KR20060075473A - Active material additive for lead-acid battery - Google Patents
Active material additive for lead-acid battery Download PDFInfo
- Publication number
- KR20060075473A KR20060075473A KR1020040114270A KR20040114270A KR20060075473A KR 20060075473 A KR20060075473 A KR 20060075473A KR 1020040114270 A KR1020040114270 A KR 1020040114270A KR 20040114270 A KR20040114270 A KR 20040114270A KR 20060075473 A KR20060075473 A KR 20060075473A
- Authority
- KR
- South Korea
- Prior art keywords
- active material
- acid battery
- additive
- lead
- capacity
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/06—Lead-acid accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/14—Electrodes for lead-acid accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
본 발명은 납축전지의 활물질 효율 개선용 첨가제에 관한 것으로, 종래의 활물질 첨가제에 탄소나노튜브(CNTs)를 첨가하여 활물질의 반응 표면적 향상시키어, 전자 억셉터(Acceptor) 기능을 개선시키고, 저항 및 전도도 특성 등을 개선해 납축전지의 5HR용량, 보유용량 및 충전수입성 등의 성능을 향상시키게 한 것이다.The present invention relates to an additive for improving the active material efficiency of a lead acid battery, and improves the reaction surface area of an active material by adding carbon nanotubes (CNTs) to a conventional active material additive, thereby improving the electron acceptor function, resistance and conductivity. By improving the characteristics of the lead-acid battery, such as 5HR capacity, retention capacity and charge importability of the performance.
Description
도 1 은 만충전 완료 후 1시간 이상 방치한 다음 25℃에서 25A의 방전전류로 방전종지전압 10.5V 도달 시까지의 방전가능지속시간을 측정한 그래프1 is a graph measuring the dischargeable duration of time until the end of discharge voltage reaches 10.5V with a discharge current of 25A at 25 ° C. after being fully charged for 1 hour after completion of full charge.
도 2 는 저율방전 특성을 알아보기 위한 것으로, 축전지 용량에 대해 비교적 적은 전류로, 전압이 10.5V에 도달할 때까지의 방전용량(AH)을 측정한 그래프FIG. 2 is a graph for measuring low-rate discharge characteristics, and measuring discharge capacity (AH) until a voltage reaches 10.5 V with a relatively small current with respect to a battery capacity.
(여기서 3.75A는 용량 75AH의 20HR율 전류값을 나타내는 것이다. 따라서 축전지의 용량에 따라 또한 Test(20HR, 5HR)에 따란 전류는 변화하게 된다.)(Where 3.75A represents the current value of 20HR of capacity 75AH. Therefore, the current according to Test (20HR, 5HR) also varies according to the capacity of the battery.)
도 3 은 0℃ 부분 방전된 밧데리가 정전압 충전장치로부터 전류를 받아들이는 능력을 측정한 그래프3 is a graph measuring the ability of a 0 ° C partially discharged battery to receive current from a constant voltage charger;
(실험방법은 부분방전을 시킨 후 0℃에 보관 후 정전압 충전에 의해 전류를 받아들이는 능력을 검증하는 것이다.)(The test method is to verify the ability to accept current by constant voltage charging after storage at 0 ° C after partial discharge.)
본 발명은 납축전지의 활물질에 첨가하는 첨가제의 조성물에 관한 것이다. This invention relates to the composition of the additive added to the active material of a lead acid battery.
종래의 납축전지는 일반적으로 활물질이 도포된 양극판과 음극판이 여러 장으로 중첩 설치되고 각 극판 간에 전기적 단락을 방지하기 위하여 비전도성 격리판이 설치되어 양극판과 음극판 및 격리판이 극판군(群)을 이루고 있다. 극판군은 축전지 용량에 따라 여러 개가 직렬로 접속되어 전조 안에 수용된다.In the conventional lead acid battery, a positive electrode plate and a negative electrode plate coated with an active material are generally installed in a plurality of sheets, and a non-conductive separator is installed to prevent an electrical short circuit between each of the positive electrode plates. . According to the capacity of a battery, several electrode plates are connected in series to be housed in a roll.
