 동일한 할당방법을 이용할 수 있다. 상기 할당방법은 일반적으로 슬롯단위로 주파수 호핑(frequency hopping)되며 자원블록이 할당됨으로써 주파수 다이버시티 이득을 얻는 할당방법과는 다르다. 즉, 상기 할당방법은 2 슬롯에 걸친 자원블록의 주파수 위치가 동일하므로 주파수 다이버시티 이득은 없으나, STBC 기법에 의한 공간 다이버시티 이득을 얻을 수 있다.
연속된 2개의 슬롯(또는 1개의 서브프레임)은 짝수개의 데이터용 SC-FDMA 심벌을 포함한다. 이는 SC-FDMA 심벌이 확장된 CP로 구성되건, 일반 CP로 구성되건 마찬가지이다. 다만, 연속된 2개의 슬롯에 포함되는 데이터용 SC-FDMA 심벌의 개수에 차이가 있을 뿐이다. 즉, 확장된 CP의 경우 10개의 데이터용 SC-FDMA이, 일반 CP의 경우 12개의 데이터용 SC-FDMA이 각각 연속된 2개의 슬롯에 포함된다.
SC-FDMA 시스템에 STBC 기법을 적용하기 위해 SC-FDMA 심벌의 짝 맞추는 과정을 심벌 페어링(symbol paring)이라 한다. 또한, 심벌 페어링에 의해 짝지어진 SC-FDMA 심벌의 짝을 심벌 페어(symbol pair)라 한다. 상기 도 6에서 생성되는 제i SC-FDMA 심벌과 제j SC-FDMA 심벌은 심벌 페어이다. 이하에서 제i SC-FDMA 심벌과 제j SC-FDMA 심벌의 심벌 페어를 (#i, #j)라 표기하도록 한다.
도 7은 서브프레임내에서 심벌 페어링의 일 예를 설명하는 블록도이다.
도 7을 참조하면, 서브프레임은 총 14개의 SC-FDMA 심벌을 포함한다. 즉, SC-FDMA 심벌이 일반 CP로 구성된다. 제4 및 제11 SC-FDMA 심벌에는 복조 기준신호가 맵핑되고, 나머지 SC-FDMA 심벌들에는 데이터가 맵핑된다. 여기서 데이터는 사용자 평면(user plane)의 정보일 수도 있고, 제어평면(control plane)의 정보일 수도 있다.
복조 기준신호용 SC-FDMA 심벌을 제외하고, 데이터용 SC-FDMA 심벌의 개수가 12개, 즉 짝수이므로, 심벌 페어링이 수행될 수 있다. 심벌 페어는 (#1, #2), (#3, #5), (#6, #7), (#8, #9), (#10, #12), (#13, #14)로서 총 6개이다. 제i SC-FDMA 심벌과 제j SC-FDMA 심벌 사이에 기준신호(RS)가 존재하는 경우의 심벌 페어를 불연속적 SC-FDMA 심벌 페어라 한다. 이 경우 j=i+2이다. 한편, 제i SC-FDMA 심벌과 제j SC-FDMA 심벌이 인접한(contiguous)한 경우의 심벌 페어를 연속적 SC-FDMA 심벌 페어라 한다. 이 경우 j=i+1이다.
페어링되는 SC-FDMA 심벌들은 동일한 주파수 영역의 자원블록에 포함된다. 여기서 제시된 심벌 페어는 예시일 뿐 심벌 페어가 되는 SC-FDMA 심벌들의 조합은 다양하게 변형될 수 있다.
도 8은 서브프레임내에서 심벌 페어링의 다른 예를 설명하는 블록도이다.
도 8을 참조하면, 서브프레임은 총 12개의 SC-FDMA 심벌을 포함한다. 즉, SC-FDMA 심벌이 확장된 CP(extended CP)로 구성된다. 제3 및 제9 SC-FDMA 심벌에는 복조 기준신호가 맵핑되고, 나머지 SC-FDMA 심벌들에는 데이터가 맵핑된다. 여기서 데이터는 사용자 평면의 정보일 수도 있고, 제어평면의 정보일 수도 있다.
