KR20060129507A - 살아있는 유기체 내에서 비침습적으로 물질의 양적 정보를측정하기 위한 방법 및 장치 - Google Patents
살아있는 유기체 내에서 비침습적으로 물질의 양적 정보를측정하기 위한 방법 및 장치 Download PDFInfo
- Publication number
- KR20060129507A KR20060129507A KR1020067019864A KR20067019864A KR20060129507A KR 20060129507 A KR20060129507 A KR 20060129507A KR 1020067019864 A KR1020067019864 A KR 1020067019864A KR 20067019864 A KR20067019864 A KR 20067019864A KR 20060129507 A KR20060129507 A KR 20060129507A
- Authority
- KR
- South Korea
- Prior art keywords
- measuring
- organism
- signal
- substance
- signature
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/145—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
- A61B5/14532—Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue for measuring glucose, e.g. by tissue impedance measurement
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61B—DIAGNOSIS; SURGERY; IDENTIFICATION
- A61B5/00—Measuring for diagnostic purposes; Identification of persons
- A61B5/05—Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves
- A61B5/053—Measuring electrical impedance or conductance of a portion of the body
- A61B5/0537—Measuring body composition by impedance, e.g. tissue hydration or fat content
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Physics & Mathematics (AREA)
- Medical Informatics (AREA)
- Surgery (AREA)
- Biophysics (AREA)
- Pathology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Veterinary Medicine (AREA)
- Molecular Biology (AREA)
- Public Health (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Radiology & Medical Imaging (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Emergency Medicine (AREA)
- Optics & Photonics (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
- Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)
- Investigating Or Analyzing Materials By The Use Of Electric Means (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
살아있는 유기체 내의 물질을 결정하기 위한 시스템 및 방법을 제공한다. 상기 방법은 소정 양의 상기 유기체에 대응하는 전기적 시그니처 신호를 인가하는 단계; 상기 인가된 시그니처 신호에 대한 상기 유기체의 반응을 측정하는 단계; 및 증가한 반응이 상기 전기적 시그니처의 인가로부터 야기된 것인지 결정하고, 만일 그렇다면, 상기 소정 양의 물질로부터 유기체 내의 상기 물질의 양을 결정하는 단계를 포함한다.
유기체, 전기적 시그니처 신호, 임피던스
Description
본 출원은 2004년 3월 6일자로 출원되고 "살아있는 유기체 내에서 비침습적으로 물질의 양적 정보를 측정하기 위한 방법 및 장치"로 명명된 미국 가출원 번호 60/550,913호를 우선권으로 주장하며, 그 내용은 본 명세서에 참조로서 포함된다.
본 발명은 의료용 측정장치로서, 특히 살아있는 유기체 내에서 비침습적으로 물질의 양적 정보를 측정하기 위한 방법 및 장치에 관한 것이다.
살아있는 유기체와 그것의 기관은 넓은 주파수 스펙트럼에서 매우 약한 전자기적 발진을 한다. 몇몇의 전신 치료 과정은 이와 같은 원리를 이용한다. 이러한 치료 과정은 특정 극미세 발진 정보를 이용하며 일반적으로 음성 분석 치료법(bioresonance therapy)으로 알려져 있다.
상기 음성 분석 치료법(BRT)이라는 용어는 "환자 고유의 전자기적 발진을 이용한 치료법"을 위한 브루저만(Brugemann) 연구소에 의해 1987년에 처음 사용되었다. 이 원리는 1977년에 그의 아이디어의 사용을 최초로 보여준 의학 박사 F. 모렐(Morrell)로 거슬러 올라갈 수 있다. 모렐 박사는 모든 질병과 그것들의 사전 조 짐은 전자기적 발진에 의해 동반되거나 기인한다고 주장하였다. 모렐 박사의 주장에 따르면, 인체 내부나 외부에서 병리학적 발진의 실재가 없으면 병리학적 현상도 없다는 것이다.
병리학적 전자기 발진은 환자의 체내에서 건강한 발진과 함께 활성화된다. 환자의 고유한 발진이나 신호는 사실상 전자기이기 때문에 전극과 전자기 측정장치를 이용하여 검출할 수 있다. 분리기로서 알려진 어떤 것을 이용하여, 모든 인간에게서 사실상 동일하게 나타나는 조화 발진(harmonious oscillation)은 필터를 통필터링될 수 있다. 병원체에 의해 야기될 수 있는 방해 주파수는 필터에 의해 걸러지지 않는다. 따라서, 분리기는 단지 조화 주파수로만 공진한다. 이러한 방법으로, 조화 주파수와 부조화 주파수(disharmonious frequency)를 분리하는 것이 가능하다.
당뇨병은 대략 2000만명의 미국인의 생명을 위협하는 질병으로써, 그 중 50%는 당뇨병에 걸린것을 모르고 있다. 최근 통계 추산은 전 세계적으로 대략 1억2천5백만 명이 당뇨로 진단되었으며, 그 수는 2010년까지 2억2천만 명으로 상승할 것으로 예상된다고 한다. 당뇨의 조기 발견은 병에 걸린 사람들을 더 오래 그리고 더 건강한 삶을 살 수 있게 할 수 있다. 혈당치 모니터링(monitoring) 및 트래킹(tracking)은 당뇨병 환자의 확산을 방지하는데 도움을 주는 귀중한 정보를 제공한다. 인슐린을 이용하는 당뇨병에 걸린 사람들은 매일 세 번 내지 그 이상의 혈당치 체크가 규칙적으로 요구된다. 상기 혈당치 모니터링 과정은 질병을 위한 치료 조사에 있어서 의사에게 신속하고 중요한 정보를 제공한다.
1970년대 동안 혈당치를 모니터링하는 계기는 채혈 반응을 통한 화학 측정 스트립(strip)에 기초하였다. 오늘날, 혈당치를 측정하는데 사용되는 정밀한 전자 장치들이 있지만, 이러한 장치들은 아직 침습 시술을 사용하므로 환자로부터 혈액 샘플을 채취한다. 그러나 이와 같은 기술들은 건강한 조직을 해치고, 불편하며, 때때로 고통을 수반한다. 이러한 혈액 테스트와 같이 건강한 조직을 해치는 기술에 비하여, 전자가 발진을 이용하여 유기체 내의 혈당과 같은 어떤 물질의 양을 결정하는 것이 바람직하다. 부가적으로, 다양한 물질들의 발진을 이용하여 유기체 내 어떤 물질의 상기 양을 결정하는 것이 유용하다.
따라서, 전자기 발진을 이용하여 일반적인 혈액 또는 인체 안의 혈당치와 같은 물질을 위한 비침습적인 테스트를 할 수 있는 방법 및/또는 장치가 요구되고 있다.
상술된 필요성은 본 발명의 다양한 실시 예로서 실현된다. 따라서, 일실시 예에서, 유기체 내에서 물질 레벨을 비침습적으로 측정하기 위한 방법 및 시스템이 제공하며, 상기 방법은 자율 신경 시스템의 다른 경락들 상의 점들 사이 또는 상기 유기체의 상기 피부 상의 다른 점들 사이에서 상기 전기적 전위를 측정하는 단계와, 기준점과 같은 상기 측정된 값을 저장하는 단계와, 다수의 저전류 전기적 신호들을 인가하는 단계와, 상기 방법에서 각각의 신호는 상기 기준점과 상기 전기적 신호로의 상기 반응 사이에서 최대 차를 결정하도록 물질의 알려진 농도로부터 도출된 앞서 추출된 전기적 신호에 대응하며, 상기 최대 차 및 미리 결정된 표를 이용하여 유기체 내에서 상기 물질의 상기 양을 결정하여 상기 최대 차를 가지는 상기 물질의 양을 상호연관시키는 단계를 포함한다.
다른 측면에 따르면, 살아있는 유기체 내의 물질을 결정하는 방법에 있어서,소정 양의 상기 유기체에 대응하는 전기적 시그니처 신호를 인가하는 단계; 상기 인가된 시그니처 신호에 대한 상기 유기체의 반응을 측정하는 단계; 및 증가한 반응이 상기 전기적 시그니처의 인가로부터 야기된 것인지 결정하고, 만일 그렇다면, 상기 소정 양의 물질로부터 유기체 내의 상기 물질의 양을 결정하는 단계를 포함한다.
다른 측면에 따르면, 상기 "신체 반응"의 검출은 상기 피부 상의 두 지점들 사이에서 신체로 인가된 동일한 물질 시그니처파에 대하여 시간에 대한 전도성 변화의 순차적으로 발생된 곡선들의 수렴의 레벨을 모니터링하는 것에 근거하고 있다.
다른 측면에 따르면, 기준 용액에서 포도당의 미리 알려진 농도의 유사한 주파수를 가지는 상기 인간의 혈액 내에서 포도당 분자의 다른 농도의 자기 발진 주파수의 매칭(matching)을 위한 방법을 제공한다. 공진 또는 "GlucoResonance의 결과로서, 인간의 신체상에서 두 개의 미리 정의된 경혈(aculevel) 사이에서 상기 전기적 전위는 두드러지게 변한다. 이 변화는 GlucoResonance를 가지는 측정된 경혈과 GlucoResonance를 가지지 않는 경혈 간의 차이를 나타낸다.
