[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20090067426A - Exhaust gas moisture removal device of molten carbonate fuel cell and its method - Google Patents

Exhaust gas moisture removal device of molten carbonate fuel cell and its method Download PDF

Info

Publication number
KR20090067426A
KR20090067426A KR1020070135098A KR20070135098A KR20090067426A KR 20090067426 A KR20090067426 A KR 20090067426A KR 1020070135098 A KR1020070135098 A KR 1020070135098A KR 20070135098 A KR20070135098 A KR 20070135098A KR 20090067426 A KR20090067426 A KR 20090067426A
Authority
KR
South Korea
Prior art keywords
fuel cell
gas
hollow fiber
humidifier
fiber membrane
Prior art date
Application number
KR1020070135098A
Other languages
Korean (ko)
Other versions
KR100958991B1 (en
Inventor
이종규
Original Assignee
주식회사 포스코
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코, 재단법인 포항산업과학연구원 filed Critical 주식회사 포스코
Priority to KR1020070135098A priority Critical patent/KR100958991B1/en
Publication of KR20090067426A publication Critical patent/KR20090067426A/en
Application granted granted Critical
Publication of KR100958991B1 publication Critical patent/KR100958991B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04141Humidifying by water containing exhaust gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0612Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
    • H01M8/0618Reforming processes, e.g. autothermal, partial oxidation or steam reforming
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0675Removal of sulfur
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • H01M8/0687Reactant purification by the use of membranes or filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/14Fuel cells with fused electrolytes
    • H01M2008/147Fuel cells with molten carbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 다량의 수분을 함유하는 연료전지 스택에서 배출되는 고열의 가스에 함유된 수분을 제거하여 가습기로 공급함으로써 천연가스 중의 증기/탄소비율조절을 용이하게 함과 동시에 연료전지의 전기효율을 향상시킬 수 있도록 한 용융탄산염 연료전지의 배 가스 수분제거 장치 및 그 방법에 관한 것으로,The present invention removes the water contained in the high-temperature gas discharged from the fuel cell stack containing a large amount of water and supplies it to the humidifier, thereby facilitating the control of the steam / carbon ratio in natural gas and improving the electrical efficiency of the fuel cell. The present invention relates to an apparatus for removing exhaust gas moisture from a molten carbonate fuel cell and a method thereof,

그 구성은 메탄을 함유한 천연가스 연료(10)를 공급받아 황 성분을 제거하는 탈황기(20)와, 상기 황 성분이 제거된 천연가스 연료의 증기/탄소비율을 조절하는 가습기(30)와, 상기 증기/탄소비율이 조절된 천연가스 연료의 메탄가스를 수소가스로 개질하는 개질기(40)와, 상기 개질된 수소와 산소를 함께 공급받아 전기를 발생시키는 연료전지 스택(50)과, 상기 연료전지 스택에서 배출되는 고열의 가스를 가습기(20)로 공급하는 통상의 연료전지 배출가스 폐열회수장치에 있어서,The constitution includes a desulfurizer 20 which receives a natural gas fuel 10 containing methane and removes sulfur components, a humidifier 30 that adjusts a vapor / carbon ratio of the natural gas fuel from which the sulfur components are removed; A reformer 40 for reforming methane gas of the natural gas fuel having a controlled steam / carbon ratio to hydrogen gas, a fuel cell stack 50 for generating electricity by receiving the reformed hydrogen and oxygen together; In the conventional fuel cell exhaust gas waste heat recovery apparatus for supplying the high-heat gas discharged from the fuel cell stack to the humidifier 20,

상기 연료전지 스택(50)과 가습기(30) 사이에 연료전지 스택에서 배출되는 고열의 가스에 함유된 수분을 흡수하는 중공사형 멤브레인(60)이 설치되고 그 중공사형 멤브레인에는 중공사형 멤브레인 내부의 진공도를 조절하는 진공펌프(70)가 설치된 것으로 이루어진다.Between the fuel cell stack 50 and the humidifier 30, a hollow fiber membrane 60 for absorbing moisture contained in the hot gas discharged from the fuel cell stack is installed, and the hollow fiber membrane has a vacuum degree inside the hollow fiber membrane. It consists of a vacuum pump 70 for adjusting the installed.

Description

용융탄산염 연료전지의 배 가스 수분제거 장치 및 그 방법{Apparatus and method for removing water in exausted gas of molten carbonate fuel cell}Apparatus and method for removing water in exausted gas of molten carbonate fuel cell}

본 발명은 다량의 수분을 함유하는 연료전지 스택에서 배출되는 고열의 가스에 함유된 수분을 제거하여 가습기로 공급함으로써, 가습기의 온도를 항상 균일하게 유지할 수 있어, 그에 따른 천연가스 중의 증기/탄소비율조절을 용이하게 함과 동시에 연료전지의 전기효율을 향상시킬 수 있도록 한 용융탄산염 연료전지의 배 가스 수분제거 장치 및 그 방법에 관한 것이다.The present invention removes the moisture contained in the high-temperature gas discharged from the fuel cell stack containing a large amount of water and supplies it to the humidifier, so that the temperature of the humidifier can be always maintained uniformly, and thus the steam / carbon ratio in natural gas The present invention relates to an apparatus and method for removing exhaust gas moisture from a molten carbonate fuel cell that facilitates control and improves an electrical efficiency of a fuel cell.

메탄을 함유한 천연가스 연료(10)는 도 1에 나타낸 바와 같이 탈황기(20)를 거쳐 황 성분을 제거하고, 그 황 성분이 제거된 상기 천연가스 연료는 증기/탄소비율을 조절하기 위해 가습기(30)를 통과시켜 증기/탄소비율을 조절한 후 예비 개질기(40)를 거쳐 상기 천연가스 연료 중의 메탄가스를 수소가스로 개질하고 그 개질된 수소는 산소와 함께 연료전지 스택(50)으로 들어가 반응하면서 전기를 발생시킴은 물론 부 반응으로 물이 생성되게 된다.Methane-containing natural gas fuel 10 is removed through the desulfurizer 20, as shown in Figure 1, sulfur components, the sulfur gas removed natural gas fuel is humidifier to control the steam / carbon ratio After passing through 30 to adjust the steam / carbon ratio, the preliminary reformer 40 reforms the methane gas in the natural gas fuel into hydrogen gas, and the reformed hydrogen enters the fuel cell stack 50 together with oxygen. The reaction generates electricity as well as the water generated by the side reaction.