복조 기준신호용 SC-FDMA 심벌을 제외하고, 데이터용 SC-FDMA 심벌의 개수가 10개, 즉 짝수이므로, 심벌 페어링이 수행될 수 있다. 심벌 페어는 (#1, #2), (#4, #5), (#6, #7), (#8, #10), (#11, #12)로서 총 5개이다. 여기서, (#6, #7)은 서로 다른 슬롯에 포함된 SC-FDMA 심벌들의 심벌 페어이다. 이렇게 서로 다른 슬롯에 포함된 SC-FDMA 심벌들을 심벌 페어링하여 STBC를 적용할 때, 페어링되는 SC-FDMA 심벌들은 동일한 주파수 영역의 자원블록에 포함된다. 이는 SC-FDMA 시스템의 단일 반송파 특성을 유지하기 위함이다. 만약, 주파수 호핑에 의해 제7 SC-FDMA 심벌이 다른 주파수 대역으로 도약하면, (#6, #7)은 단일 반송파 특성이 깨지게 된다. 따라서, 연속된 2개의 슬롯에 동일한 주파수 대역의 부반송파가 할당되도록 스케줄링되어야 한다.
도 9는 STBC 기법이 적용되는 SC-FDMA 시스템에서의 데이터 전송방법을 나타내는 순서도이다.
도 9를 참조하면, 부호화된 정보비트를 변조심벌(modulation symbol)에 맵핑한다(S100). 여기서 변조심벌은 BPSK(Binary Phase Shift Keying), QPSK(Quadrature Phase Shift Keying), 16QAM(Qadrature Amplitude Modulation)등과 같은 변조방식에 의한 심벌일 수 있다. 예를 들어, BPSK인 경우 하나의 변조심벌당 1비트(0 또는 1)를 나타낼 수 있고, QPSK인 경우 하나의 변조심벌당 2비트(00, 01, 10, 11)를 나타낼 수 있다.
변조심벌에 대해 DFT를 수행한다(S110). DFT의 크기는 미리 결정되어 있거나, 시스템에 따라 가변적일 수 있다. DFT의 크기는 한 번에 확산가능한 변조심벌의 개수(또는 할당된 부반송파의 개수)를 나타낸다. DFT 수행에 의해 각 변조심벌은 주파수 영역 심벌에 맵핑된다.
주파수 영역 심벌에 STBC 기법을 적용하여 시공간 블록 부호를 생성한다(S120).
시공간 블록 부호를 부반송파에 맵핑한다(S130). 여기서, 시공간 블록 부호가 맵핑되는 부반송파는 서브프레임이 전송되는 시간단위인 매 TTI동안 동일한 주파수 대역에 위치한다. 즉, 부반송파가 주파수 호핑되며 할당되지 않는다. 이렇게 함으로써 매 슬롯마다 시공간 블록 부호가 동일한 주파수 대역의 부반송파에 맵핑될 수 있다. 이는 STBC가 적용되는 SC-FDMA 시스템에서, 페어링되는 SC-FDMA 심벌간의 주파수 대역을 일치시켜줌으로써 단일 반송파 특성을 만족시키기 위함이다.
시공간 블록 부호가 맵핑된 부반송파에 IFFT를 수행한다(S140). 부반송파에 IFFT를 수행하면 시간영역의 SC-FDMA 심벌이 생성된다. 연속적 또는 불연속적인 SC-FDMA 심벌간에 심벌 페어가 된다. SC-FDMA 심벌을 전송한다(S150).