일 측면에 따르면, 10mg/dl 내지 600mg/dl의 혈당치의 범위를 포함하는 포도당의 차이 값을 가진 수백의 생물적인 용액으로부터 추출된 자기 발진 주파수의 내부 데이터베이스를 이용한다. 혈액 내 포도당 테스트를 위하여, 상기 기준 데이터베이스 내 모든 항목을 위한 저전류 전기 신호는 상기 피부 또는 경혈점들 상의 소정의 점들에서 환자에게 인가될 수 있다. 이러한 전기 신호들은 전위가 이전에 측정되어 주파수 교정 경혈을 생성하는 점들에 인가된다. 그런 다음 모든 데이터 포이트를 위한 상기 측정된 어큐레벨은 상기 주파수 교정 경혈과 비교된다. 이러한 값들 사이의 많은 교란(disturbance)/변경은 환자의 혈당치를 제시한다.
다른 측면에 따르면, 유기체 내의 물질을 측정하기 위한 장치에 있어서, 프로세서 수단; 신호를 인가하고 수신하기 위한 적어도 두 개의 전극 수단; 상기 적어도 두 개의 전극 수단간의 상기 임피던스를 결정하기 위한 임피던스 측정 수단; 각각이 서로 다른 양의 물질에 대응하는 다수의 전기적 시그니처 신호들의 데이터베이스를 저장하기 위한 메모리 수단; 및 상기 적어도 두 개의 전극 수단으로 상기 전기적 시그니처 신호들을 인가하기 위한 수단을 포함한다.
이러한 그리고 다른 특징들 및 이점은 첨부된 도면과 함께 상세한 설명에 따라 더욱 분명하게 이해될 것이다. 상기 언급된 도면들은 본 발명의 단지 하나의 형태로만 표시되는 것은 아니다.
도 1a는 본 발명의 일실시예를 보여주는 개략도이다.
도 1b는 본 발명의 다양한 실시예들에서 사용될 수 있는 임피던스 미터(impedance meter)를 보여주는 개략도이다.
도 1c는 본 발명의 다양한 실시 예들에서 사용될 수 있는 리셋회로를 보여주 는 개략도이다.
도 2는 살아있는 유기체에서 물질들의 양적 정보를 비침습적으로 측정하기 위한 일반적인 방법을 보여준다.
도 3a는 유기체 내 물질들의 양적 정보를 비침습적으로 측정하기 위한 상세한 방법을 보여준다.
도 3b는 도 3a에 도시된 상기 방법의 연장이다.
도 4a-4b는 시간 영역에서 발생하는 임피던스 측정을 보여주는 그래프를 보여준다.
도 5는 본 발명의 다른 실시 예를 보여주는 개략도이다.
도 6a는 본 발명의 하나 또는 그 이상의 측면에 포함된 휴대용 장치를 보여주는 사시도이다.
도 6b는 도 6a에 도시된 휴대용 장치의 분해 사시도이다.
이하에서, 본 발명의 서로 다른 특징들을 구현하기 위한 많은 다른 실시예들 또는 예들을 제시하고 있다. 이하, 구성요소들, 신호들, 메시지들, 프로토콜들, 그리고 배열들의 특정한 예들은 본 발명을 간략화를 위해 설명하기로 한다. 물론, 이것들은 단지 예일 뿐이며, 특허청구범위에 기재된 본 발명의 범위를 제한하는 것은아니다. 잘 알려진 구성 요소들은 불필요하게 본 발명을 모호하게 하지 않기 위해서 상세한 설명은 생략하기로 한다. 전체적으로, 본 발명이 속하는 기술분야에서 통상의 지식을 가지는 자에게 자명한 것은 본 발명을 더욱 완전하게 설명하기 위해 서 불필요한 세부사항은 생략하기로 한다. 여기에서 설명되는 제어 회로 또는 메카니즘의 세부사항은 본 발명의 기술분야에 속하는 통상의 지식을 가진 자들에게 자명하므로 상세한 설명은 생략하기로 한다.
경혈은 중국 의학에서 잘 알려져 있다. 1950년도에, 레인 하드 볼(Reinhard Voll) 박사는 침술을 연구하였으며, 인체에는 경락이라 불리는 20개의 선을 따라 피부 위에 약 2000개의 혈을 가진다는 것을 배웠다. 중국 전통 의학에 따르면, 경락은 에너지의 통로이며, 그리고 그 에너지 운동은 Qi라 불린다. 서양 학문은 또한 경혈들은 피부 전기 저항을 맵핑함으로써 발견될 수 있음을 보여준다. 따라서, 경혈들은 상기 피부면 또는 이러한 혈 위에서의 전기 저항이 주변 피부보다 낮으며 인체 내부에서 전자기 신호의 효과적인 전도물로 경혈들을 만들 수 있는 특정한 표면 해부학상의 위치들이다. 몇몇 연구들은 경혈 저항이 주위 피부의 절반(또는 컨덕턴스는 약 두 배 높다)이라는 것을 보여주었다. 그러므로, 경혈에서 갈바니(galvanic) 피부 또는 다른 경로의 저항 또는 컨덕턴스를 측정하여 상기 유기체의 자기 발진 주파수의 상기 공진점을 결정할 수 있다. 이 경우, 상기 인체가 공진점의 주검출기가 되며, 인체에서 두 개의 다른 점들 사이의 컨덕턴스는 상기 공전 발생으로 인체반응의 2차 센서(sensor)가 될 수 있다.
상술한 바와 같이, 몇몇 치료 방법에서, 부조화 주파수(예를 들어, 병원체의 시그니처 주파수(signature frequency)들은 필터링되고 반전될 수 있다. 분리기로부터 조화 발진뿐만 아니라 이러한 반전된 주파수들은 전극을 이용하여 환자에게 피드백(fed back)될 수 있다. 환자 자신의 전자기력은 상기 치료 신호와 반응하며, 상기 측정장치 및 분리기 안으로 수정된 패턴을 순서대로 입력한다. 이러한 과정은 반복될 것이며, 따라서 상기 몸 안의 상기 병에 의한 신호들은 필연적으로 감소되며 최종적으로 소멸될 것이다. 상기 몸으로부터 병에 의한 신호들을 제거하는 것은 유익한 치료효과를 가진다는 것을 보여주었다.
본 발명의 일측면에 따르면, 포도당과 같은 물질들은 또한 특유의 전자기 발진 또는 주파수를 가진다는 것을 인정한다. 본 출원의 목적을 위하여, "물질"은 포도당과 같은 특정한 또는 한정된 화학적 조성으로 이루어진 물질을 말한다. 특별한 물질과 관련된 발진들은 유기체 내부에서 상기 물질 변동의 양으로서 변할 수 있다. 따라서, 본 발명의 다양한 측면들은 전자기 발진을 이용하여 유기체 내의 혈당과 같은 상기 물질 농도를 결정한다.
상술한 바와 같이, 모든 물질들은 또한 고유한 자기적 "자기(self)" 주파수 발진을 갖는다. 시약의 주파수가 전극을 통하여 상기 유기체로 인가되면, 시약 주파수는 유기체의 주파수와 상호 반응하며, 주파수의 진폭 내에서 변하게 된다. 신호의 진폭 또는 "여기(excitation)"의 반응 또는 변화를 검출하고 측정할 수 있다. 따라서, 어떤 신호 주파수들이 기준점들과 비교할 때(상기 기준점들은 또한 동일한 시약 시그니처들을 인가하는 제 1 컨덕턴스/저항 측정일 수 있다) 가장 큰 여기를 발생하는 지 결정할 수 있다. 다수의 주파수들을 비교할 때(각 주파수는 상기 물질의 알려진 레벨에 대응됨), 가장 큰 여기를 발생하는 상기 주파수는 유기체 내의 물질의 레벨에 대응하는 주파수이다.
따라서, 참조 데이터베이스(reference database)에서 모든 관련 상관 작용을 위하여, 특정 주파수를 가진 저전류 전기신호를 유기체에 인가될 수 있으며, 전기적 포텐셜이 미리 측정된 인체의 경혈이나 다른 점들에 인가된다. 이 과정은 참조 데이터베이스에서 모든 상관 작용을 위해서 매치(match)(예를 들어, 가장 큰 여기를 발생하는 신호)가 발견될 까지 반복될 수 있다.
도 1a에 본 발명의 일측면이 도시되어 있다. 측정장치(10)는 유기체 내에서 물질의 레벨을 측정한다. 상기 측정장치(10)는 사용자 인터페이스(12)를 포함한다. 상기 사용자 인터페이스(12) 사용자나 소프트웨어 에이전트(software agent)로 입력받거나 출력을 제공할 수 있는 하나 또는 그 이상의 인터페이스를 포함한다. 상기 사용자 인터페이스(12)는 디스플레이 장치, 터치 감지 입력 스크린, 입력키들, 마이크 및/또는 스피커(미도시)로 이루어질 수 있다.
상기 사용자 인터페이스(12)는 프로세서(14)와 통신할 수 있다. 본 발명의 일측면에 따르면, 상기 프로세서(14)는 측정장치(10)의 처리 및 다양한 기능을 제어한다. 상기 프로세서(14)는 제1메모리(16)에 결합될 수 있다. 상기 메모리(16)에 내장될 수도 있으며, 또는 외부 메모리 칩일 수도 있다. 상기 프로세서(14)는 또한 제2메모리(18)와 통신할 수 있다. 상기 제2메모리(18)는 외부 메모리 칩 또는 상기 프로세서(14)에 내장된 메모리일 수 있다. 몇몇 실시예에 따르면, 상기 제2메모리는 추출된 포도당 시약 시그니처의 데이터베이스와 같은 참조 데이터베이스(20)를 저장할 수도 있다.