한편 상기 가습기(30)에는 증기/탄소비율을 조절하는데 필요한 열을 얻고자 상기 연료전지 스택(50)에서 발생하는 고열(600-700℃)의 가스를 공급받게 되는데 이때 상기 고열의 가스에는 연료전지 스택(50)에서의 부 반응으로 생성된 물에 의해 다량의 수분이 함유하고 되고 그로 인해 상기 가습기(30)로 공급되는 가스의 온도가 불균일하여 가습기온도 제어가 어려움으로 천연가스 중의 증기/탄소비율조절이 일정치 못한 문제점이 있다.On the other hand, the humidifier 30 is supplied with a gas of high heat (600-700 ° C.) generated from the fuel cell stack 50 in order to obtain heat required to control the steam / carbon ratio. A large amount of water is contained by the water generated by the side reaction in the stack 50, and thus, the temperature of the gas supplied to the humidifier 30 is uneven, so that the humidifier temperature is difficult to control. There is a problem of inconsistent adjustment.

따라서 종래에는 상기 가습기(30)의 온도보상을 위하여 탈황기(20)의 앞에 별도의 히터(H)를 설치하여 천연가스 연료를 히팅 하도록 하고 있으나, 상기 히터(H)의 전원은 연료전지(50)에서 공급받음으로 송전되는 전력이 감소되는 문제점이 있다.Therefore, in the related art, a separate heater H is installed in front of the desulfurizer 20 to heat the natural gas fuel in order to compensate for the temperature of the humidifier 30, but the power of the heater H is the fuel cell 50. ), There is a problem that the power transmitted to the supply is reduced.

그리고 상기 가습기(30)에는 연료가 진행하는 곳과 가스가 진행하는 곳이 별도로 구성되어 상기 가스의 열을 연료가 흡열(열 교환)하도록 되어 있다. 이는 통상의 가습기 구성임으로 그에 대한 구체적인 설명은 생략하기로 한다.In addition, the humidifier 30 has a place where the fuel proceeds and a place where the gas proceeds so that the fuel absorbs heat (heat exchange) of the heat of the gas. Since this is a conventional humidifier configuration, a detailed description thereof will be omitted.

본 발명은 상기와 같은 문제점을 감안하여 이를 해소하고자 발명한 것으로서, 그 목적은 종래 문제점인 연료전지 스택에서 부 반응으로 생성된 물에 의해 다량의 수분을 함유하는 연료전지 스택에서 배출되는 고열의 가스로부터 수분을 제거하여 가습기로 공급되는 가스의 온도를 균일하게 함으로서 가습기의 온도제어를 일정하게 하여 그에 따른 천연가스 중의 증기/탄소비율조절을 용이하게 하도록 한 용융탄산염 연료전지의 배 가스 수분제거 장치를 제공함에 있다. The present invention has been invented to solve this problem in view of the above problems, and an object thereof is a high-temperature gas discharged from a fuel cell stack containing a large amount of water by water generated by side reactions in a fuel cell stack. The exhaust gas moisture removal device of the molten carbonate fuel cell which removes moisture from the gas and supplies the humidifier with a uniform temperature so that the temperature control of the humidifier is kept constant, thereby facilitating the control of the steam / carbon ratio in natural gas. In providing.

상기 목적을 달성하기 위한 본 발명의 해결수단은 메탄을 함유한 천연가스 연료를 공급받아 황 성분을 제거하는 탈황기와, 상기 황 성분이 제거된 천연가스 연료의 증기/탄소비율을 조절하는 가습기와, 상기 증기/탄소비율이 조절된 천연가스 연료의 메탄가스를 수소가스로 개질하는 개질기와, 상기 개질된 수소와 산소를 함께 공급받아 전기를 발생시키는 연료전지 스택과, 상기 연료전지 스택에서 배출되는 고열의 가스를 가습기로 공급하는 통상의 연료전지 배출가스 폐열회수장치에 있어서, 상기 연료전지 스택과 가습기 사이에 연료전지 스택에서 배출되는 고열의 가스에 함유된 수분을 흡수하는 중공사형 멤브레인이 설치되고 그 중공사형 멤브레인에는 중공사형 멤브레인 내부의 진공도를 조절하는 진공펌프가 설치된 것으로 이루어진다.Solution to Problem The present invention for achieving the above object is a desulfurizer for removing sulfur components by receiving a natural gas fuel containing methane, a humidifier for adjusting the steam / carbon ratio of the natural gas fuel from which the sulfur component is removed; A reformer for reforming methane gas of the natural gas fuel of which the steam / carbon ratio is adjusted to hydrogen gas, a fuel cell stack supplied with the reformed hydrogen and oxygen together to generate electricity, and a high heat discharged from the fuel cell stack In a conventional fuel cell waste heat recovery apparatus for supplying a gas to a humidifier, a hollow fiber membrane is installed between the fuel cell stack and the humidifier to absorb moisture contained in the high temperature gas discharged from the fuel cell stack. Hollow fiber membrane is composed of a vacuum pump for controlling the degree of vacuum inside the hollow fiber membrane.

그리고 상기 중공사형 멤브레인은 중공사 멤브레인 내부직경이 0.5~2.7mm이고, 기공분포가 0.2~1.0나노미터이며, 내부 압력차를 50mmAq이하로 유지되고, 상기 중공사형 멤브레인의 내부진공도는 0.1 ~ 1토르를 유지되는 것으로 이루어진다.The hollow fiber membrane has a hollow fiber membrane inner diameter of 0.5 to 2.7 mm, a pore distribution of 0.2 to 1.0 nanometer, an internal pressure difference of 50 mmAq or less, and an inner vacuum of the hollow fiber membrane is 0.1 to 1 Torr. Consists of being maintained.

이상과 같은 본 발명의 용융탄산염 연료전지의 배 가스 수분제거 장치 및 그 방법은 연료전지에 공급되는 연료 중 증기/탄소비율을 조절하기 위한 가습기에 공급되는 연료전지 스택에서 배출되는 배 가스 중의 수분을 제고하여 공급함으로써,가습기의 온도제어를 일정하게 하여 그에 따른 천연가스 중의 증기/탄소비율조절을 용이하게 함과 동시에 연료전지의 전기효율을 향상시킬 수 있는 효과가 있다.Exhaust gas moisture removal device and method of the molten carbonate fuel cell of the present invention as described above is the moisture in the exhaust gas discharged from the fuel cell stack supplied to the humidifier for controlling the steam / carbon ratio of the fuel supplied to the fuel cell. By improving the supply, the temperature control of the humidifier is made constant, thereby facilitating the control of the steam / carbon ratio in the natural gas and improving the electrical efficiency of the fuel cell.

본 발명은 도 2에 나타낸 바와 같이 메탄을 함유한 천연가스 연료(10)(이하 "연료"라 칭함)를 탈황기(20)에 공급하고 그 탈황기(20)에서는 상기 공급된 연료에 함유된 황 성분을 제거한 후 가습기(30)에 공급하여 연료의 증기/탄소비율을 조절한다.In the present invention, as shown in FIG. 2, a natural gas fuel 10 containing methane (hereinafter referred to as “fuel”) is supplied to the desulfurizer 20, and the desulfurizer 20 contained in the supplied fuel. After removing the sulfur component is supplied to the humidifier 30 to adjust the steam / carbon ratio of the fuel.

상기 증기/탄소비율이 조절된 연료는 개질기(40)에 공급되어 메탄가스를 수소가스로 개질하고 상기 개질된 수소와 산소를 연료전지 스택(50)에 공급하여 전기를 발생시키는데, 상기 전기를 발생시키는 연료전지 스택(50)에서는 수소와 산소가 반응하면서 발생하는 다량의 수분이 함유된 고열(600-700℃)의 가스를 가습기(20)로 공급하여 연료의 증기/탄소비율을 조절하는데 사용된다. 이는 통상의 방법이다.The fuel having a controlled steam / carbon ratio is supplied to a reformer 40 to reform methane gas into hydrogen gas, and supply the reformed hydrogen and oxygen to a fuel cell stack 50 to generate electricity. In the fuel cell stack 50, a high-temperature (600-700 ° C.) gas containing a large amount of water generated by reacting hydrogen and oxygen is supplied to the humidifier 20 to adjust the steam / carbon ratio of the fuel. . This is the usual method.

이때 상기 연료전지 스택(50)과 가습기(30) 사이에는 연료전지 스택에서 배출되는 고열의 가스에 함유된 수분을 흡수제거하기 위하여 중공사형 멤브레인(60)이 설치되고 그 중공사형 멤브레인(60)에는 중공사형 멤브레인 내부의 진공도를 조절하는 진공펌프(70)를 설치한다.In this case, a hollow fiber membrane 60 is installed between the fuel cell stack 50 and the humidifier 30 in order to absorb and remove moisture contained in the hot gas discharged from the fuel cell stack, and the hollow fiber membrane 60 is provided at the hollow fiber membrane 60. A vacuum pump 70 for adjusting the degree of vacuum inside the hollow fiber membrane is installed.

한편 상기 중공사형 멤브레인(60)은 중공사 내부직경이 0.5~2.7mm이고, 기공분포가 0.2~1.0나노미터이며, 내부 압력차를 50mmAq이하로 유지되게 함과 동시에 내부진공도를 0.1 ~ 1토르 유지하게 한다.Meanwhile, the hollow fiber membrane 60 has a hollow fiber inner diameter of 0.5 to 2.7 mm, a pore distribution of 0.2 to 1.0 nanometer, and maintains an internal vacuum difference of 0.1 to 1 Torr while maintaining an internal pressure difference of 50 mmAq or less. Let's do it.

상기에서 언급한 멤브레인은 제올라이트, 알루미나등 600℃이상에서 변형이 생기지 않는 재료로 구성된다.The membrane mentioned above is composed of a material which does not cause deformation above 600 ° C. such as zeolite or alumina.

상기에서 배 가스 중 수분을 제거하기 위한 중공사형 멤브레인(60)의 내부 직경이 0.5~2.7mm이고, 기공분포가 0.2~1.0 나노미터로 한정하는 이유는 내부 직경이 상기 0.2 나노미터로 보다 작게 되면 중공사형 멤브레인(60) 내부 진공도 유지가 어려워 멤브레인 외부를 통과하는 배 가스로부터 수분이 중공사 내부로 흡입되지 못하여 배 가스 중 수분제거율이 떨어지게 되며, 상기 1.0 나노미터 보다 큰 직경을 쓰게 되면 중공사 멤부레인(60) 내부의 진공도유지를 위한 외부의 진공펌프(70)의 소비전력이 증가하게 된다.The internal diameter of the hollow fiber membrane 60 for removing moisture in the exhaust gas is 0.5 ~ 2.7mm, the pore distribution is limited to 0.2 ~ 1.0 nanometers is because the inner diameter is smaller than the 0.2 nanometer Since the vacuum degree inside the hollow fiber membrane 60 is difficult to maintain, moisture cannot be sucked from the exhaust gas passing through the outside of the membrane to the inside of the hollow fiber, so that the water removal rate of the exhaust gas falls. The power consumption of the external vacuum pump 70 for maintaining the vacuum in the bladder 60 is increased.