상술한 모든 기능은 상기 기능을 수행하도록 코딩된 소프트웨어나 프로그램 코드 등에 따른 마이크로프로세서, 제어기, 마이크로제어기, ASIC(Application Specific Integrated Circuit) 등과 같은 프로세서에 의해 수행될 수 있다. 상기 코드의 설계, 개발 및 구현은 본 발명의 설명에 기초하여 당업자에게 자명하다고 할 것이다.
이상 본 발명에 대하여 실시예를 참조하여 설명하였지만, 해당 기술 분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상 및 영역으로부터 벗어나지 않는 범위 내에서 본 발명을 다양하게 수정 및 변경시켜 실시할 수 있음을 이해할 수 있을 것이다. 따라서 상술한 실시예에 한정되지 않고, 본 발명은 이하의 특허청구범위의 범위 내의 모든 실시예들을 포함한다고 할 것이다.
도 1은 무선통신 시스템을 나타낸 블록도이다.
도 2는 무선 프레임 구조의 일 예를 나타낸다.
도 3은 서브프레임의 일 예를 나타낸다.
도 4는 서브프레임의 다른 예를 나타낸다.
도 5는 STBC 기법이 적용되는 무선통신 시스템을 설명하는 설명도이다.
도 6은 SC-FDMA 변조부의 일 예를 도시한 블록도이다.
도 7은 서브프레임내에서 심벌 페어링의 일 예를 설명하는 블록도이다.
도 8은 서브프레임내에서 심벌 페어링의 다른 예를 설명하는 블록도이다.
도 9는 STBC 기법이 적용되는 SC-FDMA 시스템에서의 데이터 전송방법을 나타내는 순서도이다.
Claims (12)
- 정보비트를 부호화하고 성상맵핑하여 변조심벌을 생성하는 데이터 처리부;상기 변조심벌에 DFT(Discrete Fourier Transform)를 수행하여 주파수 영역 심벌을 생성하는 DFT부;상기 주파수 영역 심벌에 대해 STBC(Space Time Block Coding)를 수행하여 제1 및 제2 시공간 블록 부호열로 구성된 시공간 블록 부호를 생성하는 STBC 처리부;상기 제1 시공간 블록 부호열을 제1 부반송파에 맵핑하고, 상기 제2 시공간 블록 부호열을 제2 부반송파에 맵핑하는 부반송파 맵퍼, 여기서 상기 제1 부반송파는 제1 자원블록에 속하고, 상기 제2 부반송파는 제2 자원블록에 속하되, 상기 제1 및 제2 자원블록은 서로 다른 슬롯의 동일한 주파수 대역에 속함;상기 제1 부반송파에 IFFT(Inverse Fast Fourier Transform)를 수행하여 제1 SC-FDMA 심벌(symbol)을 생성하고, 상기 제2 부반송파에 IFFT를 수행하여 제2 SC-FDMA 심벌을 생성하는 IFFT부; 및상기 제1 및 제2 SC-FDMA 심벌을 전송하는 복수의 송신 안테나를 포함하는 데이터 전송장치.
- 제 1 항에 있어서,상기 제1 SC-FDMA 심벌과 상기 제2 SC-FDMA 심벌은 서로 인접하 는(contiguous), 데이터 전송장치.
- 제 1 항에 있어서,상기 제1 SC-FDMA 심벌과 상기 제2 SC-FDMA 심벌은 서로 이격되는, 데이터 전송장치.
- 제 1 항에 있어서,상기 제1 및 제2 SC-FDMA 심벌은 확장된 CP(extended cyclic prefix)로 구성되는, 데이터 전송장치.
- 제 1 항에 있어서,상기 제1 및 제2 SC-FDMA 심벌은 일반 CP(normal cyclic prefix)로 구성되는, 데이터 전송장치.
- 제 1 항에 있어서,상기 제1 SC-FDMA 심벌과 상기 제2 SC-FDMA 심벌은 서브프레임(subframe)에 속하는, 데이터 전송장치.