일실시예에서, 상기 참조 데이터베이스(20)는 기준 또는 시그너처 주파수들을 "시약" 내 물질의 특정 레벨과 상호연관시키는 값들의 테이블일 수 있다. 본 출 원에서 사용되는 것처럼, 시약은 일반적으로 액체 또는 용매와 혼합되어 혼합물을 형성하는 물질이다. 시약은 생물학적 또는 화학적 활동 때문에 선택될 수 있다. 이후에 설명하는 바와 같이, 시약은 물질의 자기 발진 주파수를 결정하는데 사용될 수 있다. 실험적 기술을 이용하여, 자기 발진 주파수들을 시약 내 물질의 양과 상호연관시키는 테이블을 데이터베이스(20)에 설치하거나 로딩할 수 있다.
상기 메모리(18)는 한 쌍의 전극들(22a 및 22b)과 통신할 수 있다. 몇몇 실시예들에서, 하나의 전극은 액티브-양극(active-positive)이고, 다른 전극은 패시브-음극(passive-negative)일 수 있다. 이후에 설명하는 바와 같이, 상기 전극들(22a, 22b)은 상기 유기체의 피부와 상호작용하며, 피부의 두 지점들 사이의 임피던스를 측정하는데 사용된다. 몇몇 실시예에서는, 상기 전극들은 상기 전극들(22a, 22b) 사이의 상기 임피던스를 결정하거나 측정하는 임피던스 미터(24)와 통신한다. 상기 임피던스 미터(24)는 상기 임피던스 미터(24)로부터 전송된 신호를 증폭하는 증폭기(26)와 통신한다.
상술한 예시적인 실시예에서, 상기 증폭기(26)는 상기 증폭기로부터 출력된 아날로그 신호를 디지털 신호로 변환하는 아날로그-디지털 변환기(28)와 통신한다. 다른 실시예에서, 상기 디지털 신호는 처리장치(14)로 보내질 수 있다.
또한, 리셋회로(30)는 상기 측정장치(10)에 연결되며, 상기 처리장치(14)와 통신한다. 상기 리셋회로(30)는 또한 상기 전극들(22a, 22b)과 통신한다. 몇몇 실시 예에서는, 상기 리셋회로(30)는 상기 전극들 사이에 잔류 전하를 제거하거나 쇼트(short out)시킨다. 즉, 상기 리셋회로(30)는 상기 전극들 사이 상기 피부 상에 전개된 어떤 잔류 전기 및/또는 전하를 제거 한다. 상기 측정장치(10)는 배터리(미도시)와 같은 전원에 의해 전원 공급될 수 있다.
도 1b에 상기 임피던스 미터(24)의 일실시예가 도시되어 있다. 이 실시예에서, 회로(39)는 임피던스 변화를 나타내는 해당 전압을 출력하는 두 전극 사이의 임피던스의 상대적인 변화를 결정한다. 이 실시예에서, 상기 회로(39)는 상기 전극들(22a, 22b)(도 1)에 연결된 리드들(lead)(40a, 40b)을 포함한다. 상기 리드(40a)는 연산 증폭기(42)의 음극 또는 반전 입력단에 연결될 수 있다. 상기 연산 증폭기(42)의 양극 또는 비반전 입력단은 저항(44), 공통 접지(46), 기준 전압 발생기(48), 및 저항(50)를 포함하는 일부회로에 연결될 수 있다. 상기 기준 전압 발생기(48)의 상기 양극 리드와 상기 저항(50)의 상기 음극 리드는 저항(52)에 연결될 수 있다. 상기 저항(52)은 상기 리드(40a) 및 연산 증폭기(42)의 음극 입력단에 연결될 수 있다.
이 실시예에서, 상기 리드(40b)는 연산 증폭기(42)의 출력단에 연결된다. 저항(54)은 또한 상기 리드들(40a)과 상기 리드(40b)를 연결시킨다. 상기 연산 증폭기(42)의 출력 전압은 상기 프로세서(14)(도 1)로부터 신호를 수신하는 가변 이득 증폭기(54)로 전송된다. 따라서, 상기 회로(39)는 전압을 상기 전극들간의 임피던스 변화에 해당하는 전압을 가변 이득 증폭기(56)로 전달한다. 상기 가변 이득 증폭기(56)는 전압을 증폭하고 증폭된 신호를 아날로그-디지털 변환기(58)로 보낸다. 이 실시예에서, 상기 아날로그-디지털 변환기(58)는 상기 가변 이득 증폭기(56)으로부터 출력된 상기 아날로그 신호를 변환하여, 상기 변환된 디지털 신호를 상기 프로세서(14)로 전달한다.
도 1c에 상기 리셋 회로(30)가 도시되어 있다. 이 실시예에서, 범용 아날로그 스위치(60)는 상기 프로세서(14)(도 1)로부터의 입력 명령을 리드(62)를 통해 수신한다. 또한, 아날로그 스위치(60)는 각각 상기 리드들(64a, 64b)을 통해 상기 전극들(22a, 22b)(도 1)과 통신할 수 있다. 상기 프로세서(14)로부터 적절한 명령수신하면, 상기 아날로그 스위치(60)는 상기 전극들 사이의 모든 잔류 전하를 효과적으로 "쇼트"되도록 한다. 다른 실시예에서(미도시), 상기 회로는 전극들(22a, 22b)의 상기 극성은 서로 바뀔 수 있다.
도 2는 인체와 같은 유기체 내 특정 물질의 양을 결정하기 위한 일반적인 방법(200)을 보여준다. 상기 방법(200)은 202단계에서 시작하여 전기적 시그니처파(electrical signature wave) 또는 하나의 주파수에 대응하는 신호가 상기 유기체의 상기 피부와 접촉되는 상기 전극들(예를 들어 도 1의 전극들(22a, 22b))에 인가되는 204단계로 진행한다. 상기 인가된 전기적 시그니처 신호는 상기 물질의 소정의 농도와 상호연관된다. 시그니처 신호 주파수(예를 들어 22-24 KHz)와 물질 시약의 알려진 농도 사이의 상호연관을 저장하는 일반적인 메모리 칩 상에 저장된 기존 참조 데이터베이스(예를 들어 도 1의 데이터베이스(20))가 있다. 따라서, 상기 데이터베이스에서 각 시그니처 주파수는 유기체 내 물질의 알려진 농도와 상호연관된다.
206단계에서, 상기 인가된 시그니처 신호와의 반응 또는 여기가 측정된다. 208단계에서, 상기 반응이 증가되는지 결정한다. 다시 말해, 상기 유기체가, 인가 된 전기적 신호와 물질의 알려진 농도 사이에서 양의 상호작용을 나타내는 방식으로 반응하는 지 결정한다. 상기 인가된 전기적 시그니처와의 반응이 증가되는 것으로 결정되면, 210단계로 진행하여 상기 유기체 내에서 (포도당과 같은) 물질의 레벨을 결정하도록 상호연관시킨다. 반면에, 반응이 증가되지 않으면, 204단계로 진행하여 새로운 전기적 시그니처파를 인가한다.
아래에서 설명하는 바와 같이, 몇몇 실시예들에서, 각각 물질의 특정 농도에 대응하는 다수의 전기적 시그니처 신호들을 반복적으로 인가할 수도 있다. 가장 많은 양의 여기를 야기시키는 전기적 시그니처 신호 (또는 신호들) 결정될 수 있으며, 참조 데이터베이스에 다시 접근하여 주파수에 대응하는 물질의 특정 레벨을 결정할 수도 있다. 따라서, 물질의 레벨은 사용자 인터페이스를 통해 결정되고 표시될 수 있다.
예로서, 상기 인간의 혈액 내에서 포도당 분자의 다른 농도의 상기 자기 발진 주파수는 기준 용액 내의 미리 알려진 포도당농도의 유사한 주파수와 일치할 수 있다. 주파수가 일치되면, 혈액 내의 해당 혈당치를 쉽게 결정할 수 된다.
도 3a 및 도3b는 도 2에서 보여준 상기 일반적인 방법의 상세한 실시예를 보여준다. 상기 방법은 302단계에서 시작한다. 몇몇 실시예에서, 상기 사용자 인터페이스르로를 통해 입력된 신호에 의해 개시된다. 다른 실시예에서, 미리 프로그램된 스케줄 또는 타이머 회로의 결과로서 상기 프로세서에 의해 개시될 수 있다. 개시 이후, 304단계로 진행하여 피부상의 두 개의 다른 지점들간의 전기적 임피던스를 상기 전극들(22a, 22b)을 통해 측정된다. 몇몇 실시예들에서, 상기 두 지점들은 다 른 경락(meridian) 상에 위치하는 경혈점이 될 수 있다. 306단계에서, 임피던스 신호(예를 들어 상기 임피던스를 나타내는 상기 전압)가 허용가능한 소정 한계 내에 있는지를 결정한다. 만일 상기 임피던스 측정기로부터 측정된 상기 수치들이 너무 낮으면, 상기 증폭기 이득은 조정하면 될 것이다. 만일 상기 수치들이 소정의 범위 내에 있지 않으면, 308단계에서 이득 인자들을 계산한다. 310단계에서, 상기 이득인자는 이후의 추가적인 임피던스 측정시 사용하기 위해 메모리에 저장될 수 있다. 312단계에서, 상기 이득 인자는 상기 증폭기의 이득인자를 조절하는데 사용될 수도 있다. 다음으로, 304단계로 되돌아가 임피던스를 다시 측정한다. 306단계에서, 새로운 임피던스 신호가 허용가능한 소정의 한계내에 있는지 결정한다. 신호가 허용가능한 한계내에 있다고 결정되면, 314단계로 진행한다.
