[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20090119260A - High conductive paste composition - Google Patents

High conductive paste composition Download PDF

Info

Publication number
KR20090119260A
KR20090119260A KR1020080045187A KR20080045187A KR20090119260A KR 20090119260 A KR20090119260 A KR 20090119260A KR 1020080045187 A KR1020080045187 A KR 1020080045187A KR 20080045187 A KR20080045187 A KR 20080045187A KR 20090119260 A KR20090119260 A KR 20090119260A
Authority
KR
South Korea
Prior art keywords
parts
paste composition
weight
conductive paste
silver
Prior art date
Application number
KR1020080045187A
Other languages
Korean (ko)
Inventor
이택수
강승경
강조환
Original Assignee
주식회사 엑사이엔씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엑사이엔씨 filed Critical 주식회사 엑사이엔씨
Priority to KR1020080045187A priority Critical patent/KR20090119260A/en
Priority to CNA2009101416070A priority patent/CN101582301A/en
Publication of KR20090119260A publication Critical patent/KR20090119260A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/04Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/24Conductive material dispersed in non-conductive organic material the conductive material comprising carbon-silicon compounds, carbon or silicon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/09Use of materials for the conductive, e.g. metallic pattern
    • H05K1/092Dispersed materials, e.g. conductive pastes or inks
    • H05K1/095Dispersed materials, e.g. conductive pastes or inks for polymer thick films, i.e. having a permanent organic polymeric binder
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y10/00Nanotechnology for information processing, storage or transmission, e.g. quantum computing or single electron logic

Landscapes

  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Conductive Materials (AREA)
  • Non-Adjustable Resistors (AREA)

Abstract

PURPOSE: A high conductive paste composition is provided to ensure little change of sheet resistance value according to a register size and a temperature resistance coefficient, and to be applicable to various heating elements. CONSTITUTION: A high conductive paste composition comprises carbon nanotube and Ag powder, wherein the carbon nanotube is included in the amount of 1 - 20 parts by weight based on the whole composition 100.0 parts by weight and is selected from MWNT or SWNT. The high conductive paste composition further comprises organic binder 30 - 69 parts by weight based on the whole composition 100.0 parts by weight.

Description

고전도성 페이스트 조성물{High conductive paste composition}High conductive paste composition

본 발명은 페이스트 조성물, 이를 포함하는 저항체막 및 전자 부품에 관한 것으로, 보다 상세하게는 카본 나노 튜브 및 은 분말을 포함하는 고전도성 페이스트 조성물에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to paste compositions, resistor films and electronic components comprising the same, and more particularly, to highly conductive paste compositions comprising carbon nanotubes and silver powder.

일반적인 전도성 페이스트는 전도성 물질(전도성 카본, 흑연), 유기 바인더 및 희석제 등으로 구성되어 있다. 전도성 페이스트는 실크스크린, 그라비아 방식 등에 의해서 일정한 패턴으로 피착제(PET필름, 세라믹 기판)에 인쇄되며 희석제의 증발 온도 이상으로 건조하여 피막을 형성한다. 이렇게 형성된 패턴은 패턴 양 말단에 전기를 인가시킴으로써 발열을 하게 된다. Common conductive pastes are composed of conductive materials (conductive carbon, graphite), organic binders, diluents, and the like. The conductive paste is printed on the adherend (PET film, ceramic substrate) in a predetermined pattern by a silk screen, gravure method, etc., and dried over the evaporation temperature of the diluent to form a film. The pattern thus formed generates heat by applying electricity to both ends of the pattern.

발열체 저항치의 조정은 전도성 페이스트의 저항값, 즉 전도성 물질과 바인더의 혼합비에 의하여 결정되며 전도성 물질의 피막 두께 및 폭, 길이 등을 조정하여 조절할 수 있다. 그러나, 전도성 물질의 피막을 두껍게 할수록 기계적 특성이 좋지 않아 피막의 두께를 두껍게 하는 데는 한계가 있다. The adjustment of the resistance of the heating element is determined by the resistance value of the conductive paste, that is, the mixing ratio of the conductive material and the binder, and can be adjusted by adjusting the thickness, width, length, and the like of the conductive material. However, the thicker the coating of the conductive material, the better the mechanical properties, so there is a limit to the thickening of the coating.

