KR20090067426A - Exhaust gas moisture removal device of molten carbonate fuel cell and its method - Google Patents
Exhaust gas moisture removal device of molten carbonate fuel cell and its method Download PDFInfo
- Publication number
- KR20090067426A KR20090067426A KR1020070135098A KR20070135098A KR20090067426A KR 20090067426 A KR20090067426 A KR 20090067426A KR 1020070135098 A KR1020070135098 A KR 1020070135098A KR 20070135098 A KR20070135098 A KR 20070135098A KR 20090067426 A KR20090067426 A KR 20090067426A
- Authority
- KR
- South Korea
- Prior art keywords
- fuel cell
- gas
- hollow fiber
- humidifier
- fiber membrane
- Prior art date
Links
- 239000000446 fuel Substances 0.000 title claims abstract description 105
- 238000000034 method Methods 0.000 title claims abstract description 13
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 title claims abstract description 12
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 80
- 239000007789 gas Substances 0.000 claims abstract description 56
- 239000012528 membrane Substances 0.000 claims abstract description 55
- 239000012510 hollow fiber Substances 0.000 claims abstract description 45
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims abstract description 22
- 229910052799 carbon Inorganic materials 0.000 claims abstract description 22
- 239000003345 natural gas Substances 0.000 claims abstract description 22
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims abstract description 16
- 229910052717 sulfur Inorganic materials 0.000 claims abstract description 16
- 239000011593 sulfur Substances 0.000 claims abstract description 16
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims abstract description 14
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims abstract description 8
- 230000005611 electricity Effects 0.000 claims abstract description 8
- 229910052739 hydrogen Inorganic materials 0.000 claims abstract description 8
- 239000001257 hydrogen Substances 0.000 claims abstract description 8
- 229910052760 oxygen Inorganic materials 0.000 claims abstract description 8
- 239000001301 oxygen Substances 0.000 claims abstract description 8
- 238000011084 recovery Methods 0.000 claims abstract description 5
- 239000002918 waste heat Substances 0.000 claims abstract description 5
- 238000002407 reforming Methods 0.000 claims abstract description 3
- 239000011148 porous material Substances 0.000 claims description 17
- 230000018044 dehydration Effects 0.000 claims 1
- 238000006297 dehydration reaction Methods 0.000 claims 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 23
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 7
- 239000003546 flue gas Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 3
- 238000007086 side reaction Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000009285 membrane fouling Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910021536 Zeolite Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- HNPSIPDUKPIQMN-UHFFFAOYSA-N dioxosilane;oxo(oxoalumanyloxy)alumane Chemical compound O=[Si]=O.O=[Al]O[Al]=O HNPSIPDUKPIQMN-UHFFFAOYSA-N 0.000 description 1
- 238000003487 electrochemical reaction Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 239000010457 zeolite Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04119—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
- H01M8/04156—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/04—Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
- H01M8/04082—Arrangements for control of reactant parameters, e.g. pressure or concentration
- H01M8/04089—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
- H01M8/04119—Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
- H01M8/04126—Humidifying
- H01M8/04141—Humidifying by water containing exhaust gases
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0606—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
- H01M8/0612—Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants from carbon-containing material
- H01M8/0618—Reforming processes, e.g. autothermal, partial oxidation or steam reforming
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0662—Treatment of gaseous reactants or gaseous residues, e.g. cleaning
- H01M8/0675—Removal of sulfur
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/06—Combination of fuel cells with means for production of reactants or for treatment of residues
- H01M8/0662—Treatment of gaseous reactants or gaseous residues, e.g. cleaning
- H01M8/0687—Reactant purification by the use of membranes or filters
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/14—Fuel cells with fused electrolytes
- H01M2008/147—Fuel cells with molten carbonates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Fuel Cell (AREA)
Abstract
본 발명은 다량의 수분을 함유하는 연료전지 스택에서 배출되는 고열의 가스에 함유된 수분을 제거하여 가습기로 공급함으로써 천연가스 중의 증기/탄소비율조절을 용이하게 함과 동시에 연료전지의 전기효율을 향상시킬 수 있도록 한 용융탄산염 연료전지의 배 가스 수분제거 장치 및 그 방법에 관한 것으로,The present invention removes the water contained in the high-temperature gas discharged from the fuel cell stack containing a large amount of water and supplies it to the humidifier, thereby facilitating the control of the steam / carbon ratio in natural gas and improving the electrical efficiency of the fuel cell. The present invention relates to an apparatus for removing exhaust gas moisture from a molten carbonate fuel cell and a method thereof,
그 구성은 메탄을 함유한 천연가스 연료(10)를 공급받아 황 성분을 제거하는 탈황기(20)와, 상기 황 성분이 제거된 천연가스 연료의 증기/탄소비율을 조절하는 가습기(30)와, 상기 증기/탄소비율이 조절된 천연가스 연료의 메탄가스를 수소가스로 개질하는 개질기(40)와, 상기 개질된 수소와 산소를 함께 공급받아 전기를 발생시키는 연료전지 스택(50)과, 상기 연료전지 스택에서 배출되는 고열의 가스를 가습기(20)로 공급하는 통상의 연료전지 배출가스 폐열회수장치에 있어서,The constitution includes a desulfurizer 20 which receives a natural gas fuel 10 containing methane and removes sulfur components, a humidifier 30 that adjusts a vapor / carbon ratio of the natural gas fuel from which the sulfur components are removed; A reformer 40 for reforming methane gas of the natural gas fuel having a controlled steam / carbon ratio to hydrogen gas, a fuel cell stack 50 for generating electricity by receiving the reformed hydrogen and oxygen together; In the conventional fuel cell exhaust gas waste heat recovery apparatus for supplying the high-heat gas discharged from the fuel cell stack to the humidifier 20,
상기 연료전지 스택(50)과 가습기(30) 사이에 연료전지 스택에서 배출되는 고열의 가스에 함유된 수분을 흡수하는 중공사형 멤브레인(60)이 설치되고 그 중공사형 멤브레인에는 중공사형 멤브레인 내부의 진공도를 조절하는 진공펌프(70)가 설치된 것으로 이루어진다.Between the fuel cell stack 50 and the humidifier 30, a hollow fiber membrane 60 for absorbing moisture contained in the hot gas discharged from the fuel cell stack is installed, and the hollow fiber membrane has a vacuum degree inside the hollow fiber membrane. It consists of a vacuum pump 70 for adjusting the installed.
Description
본 발명은 다량의 수분을 함유하는 연료전지 스택에서 배출되는 고열의 가스에 함유된 수분을 제거하여 가습기로 공급함으로써, 가습기의 온도를 항상 균일하게 유지할 수 있어, 그에 따른 천연가스 중의 증기/탄소비율조절을 용이하게 함과 동시에 연료전지의 전기효율을 향상시킬 수 있도록 한 용융탄산염 연료전지의 배 가스 수분제거 장치 및 그 방법에 관한 것이다.The present invention removes the moisture contained in the high-temperature gas discharged from the fuel cell stack containing a large amount of water and supplies it to the humidifier, so that the temperature of the humidifier can be always maintained uniformly, and thus the steam / carbon ratio in natural gas The present invention relates to an apparatus and method for removing exhaust gas moisture from a molten carbonate fuel cell that facilitates control and improves an electrical efficiency of a fuel cell.
메탄을 함유한 천연가스 연료(10)는 도 1에 나타낸 바와 같이 탈황기(20)를 거쳐 황 성분을 제거하고, 그 황 성분이 제거된 상기 천연가스 연료는 증기/탄소비율을 조절하기 위해 가습기(30)를 통과시켜 증기/탄소비율을 조절한 후 예비 개질기(40)를 거쳐 상기 천연가스 연료 중의 메탄가스를 수소가스로 개질하고 그 개질된 수소는 산소와 함께 연료전지 스택(50)으로 들어가 반응하면서 전기를 발생시킴은 물론 부 반응으로 물이 생성되게 된다.Methane-containing
한편 상기 가습기(30)에는 증기/탄소비율을 조절하는데 필요한 열을 얻고자 상기 연료전지 스택(50)에서 발생하는 고열(600-700℃)의 가스를 공급받게 되는데 이때 상기 고열의 가스에는 연료전지 스택(50)에서의 부 반응으로 생성된 물에 의해 다량의 수분이 함유하고 되고 그로 인해 상기 가습기(30)로 공급되는 가스의 온도가 불균일하여 가습기온도 제어가 어려움으로 천연가스 중의 증기/탄소비율조절이 일정치 못한 문제점이 있다.On the other hand, the
따라서 종래에는 상기 가습기(30)의 온도보상을 위하여 탈황기(20)의 앞에 별도의 히터(H)를 설치하여 천연가스 연료를 히팅 하도록 하고 있으나, 상기 히터(H)의 전원은 연료전지(50)에서 공급받음으로 송전되는 전력이 감소되는 문제점이 있다.Therefore, in the related art, a separate heater H is installed in front of the
그리고 상기 가습기(30)에는 연료가 진행하는 곳과 가스가 진행하는 곳이 별도로 구성되어 상기 가스의 열을 연료가 흡열(열 교환)하도록 되어 있다. 이는 통상의 가습기 구성임으로 그에 대한 구체적인 설명은 생략하기로 한다.In addition, the
본 발명은 상기와 같은 문제점을 감안하여 이를 해소하고자 발명한 것으로서, 그 목적은 종래 문제점인 연료전지 스택에서 부 반응으로 생성된 물에 의해 다량의 수분을 함유하는 연료전지 스택에서 배출되는 고열의 가스로부터 수분을 제거하여 가습기로 공급되는 가스의 온도를 균일하게 함으로서 가습기의 온도제어를 일정하게 하여 그에 따른 천연가스 중의 증기/탄소비율조절을 용이하게 하도록 한 용융탄산염 연료전지의 배 가스 수분제거 장치를 제공함에 있다. The present invention has been invented to solve this problem in view of the above problems, and an object thereof is a high-temperature gas discharged from a fuel cell stack containing a large amount of water by water generated by side reactions in a fuel cell stack. The exhaust gas moisture removal device of the molten carbonate fuel cell which removes moisture from the gas and supplies the humidifier with a uniform temperature so that the temperature control of the humidifier is kept constant, thereby facilitating the control of the steam / carbon ratio in natural gas. In providing.
상기 목적을 달성하기 위한 본 발명의 해결수단은 메탄을 함유한 천연가스 연료를 공급받아 황 성분을 제거하는 탈황기와, 상기 황 성분이 제거된 천연가스 연료의 증기/탄소비율을 조절하는 가습기와, 상기 증기/탄소비율이 조절된 천연가스 연료의 메탄가스를 수소가스로 개질하는 개질기와, 상기 개질된 수소와 산소를 함께 공급받아 전기를 발생시키는 연료전지 스택과, 상기 연료전지 스택에서 배출되는 고열의 가스를 가습기로 공급하는 통상의 연료전지 배출가스 폐열회수장치에 있어서, 상기 연료전지 스택과 가습기 사이에 연료전지 스택에서 배출되는 고열의 가스에 함유된 수분을 흡수하는 중공사형 멤브레인이 설치되고 그 중공사형 멤브레인에는 중공사형 멤브레인 내부의 진공도를 조절하는 진공펌프가 설치된 것으로 이루어진다.Solution to Problem The present invention for achieving the above object is a desulfurizer for removing sulfur components by receiving a natural gas fuel containing methane, a humidifier for adjusting the steam / carbon ratio of the natural gas fuel from which the sulfur component is removed; A reformer for reforming methane gas of the natural gas fuel of which the steam / carbon ratio is adjusted to hydrogen gas, a fuel cell stack supplied with the reformed hydrogen and oxygen together to generate electricity, and a high heat discharged from the fuel cell stack In a conventional fuel cell waste heat recovery apparatus for supplying a gas to a humidifier, a hollow fiber membrane is installed between the fuel cell stack and the humidifier to absorb moisture contained in the high temperature gas discharged from the fuel cell stack. Hollow fiber membrane is composed of a vacuum pump for controlling the degree of vacuum inside the hollow fiber membrane.
그리고 상기 중공사형 멤브레인은 중공사 멤브레인 내부직경이 0.5~2.7mm이고, 기공분포가 0.2~1.0나노미터이며, 내부 압력차를 50mmAq이하로 유지되고, 상기 중공사형 멤브레인의 내부진공도는 0.1 ~ 1토르를 유지되는 것으로 이루어진다.The hollow fiber membrane has a hollow fiber membrane inner diameter of 0.5 to 2.7 mm, a pore distribution of 0.2 to 1.0 nanometer, an internal pressure difference of 50 mmAq or less, and an inner vacuum of the hollow fiber membrane is 0.1 to 1 Torr. Consists of being maintained.
이상과 같은 본 발명의 용융탄산염 연료전지의 배 가스 수분제거 장치 및 그 방법은 연료전지에 공급되는 연료 중 증기/탄소비율을 조절하기 위한 가습기에 공급되는 연료전지 스택에서 배출되는 배 가스 중의 수분을 제고하여 공급함으로써,가습기의 온도제어를 일정하게 하여 그에 따른 천연가스 중의 증기/탄소비율조절을 용이하게 함과 동시에 연료전지의 전기효율을 향상시킬 수 있는 효과가 있다.Exhaust gas moisture removal device and method of the molten carbonate fuel cell of the present invention as described above is the moisture in the exhaust gas discharged from the fuel cell stack supplied to the humidifier for controlling the steam / carbon ratio of the fuel supplied to the fuel cell. By improving the supply, the temperature control of the humidifier is made constant, thereby facilitating the control of the steam / carbon ratio in the natural gas and improving the electrical efficiency of the fuel cell.
본 발명은 도 2에 나타낸 바와 같이 메탄을 함유한 천연가스 연료(10)(이하 "연료"라 칭함)를 탈황기(20)에 공급하고 그 탈황기(20)에서는 상기 공급된 연료에 함유된 황 성분을 제거한 후 가습기(30)에 공급하여 연료의 증기/탄소비율을 조절한다.In the present invention, as shown in FIG. 2, a
상기 증기/탄소비율이 조절된 연료는 개질기(40)에 공급되어 메탄가스를 수소가스로 개질하고 상기 개질된 수소와 산소를 연료전지 스택(50)에 공급하여 전기를 발생시키는데, 상기 전기를 발생시키는 연료전지 스택(50)에서는 수소와 산소가 반응하면서 발생하는 다량의 수분이 함유된 고열(600-700℃)의 가스를 가습기(20)로 공급하여 연료의 증기/탄소비율을 조절하는데 사용된다. 이는 통상의 방법이다.The fuel having a controlled steam / carbon ratio is supplied to a
이때 상기 연료전지 스택(50)과 가습기(30) 사이에는 연료전지 스택에서 배출되는 고열의 가스에 함유된 수분을 흡수제거하기 위하여 중공사형 멤브레인(60)이 설치되고 그 중공사형 멤브레인(60)에는 중공사형 멤브레인 내부의 진공도를 조절하는 진공펌프(70)를 설치한다.In this case, a
한편 상기 중공사형 멤브레인(60)은 중공사 내부직경이 0.5~2.7mm이고, 기공분포가 0.2~1.0나노미터이며, 내부 압력차를 50mmAq이하로 유지되게 함과 동시에 내부진공도를 0.1 ~ 1토르 유지하게 한다.Meanwhile, the
상기에서 언급한 멤브레인은 제올라이트, 알루미나등 600℃이상에서 변형이 생기지 않는 재료로 구성된다.The membrane mentioned above is composed of a material which does not cause deformation above 600 ° C. such as zeolite or alumina.
상기에서 배 가스 중 수분을 제거하기 위한 중공사형 멤브레인(60)의 내부 직경이 0.5~2.7mm이고, 기공분포가 0.2~1.0 나노미터로 한정하는 이유는 내부 직경이 상기 0.2 나노미터로 보다 작게 되면 중공사형 멤브레인(60) 내부 진공도 유지가 어려워 멤브레인 외부를 통과하는 배 가스로부터 수분이 중공사 내부로 흡입되지 못하여 배 가스 중 수분제거율이 떨어지게 되며, 상기 1.0 나노미터 보다 큰 직경을 쓰게 되면 중공사 멤부레인(60) 내부의 진공도유지를 위한 외부의 진공펌프(70)의 소비전력이 증가하게 된다.The internal diameter of the
또한 멤브레인의 기공분포를 0.2~1.0나노미터로 한정하는 이유는 배 가스 중 함유된 수분은 증기화되어 있어 멤브레인 기공을 통과하기에 적절하지만, 상기에서 언급한 기공분포보다 넓어지게 되면 멤브레인 표면에 배 가스 중 증기가 수착하게 되어 멤브레인 파울링 현상이 발생하기 되어 증기의 투과속도를 저해하게 된다. In addition, the pore distribution of the membrane is limited to 0.2 to 1.0 nanometer because the moisture contained in the flue gas is vaporized and suitable to pass through the membrane pores, but when it becomes wider than the pore distribution mentioned above, The vapor in the gas is soaked so that the membrane fouling phenomenon occurs to inhibit the permeation rate of the vapor.
한편 상기에서 언급한 멤브레인의 기공분포가 를 0.2나노미터다 작을 때에는 600~700℃에 해당되는 증기입자보다 작은 기공을 함유하고 있어 증기입자의 투과속도를 저해하게 된다.On the other hand, when the pore distribution of the membrane mentioned above is less than 0.2 nanometers, it contains pores smaller than the vapor particles corresponding to 600 ~ 700 ℃, thereby inhibiting the permeation rate of the steam particles.
멤브레인 반응기에서 압력차를 50mmAq이하로 유지하는 이유는 연료전지 스택(50)에서 수소와 산소의 전기화학반응과 밀접한 관계가 있는 것으로, 상기에서 언급한 압력차보다 클 경우에는 연료전지 스택에서의 전기화학반응을 저해하게 되어 전기효율이 떨어지게 된다.The reason why the pressure difference is kept below 50 mmAq in the membrane reactor is closely related to the electrochemical reaction between hydrogen and oxygen in the
또한, 중공사 멤브레인 반응기에서 중공사 내부의 진공도를 0.1 ~ 1토르를 유지하는 이유는 배 가스 중 함유된 수분제거율을 말하는 투과율과 밀접한 관계를 가지고있다. 즉, 상기에서 언급한 진공도보다 클 경우에는 배 가스 중 수분의 투과 속도가 커지지만 멤브레인 기공에 수분이 누적되는 멤브레인 파울링 현상이 발생하여 투과속도가 떨어지게 되고, 상기에서 언급한 진공도보다 작을 시에는 배 가스 중 수분제거속도가 떨어지게 된다.In the hollow fiber membrane reactor, the reason why the vacuum degree inside the hollow fiber is maintained at 0.1 to 1 Torr is closely related to the permeability, which refers to the water removal rate contained in the exhaust gas. That is, if the above-mentioned vacuum degree is larger than the above-mentioned vacuum rate, the permeation rate of the moisture in the exhaust gas increases, but the membrane fouling phenomenon that the moisture accumulates in the membrane pores occurs and the permeation rate is lowered, The moisture removal rate of the flue gas is reduced.
이하 본 발명을 실시예외 비교에를 들어 상세하게 설명하면 다음과 같다. Hereinafter, the present invention will be described in detail by way of examples.
[실시예 1]Example 1
연료전지(50)에 공급되는 메탄을 함유한 연료(10)가 탈황기(20)을 거쳐서 연료 중에 함유된 황 성분을 제거하여 가습기(30)에 공급되고, 한편 연료전지 스택(50)에서 배출되는 배 가스가 중공사 내부직경이 0.5mm이고, 기공분포가 0.2~1.0나노미터인 중공사형 멤브레인(60)에서 압력차를 30mmAq로 유지하고, 상기 멤브레인(60)에서 수분을 흡입하기 위하여 사용되는 중공사 멤브레인 내부의 진공도를 0.1 토르를 유지할 때 배 가스 중 수분 제거율은 53%이다. The
[실시예 2]Example 2
연료전지에 공급되는 메탄을 함유한 연료(10)가 탈황기(20)을 거쳐서 연료 중에 함유된 황 성분을 제거하여 가습기(30)에 공급되고, 한편 연료전지 스택(50)에서 배출되는 배 가스가 중공사 내부직경이 1.0mm이고, 기공분포가 0.2~1.0나노미터인 중공사형 멤브레인(60)에서 압력차를 30mmAq로 유지하고, 멤브레인에서 수분을 흡입하기 위하여 사용되는 중공사 멤브레인 내부의 진공도를 0.1 토르를 유지할 때 배 가스 중 수분 제거율은 55%이다.The
[실시예 3]Example 3
연료전지에 공급되는 메탄을 함유한 연료(10)가 탈황기(20)을 거쳐서 연료 중에 함유된 황 성분을 제거하여 가습기(30)에 공급되고, 한편 연료전지 스택(50)에서 배출되는 배 가스가 중공사형 멤브레인(60) 내부직경이 1.5mm이고, 기공분포가 0.2~1.0나노미터인 멤브레인에서 압력차를 10mmAq로 유지하고, 멤브레인에서 수분을 흡입하기 위하여 사용되는 중공사 멤브레인 내부의 진공도를 0.1 토르를 유지할 때 배가스중 수분 제거율은 62%이다.The
[비교예 1]Comparative Example 1
연료전지에 공급되는 메탄을 함유한 연료가 탈황기을 거쳐서 연료 중에 함유된 황 성분을 제거하여 가습기에 공급되고, 한편 연료전지 스택에서 배출되는 배가스가 중공사 멤브레인 내부직경이 3mm이고, 기공분포가 0.2~1.0나노미터인 멤브레인에서 압력차를 30mmAq로 유지하고, 멤브레인 반응기에서 수분을 흡입하기 위하여 사용되는 중공사 멤브레인 내부의 진공도를 2토르를 유지할 때 배가스중 수분 제거율은 33%이다. The fuel containing methane supplied to the fuel cell is desulfurized to remove sulfur content in the fuel and supplied to the humidifier, while the exhaust gas discharged from the fuel cell stack has a diameter of 3 mm inside the hollow fiber membrane and a pore distribution of 0.2. The water removal rate in the flue gas is 33% when the pressure difference is maintained at 30 mmAq at the membrane of ˜1.0 nanometer and the vacuum degree inside the hollow fiber membrane used to suck water in the membrane reactor is 2 Torr.
[비교예 2]Comparative Example 2
연료전지에 공급되는 메탄을 함유한 연료가 탈황기을 거쳐서 연료 중에 함유된 황성분을 제거하여 가습기에 공급되고, 한편 연료전지 스택에서 배출되는 배가스가 중공사 멤브레인 내부직경이 3mm이고, 기공분포가 0.2~1.0나노미터인 멤브레인에서 압력차를 60mmAq로 유지하고, 멤브레인에서 수분을 흡입하기 위하여 사용되는 중공사 멤브레인 내부의 진공도를 5토르를 유지할 때 배가스중 수분 제거율은 28%이다. The fuel containing methane supplied to the fuel cell is desulfurized to remove sulfur content in the fuel and is supplied to the humidifier, while the exhaust gas discharged from the fuel cell stack has a diameter of 3 mm inside the hollow fiber membrane and a pore distribution of 0.2 to The water removal rate in the flue gas is 28% when the pressure difference is maintained at 60 mmAq in the 1.0 nanometer membrane and the vacuum degree inside the hollow fiber membrane used to suck water in the membrane is 5 Torr.
[비교예 3]Comparative Example 3
연료전지에 공급되는 메탄을 함유한 연료가 탈황기을 거쳐서 연료에 함유된 황성분을 제거하여 가습기에 공급되고, 한편 연료전지 스택에서 배출되는 배가스가 중공사 멤브레인 내부직경이 3mm이고, 기공분포가 0.2~1.0나노미터인 멤브레인에서 압력차를 100mmAq로 유지하고, 멤브레인에서 수분을 흡입하기 위하여 사용되는 중공사 멤브레인 내부의 진공도를 7토르를 유지할 때 배 가스 중 수분 제거율은 12%이다 The fuel containing methane supplied to the fuel cell is desulfurized to remove the sulfur component contained in the fuel and supplied to the humidifier, while the exhaust gas discharged from the fuel cell stack has a diameter of 3 mm inside the hollow fiber membrane and a pore distribution of 0.2 to When the pressure difference is maintained at 100 mmAq at the membrane of 1.0 nanometer and the vacuum degree inside the hollow fiber membrane used to suck water from the membrane is 7 Torr, the water removal rate in the exhaust gas is 12%.
상술한 바와 같은 본 발명의 용융탄산염 연료전지의 배 가스 수분제거 장치 및 그 방법은 연료전지에 공급되는 연료 중 증기/탄소비율을 조절하기 위한 가습기에 공급되는 연료전지 스택에서 배출되는 고열의 배 가스 중의 수분을 제거하여 가습기에 공급함으로써, 가습기의 온도제어를 일정하게 하여 그에 따른 천연가스 연료의 증기/탄소비율조절을 용이하게 함과 동시에 연료전지의 전기효율을 향상시킬 수 있는 장점이 있다.Exhaust gas moisture removal device and method of the molten carbonate fuel cell of the present invention as described above is a high heat exhaust gas discharged from the fuel cell stack supplied to the humidifier for controlling the steam / carbon ratio of the fuel supplied to the fuel cell By removing the water in the humidifier and supplying it to the humidifier, the temperature control of the humidifier is kept constant, thereby facilitating the control of the steam / carbon ratio of the natural gas fuel and improving the electrical efficiency of the fuel cell.
도 1은 종래 연료전지 배출가스 폐열회수방법을 설명하기 위한 공정도,1 is a process chart for explaining a conventional fuel cell exhaust gas waste heat recovery method,
도 2는 본 발명에 따른 용융탄산염 연료전지의 배 가스 수분제거 방법 설명하는 공정도.Figure 2 is a process for explaining the exhaust gas moisture removal method of the molten carbonate fuel cell according to the present invention.
*도면의 주요부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *
10 : 연료 20 : 탈황기10
30 : 가습기 40 : 개질기30: humidifier 40: reformer
50 : 연료전지 스택 60 : 중공사형 멤브레인50: fuel cell stack 60: hollow fiber membrane
70 : 진공펌프 70: vacuum pump
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070135098A KR100958991B1 (en) | 2007-12-21 | 2007-12-21 | Exhaust gas moisture removal device of molten carbonate fuel cell and its method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020070135098A KR100958991B1 (en) | 2007-12-21 | 2007-12-21 | Exhaust gas moisture removal device of molten carbonate fuel cell and its method |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20090067426A true KR20090067426A (en) | 2009-06-25 |
KR100958991B1 KR100958991B1 (en) | 2010-05-20 |
Family
ID=40995145
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020070135098A KR100958991B1 (en) | 2007-12-21 | 2007-12-21 | Exhaust gas moisture removal device of molten carbonate fuel cell and its method |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100958991B1 (en) |
Cited By (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9077007B2 (en) | 2013-03-15 | 2015-07-07 | Exxonmobil Research And Engineering Company | Integrated power generation and chemical production using fuel cells |
US9077005B2 (en) | 2013-03-15 | 2015-07-07 | Exxonmobil Research And Engineering Company | Integration of molten carbonate fuel cells in Fischer-Tropsch synthesis |
US9556753B2 (en) | 2013-09-30 | 2017-01-31 | Exxonmobil Research And Engineering Company | Power generation and CO2 capture with turbines in series |
US9755258B2 (en) | 2013-09-30 | 2017-09-05 | Exxonmobil Research And Engineering Company | Integrated power generation and chemical production using solid oxide fuel cells |
US9819042B2 (en) | 2013-09-30 | 2017-11-14 | Exxonmobil Research And Engineering Company | Fuel cell integration within a heat recovery steam generator |
KR20190124421A (en) * | 2018-04-26 | 2019-11-05 | 비고 메디컬 가부시키가이샤 | Oxygen Concentrator |
CN113454821A (en) * | 2018-11-30 | 2021-09-28 | 燃料电池能有限公司 | For deep CO2Regeneration of captured molten carbonate fuel cells |
US11211621B2 (en) | 2018-11-30 | 2021-12-28 | Exxonmobil Research And Engineering Company | Regeneration of molten carbonate fuel cells for deep CO2 capture |
US11335937B2 (en) | 2019-11-26 | 2022-05-17 | Exxonmobil Research And Engineering Company | Operation of molten carbonate fuel cells with high electrolyte fill level |
US11424469B2 (en) | 2018-11-30 | 2022-08-23 | ExxonMobil Technology and Engineering Company | Elevated pressure operation of molten carbonate fuel cells with enhanced CO2 utilization |
US11476486B2 (en) | 2018-11-30 | 2022-10-18 | ExxonMobil Technology and Engineering Company | Fuel cell staging for molten carbonate fuel cells |
US11664519B2 (en) | 2019-11-26 | 2023-05-30 | Exxonmobil Research And Engineering Company | Fuel cell module assembly and systems using same |
US11695122B2 (en) | 2018-11-30 | 2023-07-04 | ExxonMobil Technology and Engineering Company | Layered cathode for molten carbonate fuel cell |
US11742508B2 (en) | 2018-11-30 | 2023-08-29 | ExxonMobil Technology and Engineering Company | Reforming catalyst pattern for fuel cell operated with enhanced CO2 utilization |
US11888187B2 (en) | 2018-11-30 | 2024-01-30 | ExxonMobil Technology and Engineering Company | Operation of molten carbonate fuel cells with enhanced CO2 utilization |
US11978931B2 (en) | 2021-02-11 | 2024-05-07 | ExxonMobil Technology and Engineering Company | Flow baffle for molten carbonate fuel cell |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4961698B2 (en) * | 2005-09-01 | 2012-06-27 | 株式会社日立製作所 | Fuel cell system |
KR100778207B1 (en) * | 2006-11-08 | 2007-11-29 | 주식회사 효성 | Fuel cell system using waste heat of power converter |
-
2007
- 2007-12-21 KR KR1020070135098A patent/KR100958991B1/en active IP Right Grant
Cited By (42)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9419295B2 (en) | 2013-03-15 | 2016-08-16 | Exxonmobil Research And Engineering Company | Integrated power generation and chemical production using fuel cells at a reduced electrical efficiency |
US9455463B2 (en) | 2013-03-15 | 2016-09-27 | Exxonmobil Research And Engineering Company | Integrated electrical power and chemical production using fuel cells |
US9077005B2 (en) | 2013-03-15 | 2015-07-07 | Exxonmobil Research And Engineering Company | Integration of molten carbonate fuel cells in Fischer-Tropsch synthesis |
US9077006B2 (en) | 2013-03-15 | 2015-07-07 | Exxonmobil Research And Engineering Company | Integrated power generation and carbon capture using fuel cells |
US9178234B2 (en) | 2013-03-15 | 2015-11-03 | Exxonmobil Research And Engineering Company | Integrated power generation using molten carbonate fuel cells |
US9257711B2 (en) | 2013-03-15 | 2016-02-09 | Exxonmobil Research And Engineering Company | Integrated carbon capture and chemical production using fuel cells |
US9263755B2 (en) | 2013-03-15 | 2016-02-16 | Exxonmobil Research And Engineering Company | Integration of molten carbonate fuel cells in iron and steel processing |
US9343763B2 (en) | 2013-03-15 | 2016-05-17 | Exxonmobil Research And Engineering Company | Integration of molten carbonate fuel cells for synthesis of nitrogen compounds |
US9343764B2 (en) | 2013-03-15 | 2016-05-17 | Exxonmobil Research And Engineering Company | Integration of molten carbonate fuel cells in methanol synthesis |
US9520607B2 (en) | 2013-03-15 | 2016-12-13 | Exxonmobil Research And Engineering Company | Integration of molten carbonate fuel cells with fermentation processes |
US9077008B2 (en) | 2013-03-15 | 2015-07-07 | Exxonmobil Research And Engineering Company | Integrated power generation and chemical production using fuel cells |
US9941534B2 (en) | 2013-03-15 | 2018-04-10 | Exxonmobil Research And Engineering Company | Integrated power generation and carbon capture using fuel cells |
US9362580B2 (en) | 2013-03-15 | 2016-06-07 | Exxonmobil Research And Engineering Company | Integration of molten carbonate fuel cells in a refinery setting |
US9553321B2 (en) | 2013-03-15 | 2017-01-24 | Exxonmobile Research And Engineering Company | Integrated power generation and carbon capture using fuel cells |
US10676799B2 (en) | 2013-03-15 | 2020-06-09 | Exxonmobil Research And Engineering Company | Integrated electrical power and chemical production using fuel cells |
US9647284B2 (en) | 2013-03-15 | 2017-05-09 | Exxonmobil Research And Engineering Company | Integration of molten carbonate fuel cells in Fischer-Tropsch synthesis |
US9650246B2 (en) | 2013-03-15 | 2017-05-16 | Exxonmobil Research And Engineering Company | Integration of molten carbonate fuel cells in fischer-tropsch synthesis |
US9735440B2 (en) | 2013-03-15 | 2017-08-15 | Exxonmobil Research And Engineering Company | Integration of molten carbonate fuel cells in fischer-tropsch synthesis |
US10093997B2 (en) | 2013-03-15 | 2018-10-09 | Exxonmobil Research And Engineering Company | Integration of molten carbonate fuel cells in iron and steel processing |
US9786939B2 (en) | 2013-03-15 | 2017-10-10 | Exxonmobil Research And Engineering Company | Integrated power generation and chemical production using fuel cells |
US9077007B2 (en) | 2013-03-15 | 2015-07-07 | Exxonmobil Research And Engineering Company | Integrated power generation and chemical production using fuel cells |
US9923219B2 (en) | 2013-03-15 | 2018-03-20 | Exxonmobile Research And Engineering Company | Integrated operation of molten carbonate fuel cells |
US9819042B2 (en) | 2013-09-30 | 2017-11-14 | Exxonmobil Research And Engineering Company | Fuel cell integration within a heat recovery steam generator |
US9755258B2 (en) | 2013-09-30 | 2017-09-05 | Exxonmobil Research And Engineering Company | Integrated power generation and chemical production using solid oxide fuel cells |
US10283802B2 (en) | 2013-09-30 | 2019-05-07 | Exxonmobil Research And Engineering Company | Fuel cell integration within a heat recovery steam generator |
US9556753B2 (en) | 2013-09-30 | 2017-01-31 | Exxonmobil Research And Engineering Company | Power generation and CO2 capture with turbines in series |
KR20190124421A (en) * | 2018-04-26 | 2019-11-05 | 비고 메디컬 가부시키가이샤 | Oxygen Concentrator |
US11476486B2 (en) | 2018-11-30 | 2022-10-18 | ExxonMobil Technology and Engineering Company | Fuel cell staging for molten carbonate fuel cells |
US11695122B2 (en) | 2018-11-30 | 2023-07-04 | ExxonMobil Technology and Engineering Company | Layered cathode for molten carbonate fuel cell |
US12095129B2 (en) | 2018-11-30 | 2024-09-17 | ExxonMobil Technology and Engineering Company | Reforming catalyst pattern for fuel cell operated with enhanced CO2 utilization |
US11424469B2 (en) | 2018-11-30 | 2022-08-23 | ExxonMobil Technology and Engineering Company | Elevated pressure operation of molten carbonate fuel cells with enhanced CO2 utilization |
CN113454821A (en) * | 2018-11-30 | 2021-09-28 | 燃料电池能有限公司 | For deep CO2Regeneration of captured molten carbonate fuel cells |
US11616248B2 (en) | 2018-11-30 | 2023-03-28 | ExxonMobil Technology and Engineering Company | Elevated pressure operation of molten carbonate fuel cells with enhanced CO2 utilization |
CN113454821B (en) * | 2018-11-30 | 2024-02-27 | 燃料电池能有限公司 | For depth CO 2 Regeneration of captured molten carbonate fuel cells |
US11211621B2 (en) | 2018-11-30 | 2021-12-28 | Exxonmobil Research And Engineering Company | Regeneration of molten carbonate fuel cells for deep CO2 capture |
US11742508B2 (en) | 2018-11-30 | 2023-08-29 | ExxonMobil Technology and Engineering Company | Reforming catalyst pattern for fuel cell operated with enhanced CO2 utilization |
US11843150B2 (en) | 2018-11-30 | 2023-12-12 | ExxonMobil Technology and Engineering Company | Fuel cell staging for molten carbonate fuel cells |
US11888187B2 (en) | 2018-11-30 | 2024-01-30 | ExxonMobil Technology and Engineering Company | Operation of molten carbonate fuel cells with enhanced CO2 utilization |
US11888199B2 (en) | 2019-11-26 | 2024-01-30 | ExxonMobil Technology and Engineering Company | Operation of molten carbonate fuel cells with high electrolyte fill level |
US11664519B2 (en) | 2019-11-26 | 2023-05-30 | Exxonmobil Research And Engineering Company | Fuel cell module assembly and systems using same |
US11335937B2 (en) | 2019-11-26 | 2022-05-17 | Exxonmobil Research And Engineering Company | Operation of molten carbonate fuel cells with high electrolyte fill level |
US11978931B2 (en) | 2021-02-11 | 2024-05-07 | ExxonMobil Technology and Engineering Company | Flow baffle for molten carbonate fuel cell |
Also Published As
Publication number | Publication date |
---|---|
KR100958991B1 (en) | 2010-05-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100958991B1 (en) | Exhaust gas moisture removal device of molten carbonate fuel cell and its method | |
CA2401758C (en) | Fuel cell power generation method and system | |
KR100718116B1 (en) | High Temperature PEM Fuel Cell System | |
CN112912338B (en) | Fuel cell system and exhaust gas regeneration method | |
KR102526672B1 (en) | Method for operating water electrolysis system capable of stably maintaining quality of hydrogen | |
JP2008234869A (en) | Fuel cell system | |
EP3267524B1 (en) | Fuel cell system | |
JP4419329B2 (en) | Solid polymer electrolyte fuel cell power generator | |
JP6152436B1 (en) | Fuel cell system | |
US8328886B2 (en) | Fuel processor having temperature control function for co shift reactor and method of operating the fuel processor | |
JP2002097001A (en) | Fuel gas reformer and fuel-cell system | |
JP2010198920A (en) | Fuel cell power generation system | |
JP6688818B2 (en) | Fuel cell system | |
KR101447334B1 (en) | Desulfurizer | |
JP2007325988A (en) | Decarboxylation device, and fuel cell power generation device | |
JP2005147045A (en) | Biogas power generating device | |
JP4363969B2 (en) | Hydrogen production equipment | |
KR100950363B1 (en) | Steam / carbon ratio control device of fuel used in molten carbonate fuel cell and its method | |
KR20090067428A (en) | Natural gas desulfurization method as fuel for molten carbonate fuel cell | |
JP7181105B2 (en) | Fuel cell system and method for regenerating anode off-gas | |
JP2005011563A (en) | Fuel cell cogeneration system | |
JP5324073B2 (en) | Fuel cell system | |
KR101270790B1 (en) | Pre-processing assembly and fuel cell system comprising the same | |
JP5461880B2 (en) | Fuel cell reformer | |
JP2016184549A (en) | Gas production device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20071221 |
|
PA0201 | Request for examination | ||
PG1501 | Laying open of application | ||
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20091015 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20100408 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20100512 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20100512 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20130514 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20130514 Start annual number: 4 End annual number: 4 |
|
FPAY | Annual fee payment |
Payment date: 20140513 Year of fee payment: 5 |
|
PR1001 | Payment of annual fee |
Payment date: 20140513 Start annual number: 5 End annual number: 5 |
|
FPAY | Annual fee payment |
Payment date: 20150512 Year of fee payment: 6 |
|
PR1001 | Payment of annual fee |
Payment date: 20150512 Start annual number: 6 End annual number: 6 |
|
FPAY | Annual fee payment |
Payment date: 20160512 Year of fee payment: 7 |
|
PR1001 | Payment of annual fee |
Payment date: 20160512 Start annual number: 7 End annual number: 7 |
|
FPAY | Annual fee payment |
Payment date: 20170512 Year of fee payment: 8 |
|
PR1001 | Payment of annual fee |
Payment date: 20170512 Start annual number: 8 End annual number: 8 |
|
FPAY | Annual fee payment |
Payment date: 20180510 Year of fee payment: 9 |
|
PR1001 | Payment of annual fee |
Payment date: 20180510 Start annual number: 9 End annual number: 9 |
|
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20210223 |