314단계에서, 상기 참조 데이터베이스(20)로부터의 제1시그니처 신호가 전극에 인가된다. 몇몇 실시예들에서, 상기 시그니처파는 알려진 포도당 수치에 대응한다. 316단계에서, 일련의 전기적 임피던스 측정을 시간영역에서 수행하여 제1데이타 세트를 생성한다. 상기 제1데이터 세트는 도 4a의 그래프에서 곡선(402)으로 표현될 수 있다. 도 4a에서, 수직축은 상기 반응 또는 측정된 임피던스를 나타내며, 수평축은 시간을 나타낸다. 따라서, 상기 곡선(402)는 시간=0에서 인가된 상기 시그니처 신호로 인한 시간에 대한 임피던스 반응을 나타낸다. 다시 말하면, 상기 곡선상의 각 점은 상기 시그니처 신호의 인가된 때부터 특정 시간에서 측정된 임피던스 값을 나타낸다.
도 3을 다시 참조하면, 318단계에서, 상기 전극들 상의 잔류 전압은 도 1c에 서 설명한 바와 같이 제거될 수 있다. 320단계에서, 상기 시그니처 신호는 상기 전극들을 통해 다시 인가된다. 이것은 314단계에서 인가된 것과 동일한 신호이다. 322단계에서, 다른 일련의 전기적 임피던스 측정을 시간 영역에서 수행하여 제2데이터 세트를 생성한다. 상기 제2데이터 세트는 도 4b에 도시된 그래프에서 곡선(404)로 표현될 수 있다. 몇몇 실시예들에서, 품질 측정 지시자와 같은 미리 정의된 지시자를 만족시키지 못하면, 322단계 내지 314단계를 반복하여 추가적인 데이터 세트를 생성한다.
324단계에서, 상기 데이터 세트들을 서로 비교하여 수렴(convergence)되었는지를 결정한다. 수렴의 양은 곡선(404) 상에 중첩된 곡선(402)을 보여주는 도 4c에서 도시된 그래프로 표현될 수 있다. 수렴되지 않았다면, 바로 328단계를 진행한다. 326단계에서, 수렴되면, 328단계로 진행하기 전에 시그니처 세트들을 후보 데이터 세트로 저장한다.
328단계에서, 상기 데이터베이스의 상기 모든 시그니처 신호들이 인가되었는지 결정한다. 만일 그렇지 않다면, 330단계(도 3a)로 진행하여 잔류 전압을 도 1c에서 설명한 것과 같이 제거한다. 330단계로부터, 332단계로 진행하여 데이터베이스 내의 다음 시그니처 신호가 상기 전극들로 인가되도록 설정한다. 다음으로, 314단계로 되돌아가, 새로운 시그니처 신호를 위해 314단계 내지 328단계를 반복한다. 반면에, 328단계에서 모든 시그니처 신호들이 상기 전극들로 인가되었다고 결정되면, 334단계로 진행한다.
334단계에서, 상기 로직은 저장된 후보 데이터 세트를 검토하여 최대 수렴 또는 상기 저장된 후보 데이터 세트 중 "최상"의 후보를 가지는 세트를 결정한다. 최상의 후보를 생성할 주파수를 사용하여, 336 단계에서, 상기 참조 데이터베이스에 접근하여 상기 신호와 대응하는 상기 물질의 레벨을 결정한다. 따라서, 상기 물질의 레벨이 결정되고 사용자 인터페이스로 전송된다. 다음으로, 338단계에서 절차가 종료한다.
도 5에는, 유기체 내에서 물질의 레벨을 측정하기 위한 다른 측정장치(500)가 도시되어 있다. 상기 측정장치(500)는 한 쌍의 전극들(502a, 502b)를 포함한다.하나의 전극은 액티브-양극(active-positive)이고, 다른 전극은 패시브-음극(passive-negative)일 수 있다. 상기 전극들(502a, 502b)은 상기 유기체의 피부와 상호 작용하며, 다른 경락 상의 두 지점과 같은 피부 상의 두 지점들 사이에서 전기 전도도를 측정할 수 있다. 상기 전극들은 상기 전극들(502a, 502b) 사이에서 상기 임피던스를 측정하는 임피던스 미터(504)와 통신할 수 있다. 상기 임피던스 미터(504)는 프로세서(506)와 통신할 수 있다. 이하에서 상세하게 설명되는 것과 같이, 상기 프로세서(506)는 상기 장치(500)의 다양한 측면들을 제어한다. 상기 프로세서(506)는 참조 데이터베이스(510)를 저장하기 위한 제1메모리 장치(508)와 통신한다. 몇몇 실시예에서, 상기 제1메모리 장치는 일반적인 메모리 칩일 수 있다. 다른 실시예에서, 상기 프로세서(506)는 임시 변수 및 측정된 데이터를 저장하기 위한 제2메모리 장치(507)와 통신한다. 상기 제2메모리 장치(507)는 상기 프로세서에 내장될 수 있으며 또는 외부 칩일 수 있다. 상기 프로세서(506)는 또한 스크린 및 입력 장치와 같은 다양한 실시 예들을 가지는 사용자 인터페이스(509)와 통신할 수 있다.
몇몇 실시예들에서, 상기 프로세서(506)는 또한 상기 프로세서로부터 출력된 디지털 신호를 상기 아날로그 신호로 변환하는 디지털-아날로그 변환기(512)와 통신할 수 있다. 몇몇 실시예들에서, 상기 아날로그 신호는 신호를 상기 전극들(502a, 502b) 전달하는 증폭기(514)로 보내진다. 리셋신호 발생기(516)는 또한 상기 전극들(502a, 502b)과 통신할 수 있으며, 신호를 상기 전극들로 보낸다. 상기 신호 발생기(516)는 또한 상기 프로세서(506)와 통신한다. 실시예들에서, 상기 신호 발생기(516)는 전극과 증폭기(514)에 대한 신호의 극성은 서로 바뀌어도 된다. 다른 실시예들에서, 상기 신호 발생기는 도 1a을 참조하여 설명한 리셋회로(30)와 유사한 리셋회로일 수 있다.
도 1a를 참조하여 설명한 실시예에서와 같이, 사용자 인터페이스(509)는 신호를 상기 프로세서(106)로 보내어 프로세스를 개시한다. 이에 대해, 상기 프로세서(506)는 상기 임피던스 미터(504)가 상기 전극들(502a, 502b) 사이의 임피던스를 읽는 과정을 개시시킨다. 임피던스 미터(504)는 임피던스 신호를 증폭하고, 디지털화하며 상기 프로세서(506)로 다시 전송한다. 상기 프로세서는 초기 임피던스 수치를 사용하여 이득 인자를 계산하여, 이후 사용을 위하여 상기 메모리(507)에 이득 인자를 저장한다.
상기 프로세서(506)는 상기 메모리(508)에 저장된 상기 데이터베이스(510)를 읽는 과정을 개시한다. 상기 데이터베이스(510)로부터의 상기 코드들 또는 시그니처 신호들은 디지털 신호를 아날로그 신호로 변환하는 상기 디지털-아날로그 변환 기(512)로 전송된다. 상기 아날로그 신호는 증폭기(514)로 전송되며, 증폭기(514)가 아날로그 신호를 증폭하고 상기 신호들을 상기 전극(502a, 502b)으로 전송한다.상기 전극들(502a, 502b) 사이의 상기 임피던스는 상기 임피던스 미터(504)에 의해 측정될 수도 있다. 상기 유기체 내의 상기 물질의 양은 상술한 것과 유사한 반복적인 과정에 따라 결정될 수 있다.
도 6a는 사람의 손목에 착용되도록 설계된 시스템(600)의 예시적인 실시예를 보여준다. 도시된 바와 같이, 휴대용 측정장치(602)는 손목 밴드(604a, 604b)에 연결되어 있다. 상기 측정장치(602)는 도 1a 내지 도 1c 또는 도 5를 참조하여 설명된 모든 구성 요소들을 포함한다.
도 6b는 도 6a에 도시된 휴대용 장치(602)의 분해 사시도이다. 이 실시예에서, 상기 측정장치(602)는 터치 스크린(606) 및 액정 표시 장치(LCD)(608)를 포함하는 사용자 인터페이스를 포함한다. 상기 터치 스크린(606)은 사용자로부터 입력 정보를 수용하며 상기 LCD(608)는 처리정보 및 결과를 표시한다. 이러한 예시적인 실시예에서, 하우징 부재들(610a, 610b)은 상기 프로세서 및 전술한 메모리 장치와 같은 상기 다양한 구성 부품들을 둘러싸고 있다. 이 실시예에서, 상기 부품들은 인쇄 회로 기판(PCB)(612) 상에 조립될 수 있다. 이러한 특정한 예에서, 리듐(lithium) 베터리(614)와 같은 전원 공급 장치는 필요한 전원을 상기 장치에 제공한다. 전극들(616a, 616b)은 시계의 아래쪽에 위치되며 사람 손목의 뒷면에 접촉하도록 한다. 몇몇 실시예에서, 상기 전극들(616a, 616b)은 스테인레스 스틸과 같은 전도성의 물질로 만들어진다. 상기 도시된 실시예에서, 상기 전극들(616a, 616b)은 호르몬 또는 림프 시스템 최고점의 경혈 상에 정렬되도록 이격된다.
전술한 본 발명의 실시예들은 예시 및 설명을 위해 제시되었다. 상술한 실시 예들로 인해 본 발명의 범위가 줄어들거나 제한되어서는 안 된다. 본 발명은 다양한 수정과 변경이 가능하다. 본 발명의 보호 범위는 첨부된 특허청구범위에 의해 정해져야 할 것이다.