상기 극판들에 도포되는 활물질에는 극판의 수명연장 및 초기성능향상과 자기방전의 억제를 위해 과붕산나트륨, 화이버, 광명단 등을 첨가제로 첨가한다.To the active material applied to the electrode plates, sodium perborate, fiber, light list, etc. are added as additives to extend the lifespan of the electrode plates, to improve the initial performance, and to suppress self discharge.
이와 같은 첨가제를 첨가한 이산화납(PbO2)을 활물질로 하여 양극(+)에 도포하고, 역시 위와 같은 첨가제를 첨가한 해면상(海綿狀)납(Pb)을 활물질로 하여 음극(-)에 도포한 후, 이들 극판을 묽은 황산(H2SO4)으로 된 전해액에 잠기게 하고 외부회로에 연결하면 전기가 흐르면서 그 양극(+)과 음극(-)의 활물질이 황산납(PbSO4)으로 변화(방전)되고, 반대로 외부에서 전류를 흘려주면 그 황산납이 다시 이산화납(+)과 해면상납(-)으로 변화(충전)되는 바, 이와 같은 종래의 축전지는 활물질의 표면적이 부족하여 반응을 위한 전해액과의 접촉 면적이 적고 따라서 전자를 받아들이는 억셉터(Acceptor)로서의 기능 즉 전기적 전도성이 부족한 결점이 있었던 것이다.Lead dioxide (PbO 2 ) to which such an additive is added as an active material is applied to the positive electrode (+), and sea sponge (Pb) to which the above additive is added as an active material to the negative electrode (-) Subsequently, the electrode plates are immersed in an electrolyte solution of dilute sulfuric acid (H 2 SO 4 ) and connected to an external circuit. As the electricity flows, the active materials of the positive and negative electrodes change to lead sulfate (PbSO 4 ). On the contrary, when the current flows from the outside, the lead sulfate is changed (charged) into lead dioxide (+) and sea sponge (-) again. There was a drawback in that the contact area with the electrolyte solution was small and thus the function as an acceptor to accept electrons, that is, the electrical conductivity was insufficient.
이에 본 발명은, 활물질의 표면적을 증대시켜 반응을 위한 전해액과의 접촉 면적을 확대함으로서 전자를 받아들이는 억셉터(Acceptor)로서의 기능을 향상시킬 수 있는 활물질 첨가제를 제공하기 위한 것으로, 상기한 종래 기술에서 본 발명이 있기까지 연구를 거듭한 결과, 종래의 첨가제에 탄소나노튜브(Carbon Nanotubes; CNTS)를 첨가함으로써 소기의 목적을 달성할 수 있음을 알았다. 즉, 활물질에의 첨가제에 탄소나노튜브를 첨가함으로서 활물질의 반응 표면적 향상시켜, 전자 억셉트(Acceptor; 수입) 기능을 개선하고, 저항을 감소시키며, 전도도 특성을 개선해 결과적으로 활물질의 이용율을 높여 납축전지의 용량, 고율 방전 성능 및 충전 수입성 등의 성능 향상을 얻을 수 있는 것을 발견하고, 확인 시험을 거쳐 본 발명을 완성하기에 이른 것이다.Accordingly, the present invention is to provide an active material additive capable of improving the function as an acceptor for accepting electrons by increasing the surface area of the active material and increasing the contact area with the electrolyte solution for the reaction. As a result of repeated studies until the present invention, it was found that the desired purpose can be achieved by adding carbon nanotubes (CNT S ) to conventional additives. That is, by adding carbon nanotubes to the additive to the active material, the reaction surface area of the active material is improved, the electron acceptor function is improved, the resistance is reduced, the conductivity characteristics are improved, and as a result, the utilization rate of the active material is increased. It was found that performance improvements such as the capacity of the storage battery, high rate discharge performance, charge importability, and the like can be obtained.
전도도 특성을 개선해 활물질의 반응 표면적 향상과 전자 억셉트(Acceptor)기능을 개선하여 저항을 감소시켜 결과적으로 활물질의 이용율을 높여 납축전지의 5HR용량, 보유 용량 및 충전수입성 등의 성능 향상을 얻을 수 있는 것을 발견하고, 확인 시험을 거쳐 본 발명을 완성하기에 이른 것이다. 탄소나노튜브는 전기적 성질과 기계적 성질, 열적 성질이 우수한 물성을 가지고 있다. 이에 이를 활물질 첨가제로 사용함으로써 활물질이 전기적 성질 즉 우수한 전도성을 가지게 하여 저항이 감소하게 되고 비표면적이 증가하게 되는 것이다.
Improved conductivity characteristics improves the reaction surface area of the active material and improves the electron acceptor function to reduce the resistance, resulting in higher utilization of the active material, resulting in improved performance such as 5HR capacity, storage capacity and charge importability of lead acid batteries. It has been found that the present invention has been completed, and the present invention has been completed through a confirmation test. Carbon nanotubes have excellent physical, electrical and mechanical properties. Thus, by using this as an active material additive, the active material has electrical properties, that is, excellent conductivity, thereby reducing resistance and increasing specific surface area.
과붕산나트륨과 파이버, 셀플럭, 리그닌, 바륨설페이트, 카본 등의 성분으로 이루어진 일반적인 납축전지의 첨가제에 있어서, 본 발명은 이러한 첨가제에 탄소나노튜브(Carbon Nanotubes; CNTS)를 첨가제 전체혼합대비 0.05∼2.0wt% 혼합하여 얻는 것이다. 본 발명은 종래의 첨가제에 탄소나노튜브를 첨가하는 것을 특징으로 할 뿐 종래의 첨가제가 어떤 조성을 가지는 지의 여부는 가리지 아니한다. 따라서, 본 발명은 활물질에 첨가하는 첨가제의 조성 여부는 불구하고 그러한 첨가제에 탄소나노튜브를 첨가하는 것을 특징으로 한다. In the conventional lead acid battery additive consisting of sodium perborate and components such as fiber, cell floc, lignin, barium sulfate, carbon, and the like, the present invention provides carbon nanotubes (CNT S ) in these additives to 0.05% of the total mixture. It is obtained by mixing -2.0 wt%. The present invention is characterized in that the carbon nanotubes are added to the conventional additives, and it does not select which composition the conventional additives have. Therefore, the present invention is characterized in that the addition of carbon nanotubes to such additives regardless of the composition of the additives added to the active material.
상기 탄소나노튜브는 그 구조적인 형태에 의해 넓은 반응 면적을 가지고 있으며, 전자를 받아들이는 즉 전자 acceptor 역할을 크게 함으로써 전자의 흐름을 지연시키고 방전의 효과를 최소화 시켜 성능향상을 가져오게 되는 것이다. The carbon nanotubes have a wide reaction area due to their structural shape, and the performance is improved by delaying the flow of electrons and minimizing the effect of discharge by accepting electrons, ie, increasing the role of electron acceptors.
이하 본 발명의 탄소나노튜브 첨가제를 사용하여 만든 제품을 초기 성능 시험을 진행하여 다음과 같은 결과를 얻었다.Hereinafter, a product made using the carbon nanotube additive of the present invention was subjected to an initial performance test to obtain the following results.
[표 1]TABLE 1
초기성능시험결과Initial performance test result
1) 보유용량 (RC : Reserve Capacity)1) Reserve Capacity (RC)
보유용량 RC는 만충전 완료 후 1시간 이상 방치한 다음 25℃에서 25A의 방전전류로 방전종지전압 10.5V 도달 시까지의 방전가능지속시간을 측정하는 것으로, 예를 들면 이는 차량에 있어서 시동이 정지된 상태 등에서 부하를 작동시키는데 어느 시간까지 최소한의 기능을 발휘할 수 있는가에 대한 척도가 된다.The holding capacity RC is measured for one hour or more after completion of the full charge, and then measures the dischargeable duration of time until the discharge end voltage reaches 10.5V with a discharge current of 25A at 25 ° C. It is a measure of how long it is possible to perform the minimum function of operating the load in the state.
시험결과, 표 1에서 보는 바와 같이, 본 발명에 따른 탄소나노튜브를 첨가한 극판을 가지는 제품의 경우 보유용량(RC)은 10 - 21%의 향상된 결과를 나타내었다.As a result of the test, as shown in Table 1, in the case of a product having a carbon nanotube-added electrode plate according to the present invention, the retention capacity (RC) showed an improved result of 10-21%.