- 제 6 항에 있어서,상기 제1 SC-FDMA 심벌과 상기 제2 SC-FDMA 심벌은 다른 슬롯(slot)에 속하 는, 데이터 전송장치.
- 제 6 항에 있어서,상기 제1 SC-FDMA 심벌과 상기 제2 SC-FDMA 심벌은 같은 슬롯에 속하는, 데이터 전송장치.
- 제 6 항에 있어서,상기 서브프레임은 확장된(extended) CP(cyclic prefix)로 구성된 복수의 SC-FDMA 심벌을 포함하는, 데이터 전송장치.
- SC-FDMA 시스템에서 전송 다이버시티를 이용한 데이터 전송방법에 있어서,정보비트를 부호화하고 성상맵핑하여 변조심벌을 생성하는 단계;상기 변조심벌에 DFT를 수행하여 주파수 영역 심벌을 생성하는 단계;상기 주파수 영역 심벌에 대해 STBC를 수행하여 시공간 블록 부호를 생성하는 단계;상기 시공간 블록 부호를 대응되는 복수의 SC-FDMA 심벌에 각각 맵핑하는 단계, 여기서, 상기 복수의 SC-FDMA 심벌은 모두 동일한 주파수 대역의 부반송파에 대해 IFFT를 수행하여 생성됨; 및상기 복수의 SC-FDMA 심벌을 전송하는 단계를 포함하는, 데이터 전송방법.
- 제 10 항에 있어서,상기 복수의 SC-FDMA 심벌은 하나의 서브프레임내에서 인접한, 데이터 전송방법.
- 제 10 항에 있어서,상기 복수의 SC-FDMA 심벌사이에는 상향링크 데이터 복조를 위한 복조 기준신호를 위한 SC-FDMA 심벌이 위치하는, 데이터 전송방법.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020080134255A KR101507170B1 (ko) | 2008-06-26 | 2008-12-26 | Sc-fdma 시스템에서 전송 다이버시티를 이용한 데이터 전송장치 및 방법 |
PCT/KR2009/003466 WO2009157734A2 (en) | 2008-06-26 | 2009-06-26 | Apparatus and method for data transmission using transmit diversity in sc-fdma system |
US13/000,706 US8553618B2 (en) | 2008-06-26 | 2009-06-26 | Apparatus and method for data transmission using transmit diversity in SC-FDMA system |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US7575408P | 2008-06-26 | 2008-06-26 | |
US61/075,754 | 2008-06-26 | ||
US8137708P | 2008-07-16 | 2008-07-16 | |
US61/081,377 | 2008-07-16 | ||
US8835308P | 2008-08-13 | 2008-08-13 | |
US61/088,353 | 2008-08-13 | ||
KR1020080134255A KR101507170B1 (ko) | 2008-06-26 | 2008-12-26 | Sc-fdma 시스템에서 전송 다이버시티를 이용한 데이터 전송장치 및 방법 |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20100002064A true KR20100002064A (ko) | 2010-01-06 |
KR101507170B1 KR101507170B1 (ko) | 2015-03-31 |
Family
ID=41445118
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020080134255A KR101507170B1 (ko) | 2008-06-26 | 2008-12-26 | Sc-fdma 시스템에서 전송 다이버시티를 이용한 데이터 전송장치 및 방법 |
Country Status (3)
Country | Link |
---|---|
US (1) | US8553618B2 (ko) |
KR (1) | KR101507170B1 (ko) |
WO (1) | WO2009157734A2 (ko) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220027269A (ko) * | 2016-05-12 | 2022-03-07 | 인터디지탈 패튼 홀딩스, 인크 | 비트들의 세트의 두 심볼로의 변조 및 상이한 통신 리소스들을 통한 심볼 전송 |
Families Citing this family (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102598568B (zh) * | 2009-10-29 | 2015-03-18 | 联想创新有限公司(香港) | 用于下行链路mimo的下行链路控制信令传输的方法和用户设备 |
KR101757452B1 (ko) * | 2010-01-08 | 2017-07-13 | 삼성전자주식회사 | 무선 통신 시스템에서 자원 매핑 및 디매핑 방법 및 장치 |
US20110267948A1 (en) * | 2010-05-03 | 2011-11-03 | Koc Ali T | Techniques for communicating and managing congestion in a wireless network |
CN102340463B (zh) * | 2010-07-26 | 2014-07-30 | 华为技术有限公司 | 一种信道估计方法、装置和系统 |
CN102594488B (zh) * | 2011-01-14 | 2017-12-19 | 中兴通讯股份有限公司 | 空间流向空时流映射的方法、装置及数据传输方法、装置 |