또한, 전도성 물질의 함량을 증가시켜 전도성을 향상시킬 수 있으나 전도성, 물질의 큰 흡유량과 어려운 작업성 때문에 혼련이 어려워 50%첨가가 거의 불가능하 여 고전도성을 구현하기가 어렵다.In addition, the conductivity can be improved by increasing the content of the conductive material, but the kneading is difficult due to the conductivity, the large oil absorption of the material and difficult workability, it is almost impossible to add 50%, it is difficult to implement high conductivity.

이에 본 발명에서는 낮은 저항 및 안정된 온도 저항 계수를 갖는 고전도성 페이스트 조성물을 제공하고자 하는 것이다.Accordingly, the present invention is to provide a high conductivity paste composition having a low resistance and a stable temperature resistance coefficient.

또한, 본 발명에서는 상기 고전도성 페이스트 조성물을 포함하는 저항체막 및 상기 저항체막을 포함하는 전자 부품을 제공하고자 한다.In addition, an object of the present invention is to provide a resistor film including the highly conductive paste composition and an electronic component including the resistor film.

본 발명의 과제들은 이상에서 언급한 과제들로 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.The objects of the present invention are not limited to the above-mentioned objects, and other objects that are not mentioned will be clearly understood by those skilled in the art from the following description.

상기 과제를 해결하기 위해, 본 발명은 MWNT(multi wall nanotube)와 SWNT(single wall nanotube)에서 선택된 적어도 하나의 탄소나노튜부와 은(Ag)을 포함하는 전체 조성물 100중량부에 대하여, 상기 탄소나튜브는 1 내지 20 중량부를 포함하는 고전도성 페이스트 조성물을 제공하고자 한다.In order to solve the above problems, the present invention is based on 100 parts by weight of the total composition containing at least one carbon nanotube portion and silver (Ag) selected from MWNT (multi wall nanotube) and SWNT (single wall nanotube) The tube is intended to provide a highly conductive paste composition comprising 1 to 20 parts by weight.

바람직하게는, 상기 고전도성 페이스트 조성물은 전체 조성물 100 중량부에 대하여 30 내지 50 중량부의 은을 포함한다.Preferably, the highly conductive paste composition comprises 30 to 50 parts by weight of silver based on 100 parts by weight of the total composition.

또한, 상기 고전도성 페이스트 조성물은 전체 조성물 100 중량부에 대하여 30 내지 70 중량부의 유기 바인더를 포함한다.In addition, the highly conductive paste composition includes 30 to 70 parts by weight of the organic binder based on 100 parts by weight of the total composition.

또한, 본 발명의 일 실시 상태로 상기 고전도성 페이스트 조성물을 포함하는 저항체막을 제공한다.In addition, in an exemplary embodiment of the present invention, a resistor film including the highly conductive paste composition is provided.

또한, 본 발명의 또 다른 실시 상태로서 상기 저항체막을 포함하는 전자 부품을 제공한다.Moreover, as another embodiment of this invention, the electronic component containing the said resistive film is provided.

본 발명의 실시예들에 따른 탄소나노튜브와 은(Ag)을 포함하는 고전도성 페이스트 조성물은 저항체 크기에 따른 면저항값 및 온도저항계수의 변화가 적고, 낮은 면저항값 및 온도저항계수를 가지며, 다양한 발열체의 저항체로서 적용될 수 있다.The highly conductive paste composition including carbon nanotubes and silver (Ag) according to embodiments of the present invention has a small change in sheet resistance and temperature resistance coefficient according to the resistor size, has a low sheet resistance value and a temperature resistance coefficient, and various It can be applied as a resistor of a heating element.

본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. Advantages and features of the present invention, and methods for achieving them will become apparent with reference to the embodiments described below. However, the present invention is not limited to the embodiments disclosed below, but will be implemented in various forms, and only the present embodiments are intended to complete the disclosure of the present invention, and the general knowledge in the art to which the present invention pertains. It is provided to fully convey the scope of the invention to those skilled in the art, and the present invention is defined only by the scope of the claims.

또한, 본 명세서의 은(Ag)은 순수한 은(Ag) 뿐만 아니라 은(Ag) 산화물 또는 은(Ag) 화합물을 포함한다In addition, silver (Ag) of the present specification includes not only pure silver (Ag) but also silver (Ag) oxide or silver (Ag) compound.

이하, 본 발명의 일 실시예에 따른 페이스트 조성물에 대해 설명한다.Hereinafter, a paste composition according to an embodiment of the present invention will be described.

