KR20080029574A - Method for fabricating recessed contact plug in semiconductor device by in situ etch - Google Patents
Method for fabricating recessed contact plug in semiconductor device by in situ etch Download PDFInfo
- Publication number
- KR20080029574A KR20080029574A KR1020060096356A KR20060096356A KR20080029574A KR 20080029574 A KR20080029574 A KR 20080029574A KR 1020060096356 A KR1020060096356 A KR 1020060096356A KR 20060096356 A KR20060096356 A KR 20060096356A KR 20080029574 A KR20080029574 A KR 20080029574A
- Authority
- KR
- South Korea
- Prior art keywords
- forming
- semiconductor device
- conductive layer
- contact plug
- contact
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 47
- 239000004065 semiconductor Substances 0.000 title claims abstract description 33
- 238000011065 in-situ storage Methods 0.000 title claims abstract description 16
- 238000005530 etching Methods 0.000 claims abstract description 24
- 239000000758 substrate Substances 0.000 claims abstract description 19
- 125000006850 spacer group Chemical group 0.000 claims abstract description 14
- 238000000151 deposition Methods 0.000 claims description 29
- 230000008021 deposition Effects 0.000 claims description 21
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 16
- 229910052710 silicon Inorganic materials 0.000 claims description 16
- 239000010703 silicon Substances 0.000 claims description 16
- 229910000577 Silicon-germanium Inorganic materials 0.000 claims description 8
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims description 8
- LEVVHYCKPQWKOP-UHFFFAOYSA-N [Si].[Ge] Chemical compound [Si].[Ge] LEVVHYCKPQWKOP-UHFFFAOYSA-N 0.000 claims description 7
- 229910052736 halogen Inorganic materials 0.000 claims description 7
- 150000002367 halogens Chemical class 0.000 claims description 7
- 239000000463 material Substances 0.000 claims description 7
- 238000005468 ion implantation Methods 0.000 claims description 6
- 238000004518 low pressure chemical vapour deposition Methods 0.000 claims description 6
- 230000007246 mechanism Effects 0.000 claims description 6
- 230000015572 biosynthetic process Effects 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 4
- 229910052751 metal Inorganic materials 0.000 claims description 4
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 claims description 4
- 238000001289 rapid thermal chemical vapour deposition Methods 0.000 claims description 4
- 229910021332 silicide Inorganic materials 0.000 claims description 4
- 239000010936 titanium Substances 0.000 claims description 4
- 238000000038 ultrahigh vacuum chemical vapour deposition Methods 0.000 claims description 4
- AXQKVSDUCKWEKE-UHFFFAOYSA-N [C].[Ge].[Si] Chemical compound [C].[Ge].[Si] AXQKVSDUCKWEKE-UHFFFAOYSA-N 0.000 claims description 3
- 238000004140 cleaning Methods 0.000 claims description 3
- 239000007769 metal material Substances 0.000 claims description 3
- FVBUAEGBCNSCDD-UHFFFAOYSA-N silicide(4-) Chemical compound [Si-4] FVBUAEGBCNSCDD-UHFFFAOYSA-N 0.000 claims description 3
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 claims description 3
- 239000010937 tungsten Substances 0.000 claims description 3
- 229910052721 tungsten Inorganic materials 0.000 claims description 3
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 2
- 239000010941 cobalt Substances 0.000 claims description 2
- 229910017052 cobalt Inorganic materials 0.000 claims description 2
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 claims description 2
- 238000005108 dry cleaning Methods 0.000 claims description 2
- 230000005284 excitation Effects 0.000 claims description 2
- 238000004381 surface treatment Methods 0.000 claims description 2
- 229910052719 titanium Inorganic materials 0.000 claims description 2
- 229910003811 SiGeC Inorganic materials 0.000 claims 1
- 238000001505 atmospheric-pressure chemical vapour deposition Methods 0.000 claims 1
- 150000002500 ions Chemical class 0.000 claims 1
- 230000008569 process Effects 0.000 abstract description 5
- 238000004519 manufacturing process Methods 0.000 abstract description 3
- 239000010408 film Substances 0.000 description 12
- 239000007789 gas Substances 0.000 description 8
- 238000005137 deposition process Methods 0.000 description 7
- 238000001312 dry etching Methods 0.000 description 6
- 229920005591 polysilicon Polymers 0.000 description 6
- 230000007423 decrease Effects 0.000 description 5
- 230000007547 defect Effects 0.000 description 5
- 239000002019 doping agent Substances 0.000 description 4
- 230000010354 integration Effects 0.000 description 4
- 229920000642 polymer Polymers 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 3
- 150000004767 nitrides Chemical class 0.000 description 3
- 238000000348 solid-phase epitaxy Methods 0.000 description 3
- 229910052581 Si3N4 Inorganic materials 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000012535 impurity Substances 0.000 description 2
- 238000005498 polishing Methods 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 238000000407 epitaxy Methods 0.000 description 1
- 238000011066 ex-situ storage Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000000059 patterning Methods 0.000 description 1
- 238000002203 pretreatment Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- SBEQWOXEGHQIMW-UHFFFAOYSA-N silicon Chemical compound [Si].[Si] SBEQWOXEGHQIMW-UHFFFAOYSA-N 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- WQJQOUPTWCFRMM-UHFFFAOYSA-N tungsten disilicide Chemical compound [Si]#[W]#[Si] WQJQOUPTWCFRMM-UHFFFAOYSA-N 0.000 description 1
- 229910021342 tungsten silicide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/26—Bombardment with radiation
- H01L21/263—Bombardment with radiation with high-energy radiation
- H01L21/265—Bombardment with radiation with high-energy radiation producing ion implantation
- H01L21/26506—Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76801—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing
- H01L21/76802—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics
- H01L21/76805—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the dielectrics, e.g. smoothing by forming openings in dielectrics the opening being a via or contact hole penetrating the underlying conductor
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/768—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
- H01L21/76838—Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
- H01L21/76877—Filling of holes, grooves or trenches, e.g. vias, with conductive material
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- High Energy & Nuclear Physics (AREA)
- Toxicology (AREA)
- Health & Medical Sciences (AREA)
- Plasma & Fusion (AREA)
- Electrodes Of Semiconductors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
도 1a 및 도 1b는 종래기술에 따른 리세스콘택의 형성 방법을 도시한 도면.1A and 1B illustrate a method of forming a recess contact according to the prior art.
도 1c는 종래기술에 따른 리세스콘택의 콘택면을 도시한 도면.1C illustrates a contact surface of a recess contact according to the prior art.
도 2a 내지 도 2d는 본 발명의 실시예에 따른 반도체소자의 콘택플러그 형성 방법을 도시한 공정 단면도.2A to 2D are cross-sectional views illustrating a method of forming a contact plug in a semiconductor device according to an embodiment of the present invention.
* 도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings
21 : 반도체기판 22 : 게이트산화막21
23 : 게이트전극 24 : 게이트하드마스크23: gate electrode 24: gate hard mask
25 : 게이트스페이서 26 : 소스/드레인25: gate spacer 26: source / drain
27 : 콘택홀 28A : 플러그27:
본 발명은 반도체소자의 제조 방법에 관한 것으로, 특히 반도체소자의 콘택 형성 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a semiconductor device, and more particularly, to a method for forming a contact for a semiconductor device.
반도체 소자가 점점 소형화, 고집적화되면서 콘택크기의 감소에 의한 콘택면적의 감소로 인해 콘택저항의 증가와 동작전류의 감소 현상이 나타나고 있고, 이로 인해 tWR 불량 및 리프레시 특성 저하와 같은 소자 열화 현상이 나타나고 있다. 따라서, 소자의 콘택저항을 낮추고 동작전류를 향상시키려는 많은 시도들이 진행되고 있다.As semiconductor devices become smaller and more integrated, the contact area decreases due to the decrease in contact size and the operating current decreases, resulting in device degradation such as poor tWR and deterioration of refresh characteristics. . Accordingly, many attempts have been made to lower the contact resistance of the device and to improve the operating current.
콘택저항 감소를 위한 방법으로는 가능한 한 비저항이 낮은 물질을 플러그로 대체하는 방법, 그리고 접합과 플러그간 계면에서 발생하는 계면 저항을 감소하기 위한 계면 조절 방법이 있다.As a method for reducing contact resistance, there is a method of replacing a material having a low resistivity with a plug as much as possible, and an interface control method for reducing interface resistance occurring at an interface between a junction and a plug.
먼저 플러그 물질의 비저항을 낮추기 위한 일반적인 방법으로 실리콘기판의 접합(Junction)의 도펀트 농도를 높이거나, 플러그로 사용하는 폴리실리콘 내의 도펀트인 인(Phosphorous) 농도를 높이는 방법을 사용한다.First, as a general method for lowering the resistivity of the plug material, a method of increasing the dopant concentration of the junction of the silicon substrate or a dopant concentration of the dopant in the polysilicon used as the plug is used.
그러나, 위와 같이 농도를 증가시키는 방법은 도펀트 확산에 의한 내압의 열화 및 소자의 리프레시 특성을 저하시키는 문제가 발생하므로 농도를 높이는 방법에도 한계가 있다.However, the method of increasing the concentration as described above has a limitation in the method of increasing the concentration because the problem of deterioration of internal pressure due to dopant diffusion and deterioration of the refresh characteristics of the device.
플러그 물질의 비저항을 낮추기 위한 두 번째 방법으로 기존 도핑된 실리콘을 사용하지 않고, 저항이 실리콘보다 낮은 금속물질을 사용할 수도 있다.As a second method of lowering the resistivity of the plug material, a metal material having a lower resistance than that of the silicon may be used instead of the conventional doped silicon.
두번째로 플러그로 사용될 폴리실리콘 증착시 대기압하에서 퍼니스에 장입(Loading)될 때 존재하는 산소 농도에 의해 폴리실리콘과 실리콘기판 사이의 계 면에 미세 산화막이 형성되는데, 이것이 콘택저항의 증가에 큰 영향을 주는 것으로 알려져 있다.Secondly, a fine oxide film is formed on the interface between polysilicon and silicon substrate due to the oxygen concentration present when loading the furnace under atmospheric pressure during polysilicon deposition to be used as a plug, which greatly affects the increase in contact resistance. It is known to give.
이와 같은 문제점들을 극복하고자 싱글형 화학기상증착(Single type CVD) 장비에서 에피택셜실리콘(Epitaxial si)을 형성하여 기존 반도체소자 제조 공정을 그대로 적용하면서도 저온증착이 가능하고 저농도의 도핑농도로도 충분히 기존 폴리실리콘의 문제점을 극복할 수 있는 SEG(Selective Epitaxy Growth), SPE(Solid Phase Epitaxy) 등의 적용 가능성이 기대되고 있다.In order to overcome these problems, epitaxial silicon is formed in a single type CVD system, and the existing semiconductor device manufacturing process is applied as it is, but it can be deposited at low temperature and is sufficiently existing even at low concentration of doping. Applications such as selective epitaxy growth (SEG) and solid phase epitaxy (SPE) are expected to overcome the problems of polysilicon.
현재 서브 100nm 이하의 반도체 소자에서 SEG, SPE에 의한 계면 제어에 의해 콘택저항을 크게 낮출 수 있을 것으로 기대되고 있으나, 소자가 더욱 고집적화가 계속됨에 따라 더욱 낮은 콘택저항을 유지해야 하므로 SEG, SPE 방법에 의한 에피택셜실리콘도 한계를 나타낼 것으로 예상된다.Currently, it is expected that the contact resistance can be greatly reduced by the interface control by SEG and SPE in sub-100 nm or less semiconductor devices. However, as the integration of the devices continues to be higher, the lower contact resistance must be maintained. Epitaxial silicon is also expected to show a limit.
에피택셜실리콘도 물질 자체의 비저항 측면에서 한계가 있기 때문에 에피택셜 실리콘에 대략 1E20atoms/cm3 수준으로 약 1E-3mΩ-cm 정도의 비저항값을 보이며 이 이하로 낮추기는 곤란하다.Since epitaxial silicon also has a limit in terms of the resistivity of the material itself, it exhibits a specific resistance value of about 1E-3 mΩ-cm at the level of about 1E20 atoms / cm 3 in epitaxial silicon, and it is difficult to lower it below this level.
따라서 서브 100nm 또는 그 이하의 차세대 반도체 소자에서는 에피택셜실리콘을 적용시의 콘택저항보다 더 낮은 콘택저항을 가지는 방법의 개발을 필요로 한다.Therefore, it is necessary to develop a method having a contact resistance lower than that of the application of epitaxial silicon in the next-generation semiconductor device of sub 100 nm or less.
상술한 것과 같은 여러가지 콘택저항을 줄이고자 하는 방법은 플러그물질의 선택 및 계면의 제어에 집중되어 있으며, 위에 언급한 각각의 한계 때문에 차세대 반도체소자에서의 콘택저항을 만족시키기 어려울 가능성이 매우 크다.The various methods of reducing contact resistance as described above are focused on the selection of the plug material and the control of the interface, and it is very likely that it is difficult to satisfy the contact resistance in the next-generation semiconductor devices due to the above-mentioned limitations.
따라서, 콘택면적의 감소에 따라 발생하는 콘택저항증가 해결의 궁극적인 방법은 고집적화 및 칩크기가 감소해도 실제 콘택면적을 유지하는 방법이 필요하며, 이를 위해 같은 콘택크기에서 콘택면적 증가 효과를 얻기 위해 도 1a와 같이 콘택표면보다 더 식각하여 리세스콘택(Recess contact) 구조를 형성하는 방법이 있다. Therefore, the ultimate method for solving the increase in contact resistance caused by the decrease of the contact area requires a method of maintaining the actual contact area even when the high integration and the chip size are reduced. As shown in FIG. 1A, there is a method of forming a recess contact structure by etching more than a contact surface.
도 1a 및 도 1b는 종래기술에 따른 리세스콘택의 형성 방법을 도시한 도면이다.1A and 1B illustrate a method of forming a recess contact according to the related art.
도 1a를 참조하면, 반도체기판(11) 상에 게이트산화막(12), 게이트전극(13) 및 게이트하드마스크(14)의 순서로 적층된 게이트패턴을 형성한 후, 게이트패턴의 측벽에 게이트스페이서(15)를 형성한다.Referring to FIG. 1A, a gate pattern stacked in the order of the
이어서, 소스/드레인(16) 형성을 위한 접합이온주입을 진행하고, 게이트패턴 사이의 반도체기판(11)을 일정 깊이 리세스시켜 콘택홀(17)을 형성한다.Subsequently, the junction ion implantation for forming the source /
도 1b에 도시된 바와 같이, 콘택홀(17)을 채우도록 도전층을 증착한 후 에치백(Etchback) 및 화학적기계적연마(CMP)를 진행하여 플러그(18)를 형성한다. 이와 같은 플러그(18)는 리세스 콘택 구조가 된다.As shown in FIG. 1B, after the conductive layer is deposited to fill the
도 1b에서 플러그(18)의 콘택면을 입체적으로 보여주는 도 1c를 보면 기존 구조의 콘택면적이 A인 것에 비해 리세스 콘택 구조는 (A+2B+2C)의 콘택면적을 가지게 되고, 저항은 면적에 반비례하므로 1/A: 1/(A+2B+2C)의 비율만큼 저항이 감소하게 된다.Referring to FIG. 1C, which shows a three-dimensional contact surface of the
그러나, 이와 같은 종래기술은 리세스에 의한 콘택면적의 증가에도 불구하 고, 플라즈마를 사용한 엑시츄(Ex-situ) 건식식각에 의해 폴리머의 흡착 및 기판 결함의 발생으로 콘택과 접합간 후속 처리에 의해 제거가 어려운 계면이 발생하는 문제, 리세스식각 과정에서 게이트스페이서 측벽의 손실이 발생하는 문제, 에피택셜증착으로 실시되는 후속 플러그 증착에 적합하지 않은 리세스식각프로파일이 형성되는 단점이 있다.However, this prior art, despite the increase in the contact area due to the recess, has been used in the subsequent processing between the contact and the junction due to the adsorption of the polymer and the generation of substrate defects by the ex-situ dry etching using plasma. Due to this, there is a problem in that an interface that is difficult to remove occurs, a loss of sidewalls of the gate spacers in the recess etching process, and a recess etching profile which is not suitable for subsequent plug deposition performed by epitaxial deposition is formed.
본 발명은 상기한 종래기술의 문제점을 해결하기 위해 제안된 것으로서, 접합부위에서의 결함 및 게이트스페이서의 손실을 방지하면서도 리세스의 깊이를 조절하는 것이 가능하고, 플러그와 접합간 계면 조절이 용이한 반도체소자의 콘택 형성 방법을 제공하는데 그 목적이 있다.The present invention has been proposed to solve the above problems of the prior art, and it is possible to control the depth of the recess while preventing defects and loss of the gate spacer at the junction, and easy to control the interface between the plug and junction It is an object of the present invention to provide a method for forming a contact of a device.
상기 목적을 달성하기 위한 본 발명의 반도체소자의 콘택 형성 방법은 반도체기판 상에 복수의 게이트패턴을 형성하는 단계; 상기 게이트패턴의 측벽에 게이트스페이서를 형성하는 단계; 도전층 증착 기구 내에 장입된 상태에서 상기 게이트패턴 사이의 반도체기판을 리세스식각하여 콘택홀을 형성하는 단계; 상기 콘택홀 내에 도전층을 증착하는 단계; 및 상기 도전층을 선택적으로 제거하여 콘택플러그를 형성하는 단계를 포함하는 것을 특징으로 하고, 상기 콘택홀을 형성하는 단계후에 상기 도전층을 증착하는 단계를 인시츄(In-situ)로 연속해서 진행하는 것을 특 징으로 하며, 상기 콘택홀을 형성하는 리세스식각은 할로겐(Halogen) 계열의 가스를 사용하는 것을 특징으로 한다.A method of forming a contact of a semiconductor device of the present invention for achieving the above object comprises the steps of forming a plurality of gate patterns on a semiconductor substrate; Forming a gate spacer on sidewalls of the gate pattern; Forming a contact hole by recess-etching the semiconductor substrate between the gate patterns in the state of being charged in the conductive layer deposition mechanism; Depositing a conductive layer in the contact hole; And selectively removing the conductive layer to form a contact plug, and after the forming of the contact hole, depositing the conductive layer continuously in-situ. The recess etching to form the contact hole is characterized by using a halogen-based gas.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예를 첨부 도면을 참조하여 설명하기로 한다.Hereinafter, the preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings so that those skilled in the art may easily implement the technical idea of the present invention. .
후술하는 본 발명은 리세스 식각을 플라즈마를 사용한 엑시츄 건식식각을 사용하지 않고, 후속 플러그 물질 증착 장비에서 HCl, Cl2와 같은 할로겐 계열의 가스를 사용하여 인시츄로 식각하므로써, 접합 부위에 전혀 결함(damage)을 유발하지 않으며, 측벽질화막의 손실을 방지하면서도 리세스 깊이를 조절하는 것이 가능하도록 하고, 특히 증착전 같은 챔버에서 식각을 한 후 대기중에 노출없이 바로 플러그를 증착하므로써 계면조절을 완벽하게 할 수 있으며, 플러그 증착 공정에 적합한 리세스 식각 프로파일을 제공하므로써 집적도 향상에 따른 콘택크기의 감소를 개선하여 고집적 소자에서 콘택저항을 낮출 수 있는 콘택 형성 방법을 제공한다.The present invention described below, without the use of the exo-situ dry etching using the plasma of the recess etch, By etching in-situ using the gas of halogen series such as HCl, C l2 in the subsequent plug material vapor-deposit device, all the bonded area It does not cause any damage, and it is possible to control the depth of the recess while preventing the loss of the sidewall nitride film, and perfect interfacial control by depositing the plug immediately without exposure to the atmosphere after etching in the same chamber before deposition. By providing a recess etch profile suitable for a plug deposition process, a contact formation method can be provided that can reduce contact resistance in a high-density device by improving a reduction in contact size due to improved integration.
도 2a 내지 도 2d는 본 발명의 실시예에 따른 반도체소자의 콘택플러그 형성 방법을 도시한 공정 단면도이다.2A through 2D are cross-sectional views illustrating a method of forming a contact plug in a semiconductor device according to an embodiment of the present invention.
도 2a에 도시된 바와 같이, 반도체기판(21) 상에 게이트패턴을 형성한다. 이때, 게이트패턴은 게이트산화막(22), 게이트전극(23) 및 게이트하드마스크(24)를 순차적으로 형성한 후 게이트패터닝을 진행하므로써 형성된다. 여기서, 게이트산화 막(22)은 SiO2이고, 게이트전극(23)은 폴리실리콘을 단독으로 사용하거나, 폴리실리콘 상에 텅스텐실리사이드 또는 텅스텐을 적층하여 형성한다. 그리고, 게이트하드마스크(24)는 실리콘질화막(Si3N4)으로 형성한다.As shown in FIG. 2A, a gate pattern is formed on the
이어서, 게이트패턴의 양측벽에 접하는 게이트스페이서(25)를 형성한다. 이때, 게이트스페이서(25)는 실리콘질화막(Si3N4) 증착 및 에치백(Etch back)을 통해 형성하며, 에치백에 의해 게이트스페이서(25) 외측 아래의 반도체기판(21)의 표면이 일부 리세스될 수 있다.Subsequently,
이어서, 소스/드레인(26)을 위한 접합 이온주입을 진행한다. 이때, 접합이온주입은 후속 리세스 깊이 및 최종 소자특성을 반영하여 최적화한다. 예컨대, 접합이온주입에 의한 소스/드레인(26)의 깊이는 후속 콘택홀보다 더 깊게 조절한다.Subsequently, junction ion implantation for the source /
도 2b에 도시된 바와 같이, 전처리(Pre treatment)를 진행한다. 이때, 전처리는 엑시츄 습식 세정, 건식 세정 또는 인시츄 표면 처리 등에 의해 플러그가 형성될 계면의 자연산화막(Native oxide) 등의 불순물을 제거한다. 예컨대, 습식세정은 BOE(Buffered Oxide Etchant)를 사용한다.As shown in FIG. 2B, pretreatment is performed. At this time, the pretreatment removes impurities such as native oxide and the like at the interface where the plug is to be formed by excitation wet cleaning, dry cleaning or in situ surface treatment. For example, wet cleaning uses BOE (Buffered Oxide Etchant).
전처리 후에 반도체기판(31)을 플러그로 사용될 도전층의 증착 장비로 장입(Loading)시킨 후에, 인시츄로 리세스 식각(In-situ recess etch)을 진행하여 콘택홀(contact hole, 27)을 형성한다. 예컨대, 도전층 증착 장비에서 인시츄로 할로겐(Halogen) 계열의 가스를 사용하여 노출된 반도체 기판(21) 표면을 정해진 깊이만큼 리세스시켜 콘택홀(27)을 형성한다. 여기서, 할로겐 계열의 가스는 HCl 또는 Cl2을 사용한다. 이처럼 할로겐 계열의 가스를 사용하여 리세스식각을 진행하면 게이트스페이서(25)의 손상을 방지하면서 리세스된 콘택홀(27)을 형성할 수 있고, 또한, 후속 플러그로 사용될 도전층의 증착공정에 적합한 식각프로파일을 얻을 수 있다.After the pre-treatment, the semiconductor substrate 31 is loaded into the deposition equipment of the conductive layer to be used as a plug, and then in-situ recess etch is performed in-situ to form contact holes 27. do. For example, in the conductive layer deposition apparatus, the
위와 같이, 리세스식각을 통해 콘택홀(27)을 형성한 후에는 대기중 노출없이 연속적으로 플러그로 사용될 도전층을 증착한다.As described above, after the
즉, 도 2c에 도시된 바와 같이, 콘택홀(27)에 플러그가 될 도전층(28)을 인시츄로 증착한다. 여기서, 도전층(28)은 폴리실리콘(Poly-silicon), 에피택셜실리콘(Epitaxial silicon), 에피택셜실리콘저마늄(Epitaxial SiGe), 에피택셜실리콘저마늄카본(Epitaxial SiGeC), 선택적에피택셜실리콘(SEG-Si), 선택적에피택셜실리콘저마늄(SEG-SiGe) 또는 선택적에피택셜실리콘저마늄카본(SEG-SiGeC) 중에서 선택되거나, 또는 텅스텐(W), 티타늄(Ti), 코발트(Co) 또는 금속실리사이드(Metal silicide) 중에서 선택되는 적어도 어느 하나의 금속물질이다.That is, as illustrated in FIG. 2C, the
도 2b 및 도 2c와 같이 콘택홀(27) 형성을 위한 리세스식각과 플러그를 위한 도전층(28) 증착은 인시츄로 진행한다. 플러그 증착 장비는 LPCVD(Low Pressure Chemical Vapor Deposition), VLPCVD(Very Low Pressure CVD), PECVD(Plasma Enhanced CVD), UHVCVD(Ultra High Vacuum CVD), RTCVD(Rapid Thermal CVD) 또는 APCVD(Atmosphere Pressure CVD) 중에서 선택된 어느 하나를 이용한다.2B and 2C, the recess etching for forming the
도 2d에 도시된 바와 같이, 후속으로 도전층(28)에 대해 에치백 및 화학기계 연마(CMP)를 순차 진행하여 이웃한 플러그(28A)간을 서로 분리시킨다.As shown in FIG. 2D, etch back and chemical mechanical polishing (CMP) are subsequently performed on the
상술한 실시예에 따르면, 본 발명은 다음과 같은 장점이 있다.According to the embodiment described above, the present invention has the following advantages.
먼저, 기존 플라즈마를 사용한 산화막 건식식각 또는 실리콘건식식각에 의한 리세스 방법에서는 기판내 적층된 다른 막, 예를 들어 산화막, 질화막 등과의 선택비를 유지하기 위해 혼합식각가스를 사용한다. 이때, 폴리머의 발생이 불가피하며, 이는 최종적으로 리세스된 표면에 흡착되어 후속 공정에서 제거를 위한 여러 공정이 필요하지만 일단 흡착된 변형 폴리머는 제거하기가 어렵다. 또한, 플라즈마를 사용하므로 리세스된 최종 표면의 결함도 불가피하며, 이는 후속 플러그 증착시 플러그와 접합간 계면을 유발하며, 특히 에피택셜실리콘, 실리콘저마늄의 선택적증착 공정에서는 플러그 증착 공정 조절을 어렵게 하며, 패싯(Facet), 적층결함(Stacking fault)이 발생할 수 있다. 본 발명에서는 플러그 증착 장비에서 플러그 증착 기구(Mechanism)와 동일한 방법에서 증착가스 대신 식각가스를 반응시키므로써 최종 식각 표면에 폴리머의 형성 및 결함을 전혀 유발하지 않으므로 콘택저항을 증가시키는 계면 문제가 발생하지 않으며, 후속 플러그 증착 공정을 안정적으로 할 수 있도록 한다.First, in a method of etching by oxide dry etching or silicon dry etching using an existing plasma, a mixed etching gas is used to maintain a selectivity with other films stacked in the substrate, for example, an oxide film and a nitride film. At this time, the generation of the polymer is inevitable, which is finally adsorbed on the recessed surface and requires several processes for removal in a subsequent process, but the modified polymer once adsorbed is difficult to remove. In addition, the use of plasma also inevitably leads to defects in the recessed final surface, which causes an interface between the plug and the junction during subsequent plug deposition, and makes it difficult to control the plug deposition process, particularly in the selective deposition process of epitaxial silicon and silicon germanium. Facet, stacking faults may occur. In the present invention, in the same method as the plug deposition mechanism (Mechanism) in the plug deposition equipment by reacting the etching gas instead of the deposition gas does not cause any formation of polymers and defects on the final etching surface does not cause an interface problem to increase the contact resistance And makes it possible to stabilize the subsequent plug deposition process.
둘째, 기존 건식식각의 경우, 기판 위 적층된 다른 막과의 선택비를 조절하지만 집적도 향상과 함께 보통 질화막을 사용하는 게이트스페이서의 두께도 감소하며, 측벽 손실을 최소화하며 일정하게 조절하는 것이 필요하다. 본 발명에 의한 인시츄 리세스 식각 방법은 형성된 게이트스페이서의 손실을 유발하지 않는다.Second, in the case of the conventional dry etching, the selectivity with other films stacked on the substrate is controlled, but the thickness of the gate spacer using the nitride film is also reduced and the sidewall loss is minimized and it is necessary to adjust the density uniformly with the improvement of the density. . The in situ recess etching method according to the present invention does not cause loss of the formed gate spacer.
셋째, 기존 건식식각에 의한 리세스 콘택의 형성 방법에서는 플러그 증착 전 전처리를 하더라도 전처리와 증착이 별도로 이루어지므로 계면 조절에 어려움이 있다. 본 발명에서는 표준 습식처리후 플러그 증착 장비에서 리세스를 형성하고 인시츄로 플러그 증착을 실시하므로 기존 방법에 비해 깨끗한 계면을 유지하는 것이 가능하다.Third, in the conventional method of forming a recess contact by dry etching, even if the pretreatment before plug deposition is performed, the pretreatment and the deposition are performed separately, thus making it difficult to control the interface. In the present invention, since the recess is formed in the plug deposition apparatus after the standard wet treatment, and the plug deposition is performed in situ, it is possible to maintain a clean interface as compared with the conventional method.
넷째, 리세스 식각 기구(Mechanism)와 플러그 증착 기구가 같으므로 플러그 증착에 용이한 식각프로파일을 만들 수 있다. 이 부분은 특히 선택적 에피택셜실리콘, 실리콘저마늄 증착 공정에서는 증착된 에피택셜 박막의 품질 개선에 효과가 있다.Fourth, since the recess etching mechanism and the plug deposition mechanism are the same, an etching profile that is easy to deposit the plug can be made. This area is particularly effective in improving the quality of the deposited epitaxial thin films in the selective epitaxial silicon and silicon germanium deposition processes.
본 발명의 기술 사상은 상기 바람직한 실시예에 따라 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술 분야의 통상의 전문가라면 본 발명의 기술 사상의 범위 내에서 다양한 실시예가 가능함을 이해할 수 있을 것이다.Although the technical idea of the present invention has been described in detail according to the above preferred embodiment, it should be noted that the above-described embodiment is for the purpose of description and not of limitation. In addition, those skilled in the art will understand that various embodiments are possible within the scope of the technical idea of the present invention.
상술한 본 발명은 플러그로 사용될 도전층의 증착장비에서 인시츄로 리세스식각을 통해 콘택홀을 형성하므로써 플러그와 접합 계면에서의 결함 및 게이트스페이서의 손실을 방지할 수 있고, 더불어 콘택홀의 깊이 조절이 용이한 효과가 있다.The present invention described above forms contact holes through recess etching in situ in the deposition equipment of the conductive layer to be used as the plug, thereby preventing defects and loss of gate spacers at the interface between the plug and the depth of the contact hole. This has an easy effect.
또한, 본 발명은 콘택홀 형성후에 플러그로 사용될 도전층을 연속해서 증착하므로써 계면을 불순물없이 조절이 가능하다.In addition, the present invention can control the interface without impurities by continuously depositing a conductive layer to be used as a plug after contact hole formation.
또한, 플러그로 사용될 도전층의 증착공정에 적합한 식각프로파일을 제공하 므로써 집적도 향상에 따른 콘택크기의 감소를 개선하여 고집적 소자에서 콘택 저항을 낮출 수 있는 효과가 있다.In addition, by providing an etching profile suitable for the deposition process of the conductive layer to be used as a plug it has the effect of reducing the contact resistance in the high-density device by improving the reduction of the contact size due to the integration.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060096356A KR20080029574A (en) | 2006-09-29 | 2006-09-29 | Method for fabricating recessed contact plug in semiconductor device by in situ etch |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020060096356A KR20080029574A (en) | 2006-09-29 | 2006-09-29 | Method for fabricating recessed contact plug in semiconductor device by in situ etch |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20080029574A true KR20080029574A (en) | 2008-04-03 |
Family
ID=39532122
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020060096356A KR20080029574A (en) | 2006-09-29 | 2006-09-29 | Method for fabricating recessed contact plug in semiconductor device by in situ etch |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20080029574A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101015124B1 (en) * | 2008-08-27 | 2011-02-16 | 주식회사 하이닉스반도체 | Method for forming contact plug in semiconductor device |
CN104124163A (en) * | 2013-04-23 | 2014-10-29 | 中国科学院微电子研究所 | Semiconductor device manufacturing method |
-
2006
- 2006-09-29 KR KR1020060096356A patent/KR20080029574A/en not_active Application Discontinuation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101015124B1 (en) * | 2008-08-27 | 2011-02-16 | 주식회사 하이닉스반도체 | Method for forming contact plug in semiconductor device |
CN104124163A (en) * | 2013-04-23 | 2014-10-29 | 中国科学院微电子研究所 | Semiconductor device manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100333372B1 (en) | Method of manufacturing metal gate mosfet device | |
TWI816685B (en) | Semiconductor device and manufacturing method thereof | |
KR100431295B1 (en) | Method for forming plug in semiconductor device | |
US20060228850A1 (en) | Pattern loading effect reduction for selective epitaxial growth | |
KR100745929B1 (en) | Semiconductor device and method of manufacturing the same | |
KR20030078562A (en) | Method for forming a contact plug in semiconductor device | |
US20100013097A1 (en) | Semiconductor device having contact plug formed in double structure by using epitaxial stack and metal layer and method for fabricating the same | |
KR100637690B1 (en) | Semiconductor device using solid phase epitaxy and method for manufacturing the same | |
KR100603588B1 (en) | Semiconductor device with low contact resistance and method for fabricating the same | |
US6818537B2 (en) | Method of manufacturing a contact plug for a semiconductor device | |
KR20020083770A (en) | Method for forming contact plug of semiconductor device | |
US20050112870A1 (en) | Method of forming a contact plug in a semiconductor device | |
KR100517328B1 (en) | Semiconductor device having contact plug using selective epitaxial growth and method of fabricating the same | |
US20030068885A1 (en) | Method of forming a contact plug for a semiconductor device | |
KR20080029574A (en) | Method for fabricating recessed contact plug in semiconductor device by in situ etch | |
US7534706B2 (en) | Recessed poly extension T-gate | |
KR100451038B1 (en) | Method of manufacturing a transistor in a semiconductor device | |
KR100364813B1 (en) | Method for Forming Epitaxial Layer of Semiconductor Device | |
JP2013105770A (en) | Semiconductor device manufacturing method | |
KR100524802B1 (en) | Semiconductor device having contact plug formed using double selective epitaxial growth and method for fabrication of the same | |
US6309939B1 (en) | Method of manufacturing a semiconductor device | |
KR20070112557A (en) | Method for manufacturing semiconductor device | |
KR20060075953A (en) | Method for forming contact in semiconductor device | |
KR100681210B1 (en) | Contact plug of semiconductor device and method for forming the same | |
KR100733428B1 (en) | Method for manufacturing contact in semiconductor device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WITN | Withdrawal due to no request for examination |