WO2015184583A1 (en) * | 2014-06-03 | 2015-12-10 | Telefonaktiebolaget L M Ericsson (Publ) | An access node,a communication device,respective method performed thereby for carrier hopping |
WO2016111599A1 (ko) * | 2015-01-09 | 2016-07-14 | 엘지전자 주식회사 | 제어 정보를 전송하는 방법 및 이를 위한 장치 |
US10454548B2 (en) | 2016-03-09 | 2019-10-22 | Intel Corporation | Apparatus, system and method of communicating according to a transmit space-frequency diversity scheme |
US11290211B2 (en) | 2016-03-09 | 2022-03-29 | Intel Corporation | Apparatus, system and method of communicating a transmission according to a space-time encoding scheme |
WO2018194705A1 (en) * | 2017-04-20 | 2018-10-25 | Intel Corporation | Apparatus, system and method of communicating a transmission according to a space-time encoding scheme |
CN109417522B (zh) * | 2016-09-28 | 2020-12-04 | Oppo广东移动通信有限公司 | 传输数据的方法、接收端设备和发送端设备 |
WO2018107068A1 (en) | 2016-12-09 | 2018-06-14 | Qualcomm Incorporated | Uplink transmit diversity and precoding |
CN110521153B (zh) * | 2017-04-20 | 2022-09-02 | 英特尔公司 | 根据空间-时间编码方案通信传输的装置、系统和方法 |
GB2568315B (en) * | 2017-11-14 | 2020-06-17 | Cambium Networks Ltd | Fault Tolerant Transmission for a Wireless Link |
CN112565142B (zh) * | 2020-11-06 | 2023-01-13 | 北京遥测技术研究所 | 一种多模式sc-fde突发传输载波同步方法 |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6888809B1 (en) | 2000-01-13 | 2005-05-03 | Lucent Technologies Inc. | Space-time processing for multiple-input, multiple-output, wireless systems |
US6802035B2 (en) | 2000-09-19 | 2004-10-05 | Intel Corporation | System and method of dynamically optimizing a transmission mode of wirelessly transmitted information |
KR100698199B1 (ko) | 2001-06-05 | 2007-03-22 | 엘지전자 주식회사 | 전송 안테나 다이버시티 방법 |
US7181167B2 (en) | 2001-11-21 | 2007-02-20 | Texas Instruments Incorporated | High data rate closed loop MIMO scheme combining transmit diversity and data multiplexing |
KR100899735B1 (ko) | 2002-07-03 | 2009-05-27 | 삼성전자주식회사 | 이동 통신 시스템에서 적응적 전송 안테나 다이버시티장치 및 방법 |
KR20050069802A (ko) | 2003-12-31 | 2005-07-05 | 엘지전자 주식회사 | 복합 전송 다이버시티 시스템 및 방법 |
US20050265280A1 (en) | 2004-05-25 | 2005-12-01 | Samsung Electronics Co., Ltd. | OFDM symbol transmission method and apparatus for providing sector diversity in a mobile communication system, and a system using the same |
US7894548B2 (en) | 2004-09-03 | 2011-02-22 | Qualcomm Incorporated | Spatial spreading with space-time and space-frequency transmit diversity schemes for a wireless communication system |
US20070004465A1 (en) | 2005-06-29 | 2007-01-04 | Aris Papasakellariou | Pilot Channel Design for Communication Systems |
US8582548B2 (en) | 2005-11-18 | 2013-11-12 | Qualcomm Incorporated | Frequency division multiple access schemes for wireless communication |
TWI446763B (zh) * | 2006-01-11 | 2014-07-21 | Interdigital Tech Corp | 以不等調變及編碼方法實施空時處理方法及裝置 |
US20070189151A1 (en) * | 2006-02-10 | 2007-08-16 | Interdigital Technology Corporation | Method and apparatus for performing uplink transmission in a multiple-input multiple-output single carrier frequency division multiple access system |
US7916775B2 (en) | 2006-06-16 | 2011-03-29 | Lg Electronics Inc. | Encoding uplink acknowledgments to downlink transmissions |
CA2660826A1 (en) | 2006-08-07 | 2008-02-21 | Interdigital Technology Corporation | Method, apparatus and system for implementing multi-user virtual multiple-input multiple-output |
WO2008021396A2 (en) | 2006-08-17 | 2008-02-21 | Interdigital Technology Corporation | Method and apparatus for providing efficient precoding feedback in a mimo wireless communication system |
US20080056117A1 (en) | 2006-09-01 | 2008-03-06 | Tarik Muharemovic | Specification of sub-channels for fdm based transmission including ofdma and sc-ofdma |
KR101188544B1 (ko) * | 2006-09-15 | 2012-10-05 | 엘지전자 주식회사 | 단일 반송파 주파수 분할 다중 접속 시스템의 데이터 송신방법 및 파일럿 할당 방법 |
US8503560B2 (en) | 2006-10-02 | 2013-08-06 | Samsung Electronics Co., Ltd | System and method for performing precoding in a wireless communication system |
US7778151B2 (en) | 2006-10-03 | 2010-08-17 | Texas Instruments Incorporated | Efficient scheduling request channel for wireless networks |
KR101204394B1 (ko) * | 2006-10-16 | 2012-11-26 | 포항공과대학교 산학협력단 | Uw 기반 sc 시스템에서 stbc 스킴을 지원하는송신기, 수신기 및 그 방법 |
EP2369803B1 (en) | 2006-11-01 | 2013-08-28 | Qualcomm Incorporated | Joint use of multi-carrier and single-carrier multiplexing schemes for wireless communication |
EP2078400B1 (en) | 2006-11-02 | 2017-09-27 | Telefonaktiebolaget LM Ericsson (publ) | Dft spread ofdm |
US8885744B2 (en) | 2006-11-10 | 2014-11-11 | Qualcomm Incorporated | Providing antenna diversity in a wireless communication system |
KR100785806B1 (ko) * | 2006-11-21 | 2007-12-13 | 한국전자통신연구원 | 효율적인 채널 추정을 위한 sc-fdma 통신시스템에서의 자원 할당 방법 및 장치 |
US8130867B2 (en) | 2007-01-05 | 2012-03-06 | Qualcomm Incorporated | Pilot design for improved channel and interference estimation |
PT2899897T (pt) | 2007-02-13 | 2017-08-28 | ERICSSON TELEFON AB L M (publ) | Métodos e sistemas para pré-codificação combinada com diversidade de atraso cíclico |
CN101715636B (zh) * | 2007-02-15 | 2013-09-25 | 三菱电机信息技术中心欧洲有限公司 | 用于mimo发送器的sc-qostfbc码的方法 |
US8369299B2 (en) * | 2007-05-07 | 2013-02-05 | Qualcomm Incorporated | Method and apparatus for multiplexing CDM pilot and FDM data |
US8908632B2 (en) * | 2007-06-08 | 2014-12-09 | Samsung Electronics Co., Ltd. | Methods and apparatus for channel interleaving in OFDM systems |
US8467367B2 (en) | 2007-08-06 | 2013-06-18 | Qualcomm Incorporated | Multiplexing and transmission of traffic data and control information in a wireless communication system |
US8509291B2 (en) | 2008-02-08 | 2013-08-13 | Qualcomm Incorporated | Open-loop transmit diversity schemes with four transmit antennas |
US9025471B2 (en) | 2008-05-07 | 2015-05-05 | Mitsubishi Electric Research Laboratories, Inc. | Antenna selection with frequency-hopped sounding reference signals |
EP2329605A4 (en) | 2008-09-22 | 2013-04-17 | Nortel Networks Ltd | METHOD AND SYSTEM FOR A PUCCH ROOM CODE TRANSMISSION DIVERSITY |
US8095143B2 (en) | 2009-02-13 | 2012-01-10 | Telefonaktiebolaget L M Ericsson | Random access channel (RACH) reconfiguration for temporarily extended cell coverage |
-
2008
- 2008-12-26 KR KR1020080134255A patent/KR101507170B1/ko active IP Right Grant
-
2009
- 2009-06-26 WO PCT/KR2009/003466 patent/WO2009157734A2/en active Application Filing
- 2009-06-26 US US13/000,706 patent/US8553618B2/en not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20220027269A (ko) * | 2016-05-12 | 2022-03-07 | 인터디지탈 패튼 홀딩스, 인크 | 비트들의 세트의 두 심볼로의 변조 및 상이한 통신 리소스들을 통한 심볼 전송 |
Also Published As
Publication number | Publication date |
---|---|
US20110103341A1 (en) | 2011-05-05 |
US8553618B2 (en) | 2013-10-08 |
WO2009157734A2 (en) | 2009-12-30 |
WO2009157734A3 (en) | 2010-04-15 |
KR101507170B1 (ko) | 2015-03-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101507170B1 (ko) | Sc-fdma 시스템에서 전송 다이버시티를 이용한 데이터 전송장치 및 방법 | |
KR101497154B1 (ko) | Sc-fdma 시스템에서 전송 다이버시티를 이용한 데이터 전송장치 및 방법 | |
KR101534349B1 (ko) | Stbc 기법을 이용한 데이터 전송방법 | |
KR101440628B1 (ko) | Sc-fdma 시스템에서 전송 다이버시티를 이용한 데이터 전송장치 및 방법 | |
KR101467586B1 (ko) | 무선통신 시스템에서 전송 다이버시티를 이용한 데이터 전송장치 및 방법 | |
KR101567078B1 (ko) | 다중안테나를 이용한 데이터 전송장치 및 방법 | |
US8767646B2 (en) | Operation of terminal for multi-antenna transmission | |
US8520494B2 (en) | Precoding method for reducing uplink PAPR and apparatus thereof | |
KR20080074004A (ko) | 피드백 정보를 이용한 상향링크의 가상 다중 안테나 전송방법 및 이를 지원하는 이동 단말 | |
KR20110009025A (ko) | 상향링크 제어정보 전송 방법 및 장치 | |
KR20100019970A (ko) | 공간 다중화 기법을 이용한 데이터 전송방법 | |
KR20110081946A (ko) | 다중 안테나 시스템에서 다중 부호어의 전송방법 | |
KR20100097584A (ko) | 다중안테나 시스템에서 데이터 전송 장치 및 방법 | |
US8867332B2 (en) | Method for transmitting data in multiple antenna system | |
US8824600B2 (en) | Multiuser MIMO system, receiver, and transmitter | |
KR20100093498A (ko) | 다중 안테나 시스템에서 데이터의 전송방법 | |
Quan et al. | Papr analysis for single-carrier fdma mimo systems with space-time/frequency block codes | |
KR20150005433A (ko) | 송신 장치, 수신 장치 및 그 신호 처리 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
FPAY | Annual fee payment |
Payment date: 20190214 Year of fee payment: 5 |