본 발명의 일 실시예에 따른 페이스트 조성물은 탄소나노튜브 중 MWNT 및 SWNT중 선택된 하나)와 은(Ag)을 포함한다. The paste composition according to an embodiment of the present invention includes one selected from MWNT and SWNT in carbon nanotubes and silver (Ag).

은(Ag)은 저저항용 도전성 물질로서, 열과 전기에 대하여 우수한 도체이지 만, 양의 온도저항계수를 갖기 때문에, 그 자체로는 발열 저항으로 사용하기에는 어려움이 있다. 이러한 은(Ag)의 단점을 극복하기 위해, 구리(Cu)에 필적하는 전기 전도도를 가지면서도, 음의 온도저항계수를 갖는 탄소나노튜브를 함께 혼합하여, 저항의 증가를 억제하면서도 동시에 안정된 온도 저항 계수를 갖는 고전도성 발열체용 페이스트 조성물을 제공할 수 있다. Silver (Ag) is a low-resistance conductive material, which is a good conductor against heat and electricity, but has a positive temperature resistance coefficient, which makes it difficult to use as a heat generating resistor by itself. In order to overcome this drawback of silver (Ag), carbon nanotubes having an electrical conductivity comparable to copper (Cu) and having a negative temperature resistance coefficient are mixed together to suppress the increase in resistance and at the same time stable temperature resistance. A paste composition for a highly conductive heating element having a coefficient can be provided.

이러한 본 발명의 일 실시예에 따른 페이스트 조성물을 보다 상세하게 설명하면, 상기 페이스트 조성물은 탄소나노튜브는 1 내지 20중량부, 은 30 내지 50중량부, 유기 바인더는 30내지 69중량부를 포함하여 이루어진다. When explaining the paste composition according to an embodiment of the present invention in more detail, the paste composition comprises 1 to 20 parts by weight, 30 to 50 parts by weight of silver, 30 to 69 parts by weight of organic binder. .

상기 페이스트 조성물에서 상기 탄소나노튜브는 무게 대비 부피비가 매우 크기 때문에 소량으로 페이스트 조성물에 존재하더라도 페이스트 조성물의 점도 유지가 가능하다.The carbon nanotubes in the paste composition may maintain the viscosity of the paste composition even when present in the paste composition in a small amount because the volume ratio of the carbon nanotubes is very large.

또한, 상기 탄소나노튜브로는, 특별히 한정하는 것은 아니지만, 100 내지 600㎡/g 범위의 비표면적을 갖는 것이 바람직하다. 예를 들어, 다중벽 탄소나노튜브, 단일벽 탄소나노튜브, 및 박벽 탄소나노튜브에서 선택된 적어도 하나를 포함할 수 있다. 바람직하게는, 상기 탄소나노튜브는 열전도도와 전기전도도가 우수하여 가장 활용도가 높고, 산화 온도가 비교적 높아 상대적으로 발열체의 소재로 적합한 다중벽 탄소나노튜브 또는 단일벽 탄소나노튜브에서 선택된 적어도 하나를 포함할 수 있다. The carbon nanotube is not particularly limited, but preferably has a specific surface area in the range of 100 to 600 m 2 / g. For example, it may include at least one selected from multi-walled carbon nanotubes, single-walled carbon nanotubes, and thin-walled carbon nanotubes. Preferably, the carbon nanotubes include at least one selected from multi-walled carbon nanotubes or single-walled carbon nanotubes, which are excellent in thermal conductivity and electrical conductivity, having the highest utilization rate, and having a relatively high oxidation temperature, which are relatively suitable materials for heating elements. can do.

상기 범위의 함량으로 포함되는 은(Ag)은 페이스트 조성물이 낮은 저항값을 갖도록 한다. 또한, 탄소나노튜브는 저항값을 조절하면서 은(Ag)의 양(+)의 온도저 항계수를 탄소나노튜브의 특성인 음(-)의 온도저항계수를 이용하여 최종 발열체막의 온도에 따른 저항변화율을 줄여준다.Silver (Ag) included in the content of the above range allows the paste composition to have a low resistance value. In addition, the carbon nanotube has a resistance according to the temperature of the final heating element film by controlling the resistance value by using a positive temperature resistance coefficient of silver (Ag) and a negative temperature resistance coefficient which is a characteristic of the carbon nanotubes. Reduce the rate of change