이와 같은 시험결과를 용이하게 판별할 수 있도록 위 표1의 RC측정값을 도1의 그래프로 표시하였다. In order to easily determine the test results, the RC measurement values of Table 1 are shown in the graph of FIG. 1.
2) 5시간율 용량(AH)2) 5 hour rate capacity (AH)
이는 저율방전 특성을 알아보기 위한 것으로, 축전지 용량에 대해 비교적 적 은 전류로 연속 방전시켜, 전압이 10.5V에 도달할 때까지의 방전용량(AH)을 측정하는 것이다. 시험 결과, 기존 제품에 비해 탄소나노튜브를 활물질 개선제로 첨가한 제품이 최고 25%의 향상된 결과를 나타내었다.This is to investigate the low-rate discharge characteristics, to measure the discharge capacity (AH) until the voltage reaches 10.5V by continuous discharge with a relatively small current to the battery capacity. As a result of the test, the product added with carbon nanotubes as an active material improving agent showed an improvement of up to 25% compared to the existing product.
이와 같은 시험결과를 용이하게 판별할 수 있도록 위 표1의 5시간율 용량 측정값을 도2의 그래프로 표시하였다. In order to easily determine the test results, the 5 hour rate capacity measurement values of Table 1 are shown in the graph of FIG. 2.
3) 충전수입성3) Charge Importability
이는 부분 방전된 밧데리가 0℃의 정전압 충전장치로부터 전류를 받아들이는 능력을 측정하는 것이다. 이는 일반적인 자동차의 충전시스템이 정전압에 의한 충전방식으로 받아들이는 전류를 통한 효과를 보기 위한 하나의 테스트인 것이다. 시험 결과 기존의 제품에 비해 탄소나노튜브를 활물질 첨가제로 사용한 본 발명의 제품이 13 - 32%의 향상된 결과를 나타내었다. This measures the ability of a partially discharged battery to accept current from a constant voltage charger at 0 ° C. This is a test to see the effect of current that a typical car's charging system accepts as a constant voltage charging method. As a result of the test, the product of the present invention using carbon nanotubes as an active material additive showed an improved result of 13-32% compared to the existing product.
이와 같은 시험결과를 용이하게 판별할 수 있도록 위 표1의 충전수입성 측정값을 도3의 그래프로 표시하였다. In order to easily determine the results of such a test, the measured value of the filling import of Table 1 is shown in the graph of FIG. 3.
따라서 탄소나노튜브를 활물질 첨가제로 사용한 본 발명의 경우 최고 RC : 21%, 5HR : 25%, 충전수입성 : 32%의 성능 향상된 결과를 나타내고 있으며, 이를 통한 내구성 향상 및 수명종지의 원인이 되는 과충전, 방전에 의한 활물질 탈락 및 극판의 굽음과 팽창에 관한 영향을 줄임으로서 안정성에 좋은 효과가 기대된다.Therefore, in the present invention using carbon nanotubes as an active material additive, the results show the improved performance of up to RC: 21%, 5HR: 25%, and charge importability: 32%, thereby overcharging which causes durability improvement and end of life. In addition, a good effect on stability is expected by reducing the effects of dropping the active material due to discharge and bending and expansion of the electrode plate.
이상의 실험을 통한 설명에서 본 바와 같이, 본 발명에 따른 탄소나노튜브의 활물질 개선 첨가제에 사용은 축전지의 성능 향상을 보여주고 있으며, 이를 통한 납축전지의 보유용량, 저율방전 특성 및 충전 수입성 등의 향상과 더불어 수명 및 안정성 유지에 효과가 있는 것이다.
As described in the above experiments, the use of the active material improvement additive of carbon nanotubes according to the present invention has been shown to improve the performance of the storage battery, the storage capacity of the lead-acid battery, low rate discharge characteristics and charge importability, etc. Along with the improvement, it is effective to maintain life and stability.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040114270A KR20060075473A (en) | 2004-12-28 | 2004-12-28 | Active material additive for lead-acid battery |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020040114270A KR20060075473A (en) | 2004-12-28 | 2004-12-28 | Active material additive for lead-acid battery |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20060075473A true KR20060075473A (en) | 2006-07-04 |
Family
ID=37168010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020040114270A KR20060075473A (en) | 2004-12-28 | 2004-12-28 | Active material additive for lead-acid battery |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20060075473A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120328940A1 (en) * | 2011-06-23 | 2012-12-27 | Designed Nanotubes, LLC | Lead-acid battery formulations containing discrete carbon nanotubes |
US20150064538A1 (en) * | 2009-12-18 | 2015-03-05 | Molecular Rebar Design, Llc | Binders, electrolytes and separator films for energy storage and collection devices using discrete carbon nanotubes |
-
2004
- 2004-12-28 KR KR1020040114270A patent/KR20060075473A/en not_active Application Discontinuation
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20150064538A1 (en) * | 2009-12-18 | 2015-03-05 | Molecular Rebar Design, Llc | Binders, electrolytes and separator films for energy storage and collection devices using discrete carbon nanotubes |
US9912009B2 (en) * | 2009-12-18 | 2018-03-06 | Molecular Rebar Design, Llc | Binders, electrolytes and separator films for energy storage and collection devices using discrete carbon nanotubes |
US20120328940A1 (en) * | 2011-06-23 | 2012-12-27 | Designed Nanotubes, LLC | Lead-acid battery formulations containing discrete carbon nanotubes |
US8993161B2 (en) * | 2011-06-23 | 2015-03-31 | Molecular Rebar Design, Llc | Lead-acid battery formulations containing discrete carbon nanotubes |
US20150200400A1 (en) * | 2011-06-23 | 2015-07-16 | Molecular Rebar Design, Llc | Lead-acid battery formulations containing discrete carbon nanotubes |
US9806343B2 (en) * | 2011-06-23 | 2017-10-31 | Molecular Rebar Design, Llc | Lead-acid battery formulations containing discrete carbon nanotubes |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11870096B2 (en) | Absorbent glass mat battery | |
US20100051857A1 (en) | Negative-electrode active material for secondary battery | |
US20110027653A1 (en) | Negative plate for lead acid battery | |
Guo et al. | Failure modes of valve-regulated lead-acid batteries for electric bicycle applications in deep discharge | |
KR100627037B1 (en) | Composition of the Electrolyte for Lead-acid battery | |
US20240222600A1 (en) | Absorbent glass mat battery | |
CN104769756A (en) | A composition that enhances deep cycle performance of valve- regulated lead-acid batteries filled with gel electrolyte | |
KR102105992B1 (en) | Manufacturing method of lead plate for lead battery with high conductivity graphene fiber and lead acid battery | |
JP2003123760A (en) | Negative electrode for lead-acid battery | |
CN101320799B (en) | Composite of cathode active material for lead accumulator | |
KR100676591B1 (en) | Control valve type lead battery | |
JP2001043849A (en) | Sealed lead-acid battery | |
US10355316B2 (en) | High performance lead acid battery with advanced electrolyte system | |
KR20060075473A (en) | Active material additive for lead-acid battery | |
KR102424570B1 (en) | Method for manufacturing electrode plate of lead acid battery with improved adhesion between active materials by adding aqueous SBR-CMC | |
KR102196991B1 (en) | Method for manufacturing anode active material for lead-acid battery employing high conductivity black phosphorus | |
KR102225190B1 (en) | Manufacturing method of positive electrode active material for lead acid battery using Water based binder | |
KR20090045483A (en) | Composition of electrolyte of lead storage battery | |
JP2007273403A (en) | Control valve type lead-acid battery and its charging method | |
KR20210034314A (en) | Manufacturing method of positive electrode active material for lead acid battery using porous titanium | |
JP4411860B2 (en) | Storage battery | |
KR102225186B1 (en) | Method for manufacturing anode active material for lead-acid battery using hollow spiral carbon fiber | |
JPWO2019082766A1 (en) | Judgment method of liquid reduction performance of lead-acid battery, lead-acid battery and its charging method | |
KR20190019412A (en) | Electrolyte for a lead storage battery and lead storage battery comprising it | |
JP2005310688A (en) | Control valve type lead storage battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |