[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20070071832A - Method for preparation of hydrophilic asymmetric utrafiltration and microfiltration membranes containing silvernano particles - Google Patents

Method for preparation of hydrophilic asymmetric utrafiltration and microfiltration membranes containing silvernano particles Download PDF

Info

Publication number
KR20070071832A
KR20070071832A KR1020050135615A KR20050135615A KR20070071832A KR 20070071832 A KR20070071832 A KR 20070071832A KR 1020050135615 A KR1020050135615 A KR 1020050135615A KR 20050135615 A KR20050135615 A KR 20050135615A KR 20070071832 A KR20070071832 A KR 20070071832A
Authority
KR
South Korea
Prior art keywords
membrane
polymer solution
silver nitrate
polymer
cast
Prior art date
Application number
KR1020050135615A
Other languages
Korean (ko)
Other versions
KR101139145B1 (en
Inventor
모치준
이정재
김윤식
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Priority to KR1020050135615A priority Critical patent/KR101139145B1/en
Publication of KR20070071832A publication Critical patent/KR20070071832A/en
Application granted granted Critical
Publication of KR101139145B1 publication Critical patent/KR101139145B1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0013Casting processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/145Ultrafiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/14Ultrafiltration; Microfiltration
    • B01D61/147Microfiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • B01D67/0009Organic membrane manufacture by phase separation, sol-gel transition, evaporation or solvent quenching
    • B01D67/0011Casting solutions therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/06Flat membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/10Supported membranes; Membrane supports
    • B01D69/107Organic support material
    • B01D69/1071Woven, non-woven or net mesh
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/12Composite membranes; Ultra-thin membranes
    • B01D69/1213Laminated layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/1411Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix
    • B01D69/14111Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing dispersed material in a continuous matrix with nanoscale dispersed material, e.g. nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/30Polyalkenyl halides
    • B01D71/32Polyalkenyl halides containing fluorine atoms
    • B01D71/34Polyvinylidene fluoride
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/40Polymers of unsaturated acids or derivatives thereof, e.g. salts, amides, imides, nitriles, anhydrides, esters
    • B01D71/42Polymers of nitriles, e.g. polyacrylonitrile
    • B01D71/421Polyacrylonitrile
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/58Other polymers having nitrogen in the main chain, with or without oxygen or carbon only
    • B01D71/62Polycondensates having nitrogen-containing heterocyclic rings in the main chain
    • B01D71/64Polyimides; Polyamide-imides; Polyester-imides; Polyamide acids or similar polyimide precursors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/18Pore-control agents or pore formers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/218Additive materials
    • B01D2323/2181Inorganic additives
    • B01D2323/21817Salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/02Details relating to pores or porosity of the membranes
    • B01D2325/022Asymmetric membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

A method for manufacturing ultrafiltration and microfiltration membranes which can be hydrophilized simply and economically and are excellent in permeation rate, contamination resistance and microorganism resistance is provided, wherein the membranes can provide an effect of substantially reducing membrane fouling in the case where the membranes are applied to a membrane coupled activated sludge process. A method for manufacturing asymmetric ultrafiltration and microfiltration membranes comprises the steps of: dissolving a polymer into a solvent to prepare a polymer solution; and adding silver nitrate to the polymer solution, and manufacturing a flat membrane from the mixed solution(1) by a phase inversion process. The step of manufacturing the flat membrane by the phase inversion process comprises the steps of: adding silver nitrate into the polymer solution; negatively charging the silver nitrate added polymer solution to cast the negatively charged polymer solution onto a non-woven fabric(3) while ionizing silver nitrate; passing the cast polymer solution through positively charged rolls(2) to impregnate and adhere silver nanoparticles onto a surface of the flat membrane; and impregnating the silver nanoparticle impregnated and adhered cast polymer solution with a non-solvent to form a filtration membrane.

Description

은나노입자를 포함하는 친수성 비대칭 한외여과막 및 정밀여과막의 제조방법{METHOD FOR PREPARATION OF HYDROPHILIC ASYMMETRIC UTRAFILTRATION AND MICROFILTRATION MEMBRANES CONTAINING SILVERNANO PARTICLES}METHODS FOR PREPARATION OF HYDROPHILIC ASYMMETRIC UTRAFILTRATION AND MICROFILTRATION MEMBRANES CONTAINING SILVERNANO PARTICLES}

도 1은 본 발명의 한외여과막 및 정밀여과막의 제조방법에 대한 모식도이다.1 is a schematic diagram of a method for producing an ultrafiltration membrane and a microfiltration membrane of the present invention.

도 2는 본 발명의 실시예 1∼3 및 비교예 1~2에 따라 제조된 한외여과막 및 정밀여과막의 내오염성을 확인하기 위한 막결합형 미생물 반응조에서의 투과유량의 변화를 나타낸 그래프를 도시한 것이다.2 is a graph showing a change in permeation flow rate in a membrane-bound microbial reactor for checking the fouling resistance of the ultrafiltration membrane and the microfiltration membrane prepared according to Examples 1 to 3 and Comparative Examples 1 to 2 of the present invention. will be.

* 도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

1: 질산은이 포함된 고분자용액 2: 롤 1: Polymer solution containing silver nitrate 2: Roll

3: 부직포 4: 나이프3: nonwoven fabric 4: knife

본 발명은 내오염성이 우수한 비대칭 한외여과막 및 정밀여과막의 제조방법에 관한 것으로서, 보다 구체적으로는 상전환에 의한 평막 제조단계에서 항구적인 막의 친수화를 위하여 은나노 입자를 분리막 표면의 고분자 내에 함침,고정시키는 것을 특징으로 하는 우수한 투수량, 내오염성, 내미생물성을 가지는 비대칭 한외 여과막 및 정밀 여과막의 제조 방법에 관한 것이다.The present invention relates to a method for manufacturing asymmetric ultrafiltration membranes and microfiltration membranes excellent in fouling resistance, and more specifically, impregnating and fixing silver nanoparticles in a polymer on the surface of a separator for permanent hydrophilicization of membranes in a flat membrane manufacturing step by phase inversion. The present invention relates to a method for producing an asymmetric ultrafiltration membrane and a microfiltration membrane having excellent water permeability, fouling resistance and microbial resistance.

일반적으로 비대칭 한외여과막은 폴리술폰, 폴리에테르술폰 및 셀룰로오스아세테이트 등을 고분자 소재로 하여 상전환법에 의해서 제조된다. 이러한 비대칭막은 다공성 지지층과 선택적 분리를 가능하게 하는 스킨층이 하나의 소재로 이루어 진 통합형 비대칭 구조로 이루어진 구조를 가진다. Generally, the asymmetric ultrafiltration membrane is prepared by a phase inversion method using polysulfone, polyether sulfone, cellulose acetate, or the like as a polymer material. This asymmetric membrane has a structure consisting of an integrated asymmetric structure consisting of a porous material and a skin layer that enables selective separation.

한편, 셀룰로오스아세테이트를 제외한 대부분의 막 재질은 소수성이므로 이를 소재로하여 제조된 한외여과막 등은 일반적으로 막 자체의 내 화학성, 강도 등에서는 셀룰로오스아세테이트 막에 비하여 우수하나 여과성능이 낮고 막 오염이 심하게 일어나는 단점을 가진다. On the other hand, since most membrane materials except for cellulose acetate are hydrophobic, ultrafiltration membranes made from these materials are generally superior to cellulose acetate membranes in terms of chemical resistance and strength of the membrane itself, but have low filtration performance and severe membrane contamination. Has its drawbacks.

이러한 단점을 극복하기 위하여 소수성인 막 재질을 친수화하기 위한 기술이 여러 가지 방법으로 시도되어 왔다. 대표적인 방법으로는 (1)소수성 막에 글리세린 등의 난휘발성 수용성 다가 알코올을 흡착시키는 방법, (2)소수성 막에 폴리에틸렌글리콜, 폴리비닐피롤리돈, 폴리비닐알코올 등의 수용성 고분자 물질을 흡착시키는 방법 (일본 공개특허공보 소63-31501호 등), (3) 소수성 막에 친수성 고분자를 고정화하는 방법, 소수성 막의 표면에 아크릴아미드 등의 친수성 모노머를 화학적으로 결합시키는 방법 (일본 공개특허공보 평2-59032호 등), (4) 물을 함유한 상 태에서 막에 방사선을 조사하여 친수성 고분자를 가교 불용화함으로써 막에 고정화하는 방법 (일본 공개특허공보 평4-300636호 등), 막을 건조 상태에서 열처리함으로써 친수성 고분자를 불용화하여 고정화하는 방법 (일본 공개특허공보 평9-103664호 등), (5) 소수성 막의 표면을 술폰화하는 방법 (일본 공개특허공보소63-54452호 등), (6) 폴리에틸렌글리콜이나 폴리비닐피롤리돈 등의 친수성 고분자 물질과 소수성 폴리머 도프의 혼합물로 막을 만드는 방법 (일본 공개특허공보 소61-93801호 등), (7) 알칼리 수용액 (NaOH, KOH 등) 처리에 의해 막 표면에 친수기를 부여하는 방법 (일본 공개특허공보 소58-93734호 등), (8) 소수성 다공질막을 알코올에 침지한 후, 수용성 폴리머 수용액으로 처리, 건조시킨 후, 열처리나 방사선 등으로 불용화 처리하는 방법 (일본 특허공보 소54-17978호 등) 등이 알려져 있다.In order to overcome this drawback, techniques for hydrophilizing hydrophobic membrane materials have been tried in various ways. Representative methods include (1) adsorbing nonvolatile water-soluble polyhydric alcohols such as glycerin to a hydrophobic membrane, and (2) adsorbing water-soluble polymer substances such as polyethylene glycol, polyvinylpyrrolidone, and polyvinyl alcohol to the hydrophobic membrane. (JP-A-63-31501, etc.), (3) A method of immobilizing a hydrophilic polymer on a hydrophobic membrane, and a method of chemically bonding a hydrophilic monomer such as acrylamide to the surface of a hydrophobic membrane. 59032, etc.), (4) a method of immobilizing a hydrophilic polymer by irradiating the membrane with water in the presence of water to immobilize the hydrophilic polymer (Japanese Patent Laid-Open No. Hei 4-300636, etc.), and the membrane in a dry state. A method of insolubilizing a hydrophilic polymer and immobilizing it by heat treatment (Japanese Patent Laid-Open No. 9-103664, etc.), (5) A method of sulfonating a surface of a hydrophobic membrane (Japanese Patent Laid-Open Publication No. 9-103664). BOS63-54452, etc.), (6) a method of making a film from a mixture of hydrophilic polymer materials such as polyethylene glycol and polyvinylpyrrolidone and hydrophobic polymer dope (Japanese Patent Laid-Open No. 61-93801, etc.), (7) A method of imparting a hydrophilic group to the surface of the membrane by treating with an aqueous alkali solution (NaOH, KOH, etc.) (JP-A-58-93734, etc.), (8) After the hydrophobic porous membrane is immersed in alcohol, treated with a water-soluble polymer aqueous solution, After drying, a method of insolubilizing with heat treatment, radiation or the like (Japanese Patent Publication No. 54-17978, etc.) is known.

이들 중, 상기 (1)∼(3)의 방법은, 일반적으로 소수성의 막을 친수화하는 방법으로 오래 전부터 사용되고 있으나, 각 방법에서 사용되는 친수성 부여제는 한번 물에 접촉시키면 소수성 막으로부터 탈리되어 버려, 그 친수성이 상실된다는 문제점이 있다. 또 그 용도에 따라서는 이들 친수성 부여제가 여과액에 혼합되는 것이 기피되는 경우도 있다. 상기 (2)가 개량된 방법으로서 상기 (2)의 방법을 실행한 후에 다시 방사선을 조사하거나 가열처리를 실시하여 이들 친수성 부여제를 물에 녹기 어렵게 하여 막에서 탈리되기 어렵게 하는 방법이 제안되어 있으나, 막 강도의 저하가 유발되거나 그 효과가 아직 충분히 만족할 수 있는 정도의 것이 아닌 것 등의 문제가 있다. Of these, the methods (1) to (3) have generally been used for a long time as a method of hydrophilizing hydrophobic membranes, but the hydrophilicity imparting agent used in each method is detached from the hydrophobic membrane once contacted with water. The problem is that the hydrophilicity is lost. Moreover, depending on the use, it may be avoided that these hydrophilicity imparting agents are mixed in the filtrate. As an improved method of (2), a method of making the hydrophilic impurity difficult to dissolve in water by performing radiation or heat treatment again after performing the method of (2) has been proposed. However, there is a problem that a decrease in the film strength is caused or that the effect is not sufficiently satisfactory.

또한 상기 (4) 및 (5)의 방법에는, 소수성 막의 친수성이 거의 영구적으로 유지됨과 동시에, 여과액에 친수성 부여제가 용출되지 않는다는 장점이 있으나, 그 처리방법은 비교적 번잡하고 비경제적이라는 문제점이 있다.In addition, the method of (4) and (5) has the advantage that the hydrophilicity of the hydrophobic membrane is maintained almost permanently and the hydrophilicity-imparting agent is not eluted in the filtrate, but the treatment method is relatively complicated and uneconomical. .

또한 상기 (6)의 방법도 오래전부터 알려져 있으나, 소수성 막 중의 친수성 고분자 물질의 잔류상태를 조정하는 것이 어렵고, 시간의 경과에 따라 여과특성이 변화되거나, 서서히 친수성 고분자 물질이 용출되는 등의 문제가 있다. 상기 (7)의 방법에 관해서도 처리하는 소재가 한정되는, 알칼리 수용액 처리에 의해 막 강도가 저하되는 등의 문제가 있다. 상기 (8)의 방법에 관해서도, 불용화처리시의 건조나 열처리, 방사선조사 등에 의해 막 강도가 저하되는 등의 문제가 있다. In addition, although the method of (6) has been known for a long time, it is difficult to adjust the residual state of the hydrophilic polymer material in the hydrophobic membrane, and the problems such as the change in filtration characteristics over time or the elution of the hydrophilic polymer material gradually eludes. have. Also regarding the method of said (7), there exists a problem that film | membrane intensity | strength falls by alkali aqueous solution process in which the raw material to process is limited. Also in the method (8), there is a problem that the film strength is lowered due to drying, heat treatment, irradiation or the like during insolubilization treatment.

이와 같이 상기 종래기술에서는 여과액으로 친수성 부여제가 용출되는 것이 통상적이고, 이것을 방지하기 위해서는 번잡하고 비경제적인 처리방법을 채용할 수 밖에 없어, 우수한 친수 성능을 갖는 막을 얻는 것은 곤란하였다. 따라서, 친수화 처리에 수반되는 막 소재의 열화, 강도저하 등을 유기하지 않으면서도 간편하고 경제적으로 친수화 처리를 할 수 있는 방법 및 친수화 막의 개발이 요구되는 실정이다.As described above, the hydrophilicity-imparting agent is usually eluted into the filtrate, and in order to prevent this, a complicated and inexpensive treatment method has to be adopted, and it is difficult to obtain a membrane having excellent hydrophilic performance. Therefore, there is a need for development of a method and a hydrophilic membrane capable of carrying out a hydrophilic treatment easily and economically without incurring deterioration and strength reduction of a membrane material accompanying hydrophilization treatment.

본 발명은 상술한 종래기술의 문제점을 극복하기 위하여 안출된 것으로서,The present invention has been made to overcome the above problems of the prior art,

본 발명의 목적은 질산은을 고분자 용액에 첨가한 후 상전환법에 의해 은나노입자를 분리막 표면의 고분자내에 함침, 고착시킴으로써 간편하고 경제적으로 친수화할 수 있는 우수한 투과유량, 내오염성, 및 내미생물성을 가지는 한외여과막 및 정밀여과막의 제조 방법을 제공하는 것이다. It is an object of the present invention to add silver nitrate to a polymer solution, and then to impregnate and fix the silver nanoparticles in the polymer on the surface of the separator by a phase inversion method. It is to provide a method for producing an ultrafiltration membrane and a microfiltration membrane.

상기한 기술적 과제의 해결을 위한 본 발명의 하나의 양상은 고분자를 용매에 용해시켜 고분자 용액을 제조하는 단계; 상기 고분자 용액에 질산은을 첨가한 후 이를 상전환법에 의하여 평막 형태로 제조하는 단계;를 포함하는 한외여과막 및 정밀여과막의 제조방법에 관계한다. One aspect of the present invention for solving the above technical problem is to prepare a polymer solution by dissolving the polymer in a solvent; And adding the silver nitrate to the polymer solution and then preparing the same in a flat membrane form by a phase inversion method.

본 발명의 다른 양상은 상기 고분자 용액에 여과막의 기공 크기를 조절하기위하여 기공조절제를 추가로 포함하는 한외여과막 및 정밀여과막의 제조방법에 관계한다.Another aspect of the present invention relates to a method for producing an ultrafiltration membrane and a microfiltration membrane further comprising a pore control agent to adjust the pore size of the filtration membrane in the polymer solution.

이하에서는 본 발명에 대하여 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.

본 발명은 폴리술폰, 폴리에테르술폰, 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴 및 폴리이미드로 이루어진 군에서 선택된 고분자로 구성된 고분자용액에 질산은을 고분자에 대해 0.01 ∼ 5 중량% 첨가한 후, 이를 상전환법에 의하여 부직포 위에 캐스팅하고 은나노입자를 분리막 표면에 함침, 고착시키므로써 은나노입자의 용출을 방지하고 간편하게 친수화 처리함을 그 특징으로 한다. The present invention is added to the polymer solution consisting of a polymer selected from the group consisting of polysulfone, polyethersulfone, polyvinylidene fluoride, polyacrylonitrile and polyimide 0.01 to 5% by weight of silver nitrate to the polymer, and then The method is cast on a nonwoven fabric by the conversion method and the silver nanoparticles are impregnated and fixed on the surface of the separator to prevent elution of the silver nanoparticles and to be easily hydrophilized.

본 발명의 비대칭 한외여과막 및 정밀여과막의 제조 방법을 첨부된 도면을 참조하여 더욱 구체적으로 설명하면 다음과 같다. The asymmetric ultrafiltration membrane and the method of manufacturing the microfiltration membrane of the present invention will be described in more detail with reference to the accompanying drawings.

도 1은 본 발명의 한외여과막 및 정밀여과막의 제조방법에 대한 모식도이다.1 is a schematic diagram of a method for producing an ultrafiltration membrane and a microfiltration membrane of the present invention.

도 1을 참조하면, 고분자용액에 질산은을 고분자에 대해 0.01 ∼ 5 중량% 첨가한 후, 고분자용액(1)에 (-)전기를 걸고, 나이프(4) 전단으로 준비된 고분자용액을 이송한 후, 이를 부직포(3) 표면에 도포하면서 캐스팅하여 평막 형태로 제조한다. 이때 부직포 이면과 접촉하는 도체인 롤(2)에 (+)전기를 걸어주어 고분자용액 내의 은이온을 부직포의 표면 쪽에 분포하도록 유도한다. 상기한 과정에서 고분자용액 내의 질산은은 (+)은이온과 (-)질산이온으로 이온화되고, 부직포에 캐스팅된 후 (+)로 하전된 롤을 지나면서 은이온은 롤의 (+)와 척력의 작용으로 코팅의 바깥부분에 위치하며 은나노 입자로서 고분자 내에 함침, 고착되고 질산이온은 고분자용액을 응고시키기 위한 비용매에 용해된다. Referring to Figure 1, after adding the silver nitrate 0.01 to 5% by weight of the polymer solution to the polymer, by applying a (-) electricity to the polymer solution (1), after transferring the prepared polymer solution to the front end of the knife (4), It is cast while applying to the surface of the nonwoven fabric 3 to produce a flat film. At this time, (+) electricity is applied to the roll 2, which is a conductor in contact with the back surface of the nonwoven fabric, to induce silver ions in the polymer solution to be distributed on the surface side of the nonwoven fabric. In the above process, silver nitrate in the polymer solution is ionized with (+) silver ions and (-) nitrate ions, cast on a nonwoven fabric, and then passed through a (+) charged roll. It is located on the outer side of the coating by impregnation, and is impregnated and fixed in the polymer as silver nanoparticles, and the nitrate ions are dissolved in the non-solvent to solidify the polymer solution.

상기한 비용매 과정은 25~60 ℃의 물에 응고시킨 후, 제조된 한외여과막 및 정밀여과막을 50~90 ℃의 열수로 10~30 시간 처리하여 남아있는 용매를 제거하는 과정을 말하며, 이를 거치고 나면 본 발명에 의한 비대칭 한외여과 및 정밀여과막이 완성되게 된다.The non-solvent process refers to a process of removing the remaining solvent by coagulating in water of 25 ~ 60 ℃, the prepared ultrafiltration membrane and the microfiltration membrane with hot water of 50 ~ 90 ℃ for 10 to 30 hours, After that, the asymmetric ultrafiltration and microfiltration membranes according to the present invention are completed.

본 발명에서 사용되는 고분자 용액은 폴리술폰, 폴리에테르술폰, 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴 및 폴리이미드로 이루어진 군에서 선택된 고분자를 10~25 중량%의 농도가 되도록 용매에 용해시켜 사용한다. 상기 고분자용액에서 고분자의 함량이 10 중량% 미만이면 비대칭막의 물리적 특성이 약해지는 문제가 있고, 25 중량%를 초과하면 용액점도가 너무 커서 캐스팅하기가 곤란하며 기공도가 너무 작아지는 문제가 있다. The polymer solution used in the present invention is used by dissolving a polymer selected from the group consisting of polysulfone, polyethersulfone, polyvinylidene fluoride, polyacrylonitrile and polyimide in a solvent so as to have a concentration of 10 to 25% by weight. . If the content of the polymer in the polymer solution is less than 10% by weight, there is a problem that the physical properties of the asymmetric membrane is weak, and if it exceeds 25% by weight, the solution viscosity is too large to be difficult to cast and the porosity is too small.

상기 용매로서는 특별히 한정되는 것은 아니나 디메틸포름아마이드(dimetylformamide), N-메틸-2-피롤리돈(N-methyl-2-pyrrolidone), 디메틸아세트아마이드(dimethylacetamide),디메틸술폭사이드(dimethyls ulfoxide) 등을 사용할 수 있다. Examples of the solvent include, but are not limited to, dimethylformamide, N-methyl-2-pyrrolidone, dimethylacetamide, dimethylsulfoxide, and the like. Can be used.

또한, 본 발명에서는 제조되는 여과막의 기공크기를 조절하기 위하여 별도의 첨가제를 추가로 첨가하여 사용할 수 있는 바, 이는 당 분야에서 널리 공지된 방법으로서 목적하는 기공크기에 적합하도록 공지의 기공조절제를 선택하여 적당량 첨가하여 사용하게 된다. 기공조절제로는 기공크기를 키우기 위해서는 여러 분자량의 폴리(에틸렌글리콜), 폴리(비닐피롤리돈), 폴리(비닐알코올)을 선택 사용할 수 있으며, 기공크기를 줄이기 위해서는 1,4-다이옥산, 디에틸렌글리콜디메틸에테르 등을 선택하여 사용할 수 있다.In addition, the present invention can be used by adding additional additives to adjust the pore size of the filtration membrane is prepared, which is well known in the art to select a known pore control agent to suit the desired pore size It is added to the appropriate amount. As pore regulators, poly (ethylene glycol), poly (vinylpyrrolidone), and poly (vinyl alcohol) of various molecular weights can be selected to increase pore size, and 1,4-dioxane and diethylene can be used to reduce pore size. Glycol dimethyl ether etc. can be selected and used.

본 발명에서 사용되는 질산은은 통상적으로 구할 수 있는 것이라면 모두 사용할 수 있다. 이러한 질산은이 대전된 고분자 용액 내에서 이온화되어 발생하는 은이온이 분리막에 고착된 형태인 상기 은나노 입자는 친수성이므로 소수성 막을 친수화시키면서도 고분자로 구성된 분리막에 단단히 고착되어 용출되지 않고, 또한 막의 내오염성 및 미생물 저항성이 우수한 특성을 가진다. 이와 같은 효과는 은(silver)의 탁월한 살균, 항균기능 때문으로, 살균, 항균 효과는 나노 크기의 입자에서는 넓어지는 표면적과 비례해서 증대된다. The silver nitrate used in the present invention can be used as long as it can be commonly obtained. Since the silver nanoparticles in which silver ions generated by ionization in the polymer solution charged with silver nitrate are fixed to the separator are hydrophilic, the hydrophobic membrane is hydrophilized and is firmly fixed to the membrane composed of the polymer and is not eluted. It has excellent microbial resistance. This effect is due to the excellent antimicrobial and antimicrobial functions of silver, so that the antimicrobial and antimicrobial effects are increased in proportion to the surface area of the nano-sized particles.

본 발명에 의하여 제조된 비대칭 한외여과막 및 정밀여과막을 막결합형 활성슬러지법에 적용할 경우 기존의 분리막에 비해서 미생물의 부착에 의한 투과수의 감소가 현저히 줄어들게 된다. 따라서, 미생물의 부착을 억제시키기 위한 멤브레인 바이오 리엑터(membrane bio-reactor)로의 사용을 목적으로 하는 평판형 분리막의 제조를 위해 사용할 수 있다. When the asymmetric ultrafiltration membrane and the microfiltration membrane prepared according to the present invention are applied to the membrane-bound activated sludge method, the reduction of the permeated water due to the attachment of microorganisms is remarkably reduced compared to the conventional separation membrane. Therefore, it can be used for the manufacture of a flat separator for the purpose of use as a membrane bio-reactor for inhibiting the attachment of microorganisms.

이하 실시예 및 비교예에 의하여 본 발명을 더욱 구체적으로 설명하나, 이는 설명의 목적을 위한 것으로서 본 발명이 이에 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples and Comparative Examples, but the present invention is not limited thereto.

[실시예 1]Example 1

폴리비닐리덴플루오라이드 15 중량%, 폴리비닐피롤리돈 10 중량% 및 폴리비닐리덴플루오라이드 중량 대비 0.05 중량%의 질산은을 분산시킨 디메틸아세트아마이드 75 중량%를 혼합하여 이루어진 고분자 용액을 제조한 후, 탈포 냉각하여 부직포 위에 300 ㎛의 두께로 도포하여 50 ℃의 물에 응고시켰다. 제조 된 정밀여과막을 24시간 60 ℃의 물에서 남아있는 용매를 제거한 후 건조하였다. After preparing a polymer solution made by mixing 15% by weight of polyvinylidene fluoride, 10% by weight of polyvinylpyrrolidone and 75% by weight of dimethylacetamide in which 0.05% by weight of silver nitrate was dispersed relative to the weight of polyvinylidene fluoride, Defoaming and cooling were applied on a nonwoven fabric with a thickness of 300 占 퐉 and solidified in 50 占 폚 water. The prepared microfiltration membrane was dried after removing the remaining solvent in water at 60 ℃ for 24 hours.

[실시예 2]Example 2

질산은을 폴리비닐리덴플루오라이드 중량 대비 0.1 중량% 사용한 것을 제외하고는 실시예 1과 같이 하여 비대칭 정밀여과막을 제조하였다.An asymmetric microfiltration membrane was prepared in the same manner as in Example 1 except that silver nitrate was used in an amount of 0.1 wt% based on the weight of polyvinylidene fluoride.

[실시예 3]Example 3

질산은을 폴리비닐리덴플루오라이드 중량 대비 0.5 중량% 사용한 것을 제외하고는 실시예 1과 같이 하여 비대칭 정밀여과막을 제조하였다.Asymmetric microfiltration membranes were prepared in the same manner as in Example 1, except that silver nitrate was used in an amount of 0.5 wt% based on the weight of polyvinylidene fluoride.

[비교예 1]Comparative Example 1

질산은을 첨가하지 않은 점을 제외하고 실시예 1과 같이 하여 비대칭여과막을 제조하였다.Asymmetric filtration membranes were prepared in the same manner as in Example 1 except that silver nitrate was not added.

[비교예 2]Comparative Example 2

비교예 1의 방법으로 제조된 정밀여과막을 24시간 60℃의 글리세린 3 중량% 수용액에서 남아있는 용매를 제거한 후 건조한 것을 제외하고는 실시예 1과 같이 하여 비대칭 여과막을 제조하였다.Asymmetric filtration membranes were prepared in the same manner as in Example 1, except that the microfiltration membrane prepared by the method of Comparative Example 1 was dried after removing the solvent remaining in a 3% by weight aqueous solution of glycerin at 60 ° C. for 24 hours.

[물성평가][Property evaluation]

(1) 친수화정도 및 친수성능 유지력(1) Hydrophilicity and Hydrophilic Performance

상기 실시예 1~3, 비교예 1~2에 의해 제조된 막 표면의 친수화 정도와 친수성능 유지력을 측정하기 위하여 접촉각측정기((주)에스이오, Phoenix 300 plus)로 접촉각을 측정하여 하기의 표 1에 나타내었다. 접촉각은 수평인 물체 표면에 일정 크기의 미세한 물방울을 놓았을 때, 방울 표면과 물체 표면이 이루는 각을 말하는 것으로서, 친수성일수록 접촉각의 크기가 작아진다. 접촉각 측정은 제조된 막을 건조상태에서 측정하여 초기 친수화도를 측정하고 이를 0.1 기압 하에서 48시간 초순수로 여과시킨 후 다시 건조하여 재측정함으로써 친수 성능이 어떻게 유지되는지를 비교하여 보았다. In order to measure the degree of hydrophilization and hydrophilic performance of the membrane surface prepared by Examples 1 to 3 and Comparative Examples 1 to 2, the contact angle was measured by using a contact angle measuring instrument (S300, Phoenix 300 plus). Table 1 shows. The contact angle refers to the angle formed by the droplet surface and the object surface when a certain amount of fine water droplets are placed on a horizontal object surface, and the more hydrophilic, the smaller the contact angle is. The contact angle was measured by measuring the hydrophilicity of the prepared membrane in a dry state, and filtering it with ultrapure water for 48 hours under 0.1 atm, and then drying and re-measuring to compare how the hydrophilic performance is maintained.

Figure 112005078521866-PAT00001
Figure 112005078521866-PAT00001

상기의 표 1에서 확인할 수 있는 바와 같이, 초기 접촉각의 경우 난휘발성 수용성 다가알코올인 글리세린을 첨가한 비교예 2가 은나노입자 및 글리세린을 첨가하지 않은 비교예 1에 비하여 접촉각이 작아 표면이 좀 더 친수화 되어있음을 알 수 있다. As can be seen in Table 1 above, in the case of the initial contact angle, Comparative Example 2 to which glycerin, which is a nonvolatile water-soluble polyhydric alcohol, is added, has a smaller contact angle than that of Comparative Example 1 to which silver nanoparticles and glycerin are not added. You can see that it is hydrated.

반면 질산은(은 나노입자)을 첨가한 실시예 1~3은 비교예 1과 차이가 없었는데 이는 상기 분리막 제조에 기공형성제로 첨가한 폴리비닐피롤리돈 자체가 친수성이 큰 수용성 고분자로서 은나노입자보다 분리막 친수화에 대한 기여도가 더 컸기 때문으로 사료된다. On the other hand, Examples 1 to 3 in which silver nitrate (silver nanoparticles) were added were not different from Comparative Example 1. This is because polyvinylpyrrolidone added as a pore-forming agent in the preparation of the separator is a hydrophilic water-soluble polymer having higher hydrophilicity than that of silver nanoparticles. It is believed that the contribution to hydrophilization was greater.

그러나 48시간 통수 후의 접촉각에서는 비교예 1 및 비교예 2에 비하여 실시예 1~3의 수치가 낮게 측정되어, 상대적으로 다가알코올이나 친수성 고분자에 비하여 친수화도는 낮지만 은나노입자가 분리막에 고정화 되어 용출되지 않음으로써 오히려 실제 분리막의 운전시 높은 친수성을 부여할 수 있음을 알 수 있다. However, at the contact angle after water flow for 48 hours, the numerical values of Examples 1 to 3 were lower than those of Comparative Examples 1 and 2, and although the hydrophilicity was relatively lower than that of polyhydric alcohols or hydrophilic polymers, silver nanoparticles were immobilized on the membrane and eluted. Rather, it can be seen that high hydrophilicity can be imparted when the membrane is actually operated.

(2) 여과성능(2) Filtration performance

상기 실시예 1~3 및 비교예1~2로 제조된 막을 초순수로 48시간 여과한 막에 대하여 순수투과속도와 용질배제율을 측정하기 위하여 초순수 및 초순수에 평균입경 0.05 ㎛의 폴리스타이렌비드(Sigma)를 1000ppm 분산시킨 용액을 원수로 하여 여과성능을 측정하였다. 상기 막을 원수와의 접촉면적 75 ㎠를 갖는 가압형 셀에 장착하여 20℃, 1기압 하에서 통수하였다. 투과성능은 초순수를 원수로 하였으며, 여과된 물의 부피를 측정하여 하기의 수학식 1에 의하여 순수투과속도를 계산하여 하기의 표 2에 나타내었다.Polystyrene beads (Sigma) having an average particle diameter of 0.05 μm in ultrapure water and ultrapure water to measure pure permeation rate and solute rejection of the membranes prepared in Examples 1 to 3 and Comparative Examples 1 and 2 with ultrapure water for 48 hours. The filtering performance was measured using a solution of 1000 ppm dispersed as raw water. The membrane was mounted in a pressurized cell having a contact area with raw water of 75 cm 2 and passed through at 20 ° C and 1 atmosphere. The permeation performance was ultra pure water as raw water, and the pure permeation rate was calculated by Equation 1 below by measuring the volume of the filtered water and is shown in Table 2 below.

Figure 112005078521866-PAT00002
Figure 112005078521866-PAT00002

또한, 여과성능 측정은 원수로 폴리스타이렌비드 분산액을 사용하였으며, UV측정계(Optizen 2120UV)를 사용하여 여과된 물의 폴리스타이렌비드 농도를 측정하여 하기의 수학식 2에 의하여 용질배제율을 계산하여 하기의 표 2에 나타내었다. In addition, the filtration performance was measured using a polystyrene bead dispersion as raw water, using a UV meter (Optizen 2120UV) to measure the polystyrene bead concentration of the filtered water to calculate the solute exclusion ratio according to Equation 2 below Table 2 Shown in

Figure 112005078521866-PAT00003
Figure 112005078521866-PAT00003

Figure 112005078521866-PAT00004
Figure 112005078521866-PAT00004

상기의 표 2에서 확인할 수 있는 바와 같이, 용질배제율은 거의 차이가 없었으나 순수투과속도는 질산은(은 나노입자)을 첨가한 실시예 1~3이 약간 높아 같은 용질배제율에서도 좀 더 우수한 투과성능을 보였다.As can be seen in Table 2, the solute excretion was almost no difference, but the pure permeation rate is slightly higher in Examples 1 to 3 with the addition of silver nitrate (silver nanoparticles). Showed performance.

(3) 내오염성(3) pollution resistance

상기 실시예1~3 및 비교예 1~2에서 제조된 막으로 막 면적 0.2㎡의 침지형 모듈을 제작한 후 분리막 결합형 미생물 반응기에 도입하여 막오염에 의한 투과유량의 감소를 관찰하였다. 미생물 반응기의 미생물 농도(MLSS)는 10,000 ppm으로 유지했으며 실시예 1~3 및 비교예 1~2로 제조된 막 모듈을 동시에 설치, 비교함으로써 원수 성상에 의한 편차를 제거하였으며, 관찰결과는 첨부된 도 2에 나타내었다.The membranes prepared in Examples 1 to 3 and Comparative Examples 1 and 2 were manufactured by immersion type modules having a membrane area of 0.2 m 2, and then introduced into a membrane-bound microbial reactor to observe a decrease in permeation flow rate due to membrane contamination. The microbial concentration (MLSS) of the microbial reactor was maintained at 10,000 ppm and the membrane modules prepared in Examples 1 to 3 and Comparative Examples 1 and 2 were simultaneously installed and compared to remove deviations caused by raw water. 2 is shown.

도 2에 나타난 바와 같이, 비교예 1~2의 경우 막오염에 의한 투과유량 감소가 급격히 진행되는 반면 질산은(은나노입자)이 첨가된 실시예 1~3의 경우 투과유량 감소가 상당히 지연되어 내오염성이 우수함을 확인할 수 있다.As shown in FIG. 2, in Comparative Examples 1 and 2, the decrease in permeation flux due to membrane fouling proceeds rapidly, whereas in Examples 1 to 3 in which silver nitrate (silver nanoparticles) is added, the decrease in permeate flow rate is considerably delayed. It can be confirmed that this excellent.

상술한 바와 같은 본 발명에 따라 질산은을 고분자용액 내에 함침시킨 후 상전환법으로 비대칭한외여과 및 정밀여과막을 제조할 경우, 친수성인 은나노입자가 분리막 표면에 함침,고착되어 같은 기공크기의 분리막에 비해 투과수량이 높고 막오염 저항성이 우수한 막을 제조할 수 있으며, 이와 같은 우수한 투과유량, 내오염성, 내미생물성을 가지는 본 발명의 분리막은 특히, 막결합형 활성슬러지법에 적용 될 경우 막오염이 현격히 감소하는 효과를 제공할 수 있다.According to the present invention as described above, when impregnating silver nitrate in a polymer solution and then preparing asymmetric ultrafiltration and microfiltration membranes by the phase inversion method, the hydrophilic silver nanoparticles are impregnated and fixed on the surface of the membrane, compared to membranes having the same pore size. Membrane of the present invention having a high permeate flow rate and excellent membrane fouling resistance, and the membrane having the excellent permeate flow rate, fouling resistance and microbial resistance, in particular when applied to the membrane-bound activated sludge method It can provide a reducing effect.

Claims (5)

고분자를 용매에 용해시켜 고분자 용액을 제조하는 단계;및Dissolving the polymer in a solvent to prepare a polymer solution; and 상기 고분자 용액에 질산은을 첨가한 후 이를 상전환법에 의하여 평막 형태로 제조하는 단계; 를 포함하는 것을 특징으로 하는 비대칭 한외 여과막 및 정밀 여과막의 제조방법. Adding silver nitrate to the polymer solution and preparing the same in a flat membrane form by a phase inversion method; Method for producing an asymmetric ultrafiltration membrane and microfiltration membrane comprising a. 제 1 항에 있어서, 상기 고분자용액을 구성하는 고분자는 폴리술폰, 폴리에테르술폰, 폴리비닐리덴플루오라이드, 폴리아크릴로니트릴 및 폴리이미드로 이루어진 군에서 선택된 것이고, 그 함량은 전체 고분자 용액 내에서 10~25중량%범위 내인 것을 특징으로 하는 비대칭 한외 여과막 및 정밀 여과막의 제조방법. According to claim 1, wherein the polymer constituting the polymer solution is selected from the group consisting of polysulfone, polyethersulfone, polyvinylidene fluoride, polyacrylonitrile and polyimide, the content of which is 10 Method for producing an asymmetric ultrafiltration membrane and microfiltration membrane, characterized in that in the range of ~ 25% by weight. 제 1항 또는 제 2항에 있어서, 상기 고분자 용액은 여과막의 기공 크기를 조절하기 위하여 기공조절제를 추가로 포함하는 것을 특징으로 하는 비대칭 한외 여과막 및 정밀 여과막의 제조방법. The method of claim 1 or 2, wherein the polymer solution further comprises a pore control agent to adjust the pore size of the filtration membrane. 제 1항에 있어서, 상기 상전환법에 의하여 평막을 제조하는 단계는 According to claim 1, wherein the step of preparing a flat membrane by the phase inversion method 상기 고분자 용액에 질산은을 첨가하는 단계;Adding silver nitrate to the polymer solution; 상기 질산은이 첨가된 고분자 용액을 음(-)으로 하전시켜 질산은을 이온화시키면서 부직포에 캐스팅하는 단계;Negatively charging the polymer solution to which the silver nitrate is added to cast the non-woven fabric while ionizing the silver nitrate; 상기 캐스팅된 고분자용액을 양(+)으로 하전된 롤을 통과시키면서 은나노입자를 평막 표면에 함침, 고착시키는 단계;및Impregnating and fixing silver nanoparticles on the surface of the flat membrane while passing the cast polymer solution through a positively charged roll; And 상기 은나노입자가 함침,고착된 캐스팅된 고분자 용액을 비용매에 함침시켜 여과막을 형성하는 단계;Impregnating the cast polymer solution having the silver nanoparticles impregnated therein with a non-solvent to form a filtration membrane; 를 포함하여 이루어지는 것을 특징으로 하는 비대칭 한외 여과막 및 정밀 여과막의 제조방법. Method for producing an asymmetric ultrafiltration membrane and microfiltration membrane comprising a. 제 1 항 또는 제 4항에 있어서, 상기 질산은은 고분자에 대하여 0.01~5 중량% 첨가하는 것을 특징으로 하는 비대칭 한외 여과막 및 정밀 여과막의 제조방법.The method of claim 1 or 4, wherein the silver nitrate is added in an amount of 0.01 to 5% by weight based on the polymer.
KR1020050135615A 2005-12-30 2005-12-30 Method for preparation of hydrophilic asymmetric utrafiltration and microfiltration membranes containing silvernano particles KR101139145B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020050135615A KR101139145B1 (en) 2005-12-30 2005-12-30 Method for preparation of hydrophilic asymmetric utrafiltration and microfiltration membranes containing silvernano particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020050135615A KR101139145B1 (en) 2005-12-30 2005-12-30 Method for preparation of hydrophilic asymmetric utrafiltration and microfiltration membranes containing silvernano particles

Publications (2)

Publication Number Publication Date
KR20070071832A true KR20070071832A (en) 2007-07-04
KR101139145B1 KR101139145B1 (en) 2012-04-26

Family

ID=38506933

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020050135615A KR101139145B1 (en) 2005-12-30 2005-12-30 Method for preparation of hydrophilic asymmetric utrafiltration and microfiltration membranes containing silvernano particles

Country Status (1)

Country Link
KR (1) KR101139145B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036550A1 (en) 2010-09-13 2012-03-22 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Antimicrobial membrane containing silver nanoparticles
KR20150137408A (en) * 2014-05-29 2015-12-09 엘지전자 주식회사 Membranes Having Antibiotic and Hydrophilic Properties and Preparing Method Thereof
CN114225709A (en) * 2021-12-14 2022-03-25 浙江工业大学 Preparation method of super-amphiphilic oil-water separation membrane for fixing in-situ grown silver nanoparticles
CN115364701A (en) * 2022-08-22 2022-11-22 哈尔滨工业大学 Preparation method of in-situ synthesized nano-silver PVDF (polyvinylidene fluoride) antibacterial ultrafiltration membrane

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104117293B (en) * 2014-08-06 2016-03-09 哈尔滨工业大学 A kind of preparation method of fabricated in situ Nano Silver modification PVDF ultrafiltration membrane
CN109520907B (en) * 2018-11-26 2021-07-20 华南理工大学 Method for rapidly estimating membrane pollution degree in Fenton-ultrafiltration combined process

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100536643B1 (en) * 2003-04-15 2005-12-14 한국화학연구원 Method for preparation of chemical, microorganism and fouling resistant asymmetric ultrafiltration and microfiltration membranes by blending titania nano particle
KR20050009129A (en) * 2003-07-15 2005-01-24 주식회사 대정크린 Filter material treated by nano silver
KR100702848B1 (en) * 2004-03-10 2007-04-03 이정훈 Methode for the preparation of silver nanoparticles-polymer composite
KR20050091841A (en) * 2004-03-11 2005-09-15 크린에어테크놀로지 주식회사 Method of preparing filtering material including functional particles and filtering material using the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012036550A1 (en) 2010-09-13 2012-03-22 Nederlandse Organisatie Voor Toegepast-Natuurwetenschappelijk Onderzoek Tno Antimicrobial membrane containing silver nanoparticles
KR20150137408A (en) * 2014-05-29 2015-12-09 엘지전자 주식회사 Membranes Having Antibiotic and Hydrophilic Properties and Preparing Method Thereof
CN114225709A (en) * 2021-12-14 2022-03-25 浙江工业大学 Preparation method of super-amphiphilic oil-water separation membrane for fixing in-situ grown silver nanoparticles
CN114225709B (en) * 2021-12-14 2024-03-26 浙江工业大学 Preparation method of super-amphiphilic oil-water separation film for fixing in-situ grown silver nano particles
CN115364701A (en) * 2022-08-22 2022-11-22 哈尔滨工业大学 Preparation method of in-situ synthesized nano-silver PVDF (polyvinylidene fluoride) antibacterial ultrafiltration membrane

Also Published As

Publication number Publication date
KR101139145B1 (en) 2012-04-26

Similar Documents

Publication Publication Date Title
EP2695670B1 (en) Composite semipermeable membrane, composite semipermeable membrane element, and method for manufacturing composite semipermeable membrane
KR102155533B1 (en) Composite semipermeable membrane and production thereof
JP2008543546A (en) Cross-linking treatment of polymer film
EP3023138A1 (en) Hydrophilised vinylidene fluoride-based porous hollow fibre membrane, and manufacturing method therefor
KR20120076914A (en) Process of fabricating hydrophilic membrane by blending carbon nanotube particles
GB2199786A (en) Polymeric micro-porous membranes and their production
Xie et al. Improvement of antifouling characteristics in a bioreactor of polypropylene microporous membrane by the adsorption of Tween 20
JP2001286741A (en) Reverse osmosis composite membrane and manufacturing method therefor
KR101139145B1 (en) Method for preparation of hydrophilic asymmetric utrafiltration and microfiltration membranes containing silvernano particles
KR101308357B1 (en) Forward osmosis membrane for removing salt from sea water and manufacturing method threrof
JP2001327840A (en) Composite semipermeable membrane and its manufacturing method
KR20120021705A (en) Composite membrane for ro/nf membrane process application and preparation method thereof
KR100536643B1 (en) Method for preparation of chemical, microorganism and fouling resistant asymmetric ultrafiltration and microfiltration membranes by blending titania nano particle
KR101434184B1 (en) Forward osmosis membrane and manufacturing method thereof
KR20150033424A (en) Method for preparation of polyketone flat sheet type membrane and a polyketone flat sheet type membrane by the same
CN112403290B (en) Hydrophilic modification treatment liquid for porous polyolefin material
KR101357670B1 (en) Forward osmosis membrane packed with draw material, the preparing method thereof and the forward osmosis apparatus comprising the same
CN108430612B (en) Composite semipermeable membrane
CN112295423B (en) Porous membrane and filter element
KR101526080B1 (en) Non-woven fabric for a pressure retarded osmosis membrane support and pressure retarded osmosis membrane comprising thereof
KR20070072120A (en) Method for preparing the chiral filtration membrane
KR101283738B1 (en) Asymmetric ultrafiltration and microfiltration membranes containing chitosan molecules and the method for preparation thereof
KR20070071766A (en) The method of fabricating asymmetric ultrafiltration and microfiltration membrane by blending of silver nano particle
KR102230992B1 (en) Water treatment membrane and method for preparing thereof
KR20100043314A (en) The method of fabricating asymmetric ultrafiltration and microfiltration membrane by blending of oxazoline

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20150305

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20160316

Year of fee payment: 5

FPAY Annual fee payment

Payment date: 20180312

Year of fee payment: 7

FPAY Annual fee payment

Payment date: 20190312

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20200311

Year of fee payment: 9