또한, 상기 유기 바인더는 페이스트 조성물 내의 각 구성 성분의 분산을 용이하게 하고, 페이스트 조성물의 실크 인쇄 시 인쇄 도막의 균일성을 확보하기 위한 적절한 점도를 제공한다. 상기 유기 바인더로는 특별히 한정되는 것은 아니지만, 예를 들어 아크릴레이트, 에틸셀룰로즈, 메틸셀룰로즈, 니트로셀룰로즈, 카복시메틸셀룰로즈 등의 셀룰로즈 유도체와 아크릴산에스테르, 메타크릴산에스테르, 폴리비닐알콜, 폴리비닐부티랄 등의 수지 성분이 사용될 수 있다.In addition, the organic binder facilitates dispersion of each constituent in the paste composition and provides an appropriate viscosity for ensuring uniformity of the print coating film during silk printing of the paste composition. Although it does not specifically limit as said organic binder, For example, cellulose derivatives, such as acrylate, ethyl cellulose, methyl cellulose, nitro cellulose, and carboxymethyl cellulose, acrylic acid ester, methacrylic acid ester, polyvinyl alcohol, polyvinyl butyral Resin components, such as these, can be used.

추가적으로, 본 발명에 따른 페이스트 조성물에는 점도를 조절하기 위하여, 싸이클로헥사논(Cyclohexanone) 등의 유기 용매가 포함될 수 있다.In addition, the paste composition according to the present invention may include an organic solvent such as cyclohexanone to adjust the viscosity.

은(Ag)은 양의 온도저항계수를 갖는 것으로, 음의 온도저항계수를 갖는 탄소나노튜브를 상기 상술한 바의 함량으로 첨가했을 경우 발열체에 적용시켜 전기를 인가하였을 때 저항변화가 은(Ag)나 탄소나노튜브 단독으로 사용했을 경우 보다 적다.Silver (Ag) has a positive temperature resistance coefficient, and when a carbon nanotube having a negative temperature resistance coefficient is added in the above-described content, the resistance change when silver is applied to a heating element is applied to silver (Ag). ) And carbon nanotubes alone.

상술한 바와 같은 본 발명의 실시예들에 따른 페이스트 조성물들은 피착제에 실크 인쇄를 통하여 저항체막을 형성할 수 있으며, 저항의 조절이 자유로워 다양한 전자 부품에 적용이 가능하다. Paste compositions according to embodiments of the present invention as described above can form a resistor film through the silk printing on the adherend, it is free to control the resistance can be applied to various electronic components.

이하, 실시예들과 비교예들을 통하여 본 발명을 더욱 상세하게 설명한다. 단, 하기 실시예들은 본 발명을 예시하기 위한 것으로서 본 발명이 하기 실시예들 에 의하여 한정되는 것은 아님이 이해되어야 한다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples. However, it is to be understood that the following examples are intended to illustrate the invention and are not intended to limit the invention.

실시예 1Example 1

다중벽 탄소나노튜브 10중량부, 은(Ag)분말 30중량부, 아크릴 유기바인더 50중량부에 희석제 10중량부를 가하여 점도조정한 후, 3단롤로 분산 혼합하여 페이스트 조성물을 제조하였다. PET필름에 상기 페이스트 조성물을 스크린 인쇄법으로 인쇄하여 도막을 형성한 후, 이를 135℃에서 10분간 건조하였다. 이때, 상기 도막의 두께는 약 12㎛였다. 이러한 저항체막 상에 전극층을 형성하고, 그 위에 라미네이팅 필름을 합지시켜 발열체를 수득하였다. 10 parts by weight of a multi-walled carbon nanotube, 30 parts by weight of silver (Ag) powder, and 50 parts by weight of an acryl organic binder were added to adjust the viscosity, and the mixture was dispersed and mixed with three rolls to prepare a paste composition. After the paste composition was printed on a PET film by screen printing to form a coating film, it was dried at 135 ° C. for 10 minutes. At this time, the thickness of the coating film was about 12 μm. An electrode layer was formed on such a resistor film, and a laminating film was laminated thereon to obtain a heating element.

상기 발열체의 전극층 양단에 220V의 교류를 인가하여, HIOKI 3280-10 디지달 멀티메타를 이용하여 최대 포화 온도 영역에서 전류를 측정하여 초기 저항값과 발열시 저항값을 각각 산출하였다. 그 결과를 하기 표 1에 나타냈다.An alternating current of 220V was applied to both ends of the electrode layer of the heating element, and current was measured at the maximum saturation temperature region using a HIOKI 3280-10 digital multimeter to calculate initial resistance values and resistance values during heating. The results are shown in Table 1 below.

실시예 2Example 2

다중벽 탄소나노튜브 10중량부, 은(Ag)분말 40중량부, 아크릴 유기바인더 40중량부에 희석제 10중량부를 가하여 점도조정한 후, 3단롤로 분산 혼합하여 페이스트 조성물을 제조하였다. PET필름에 상기 페이스트 조성물을 스크린 인쇄법으로 인쇄하여 도막을 형성한 후, 이를 135℃에서 10분간 건조하였다. 이때, 상기 도막의 두께는 약 12㎛였다. 이러한 저항체막 상에 전극층을 형성하고, 그 위에 라미네이팅 필름을 합지시켜 발열체를 수득하였다. 10 parts by weight of a multi-walled carbon nanotube, 40 parts by weight of silver (Ag) powder, and 10 parts by weight of a diluent were added to 40 parts by weight of an acrylic organic binder, followed by viscosity adjustment, followed by dispersion mixing with three rolls to prepare a paste composition. After the paste composition was printed on a PET film by screen printing to form a coating film, it was dried at 135 ° C. for 10 minutes. At this time, the thickness of the coating film was about 12 μm. An electrode layer was formed on such a resistor film, and a laminating film was laminated thereon to obtain a heating element.

상기 발열체의 전극층 양단에 220V의 교류를 인가하여, HIOKI 3280-10 디지 달 멀티메타를 이용하여 최대 포화 온도 영역에서 전류를 측정하여 초기 저항값과 발열시 저항값을 각각 산출하였다. 그 결과를 하기 표 1에 나타냈다.An alternating current of 220 V was applied to both ends of the electrode layer of the heating element, and current was measured at the maximum saturation temperature region using a HIOKI 3280-10 digital multimeter to calculate initial resistance values and resistance values during heating. The results are shown in Table 1 below.

실시예 3 Example 3

다중벽 탄소나노튜브 20중량부, 은(Ag)분말 30중량부, 아크릴 유기바인더 40중량부에 아농 10중량부를 가하여 점도조정한 후, 3단롤로 분산 혼합하여 페이스트 조성물을 제조하였다. PET필름에 상기 페이스트 조성물을 스크린 인쇄법으로 인쇄하여 도막을 형성한 후, 이를 135℃에서 10분간 건조하였다. 이때, 상기 도막의 두께는 약 12㎛였다. 이러한 저항체막 상에 전극층을 형성하고, 그 위에 라미네이팅 필름을 합지시켜 발열체를 수득하였다. After adding 20 parts by weight of multi-walled carbon nanotubes, 30 parts by weight of silver (Ag) powder, and 40 parts by weight of acrylic organic binder to 10 parts by weight of anoxin, the viscosity was adjusted, followed by dispersion mixing with a three-stage roll to prepare a paste composition. After the paste composition was printed on a PET film by screen printing to form a coating film, it was dried at 135 ° C. for 10 minutes. At this time, the thickness of the coating film was about 12 μm. An electrode layer was formed on such a resistor film, and a laminating film was laminated thereon to obtain a heating element.

상기 발열체의 전극층 양단에 220V의 교류를 인가하여, HIOKI 3280-10 디지달 멀티메타를 이용하여 최대 포화 온도 영역에서 전류를 측정하여 초기 저항값과 발열시 저항값을 각각 산출하였다. 그 결과를 하기 표 1에 나타냈다.An alternating current of 220V was applied to both ends of the electrode layer of the heating element, and current was measured at the maximum saturation temperature region using a HIOKI 3280-10 digital multimeter to calculate initial resistance values and resistance values during heating. The results are shown in Table 1 below.

실시예 4Example 4

다중벽 탄소나노튜브 20중량부, 은(Ag)분말 40중량부, 아크릴 유기바인더 30중량부에 희석제 10중량부를 가하여 점도조정한 후, 3단롤로 분산 혼합하여 페이스트 조성물을 제조하였다. PET필름에 상기 페이스트 조성물을 스크린 인쇄법으로 인쇄하여 도막을 형성한 후, 이를 135℃에서 10분간 건조하였다. 이때, 상기 도막의 두께는 약 12㎛였다. 이러한 저항체막 상에 전극층을 형성하고, 그 위에 라미네이팅 필름을 합지시켜 발열체를 수득하였다. 10 parts by weight of a diluent was added to 20 parts by weight of a multi-walled carbon nanotube, 40 parts by weight of silver (Ag) powder, and 30 parts by weight of an acrylic organic binder, followed by dispersion mixing with a three-stage roll to prepare a paste composition. After the paste composition was printed on a PET film by screen printing to form a coating film, it was dried at 135 ° C. for 10 minutes. At this time, the thickness of the coating film was about 12 μm. An electrode layer was formed on such a resistor film, and a laminating film was laminated thereon to obtain a heating element.

상기 발열체의 전극층 양단에 220V의 교류를 인가하여, HIOKI 3280-10 디지 달 멀티메타를 이용하여 최대 포화 온도 영역에서 전류를 측정하여 초기 저항값과 발열시 저항값을 각각 산출하였다. 그 결과를 하기 표 1에 나타냈다.An alternating current of 220 V was applied to both ends of the electrode layer of the heating element, and current was measured at the maximum saturation temperature region using a HIOKI 3280-10 digital multimeter to calculate initial resistance values and resistance values during heating. The results are shown in Table 1 below.

비교예Comparative example 1 One

은(Ag)분말 30중량부, 아크릴 유기바인더 60중량부에 아농 10중량부를 가하여 점도조정한 후, 3단롤로 분산 혼합하여 페이스트 조성물을 제조하였다. PET필름에 상기 페이스트 조성물을 스크린 인쇄법으로 인쇄하여 도막을 형성한 후, 이를 135℃에서 10분간 건조하였다. 이때, 상기 도막의 두께는 약 12㎛였다. 이러한 저항체막 상에 전극층을 형성하고, 그 위에 라미네이팅 필름을 합지시켜 발열체를 수득하였다. 30 parts by weight of silver (Ag) powder and 60 parts by weight of acryl organic binder were added to adjust the viscosity to adjust the viscosity, followed by dispersion mixing with a three-stage roll to prepare a paste composition. After the paste composition was printed on a PET film by screen printing to form a coating film, it was dried at 135 ° C. for 10 minutes. At this time, the thickness of the coating film was about 12 μm. An electrode layer was formed on such a resistor film, and a laminating film was laminated thereon to obtain a heating element.

상기 발열체의 전극층 양단에 220V의 교류를 인가하여, HIOKI 3280-10 디지달 멀티메타를 이용하여 최대 포화 온도 영역에서 전류를 측정하여 초기 저항값과 발열시 저항값을 각각 산출하였다. 그 결과를 하기 표 1에 나타냈다.An alternating current of 220V was applied to both ends of the electrode layer of the heating element, and current was measured at the maximum saturation temperature region using a HIOKI 3280-10 digital multimeter to calculate initial resistance values and resistance values during heating. The results are shown in Table 1 below.

비교예Comparative example 2 2

은(Ag)분말 40중량부, 아크릴 유기바인더 50중량부에 아농 10중량부를 가하여 점도조정한 후, 3단롤로 분산 혼합하여 페이스트 조성물을 제조하였다. PET필름에 상기 페이스트 조성물을 스크린 인쇄법으로 인쇄하여 도면1의 형태로 도막을 형성한 후, 이를 135℃에서 10분간 건조하였다. 이때, 상기 도막의 두께는 약 12㎛였다. 이러한 저항체막 상에 전극층을 형성하고, 그 위에 라미네이팅 필름을 합지시켜 발열체를 수득하였다. 40 parts by weight of silver (Ag) powder and 50 parts by weight of an acryl organic binder were added to adjust the viscosity to 10 parts by weight, and then dispersed and mixed with a three roll to prepare a paste composition. The paste composition was printed on a PET film by screen printing to form a coating film in the form of FIG. 1, and then dried at 135 ° C. for 10 minutes. At this time, the thickness of the coating film was about 12 μm. An electrode layer was formed on such a resistor film, and a laminating film was laminated thereon to obtain a heating element.

상기 발열체의 전극층 양단에 220V의 교류를 인가하여, HIOKI 3280-10 디지달 멀티메타를 이용하여 최대 포화 온도 영역에서 전류를 측정하여 초기 저항값과 발열시 저항값을 각각 산출하였다. 그 결과를 하기 표 1에 나타냈다.An alternating current of 220V was applied to both ends of the electrode layer of the heating element, and current was measured at the maximum saturation temperature region using a HIOKI 3280-10 digital multimeter to calculate initial resistance values and resistance values during heating. The results are shown in Table 1 below.

구분division 저항 측정값(Ω)Resistance measurement (Ω) 초기 저항값Initial resistance 발열시 저항값Resistance value during heat generation 실시예 1Example 1 10651065 10611061 실시예 2Example 2 968968 962962 실시예 3Example 3 11051105 11051105 실시예 4Example 4 10501050 10481048 비교예 1Comparative Example 1 605605 858858 비교예 2Comparative Example 2 480480 678678

표 1에서 알 수 있는 바와 같이, 본 발명의 실시예들에 따른 페이스트 조성물에 의해 형성된 저항체막을 포함하는 실시예 1 내지 4의 발열체의 초기 저항값과 발열시 저항값을 비교하여 보면, 발열시 저항값은 초기 저항값과 유사하거나 오히려 낮아지는 것을 알 수 있다. 반면, 비교예 1 내지 2의 발열체의 발열시 저항값은 초기 저항값에 비해 약 1.4배정도 증가됨을 알 수 있다. As can be seen in Table 1, when comparing the initial resistance value of the heating element of Examples 1 to 4, including the resistor film formed by the paste composition according to the embodiments of the present invention and the resistance during heating, the resistance during heating It can be seen that the value is similar to or lower than the initial resistance value. On the other hand, it can be seen that the resistance value during heating of the heating elements of Comparative Examples 1 to 2 is increased by about 1.4 times compared to the initial resistance value.

이로부터, 본 발명의 실시예들에 따른 페이스트 조성물은 저항의 증가를 억제하면서도, 동시에 안정된 온도저항계수를 갖는 것을 알 수 있다. From this, it can be seen that the paste composition according to the embodiments of the present invention has a stable temperature resistance coefficient while suppressing an increase in resistance.

이상에서는 본 발명의 바람직한 실시예를 예시적으로 설명하였으나, 본 발명의 범위는 상기와 같은 특정 실시예에 한정되지 아니하며, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에 의하여 본 발명의 특허청구범위에 기재된 범주 내에서 적절하게 변경 가능한 것이다.In the above described exemplary embodiments of the present invention by way of example, the scope of the present invention is not limited to the specific embodiments as described above, the patent of the present invention by those skilled in the art to which the present invention belongs Changes may be made as appropriate within the scope of the claims.

Claims (5)

MWNT(multi wall nanotube) 또는 SWNT(single wall nanotube)에서 선택된 적어도 하나의 탄소나노튜부와 은(Ag)을 포함하는 전체 조성물 100중량부에 대하여, 상기 탄소나튜브는 1 내지 20 중량부를 포함하는 고전도성 페이스트 조성물.With respect to 100 parts by weight of the total composition comprising at least one carbon nanotube part and silver (Ag) selected from multi-wall nanotubes (MWNT) or single wall nanotubes (SWNTs), the carbon nanotubes comprise 1 to 20 parts by weight Conductive paste composition. 제 1 항에 있어서, 상기 고전도성 페이스트 조성물은 전체 조성물 100 중량부에 대하여 30 내지 50중량부의 은(Ag)을 포함하는 것을 특징으로 하는 고전도성 페이스트 조성물;The method of claim 1, wherein the highly conductive paste composition comprises 30 to 50 parts by weight of silver (Ag) based on 100 parts by weight of the total composition; 제 1 항에 있어서, 상기 고전도성 페이스트 조성물은 전체 조성물 100중량부에 대하여 30 내지 69 중량부의 유기 바인더를 추가로 포함하는 것을 특징으로 하는 고전도성 페이스트 조성물.The high conductive paste composition of claim 1, wherein the high conductive paste composition further comprises 30 to 69 parts by weight of an organic binder based on 100 parts by weight of the total composition. 제 1 항 내지 제 3항 중 어느 한 항에 따른 고전도성 페이스트 조성물을 포함하는 저항체막.A resistor film comprising the highly conductive paste composition according to any one of claims 1 to 3. 제 4 항에 따른 저항체막을 포함하는 전자 부품.An electronic component comprising the resistor film according to claim 4.
KR1020080045187A 2008-05-15 2008-05-15 High conductive paste composition KR20090119260A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020080045187A KR20090119260A (en) 2008-05-15 2008-05-15 High conductive paste composition
CNA2009101416070A CN101582301A (en) 2008-05-15 2009-05-15 High-conductive paste composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020080045187A KR20090119260A (en) 2008-05-15 2008-05-15 High conductive paste composition

Publications (1)

Publication Number Publication Date
KR20090119260A true KR20090119260A (en) 2009-11-19

Family

ID=41364404

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020080045187A KR20090119260A (en) 2008-05-15 2008-05-15 High conductive paste composition

Country Status (2)

Country Link
KR (1) KR20090119260A (en)
CN (1) CN101582301A (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101950595B (en) * 2010-09-27 2012-07-04 彩虹集团公司 Low-temperature cured conductive paste with ultra-low silver content and preparation method thereof
CN101950599B (en) * 2010-09-27 2012-01-04 彩虹集团公司 Conductive carbon slurry for membrane switch and preparation method thereof
CN103236286A (en) * 2013-04-01 2013-08-07 安徽拓普森电池有限责任公司 Conductive sliver paste and preparation method thereof
CN103236283A (en) * 2013-04-01 2013-08-07 安徽拓普森电池有限责任公司 Conductive paste with nano-conductive ITO (indium tin oxide) powder as main material and preparation method of conductive paste
CN103236285A (en) * 2013-04-01 2013-08-07 安徽拓普森电池有限责任公司 Environment-friendly conducting slurry and preparation method thereof
CN103236284A (en) * 2013-04-01 2013-08-07 安徽拓普森电池有限责任公司 Conductive paste with ethanol as solvent and preparation method of conductive paste
CN103236282A (en) * 2013-04-01 2013-08-07 安徽拓普森电池有限责任公司 Conductive paste with silver and copper conductive powder as main material and preparation method of conductive paste
CN104078102A (en) * 2014-06-30 2014-10-01 合肥中南光电有限公司 Modified nanometer carbon conductive silver paste and preparation method thereof
DE102017113750A1 (en) * 2017-06-21 2018-12-27 Schreiner Group Gmbh & Co. Kg Foil construction with electrical functionality and external contacting

Also Published As

Publication number Publication date
CN101582301A (en) 2009-11-18

Similar Documents

Publication Publication Date Title
KR20090119260A (en) High conductive paste composition
KR101123351B1 (en) High conductive paste composition and method of high conductive paste composition
CN104464883B (en) Graphene electrocondution slurry with dispersants adsorbed on surface and manufacturing method and application thereof
KR101099237B1 (en) Conductive Paste and Conductive Circuit Board Produced Therewith
CN103108906B (en) Utilize the PTC element conductive polymer composition that the NTC characteristic of carbon nanotube reduces
US8575260B2 (en) Polymer thick film encapsulant and enhanced stability PTC carbon system
JP2010047716A (en) Electroconductive ink composition for screen printing and electroconductive coated film
JP2010047649A (en) Conductive ink and conductive circuit formed by screen printing using the same
KR20120088313A (en) Conductive Ink Composition Having Bimodal Particle Distribution
KR100977635B1 (en) Paste composition, and resistor film and electronic component comprising the same
KR20090010252U (en) Heater using paste composition
KR102049266B1 (en) Heating paste composition and plane heater
JP2006152253A (en) Electroconductive paste composition
JP2016524779A (en) Polymer thick film positive temperature coefficient carbon composition
JPH04198271A (en) Conductive paste composition
JP2013500572A (en) Solar cell electrode paste {APASTE COMPOSITION FORMING ELECTROTROFEOLAR-CELL}
US20130193384A1 (en) Polymer thick film positive temperature coefficient carbon composition
JPS63196672A (en) Carbon paste composition
CN110382636A (en) Molecular ink with improved thermal stability
US20200407531A1 (en) Stretchable polymer thick film carbon black composition for wearable heaters
KR101637884B1 (en) Electrically conductive ink component using nanowire and manufacturing method of conductive layers therefrom
JP6247015B2 (en) Polymer type conductive paste and method for producing electrode using polymer type conductive paste
KR20120056885A (en) Polymer thick film silver electrode composition for use as a plating link
JP4827404B2 (en) PTC ink composition, PTC material and planar heating element
KR20160044356A (en) Method of preparation of conductive paste and conductive paste prepared therefrom

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application