예를 들면, 몇몇 실시예에서, 유기체 내에서 물질을 결정하는 방법은 상기 유기체에 소정 양의 상기 물질에 대응하는 전기적 시그니처 신호를 인가하는 단계와, 상기 인가된 시그니처 신호에 대한 상기 유기체의 반응을 측정하는 단계와, 증가된 반응이 상기 전기적 시그니처의 인가로부터 야기되었는지 결정하며, 만약 그렇다면, 물질의 소정 양으로부터 유기체 내의 상기 물질의 양을 결정하는 단계를 포함한다.
또한 상술한 것과 유사한 방법에 있어서, 상기 방법은 각각이 다른 소정 양의 물질에 대응하는 다수의 전기적 시그니처 신호들을 제공하는 과정을 더 포함한다.
또한 상술한 것과 유사한 방법에 있어서, 상기 다수의 시그니처 신호들은 상기 물질의 적은 양부터 상기 물질의 많은 양에 이르는 상기 물질의 소정 양에 대응한다.
또한 상술한 것과 유사한 방법에 있어서, 상기 제1항의 방법은 상기 다수의 전기적 시그니처 신호들 각각을 대하여 반복된다.
또한 상술한 것과 유사한 방법에 있어서, 상기 물질은 포도당이다.
또한 상술한 것과 유사한 방법에 있어서, 상기 반응을 측정하는 단계는 상기 유기체 피부 상의 두 개의 다른 지점들간의 임피던스를 측정하는 단계를 포함한다.
또한 상술한 것과 유사한 방법에 있어서, 상기 반응을 측정하는 단계는 소정 양의 상기 물질에 대응하는 상기 시그니처 신호를 인가함으로써 소정의 시간 동안 다수의 임피던스 값들을 측정하여 측정 데이터 값들의 제1데이터 세트를 생성하는 단계와, 상기 전기적 시스니처 신호를 상기 유기체에 재인가하는 단계와, 상기 시그니처 신호를 인가함으로써 소정의 시간 동안 다수의 임피던스 값들을 측정하여 측정 데이터 값들의 제2데이터 세트를 생성하는 단계를 포함한다.
또한 상술한 것과 유사한 방법에 있어서, 상기 방법은 상기 피부 상의 상기 지점들간의 모든 잔류 전하를 제거하는 단계를 더 포함한다.
또한 상술한 것과 유사한 방법에 있어서, 상기 결정하는 단계는 상기 제1 및 제2 데이터 세트들이 수렴하는지를 결정하는 단계와, 수렴할 경우 상기 데이터 세트들을 후보 세트로 저장하는 단계를 포함한다.
또한 상술한 것과 유사한 방법에 있어서, 상기 방법은 각각의 저장된 후보 세트를 검사하여 상기 큰 수렴을 갖는 후보 세트를 결정하는 단계와, 상기 큰 수렴을 갖는 후보 세트에 대응하는 상기 시그니처가 되도록 상기 물질의 양을 설정하는 단계를 더 포함한다.
다른 실시예에서, 유기체 내에서 물질을 측정하기 위한 장치는 프로세서 수단, 신호를 인가하고 수신하기 위한 적어도 두 개의 전극 수단, 상기 적어도 두 개의 전극 수단 사이에서 임피던스를 결정하기 위한 임피던스 측정 수단, 전기적 시 그니처 신호가 다른 양의 물질에 대응하는 전기적 시그니처 신호들의 데이터베이스를 저장하기 위한 메모리 수단, 및 상기 적어도 두 개의 전극 수단으로 전기적 시그니처 신호들을 인가하기 위한 수단을 포함한다.
또한 상술한 것과 유사한 장치에 있어서, 상기 장치는 상기 임피던스 결정 수단으로부터 출력된 신호들을 증폭하기 위한 증폭 수단, 및 상기 증폭 수단으로부터 출력된 아날로그 신호를 디지털 신호로 변환하기 위한 아날로그-디지털 변환기 수단을 더 포함한다.
또한 상술한 것과 유사한 장치에 있어서, 상기 장치는 상기 증폭 수단의 상기 이득을 조절하기 위한 이득 조절 수단을 더 포함한다.
또한 상술한 것과 유사한 장치에 있어서, 상기 장치는 상기 이득 제어 조절 수단으로부터 결정된 이득 인자를 저장하기 위한 메모리 수단을 더 포함한다.
또한 상술한 것과 유사한 장치에 있어서, 상기 장치는 상기 적어도 두 개의 전극 수단 사이에서 모든 잔류 전압을 방전시키기 위한 리셋수단을 더 포함한다.
또한 상술한 것과 유사한 장치에 있어서, 끈(strap) 수단과 연결되며, 상기 측정장치들의 구성 요소들을 수용하기 위한 하우징 수단을 더 포함한다.
또한 상술한 것과 유사한 장치에 있어서, 상기 끈 수단은 손목 끈 수단이다.
또한 상술한 것과 유사한 장치에 있어서, 상기 전극 수단은 일부가 스테인리스 스틸로 만들어진다.
또한 상술한 것과 유사한 장치에 있어서, 상기 물질은 포도당이다.
또한 상술한 것과 유사한 장치에 있어서, 상기 장치는 상기 메모리 수단으로 부터의 디지털 신호를 변환하기 위한 디지털-아날로그 변환 수단, 및 상기 디지털- 아날로그 변환 수단으로부터의 아날로그 신호를 증폭하기 위한 증폭 수단을 더 포함한다.
Claims (20)
- 살아있는 유기체 내의 물질을 결정하는 방법에 있어서,소정 양의 상기 물질에 대응하는 전기적 시그니처 신호를 인가하는 단계;상기 인가된 시그니처 신호에 대한 상기 유기체의 반응을 측정하는 단계; 및증가한 반응이 상기 전기적 시그니처의 인가로부터 야기된 것인지 결정하고, 만일 그렇다면, 상기 소정 양의 물질로부터 유기체 내의 상기 물질의 양을 결정하는 단계를 포함하는, 유기체 내의 물질을 결정하는 방법.
- 제1항에 있어서,각각이 서로 다른 소정 양의 물질에 대응하는 다수의 전기적 시그니처 신호들을 제공하는 단계를 더 포함하는, 유기체 내의 물질을 결정하는 방법.
- 제2항에 있어서,상기 다수의 시그니처 신호들은 적은 양의 상기 물질로부터 많은 양의 상기 물질에 이르는 소정 양의 상기 물질에 대응하는, 유기체 내의 물질을 결정하는 방법.
- 제2항 또는 제3항에 있어서,상기 제1항의 방법은 상기 다수의 전기적 시그니처 신호들 각각에 대하여 반 복되는, 유기체 내의 물질을 결정하는 방법.
- 제1항에 있어서,상기 물질은 포도당인, 유기체 내의 물질을 결정하는 방법.
- 제1항에 있어서,상기 반응을 측정하는 단계는 상기 유기체 피부 상의 두 개의 다른 지점들간의 임피던스를 측정하는 단계를 포함하는, 유기체 내의 물질을 결정하는 방법.
- 제1항 또는 제4항에 있어서,상기 반응을 측정하는 단계는, 소정 양의 상기 물질에 대응하는 상기 시그니처 신호를 인가함으로써 소정의 시간 동안 다수의 임피던스 값들을 측정하여 측정 데이터 값들의 제1 데이터 세트를 생성하는 단계;상기 전기적 시스니처 신호를 상기 유기체에 재인가하는 단계; 및상기 시그니처 신호를 인가함으로써 소정의 시간 동안 다수의 임피던스 값들을 측정하여 측정 데이터 값들의 제2 데이터 세트를 생성하는 단계를 포함하는, 유기체 내의 물질을 결정하는 방법.
- 제7항에 있어서,상기 피부 상의 상기 지점들 사이에서 모든 잔류 전하를 제거하는 단계를 더 포함하는, 유기체 내의 물질을 결정하는 방법.
- 제7항에 있어서,상기 결정하는 단계는, 상기 제1 및 제2 데이터 세트들이 수렴하는지 결정하는 단계; 및상기 제1 및 제2 데이터 세트들이 수렴할 경우, 상기 데이터 세트들을 후보 세트로써 저장하는 단계를 포함하는, 유기체 내의 물질을 결정하는 방법.
- 제9항에 있어서,각각의 저장된 후보 세트를 검사하여 상기 가장 큰 수렴을 갖는 후보 세트를 결정하는 단계; 및상기 가장 큰 수렴을 갖는 상기 후보 세트에 대응하는 상기 시그니처가 되도록 상기 물질의 상기 양을 설정하는 단계를 더 포함하는, 유기체 내의 물질을 결정하는 방법.
- 유기체 내의 물질을 측정하기 위한 장치에 있어서,프로세서 수단;신호를 인가하고 수신하기 위한 적어도 두 개의 전극 수단;상기 적어도 두 개의 전극 수단간의 상기 임피던스를 결정하기 위한 임피던스 측정 수단;각각이 서로 다른 양의 물질에 대응하는 다수의 전기적 시그니처 신호들의 데이터베이스를 저장하기 위한 메모리 수단; 및상기 적어도 두 개의 전극 수단으로 상기 전기적 시그니처 신호들을 인가하기 위한 수단을 포함하는, 유기체 내의 물질을 측정하기 위한 장치.
- 제11항에 있어서,상기 임피던스 측정 수단으로부터 출력된 신호들을 증폭하기 위한 증폭 수단; 및상기 증폭 수단으로부터 출력된 아날로그 신호들을 디지털 신호들로 변환하기 위한 아날로그-디지털 변환기 수단을 더 포함하는, 유기체 내의 물질을 측정하기 위한 장치.