또한 멤브레인의 기공분포를 0.2~1.0나노미터로 한정하는 이유는 배 가스 중 함유된 수분은 증기화되어 있어 멤브레인 기공을 통과하기에 적절하지만, 상기에서 언급한 기공분포보다 넓어지게 되면 멤브레인 표면에 배 가스 중 증기가 수착하게 되어 멤브레인 파울링 현상이 발생하기 되어 증기의 투과속도를 저해하게 된다. In addition, the pore distribution of the membrane is limited to 0.2 to 1.0 nanometer because the moisture contained in the flue gas is vaporized and suitable to pass through the membrane pores, but when it becomes wider than the pore distribution mentioned above, The vapor in the gas is soaked so that the membrane fouling phenomenon occurs to inhibit the permeation rate of the vapor.

한편 상기에서 언급한 멤브레인의 기공분포가 를 0.2나노미터다 작을 때에는 600~700℃에 해당되는 증기입자보다 작은 기공을 함유하고 있어 증기입자의 투과속도를 저해하게 된다.On the other hand, when the pore distribution of the membrane mentioned above is less than 0.2 nanometers, it contains pores smaller than the vapor particles corresponding to 600 ~ 700 ℃, thereby inhibiting the permeation rate of the steam particles.

멤브레인 반응기에서 압력차를 50mmAq이하로 유지하는 이유는 연료전지 스택(50)에서 수소와 산소의 전기화학반응과 밀접한 관계가 있는 것으로, 상기에서 언급한 압력차보다 클 경우에는 연료전지 스택에서의 전기화학반응을 저해하게 되어 전기효율이 떨어지게 된다.The reason why the pressure difference is kept below 50 mmAq in the membrane reactor is closely related to the electrochemical reaction between hydrogen and oxygen in the fuel cell stack 50. When the pressure difference is larger than the above-mentioned pressure difference, the electricity in the fuel cell stack It inhibits the chemical reactions and the electrical efficiency is reduced.

또한, 중공사 멤브레인 반응기에서 중공사 내부의 진공도를 0.1 ~ 1토르를 유지하는 이유는 배 가스 중 함유된 수분제거율을 말하는 투과율과 밀접한 관계를 가지고있다. 즉, 상기에서 언급한 진공도보다 클 경우에는 배 가스 중 수분의 투과 속도가 커지지만 멤브레인 기공에 수분이 누적되는 멤브레인 파울링 현상이 발생하여 투과속도가 떨어지게 되고, 상기에서 언급한 진공도보다 작을 시에는 배 가스 중 수분제거속도가 떨어지게 된다.In the hollow fiber membrane reactor, the reason why the vacuum degree inside the hollow fiber is maintained at 0.1 to 1 Torr is closely related to the permeability, which refers to the water removal rate contained in the exhaust gas. That is, if the above-mentioned vacuum degree is larger than the above-mentioned vacuum rate, the permeation rate of the moisture in the exhaust gas increases, but the membrane fouling phenomenon that the moisture accumulates in the membrane pores occurs and the permeation rate is lowered, The moisture removal rate of the flue gas is reduced.

이하 본 발명을 실시예외 비교에를 들어 상세하게 설명하면 다음과 같다. Hereinafter, the present invention will be described in detail by way of examples.

[실시예 1]Example 1

연료전지(50)에 공급되는 메탄을 함유한 연료(10)가 탈황기(20)을 거쳐서 연료 중에 함유된 황 성분을 제거하여 가습기(30)에 공급되고, 한편 연료전지 스택(50)에서 배출되는 배 가스가 중공사 내부직경이 0.5mm이고, 기공분포가 0.2~1.0나노미터인 중공사형 멤브레인(60)에서 압력차를 30mmAq로 유지하고, 상기 멤브레인(60)에서 수분을 흡입하기 위하여 사용되는 중공사 멤브레인 내부의 진공도를 0.1 토르를 유지할 때 배 가스 중 수분 제거율은 53%이다. The fuel 10 containing methane supplied to the fuel cell 50 is supplied to the humidifier 30 by removing the sulfur component contained in the fuel through the desulfurizer 20, and discharged from the fuel cell stack 50. The exhaust gas is used to maintain a pressure difference of 30 mmAq in the hollow fiber type membrane 60 having a hollow fiber inner diameter of 0.5 mm and a pore distribution of 0.2 to 1.0 nanometers, and to suck moisture from the membrane 60. When the vacuum degree inside the hollow fiber membrane is maintained at 0.1 Torr, the water removal rate in the flue gas is 53%.

[실시예 2]Example 2

연료전지에 공급되는 메탄을 함유한 연료(10)가 탈황기(20)을 거쳐서 연료 중에 함유된 황 성분을 제거하여 가습기(30)에 공급되고, 한편 연료전지 스택(50)에서 배출되는 배 가스가 중공사 내부직경이 1.0mm이고, 기공분포가 0.2~1.0나노미터인 중공사형 멤브레인(60)에서 압력차를 30mmAq로 유지하고, 멤브레인에서 수분을 흡입하기 위하여 사용되는 중공사 멤브레인 내부의 진공도를 0.1 토르를 유지할 때 배 가스 중 수분 제거율은 55%이다.The fuel 10 containing methane supplied to the fuel cell is removed through the desulfurizer 20 to remove the sulfur component contained in the fuel and supplied to the humidifier 30, and exhaust gas discharged from the fuel cell stack 50. In the hollow fiber membrane 60 having a hollow fiber inner diameter of 1.0 mm and a pore distribution of 0.2 to 1.0 nanometer, the pressure difference is maintained at 30 mmAq, and the degree of vacuum inside the hollow fiber membrane used to suck water from the membrane is measured. At 0.1 Torr, the water removal rate in the flue gas is 55%.

[실시예 3]Example 3

연료전지에 공급되는 메탄을 함유한 연료(10)가 탈황기(20)을 거쳐서 연료 중에 함유된 황 성분을 제거하여 가습기(30)에 공급되고, 한편 연료전지 스택(50)에서 배출되는 배 가스가 중공사형 멤브레인(60) 내부직경이 1.5mm이고, 기공분포가 0.2~1.0나노미터인 멤브레인에서 압력차를 10mmAq로 유지하고, 멤브레인에서 수분을 흡입하기 위하여 사용되는 중공사 멤브레인 내부의 진공도를 0.1 토르를 유지할 때 배가스중 수분 제거율은 62%이다.The fuel 10 containing methane supplied to the fuel cell is removed through the desulfurizer 20 to remove the sulfur component contained in the fuel and supplied to the humidifier 30, and exhaust gas discharged from the fuel cell stack 50. The hollow fiber membrane 60 has a diameter of 1.5 mm and a pore distribution of 0.2 to 1.0 nanometers in the membrane to maintain a pressure difference of 10 mmAq and to maintain a vacuum of 0.1 in the hollow fiber membrane used to suck water from the membrane. When holding the tor, the water removal rate in the flue gas is 62%.

[비교예 1]Comparative Example 1

연료전지에 공급되는 메탄을 함유한 연료가 탈황기을 거쳐서 연료 중에 함유된 황 성분을 제거하여 가습기에 공급되고, 한편 연료전지 스택에서 배출되는 배가스가 중공사 멤브레인 내부직경이 3mm이고, 기공분포가 0.2~1.0나노미터인 멤브레인에서 압력차를 30mmAq로 유지하고, 멤브레인 반응기에서 수분을 흡입하기 위하여 사용되는 중공사 멤브레인 내부의 진공도를 2토르를 유지할 때 배가스중 수분 제거율은 33%이다. The fuel containing methane supplied to the fuel cell is desulfurized to remove sulfur content in the fuel and supplied to the humidifier, while the exhaust gas discharged from the fuel cell stack has a diameter of 3 mm inside the hollow fiber membrane and a pore distribution of 0.2. The water removal rate in the flue gas is 33% when the pressure difference is maintained at 30 mmAq at the membrane of ˜1.0 nanometer and the vacuum degree inside the hollow fiber membrane used to suck water in the membrane reactor is 2 Torr.

[비교예 2]Comparative Example 2

연료전지에 공급되는 메탄을 함유한 연료가 탈황기을 거쳐서 연료 중에 함유된 황성분을 제거하여 가습기에 공급되고, 한편 연료전지 스택에서 배출되는 배가스가 중공사 멤브레인 내부직경이 3mm이고, 기공분포가 0.2~1.0나노미터인 멤브레인에서 압력차를 60mmAq로 유지하고, 멤브레인에서 수분을 흡입하기 위하여 사용되는 중공사 멤브레인 내부의 진공도를 5토르를 유지할 때 배가스중 수분 제거율은 28%이다.  The fuel containing methane supplied to the fuel cell is desulfurized to remove sulfur content in the fuel and is supplied to the humidifier, while the exhaust gas discharged from the fuel cell stack has a diameter of 3 mm inside the hollow fiber membrane and a pore distribution of 0.2 to The water removal rate in the flue gas is 28% when the pressure difference is maintained at 60 mmAq in the 1.0 nanometer membrane and the vacuum degree inside the hollow fiber membrane used to suck water in the membrane is 5 Torr.

[비교예 3]Comparative Example 3

연료전지에 공급되는 메탄을 함유한 연료가 탈황기을 거쳐서 연료에 함유된 황성분을 제거하여 가습기에 공급되고, 한편 연료전지 스택에서 배출되는 배가스가 중공사 멤브레인 내부직경이 3mm이고, 기공분포가 0.2~1.0나노미터인 멤브레인에서 압력차를 100mmAq로 유지하고, 멤브레인에서 수분을 흡입하기 위하여 사용되는 중공사 멤브레인 내부의 진공도를 7토르를 유지할 때 배 가스 중 수분 제거율은 12%이다 The fuel containing methane supplied to the fuel cell is desulfurized to remove the sulfur component contained in the fuel and supplied to the humidifier, while the exhaust gas discharged from the fuel cell stack has a diameter of 3 mm inside the hollow fiber membrane and a pore distribution of 0.2 to When the pressure difference is maintained at 100 mmAq at the membrane of 1.0 nanometer and the vacuum degree inside the hollow fiber membrane used to suck water from the membrane is 7 Torr, the water removal rate in the exhaust gas is 12%.

상술한 바와 같은 본 발명의 용융탄산염 연료전지의 배 가스 수분제거 장치 및 그 방법은 연료전지에 공급되는 연료 중 증기/탄소비율을 조절하기 위한 가습기에 공급되는 연료전지 스택에서 배출되는 고열의 배 가스 중의 수분을 제거하여 가습기에 공급함으로써, 가습기의 온도제어를 일정하게 하여 그에 따른 천연가스 연료의 증기/탄소비율조절을 용이하게 함과 동시에 연료전지의 전기효율을 향상시킬 수 있는 장점이 있다.Exhaust gas moisture removal device and method of the molten carbonate fuel cell of the present invention as described above is a high heat exhaust gas discharged from the fuel cell stack supplied to the humidifier for controlling the steam / carbon ratio of the fuel supplied to the fuel cell By removing the water in the humidifier and supplying it to the humidifier, the temperature control of the humidifier is kept constant, thereby facilitating the control of the steam / carbon ratio of the natural gas fuel and improving the electrical efficiency of the fuel cell.

도 1은 종래 연료전지 배출가스 폐열회수방법을 설명하기 위한 공정도,1 is a process chart for explaining a conventional fuel cell exhaust gas waste heat recovery method,

도 2는 본 발명에 따른 용융탄산염 연료전지의 배 가스 수분제거 방법 설명하는 공정도.Figure 2 is a process for explaining the exhaust gas moisture removal method of the molten carbonate fuel cell according to the present invention.

*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

10 : 연료 20 : 탈황기10 fuel 20 desulfurizer

30 : 가습기 40 : 개질기30: humidifier 40: reformer

50 : 연료전지 스택 60 : 중공사형 멤브레인50: fuel cell stack 60: hollow fiber membrane

70 : 진공펌프 70: vacuum pump

Claims (6)

메탄을 함유한 천연가스 연료(10)를 공급받아 황 성분을 제거하는 탈황기(20)와, 상기 황 성분이 제거된 천연가스 연료의 증기/탄소비율을 조절하는 가습기(30)와, 상기 증기/탄소비율이 조절된 천연가스 연료의 메탄가스를 수소가스로 개질하는 개질기(40)와, 상기 개질된 수소와 산소를 함께 공급받아 전기를 발생시키는 연료전지 스택(50)과, 상기 연료전지 스택에서 배출되는 고열의 가스를 가습기(20)로 공급하는 통상의 연료전지 배출가스 폐열회수장치에 있어서,Desulfurizer 20 for removing sulfur components by receiving a natural gas fuel 10 containing methane, a humidifier 30 for adjusting the steam / carbon ratio of the natural gas fuel from which the sulfur component is removed, and the steam A reformer 40 for reforming methane gas of a natural gas fuel having a controlled carbon / carbon ratio to hydrogen gas, a fuel cell stack 50 for generating electricity by being supplied with the reformed hydrogen and oxygen, and the fuel cell stack In the conventional fuel cell exhaust gas waste heat recovery device for supplying a high-temperature gas discharged from the humidifier 20, 상기 연료전지 스택(50)과 가습기(30) 사이에 연료전지 스택에서 배출되는 고열의 가스에 함유된 수분을 흡수하는 중공사형 멤브레인(60)이 설치되고, 그 중공사형 멤브레인에는 중공사형 멤브레인 내부의 진공도를 조절하는 진공펌프(70)가 설치된 것을 특징으로 하는 용융탄산염 연료전지의 배 가스 수분제거 장치. Between the fuel cell stack 50 and the humidifier 30 is provided a hollow fiber membrane 60 to absorb moisture contained in the high-temperature gas discharged from the fuel cell stack, the hollow fiber membrane inside the hollow fiber membrane Exhaust gas moisture removal device of the molten carbonate fuel cell, characterized in that the vacuum pump 70 for adjusting the degree of vacuum is installed. 제1항에 있어서, 상기 중공사형 멤브레인은 중공사 내부직경이 0.5~2.7mm이고, 기공분포가 0.2~1.0나노미터이며, 내부 압력차를 50mmAq이하로 유지되는 것임을 특징으로 하는 용융탄산염 연료전지의 배 가스 수분제거 장치.The molten carbonate fuel cell of claim 1, wherein the hollow fiber membrane has a hollow fiber inner diameter of 0.5 to 2.7 mm, a pore distribution of 0.2 to 1.0 nanometer, and an internal pressure difference of 50 mmAq or less. 2x gas dehydration device. 제1항에 있어서, 상기 중공사형 멤브레인의 내부진공도는 0.1 ~ 1토르를 유지하는 것임을 특징으로 하는 용융탄산염 연료전지의 배 가스 수분제거 장치. The apparatus for removing exhaust gas moisture of a molten carbonate fuel cell according to claim 1, wherein the internal vacuum degree of the hollow fiber membrane is maintained at 0.1 to 1 Torr. 메탄을 함유한 천연가스 연료(10)를 탈황기(20)에서 공급받아 황 성분을 제거하고, 상기 황 성분이 제거된 천연가스 연료를 가습기(30)를 통과시켜 증기/탄소비율을 조절하며 상기 증기/탄소비율이 조절된 천연가스 연료의 메탄가스를 개질기(40)를 통하여 수소가스로 개질하고, 상기 개질된 수소와 산소를 연료전지 스택(50)에서 공급받아 전기를 발생시킴과 동시에 상기 연료전지 스택에서 발생하는 수분이 함유된 배출가스를 상기 가습기로 공급하는 공정으로 이루어진 통상의 연료전지 배출가스 폐열회수방법에 있어서,The methane-containing natural gas fuel 10 is supplied from the desulfurizer 20 to remove sulfur, and the sulfur-free natural gas fuel is passed through the humidifier 30 to adjust the steam / carbon ratio. The methane gas of the natural gas fuel having a controlled steam / carbon ratio is reformed into hydrogen gas through the reformer 40, and the reformed hydrogen and oxygen are supplied from the fuel cell stack 50 to generate electricity and generate electricity. In the conventional fuel cell exhaust gas waste heat recovery method comprising the step of supplying the exhaust gas containing moisture generated in the battery stack to the humidifier, 상기 연료전지 스택에서 발생하는 수분이 함유된 배출가스를 중공사형 멤브레인을 통과시켜 수분은 흡수제거하고 고열의 가스만 가습기(20)에 공급하는 것을 특징으로 하는 용융탄산염 연료전지의 배 가스 수분제거 방법.The exhaust gas moisture removal method of the molten carbonate fuel cell, characterized in that the exhaust gas containing the moisture generated in the fuel cell stack through the hollow fiber membrane to absorb and remove moisture and supply only the high-temperature gas to the humidifier 20. . 제4항에 있어서, 상기 중공사형 멤브레인은 중공사 내부직경이 0.5~2.7mm이고, 기공분포가 0.2~1.0나노미터이며, 내부 압력차를 50mmAq이하로 유지됨을 특징으로 하는 용융탄산염 연료전지의 배 가스 수분제거 방법.The molten carbonate fuel cell of claim 4, wherein the hollow fiber membrane has a hollow fiber inner diameter of 0.5 to 2.7 mm, a pore distribution of 0.2 to 1.0 nanometer, and an internal pressure difference of 50 mmAq or less. How to remove gas moisture. 제4항에 있어서, 상기 중공사형 멤브레인의 내부진공도는 0.1 ~ 1토르를 유지함을 특징으로 하는 용융탄산염 연료전지의 배 가스 수분제거 방법.5. The method of claim 4, wherein the internal vacuum degree of the hollow fiber membrane is maintained at 0.1 to 1 Torr.
KR1020070135098A 2007-12-21 2007-12-21 Exhaust gas moisture removal device of molten carbonate fuel cell and its method KR100958991B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020070135098A KR100958991B1 (en) 2007-12-21 2007-12-21 Exhaust gas moisture removal device of molten carbonate fuel cell and its method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020070135098A KR100958991B1 (en) 2007-12-21 2007-12-21 Exhaust gas moisture removal device of molten carbonate fuel cell and its method

Publications (2)

Publication Number Publication Date
KR20090067426A true KR20090067426A (en) 2009-06-25
KR100958991B1 KR100958991B1 (en) 2010-05-20

Family

ID=40995145

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020070135098A KR100958991B1 (en) 2007-12-21 2007-12-21 Exhaust gas moisture removal device of molten carbonate fuel cell and its method

Country Status (1)

Country Link
KR (1) KR100958991B1 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9077007B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US9077005B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in Fischer-Tropsch synthesis
US9556753B2 (en) 2013-09-30 2017-01-31 Exxonmobil Research And Engineering Company Power generation and CO2 capture with turbines in series
US9755258B2 (en) 2013-09-30 2017-09-05 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using solid oxide fuel cells
US9819042B2 (en) 2013-09-30 2017-11-14 Exxonmobil Research And Engineering Company Fuel cell integration within a heat recovery steam generator
KR20190124421A (en) * 2018-04-26 2019-11-05 비고 메디컬 가부시키가이샤 Oxygen Concentrator
CN113454821A (en) * 2018-11-30 2021-09-28 燃料电池能有限公司 For deep CO2Regeneration of captured molten carbonate fuel cells
US11211621B2 (en) 2018-11-30 2021-12-28 Exxonmobil Research And Engineering Company Regeneration of molten carbonate fuel cells for deep CO2 capture
US11335937B2 (en) 2019-11-26 2022-05-17 Exxonmobil Research And Engineering Company Operation of molten carbonate fuel cells with high electrolyte fill level
US11424469B2 (en) 2018-11-30 2022-08-23 ExxonMobil Technology and Engineering Company Elevated pressure operation of molten carbonate fuel cells with enhanced CO2 utilization
US11476486B2 (en) 2018-11-30 2022-10-18 ExxonMobil Technology and Engineering Company Fuel cell staging for molten carbonate fuel cells
US11664519B2 (en) 2019-11-26 2023-05-30 Exxonmobil Research And Engineering Company Fuel cell module assembly and systems using same
US11695122B2 (en) 2018-11-30 2023-07-04 ExxonMobil Technology and Engineering Company Layered cathode for molten carbonate fuel cell
US11742508B2 (en) 2018-11-30 2023-08-29 ExxonMobil Technology and Engineering Company Reforming catalyst pattern for fuel cell operated with enhanced CO2 utilization
US11888187B2 (en) 2018-11-30 2024-01-30 ExxonMobil Technology and Engineering Company Operation of molten carbonate fuel cells with enhanced CO2 utilization
US11978931B2 (en) 2021-02-11 2024-05-07 ExxonMobil Technology and Engineering Company Flow baffle for molten carbonate fuel cell

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4961698B2 (en) * 2005-09-01 2012-06-27 株式会社日立製作所 Fuel cell system
KR100778207B1 (en) * 2006-11-08 2007-11-29 주식회사 효성 Fuel cell system using waste heat of power converter

Cited By (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9419295B2 (en) 2013-03-15 2016-08-16 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells at a reduced electrical efficiency
US9455463B2 (en) 2013-03-15 2016-09-27 Exxonmobil Research And Engineering Company Integrated electrical power and chemical production using fuel cells
US9077005B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in Fischer-Tropsch synthesis
US9077006B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and carbon capture using fuel cells
US9178234B2 (en) 2013-03-15 2015-11-03 Exxonmobil Research And Engineering Company Integrated power generation using molten carbonate fuel cells
US9257711B2 (en) 2013-03-15 2016-02-09 Exxonmobil Research And Engineering Company Integrated carbon capture and chemical production using fuel cells
US9263755B2 (en) 2013-03-15 2016-02-16 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in iron and steel processing
US9343763B2 (en) 2013-03-15 2016-05-17 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells for synthesis of nitrogen compounds
US9343764B2 (en) 2013-03-15 2016-05-17 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in methanol synthesis
US9520607B2 (en) 2013-03-15 2016-12-13 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells with fermentation processes
US9077008B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US9941534B2 (en) 2013-03-15 2018-04-10 Exxonmobil Research And Engineering Company Integrated power generation and carbon capture using fuel cells
US9362580B2 (en) 2013-03-15 2016-06-07 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in a refinery setting
US9553321B2 (en) 2013-03-15 2017-01-24 Exxonmobile Research And Engineering Company Integrated power generation and carbon capture using fuel cells
US10676799B2 (en) 2013-03-15 2020-06-09 Exxonmobil Research And Engineering Company Integrated electrical power and chemical production using fuel cells
US9647284B2 (en) 2013-03-15 2017-05-09 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in Fischer-Tropsch synthesis
US9650246B2 (en) 2013-03-15 2017-05-16 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in fischer-tropsch synthesis
US9735440B2 (en) 2013-03-15 2017-08-15 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in fischer-tropsch synthesis
US10093997B2 (en) 2013-03-15 2018-10-09 Exxonmobil Research And Engineering Company Integration of molten carbonate fuel cells in iron and steel processing
US9786939B2 (en) 2013-03-15 2017-10-10 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US9077007B2 (en) 2013-03-15 2015-07-07 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using fuel cells
US9923219B2 (en) 2013-03-15 2018-03-20 Exxonmobile Research And Engineering Company Integrated operation of molten carbonate fuel cells
US9819042B2 (en) 2013-09-30 2017-11-14 Exxonmobil Research And Engineering Company Fuel cell integration within a heat recovery steam generator
US9755258B2 (en) 2013-09-30 2017-09-05 Exxonmobil Research And Engineering Company Integrated power generation and chemical production using solid oxide fuel cells
US10283802B2 (en) 2013-09-30 2019-05-07 Exxonmobil Research And Engineering Company Fuel cell integration within a heat recovery steam generator
US9556753B2 (en) 2013-09-30 2017-01-31 Exxonmobil Research And Engineering Company Power generation and CO2 capture with turbines in series
KR20190124421A (en) * 2018-04-26 2019-11-05 비고 메디컬 가부시키가이샤 Oxygen Concentrator
US11476486B2 (en) 2018-11-30 2022-10-18 ExxonMobil Technology and Engineering Company Fuel cell staging for molten carbonate fuel cells
US11695122B2 (en) 2018-11-30 2023-07-04 ExxonMobil Technology and Engineering Company Layered cathode for molten carbonate fuel cell
US12095129B2 (en) 2018-11-30 2024-09-17 ExxonMobil Technology and Engineering Company Reforming catalyst pattern for fuel cell operated with enhanced CO2 utilization
US11424469B2 (en) 2018-11-30 2022-08-23 ExxonMobil Technology and Engineering Company Elevated pressure operation of molten carbonate fuel cells with enhanced CO2 utilization
CN113454821A (en) * 2018-11-30 2021-09-28 燃料电池能有限公司 For deep CO2Regeneration of captured molten carbonate fuel cells
US11616248B2 (en) 2018-11-30 2023-03-28 ExxonMobil Technology and Engineering Company Elevated pressure operation of molten carbonate fuel cells with enhanced CO2 utilization
CN113454821B (en) * 2018-11-30 2024-02-27 燃料电池能有限公司 For depth CO 2 Regeneration of captured molten carbonate fuel cells
US11211621B2 (en) 2018-11-30 2021-12-28 Exxonmobil Research And Engineering Company Regeneration of molten carbonate fuel cells for deep CO2 capture
US11742508B2 (en) 2018-11-30 2023-08-29 ExxonMobil Technology and Engineering Company Reforming catalyst pattern for fuel cell operated with enhanced CO2 utilization
US11843150B2 (en) 2018-11-30 2023-12-12 ExxonMobil Technology and Engineering Company Fuel cell staging for molten carbonate fuel cells
US11888187B2 (en) 2018-11-30 2024-01-30 ExxonMobil Technology and Engineering Company Operation of molten carbonate fuel cells with enhanced CO2 utilization
US11888199B2 (en) 2019-11-26 2024-01-30 ExxonMobil Technology and Engineering Company Operation of molten carbonate fuel cells with high electrolyte fill level
US11664519B2 (en) 2019-11-26 2023-05-30 Exxonmobil Research And Engineering Company Fuel cell module assembly and systems using same
US11335937B2 (en) 2019-11-26 2022-05-17 Exxonmobil Research And Engineering Company Operation of molten carbonate fuel cells with high electrolyte fill level
US11978931B2 (en) 2021-02-11 2024-05-07 ExxonMobil Technology and Engineering Company Flow baffle for molten carbonate fuel cell

Also Published As

Publication number Publication date
KR100958991B1 (en) 2010-05-20

Similar Documents

Publication Publication Date Title
KR100958991B1 (en) Exhaust gas moisture removal device of molten carbonate fuel cell and its method
CA2401758C (en) Fuel cell power generation method and system
KR100718116B1 (en) High Temperature PEM Fuel Cell System
CN112912338B (en) Fuel cell system and exhaust gas regeneration method
KR102526672B1 (en) Method for operating water electrolysis system capable of stably maintaining quality of hydrogen
JP2008234869A (en) Fuel cell system
EP3267524B1 (en) Fuel cell system
JP4419329B2 (en) Solid polymer electrolyte fuel cell power generator
JP6152436B1 (en) Fuel cell system
US8328886B2 (en) Fuel processor having temperature control function for co shift reactor and method of operating the fuel processor
JP2002097001A (en) Fuel gas reformer and fuel-cell system
JP2010198920A (en) Fuel cell power generation system
JP6688818B2 (en) Fuel cell system
KR101447334B1 (en) Desulfurizer
JP2007325988A (en) Decarboxylation device, and fuel cell power generation device
JP2005147045A (en) Biogas power generating device
JP4363969B2 (en) Hydrogen production equipment
KR100950363B1 (en) Steam / carbon ratio control device of fuel used in molten carbonate fuel cell and its method
KR20090067428A (en) Natural gas desulfurization method as fuel for molten carbonate fuel cell
JP7181105B2 (en) Fuel cell system and method for regenerating anode off-gas
JP2005011563A (en) Fuel cell cogeneration system
JP5324073B2 (en) Fuel cell system
KR101270790B1 (en) Pre-processing assembly and fuel cell system comprising the same
JP5461880B2 (en) Fuel cell reformer
JP2016184549A (en) Gas production device

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20071221

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20091015

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20100408

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20100512

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20100512

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
FPAY Annual fee payment

Payment date: 20130514

Year of fee payment: 4

PR1001 Payment of annual fee

Payment date: 20130514

Start annual number: 4

End annual number: 4

FPAY Annual fee payment

Payment date: 20140513

Year of fee payment: 5

PR1001 Payment of annual fee

Payment date: 20140513

Start annual number: 5

End annual number: 5

FPAY Annual fee payment

Payment date: 20150512

Year of fee payment: 6

PR1001 Payment of annual fee

Payment date: 20150512

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20160512

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20160512

Start annual number: 7

End annual number: 7

FPAY Annual fee payment

Payment date: 20170512

Year of fee payment: 8

PR1001 Payment of annual fee

Payment date: 20170512

Start annual number: 8

End annual number: 8

FPAY Annual fee payment

Payment date: 20180510

Year of fee payment: 9

PR1001 Payment of annual fee

Payment date: 20180510

Start annual number: 9

End annual number: 9

PC1903 Unpaid annual fee

Termination category: Default of registration fee

Termination date: 20210223