- 제11항에 있어서,상기 증폭 수단의 이득을 조절하기 위한 이득 조절 수단을 더 포함하는, 유기체 내의 물질을 측정하기 위한 장치.
- 제13항에 있어서,상기 이득 조절 수단으로부터 결정된 이득 인자를 저장하기 위한 메모리 수단을 더 포함하는 것을 특징으로 하는, 유기체 내의 물질을 측정하기 위한 장치.
- 제11항에 있어서,상기 적어도 두 개의 전극 수단 사이에서 모든 잔류 전압을 방전하기 위한 리셋수단을 더 포함하는 것을 특징으로 하는, 유기체 내의 물질을 측정하기 위한 장치.
- 제 11항에 있어서,끈 수단과 연결되며 상기 측정장치들의 구성 요소들을 수용하기 위한 하우징 수단을 더 포함하는 것을 특징으로 하는, 유기체 내의 물질을 측정하기 위한 장치.
- 제16항에 있어서,상기 끈 수단은 손목 끈 수단인 것을 특징으로 하는, 유기체 내의 물질을 측정하기 위한 장치.
- 제11항에 있어서,상기 전극 수단은 일부분이 스테인리스 스틸로 형성된 것을 특징으로 하는, 유기체 내의 물질을 측정하기 위한 장치.
- 제11항에 있어서,상기 물질은 포도당인 것을 특징으로 하는, 유기체 내의 물질을 측정하기 위한 장치
- 제11항에 있어서,상기 메모리 수단으로부터 출력된 디지털 신호를 변환하기 위한 디지털-아날로그 변환 수단; 및상기 디지털-아날로그 변환 수단으로부터 출력된 아날로그 신호를 증폭하기 위한 증폭 수단을 더 포함하는 것을 특징으로 하는, 유기체 내의 물질을 측정하기 위한 장치.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US55091304P | 2004-03-06 | 2004-03-06 | |
US60/550,913 | 2004-03-06 |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20060129507A true KR20060129507A (ko) | 2006-12-15 |
Family
ID=34976112
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020067019864A KR20060129507A (ko) | 2004-03-06 | 2005-03-05 | 살아있는 유기체 내에서 비침습적으로 물질의 양적 정보를측정하기 위한 방법 및 장치 |
Country Status (11)
Country | Link |
---|---|
US (3) | US7395104B2 (ko) |
EP (1) | EP1722681A4 (ko) |
JP (1) | JP2007527750A (ko) |
KR (1) | KR20060129507A (ko) |
CN (1) | CN1925786A (ko) |
AU (1) | AU2005220794A1 (ko) |
CA (1) | CA2558239A1 (ko) |
EA (1) | EA200601463A1 (ko) |
IL (1) | IL177889A0 (ko) |
TW (1) | TW200535416A (ko) |
WO (1) | WO2005086725A2 (ko) |
Families Citing this family (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6697658B2 (en) | 2001-07-02 | 2004-02-24 | Masimo Corporation | Low power pulse oximeter |
US6989891B2 (en) | 2001-11-08 | 2006-01-24 | Optiscan Biomedical Corporation | Device and method for in vitro determination of analyte concentrations within body fluids |
CA2558239A1 (en) * | 2004-03-06 | 2005-09-22 | Calisto Medical, Inc. | Methods and devices for non-invasively measuring quantitative information of substances in living organisms |
US8130105B2 (en) | 2005-03-01 | 2012-03-06 | Masimo Laboratories, Inc. | Noninvasive multi-parameter patient monitor |
EP1954175B1 (en) * | 2005-11-10 | 2016-07-13 | Biovotion AG | Device for determining the glucose level in body tissue |
US7937140B2 (en) * | 2006-06-12 | 2011-05-03 | Regni Jr Gerald J | Detection and diagnostic system and method |
US20080077073A1 (en) * | 2006-08-15 | 2008-03-27 | Richard Keenan | Analyte detection system with user interface providing event entry |
WO2009091955A1 (en) * | 2008-01-16 | 2009-07-23 | Issa Salim | Systems and methods for therapeutic treatments |
US8682425B2 (en) * | 2008-01-30 | 2014-03-25 | Miridia Technology Inc. | Electroacupuncture system |
US20090270756A1 (en) * | 2008-04-23 | 2009-10-29 | Gamache Ronald W | Determining physiological characteristics of animal |
JP5756752B2 (ja) | 2008-07-03 | 2015-07-29 | セルカコール・ラボラトリーズ・インコーポレイテッドCercacor Laboratories, Inc. | センサ |
US8203704B2 (en) | 2008-08-04 | 2012-06-19 | Cercacor Laboratories, Inc. | Multi-stream sensor for noninvasive measurement of blood constituents |
BRPI1011011A2 (pt) | 2009-06-09 | 2019-09-24 | Biosensors Inc | método, sistema de monitoramento, e, produto de programa. |
WO2012054560A1 (en) * | 2010-10-21 | 2012-04-26 | Highland Instruments, Inc. | Methods for detecting a condition |
TWI450707B (zh) | 2010-11-09 | 2014-09-01 | Univ Chung Hua | 生物阻抗量測儀及生物阻抗量測儀組合 |
JP5944918B2 (ja) | 2010-11-30 | 2016-07-05 | ニューライフ サイエンシーズ エルエルシー | 身体インピーダンスアナライザによる疼痛治療装置および方法 |
US20130261420A1 (en) * | 2011-06-06 | 2013-10-03 | Semen Kucherov | System and method for non-invasive diagnostic of mammals |
US8781565B2 (en) | 2011-10-04 | 2014-07-15 | Qualcomm Incorporated | Dynamically configurable biopotential electrode array to collect physiological data |
US20130317318A1 (en) * | 2012-05-25 | 2013-11-28 | Qualcomm Incorporated | Methods and devices for acquiring electrodermal activity |
US9378655B2 (en) | 2012-12-03 | 2016-06-28 | Qualcomm Incorporated | Associating user emotion with electronic media |
CN103892843A (zh) * | 2012-12-27 | 2014-07-02 | 龙华科技大学 | 一种非侵入式血糖感测器 |
US9462949B2 (en) * | 2014-07-31 | 2016-10-11 | Chung Hua University | Method for biomedical system |
CN104545910B (zh) * | 2014-12-29 | 2017-08-22 | 深圳市前海安测信息技术有限公司 | 慢性病早期电生理检测方法和系统 |
US11471109B2 (en) * | 2015-07-09 | 2022-10-18 | Capsuletech, Inc. | Methods and devices for recovering data from an amplitude-modulated signal |
US11197628B2 (en) * | 2015-07-10 | 2021-12-14 | Bodyport Inc. | Cardiovascular health monitoring device |
US11696715B2 (en) | 2015-07-10 | 2023-07-11 | Bodyport Inc. | Cardiovascular signal acquisition, fusion, and noise mitigation |
CN105011946B (zh) * | 2015-07-22 | 2018-05-04 | 通普生物科技(北京)有限公司 | 测量血糖值的方法 |
WO2020252406A1 (en) | 2019-06-12 | 2020-12-17 | Truerelief, Llc | System and method for delivering pulsed electric current to living tissue |
ES2974034T3 (es) * | 2019-08-20 | 2024-06-25 | Rayonex Biomedical Gmbh | Método para identificar un punto y/o un meridiano de acupuntura |
US11324423B2 (en) * | 2019-08-27 | 2022-05-10 | eTouch Medical Inc. | Non-invasive system for testing blood sugar and method of the same |
US12114974B2 (en) | 2020-01-13 | 2024-10-15 | Masimo Corporation | Wearable device with physiological parameters monitoring |
US20210369134A1 (en) * | 2020-06-01 | 2021-12-02 | Wellness Allied Inc | Device and method to measure meridian impedances |
US11911605B2 (en) | 2021-03-05 | 2024-02-27 | Truerelief Llc | Method and apparatus for injury treatment |
Family Cites Families (104)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US455271A (en) * | 1891-06-30 | Shingles | ||
FR1344459A (fr) | 1962-10-18 | 1963-11-29 | Procédé et appareil pour l'étude électrique des organismes vivants | |
US3608543A (en) * | 1968-10-03 | 1971-09-28 | Univ Carnegie Mellon | Physiological impedance-measuring apparatus |
IL134381A (en) | 2000-02-03 | 2006-06-11 | Alexander Kanevsky | Non-invasive method for disease diagnosis |
US3971366A (en) * | 1974-11-25 | 1976-07-27 | Hiroshi Motoyama | Apparatus and method for measuring the condition of the meridians and the corresponding internal organs of the living body |
US4016870A (en) | 1975-10-14 | 1977-04-12 | Chuck Lock | Electronic acupuncture point finder |
JPS584982B2 (ja) | 1978-10-31 | 1983-01-28 | 松下電器産業株式会社 | 酵素電極 |
US4317817A (en) | 1979-08-27 | 1982-03-02 | Richardson-Merrell Inc. | Novel steroid 5α-reductase inhibitors |
FR2473882A1 (fr) | 1980-01-21 | 1981-07-24 | Deloffre Auguste | Appareil pour la detection des points d'acupuncture d'un patient et pour l'application de signaux electriques de stimulation aux points detectes |
US4494552A (en) * | 1980-08-08 | 1985-01-22 | R2 Corporation | Physiological monitoring electrode system |
US4436094A (en) | 1981-03-09 | 1984-03-13 | Evreka, Inc. | Monitor for continuous in vivo measurement of glucose concentration |
US4431004A (en) | 1981-10-27 | 1984-02-14 | Bessman Samuel P | Implantable glucose sensor |
CA1196691A (en) * | 1982-01-12 | 1985-11-12 | Bradley Fry | Reconstruction system and methods for impedance imaging |
US4557271A (en) | 1983-05-11 | 1985-12-10 | Stoller Kenneth P | Method and apparatus for detecting body illness, dysfunction, disease and/or pathology |
US5197951A (en) | 1983-12-14 | 1993-03-30 | Mahurkar Sakharam D | Simple double lumen catheter |
US4655225A (en) | 1985-04-18 | 1987-04-07 | Kurabo Industries Ltd. | Spectrophotometric method and apparatus for the non-invasive |
US4690152A (en) * | 1985-10-23 | 1987-09-01 | American Mediscan, Inc. | Apparatus for epithelial tissue impedance measurements |
US4714080A (en) | 1986-10-06 | 1987-12-22 | Nippon Colin Co., Ltd. | Method and apparatus for noninvasive monitoring of arterial blood oxygen saturation |
US5163439A (en) | 1986-11-05 | 1992-11-17 | Dardik Irving I | Rhythmic biofeedback technique |
US4897162A (en) | 1986-11-14 | 1990-01-30 | The Cleveland Clinic Foundation | Pulse voltammetry |
US4911175A (en) | 1987-09-17 | 1990-03-27 | Diana Twyman | Method for measuring total body cell mass and total extracellular mass by bioelectrical resistance and reactance |
JPH0827235B2 (ja) | 1987-11-17 | 1996-03-21 | 倉敷紡績株式会社 | 糖類濃度の分光学的測定法 |
US4882492A (en) | 1988-01-19 | 1989-11-21 | Biotronics Associates, Inc. | Non-invasive near infrared measurement of blood analyte concentrations |
US4947862A (en) | 1988-10-28 | 1990-08-14 | Danninger Medical Technology, Inc. | Body composition analyzer |
US5077476A (en) | 1990-06-27 | 1991-12-31 | Futrex, Inc. | Instrument for non-invasive measurement of blood glucose |
US5086229A (en) | 1989-01-19 | 1992-02-04 | Futrex, Inc. | Non-invasive measurement of blood glucose |
US5028787A (en) | 1989-01-19 | 1991-07-02 | Futrex, Inc. | Non-invasive measurement of blood glucose |
US5139023A (en) | 1989-06-02 | 1992-08-18 | Theratech Inc. | Apparatus and method for noninvasive blood glucose monitoring |
US5101814A (en) | 1989-08-11 | 1992-04-07 | Palti Yoram Prof | System for monitoring and controlling blood glucose |
US5769793A (en) * | 1989-09-08 | 1998-06-23 | Steven M. Pincus | System to determine a relative amount of patternness |
US5562596A (en) * | 1989-09-08 | 1996-10-08 | Steven M. Pincus | Method and apparatus for controlling the flow of a medium |
US5846189A (en) * | 1989-09-08 | 1998-12-08 | Pincus; Steven M. | System for quantifying asynchrony between signals |
US5050612A (en) | 1989-09-12 | 1991-09-24 | Matsumura Kenneth N | Device for computer-assisted monitoring of the body |
CA2028261C (en) | 1989-10-28 | 1995-01-17 | Won Suck Yang | Non-invasive method and apparatus for measuring blood glucose concentration |
US5036861A (en) | 1990-01-11 | 1991-08-06 | Sembrowich Walter L | Method and apparatus for non-invasively monitoring plasma glucose levels |
US5070874A (en) | 1990-01-30 | 1991-12-10 | Biocontrol Technology, Inc. | Non-invasive determination of glucose concentration in body of patients |
US5222495A (en) | 1990-02-02 | 1993-06-29 | Angiomedics Ii, Inc. | Non-invasive blood analysis by near infrared absorption measurements using two closely spaced wavelengths |
US5222496A (en) | 1990-02-02 | 1993-06-29 | Angiomedics Ii, Inc. | Infrared glucose sensor |
US5115133A (en) | 1990-04-19 | 1992-05-19 | Inomet, Inc. | Testing of body fluid constituents through measuring light reflected from tympanic membrane |
US5079421A (en) | 1990-04-19 | 1992-01-07 | Inomet, Inc. | Invasive FTIR blood constituent testing |
EP0465897B1 (en) | 1990-07-09 | 1997-09-10 | Fuji Photo Film Co., Ltd. | A lens-fitted main body of a camera |
US5131401A (en) | 1990-09-10 | 1992-07-21 | Axon Medical Inc. | Method and apparatus for monitoring neuromuscular blockage |
US5063937A (en) | 1990-09-12 | 1991-11-12 | Wright State University | Multiple frequency bio-impedance measurement system |
JP3363150B2 (ja) * | 1991-03-07 | 2003-01-08 | マシモ・コーポレイション | パルスオキシメータおよびパルスオキシメータの中のプロセッサ |
US5322063A (en) | 1991-10-04 | 1994-06-21 | Eli Lilly And Company | Hydrophilic polyurethane membranes for electrochemical glucose sensors |
US5372141A (en) | 1992-07-01 | 1994-12-13 | Body Composition Analyzers, Inc. | Body composition analyzer |
US5433197A (en) | 1992-09-04 | 1995-07-18 | Stark; Edward W. | Non-invasive glucose measurement method and apparatus |
US5379764A (en) | 1992-12-09 | 1995-01-10 | Diasense, Inc. | Non-invasive determination of analyte concentration in body of mammals |
US5360004A (en) | 1992-12-09 | 1994-11-01 | Diasense, Inc. | Non-invasive determination of analyte concentration using non-continuous radiation |
US5339827A (en) | 1993-02-11 | 1994-08-23 | Intech Scientific, Inc. | Acupuncture system and method |
US5579782A (en) | 1993-08-12 | 1996-12-03 | Omron Corporation | Device to provide data as a guide to health management |
US5568049A (en) | 1993-10-22 | 1996-10-22 | The United States Of America As Represented By The Secretary Of The Navy | Fiber optic faraday flux transformer sensor and system |
US5458140A (en) * | 1993-11-15 | 1995-10-17 | Non-Invasive Monitoring Company (Nimco) | Enhancement of transdermal monitoring applications with ultrasound and chemical enhancers |
US5590650A (en) | 1994-11-16 | 1997-01-07 | Raven, Inc. | Non-invasive medical monitor system |
AT130U3 (de) | 1994-11-23 | 1995-07-25 | 5E Systeme Fuer Holistische Me | Vorrichtung und verfahren zur aufzeichnung von subvorrichtung und verfahren zur aufzeichnung von substanzspezifischen und körperspezifischen energetisstanzspezifischen und körperspezifischen energetischen informationen chen informationen |
JP3240401B2 (ja) | 1994-12-07 | 2001-12-17 | オムロン株式会社 | インピーダンス測定装置および健康管理指針アドバイス装置 |
US5752512A (en) * | 1995-05-10 | 1998-05-19 | Massachusetts Institute Of Technology | Apparatus and method for non-invasive blood analyte measurement |
US6456865B2 (en) | 1995-06-08 | 2002-09-24 | Ilan Zadik Samson | Non-invasive medical probe |
KR0161602B1 (ko) | 1995-06-24 | 1999-01-15 | 이재석 | 생체전기 임피던스법을 이용한 인체 성분분석 및 그 분석방법 |
US7016713B2 (en) | 1995-08-09 | 2006-03-21 | Inlight Solutions, Inc. | Non-invasive determination of direction and rate of change of an analyte |
US5725480A (en) | 1996-03-06 | 1998-03-10 | Abbott Laboratories | Non-invasive calibration and categorization of individuals for subsequent non-invasive detection of biological compounds |
US6990422B2 (en) | 1996-03-27 | 2006-01-24 | World Energy Labs (2), Inc. | Method of analyzing the time-varying electrical response of a stimulated target substance |
US6016445A (en) | 1996-04-16 | 2000-01-18 | Cardiotronics | Method and apparatus for electrode and transthoracic impedance estimation |
US5890489A (en) | 1996-04-23 | 1999-04-06 | Dermal Therapy (Barbados) Inc. | Method for non-invasive determination of glucose in body fluids |
US6517482B1 (en) | 1996-04-23 | 2003-02-11 | Dermal Therapy (Barbados) Inc. | Method and apparatus for non-invasive determination of glucose in body fluids |
US5830139A (en) * | 1996-09-04 | 1998-11-03 | Abreu; Marcio M. | Tonometer system for measuring intraocular pressure by applanation and/or indentation |
US6544193B2 (en) | 1996-09-04 | 2003-04-08 | Marcio Marc Abreu | Noninvasive measurement of chemical substances |
US6120460A (en) | 1996-09-04 | 2000-09-19 | Abreu; Marcio Marc | Method and apparatus for signal acquisition, processing and transmission for evaluation of bodily functions |
US5894939A (en) | 1996-10-09 | 1999-04-20 | Frankel Industries, Inc. | System for sorting post-consumer plastic containers for recycling |
US6246893B1 (en) | 1997-06-12 | 2001-06-12 | Tecmed Incorporated | Method and device for glucose concentration measurement with special attention to blood glucose determinations |
US7039446B2 (en) | 2001-01-26 | 2006-05-02 | Sensys Medical, Inc. | Indirect measurement of tissue analytes through tissue properties |
WO1999023939A1 (en) | 1997-11-12 | 1999-05-20 | Lightouch Medical, Inc. | Method for non-invasive measurement of an analyte |
US6175752B1 (en) | 1998-04-30 | 2001-01-16 | Therasense, Inc. | Analyte monitoring device and methods of use |
US6558320B1 (en) | 2000-01-20 | 2003-05-06 | Medtronic Minimed, Inc. | Handheld personal data assistant (PDA) with a medical device and method of using the same |
US6261236B1 (en) | 1998-10-26 | 2001-07-17 | Valentin Grimblatov | Bioresonance feedback method and apparatus |
US6266774B1 (en) | 1998-12-08 | 2001-07-24 | Mcafee.Com Corporation | Method and system for securing, managing or optimizing a personal computer |
US6280381B1 (en) | 1999-07-22 | 2001-08-28 | Instrumentation Metrics, Inc. | Intelligent system for noninvasive blood analyte prediction |
US6424847B1 (en) * | 1999-02-25 | 2002-07-23 | Medtronic Minimed, Inc. | Glucose monitor calibration methods |
DE19911200A1 (de) * | 1999-03-13 | 2000-09-21 | Bruno M Hess | Vorrichtung zum Messen bioelektrischer Parameter |
AUPQ113799A0 (en) | 1999-06-22 | 1999-07-15 | University Of Queensland, The | A method and device for measuring lymphoedema |
KR100324703B1 (ko) | 1999-08-09 | 2002-02-16 | 차기철 | 신규의 손 전극을 이용한 인체성분 분석장치 및 분석방법 |
DE60037764T2 (de) | 1999-10-12 | 2009-01-08 | Tanita Corp. | Messgerät für einen lebenden Körper |
US6594521B2 (en) | 1999-12-17 | 2003-07-15 | Electrical Geodesics, Inc. | Method for localizing electrical activity in the body |
US6328694B1 (en) | 2000-05-26 | 2001-12-11 | Inta-Medics, Ltd | Ultrasound apparatus and method for tissue resonance analysis |
US6702743B2 (en) | 2000-05-26 | 2004-03-09 | Inta-Medics, Ltd. | Ultrasound apparatus and method for tissue resonance analysis |
US6522903B1 (en) | 2000-10-19 | 2003-02-18 | Medoptix, Inc. | Glucose measurement utilizing non-invasive assessment methods |
MXPA03006421A (es) | 2001-01-22 | 2004-12-02 | Hoffmann La Roche | Dispositivo de lanceta que tiene accion capilar. |
CN1471373A (zh) | 2001-02-05 | 2004-01-28 | ��³��ɭ˹��˾ | 测定血液中葡萄糖浓度的方法 |
JP3562798B2 (ja) | 2001-03-01 | 2004-09-08 | 学校法人慶應義塾 | 生体反応波形情報の解析方法及び装置並びに診断装置 |
RU2179042C1 (ru) | 2001-03-23 | 2002-02-10 | Маркин Юрий Владимирович | Способ воздействия на организм человека и устройство для воздействия на организм человека |
CA2449567A1 (en) | 2001-06-13 | 2002-12-19 | Ckm Diagnostics, Inc. | Non-invasive method and apparatus for tissue detection |
US6599253B1 (en) | 2001-06-25 | 2003-07-29 | Oak Crest Institute Of Science | Non-invasive, miniature, breath monitoring apparatus |
US6631282B2 (en) | 2001-08-09 | 2003-10-07 | Optiscan Biomedical Corporation | Device for isolating regions of living tissue |
EP1427332A1 (en) | 2001-08-24 | 2004-06-16 | Glucosens, Inc. | Biological signal sensor and device for recording biological signals incorporating the said sensor |
WO2003062214A1 (fr) | 2002-01-23 | 2003-07-31 | Kyorin Pharmaceutical Co., Ltd. | Nouveau cristal stable de derive de benzylthiazolidinedione et procede de preparation de celui-ci |
US7050847B2 (en) | 2002-03-26 | 2006-05-23 | Stig Ollmar | Non-invasive in vivo determination of body fluid parameter |
US7027848B2 (en) | 2002-04-04 | 2006-04-11 | Inlight Solutions, Inc. | Apparatus and method for non-invasive spectroscopic measurement of analytes in tissue using a matched reference analyte |
EP1506014A4 (en) | 2002-05-20 | 2006-09-20 | Chemstop Pty Ltd | PROCESS FOR THE PRODUCTION AND ACTIVATION OF CORRESPONDING SUBSTANCES AND MEANS OF PRODUCTION |
JP2004016609A (ja) | 2002-06-19 | 2004-01-22 | Omron Healthcare Co Ltd | 体液成分濃度測定方法及び体液成分濃度測定装置 |
US6865407B2 (en) | 2002-07-11 | 2005-03-08 | Optical Sensors, Inc. | Calibration technique for non-invasive medical devices |
CA2501899C (en) | 2002-10-09 | 2010-06-01 | Bodymedia, Inc. | Apparatus for detecting, receiving, deriving and displaying human physiological and contextual information |
JP2004329412A (ja) * | 2003-05-02 | 2004-11-25 | Tanita Corp | 体組成測定装置 |
US6954662B2 (en) | 2003-08-19 | 2005-10-11 | A.D. Integrity Applications, Ltd. | Method of monitoring glucose level |
CA2558239A1 (en) * | 2004-03-06 | 2005-09-22 | Calisto Medical, Inc. | Methods and devices for non-invasively measuring quantitative information of substances in living organisms |
-
2005
- 2005-03-05 CA CA002558239A patent/CA2558239A1/en not_active Abandoned
- 2005-03-05 JP JP2007502045A patent/JP2007527750A/ja active Pending
- 2005-03-05 EA EA200601463A patent/EA200601463A1/ru unknown
- 2005-03-05 WO PCT/US2005/007207 patent/WO2005086725A2/en active Application Filing
- 2005-03-05 AU AU2005220794A patent/AU2005220794A1/en not_active Abandoned
- 2005-03-05 CN CNA2005800069260A patent/CN1925786A/zh active Pending
- 2005-03-05 KR KR1020067019864A patent/KR20060129507A/ko not_active Application Discontinuation
- 2005-03-05 EP EP05747040A patent/EP1722681A4/en not_active Withdrawn
- 2005-03-06 US US11/074,283 patent/US7395104B2/en not_active Expired - Fee Related
- 2005-03-07 TW TW094106834A patent/TW200535416A/zh unknown
-
2006
- 2006-09-04 IL IL177889A patent/IL177889A0/en unknown
-
2007
- 2007-03-01 US US11/680,927 patent/US20070149876A1/en not_active Abandoned
- 2007-03-01 US US11/680,907 patent/US20070156040A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
TW200535416A (en) | 2005-11-01 |
US20070156040A1 (en) | 2007-07-05 |
EP1722681A2 (en) | 2006-11-22 |
EP1722681A4 (en) | 2010-03-03 |
AU2005220794A1 (en) | 2005-09-22 |
WO2005086725A3 (en) | 2006-08-03 |
US20070149876A1 (en) | 2007-06-28 |
US7395104B2 (en) | 2008-07-01 |
EA200601463A1 (ru) | 2007-02-27 |
CN1925786A (zh) | 2007-03-07 |
US20050197555A1 (en) | 2005-09-08 |
WO2005086725A2 (en) | 2005-09-22 |
IL177889A0 (en) | 2006-12-31 |
JP2007527750A (ja) | 2007-10-04 |
CA2558239A1 (en) | 2005-09-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20060129507A (ko) | 살아있는 유기체 내에서 비침습적으로 물질의 양적 정보를측정하기 위한 방법 및 장치 | |
US5797854A (en) | Method and apparatus for testing and measuring current perception threshold and motor nerve junction performance | |
US20040087838A1 (en) | Meridian linking diagnostic and treatment system and method for treatment of manifested and latent maladies using the same | |
US10004663B2 (en) | Electrotherapy system for traditional chinese medicine | |
JPH11505452A (ja) | 非観血的血液分析物測定装置及び測定法 | |
CN108064147B (zh) | 用于诊断患者的健康状况的血流动力学参数(hdp)监视系统 | |
AU743327B2 (en) | Device for local magnetotherapy | |
TW200829208A (en) | Medical instrument | |
KR20040070952A (ko) | 경혈점 자극 치료 시스템 | |
IL158042A (en) | Method and device for the detection of operational data and metabolism of a living body | |
Zhang et al. | Measurement of subcutaneous impedance by four-electrode method at acupoints located with single-power alternative current | |
Annuzzi et al. | A customized bioimpedance meter for monitoring insulin bioavailability | |
KR101683038B1 (ko) | 모바일 기반의 한방 의료 시스템 | |
KR100328483B1 (ko) | 근전도신호의포락선을이용한전기치료장치 | |
KR101022338B1 (ko) | 표피 에너지 측정에 의한 에너지 밸런스 확인방법 | |
RU221493U1 (ru) | Индивидуальный электроимпульсный стимулятор | |
RU2161904C2 (ru) | Способ оценки электрофизиологического состояния человека и устройство для его осуществления | |
MXPA06010171A (en) | Methods and devices for non-invasively measuring quantitative information of substances in living organisms | |
RU212641U1 (ru) | Устройство измерения электропроводности кожных покровов | |
RU2786331C2 (ru) | Устройство для аурикулярной диагностики и электроимпульсной терапии | |
RU2535405C1 (ru) | Аппарат для диагностики и лечения нейросенсорной тугоухости | |
RU108274U1 (ru) | Устройство для лечения артериальной гипертензии (варианты) | |
RU2325931C2 (ru) | Лечебно-диагностирующее устройство желудочно-кишечного тракта | |
US20130261420A1 (en) | System and method for non-invasive diagnostic of mammals | |
RU2211660C2 (ru) | Устройство для диагностики состояния организма пациента по характеристикам биологически активных точек |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |