[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20050112487A - High-rate recovery of valuable metals such as cobalt and lithium from waste lithium secondary batteries - Google Patents

High-rate recovery of valuable metals such as cobalt and lithium from waste lithium secondary batteries Download PDF

Info

Publication number
KR20050112487A
KR20050112487A KR1020040040586A KR20040040586A KR20050112487A KR 20050112487 A KR20050112487 A KR 20050112487A KR 1020040040586 A KR1020040040586 A KR 1020040040586A KR 20040040586 A KR20040040586 A KR 20040040586A KR 20050112487 A KR20050112487 A KR 20050112487A
Authority
KR
South Korea
Prior art keywords
cobalt
aluminum
neutralization
dissolving
acid
Prior art date
Application number
KR1020040040586A
Other languages
Korean (ko)
Other versions
KR100644902B1 (en
Inventor
오동익
최동진
박종오
Original Assignee
(주)지케이엠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)지케이엠 filed Critical (주)지케이엠
Priority to KR20040040586A priority Critical patent/KR100644902B1/en
Publication of KR20050112487A publication Critical patent/KR20050112487A/en
Application granted granted Critical
Publication of KR100644902B1 publication Critical patent/KR100644902B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/043Sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0446Leaching processes with an ammoniacal liquor or with a hydroxide of an alkali or alkaline-earth metal
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/008Wet processes by an alkaline or ammoniacal leaching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Secondary Cells (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

본 발명은 폐리튬이온 이차전지로부터 코발트와 리튬 등과 같은 유가금속을 고순도로 회수하는 방법에 관한 것으로, 보다 상세하게는 폐리튬이온 이차전지에 가성소다와 첨가제를 이용하여 알루미늄을 액상으로 분리해내는 알루미늄 용해공정, 무기산과 산화환원제로 용해잔사를 액상으로 침출시키는 무기산 침출공정, 용해잔사에 중화제를 첨가하여 pH 3.0~4.5로 조정한 후 철과 알루미늄 등을 고액분리하는 1차 중화공정, 강알칼리를 첨가하여 pH 4.8~5.6에서 동 등을 분리해내는 2차 중화공정, 용해잔사를 처리하는 리펄핑공정, 리튬과 코발트를 분리하는 용매추출공정으로 구성되는 것을 그 특징으로 하며, 특히 폐리튬이온 이차전지를 무기산으로 침출시키기 전에 가성소다와 첨가제를 사용하여 알루미늄을 용해 분리시킴으로써 후속공정에서 알루미늄으로 인한 공정부하를 최소화하며, 두단계의 중화공정을 통해 철과 알루미늄, 동 등의 금속을 효율적으로 분리하고, 중화제의 투입량을 최소화하고, 리펄핑공정과 용매추출공정을 통해 코발트의 회수율과 순도를 높일 수 있는 수단을 제공하는 것이다.The present invention relates to a high-purity recovery method of valuable metals such as cobalt and lithium from a waste lithium ion secondary battery. More particularly, aluminum is separated into a liquid phase by using caustic soda and additives in a waste lithium ion secondary battery. Aluminum dissolution process, inorganic acid leaching process to leach the dissolved residue into liquid phase with inorganic acid and redox agent, neutralization added to the dissolved residue to adjust pH to 3.0 ~ 4.5, primary neutralization process for solid-liquid separation of iron and aluminum, strong alkali It is characterized by consisting of a secondary neutralization step of separating copper at pH 4.8 ~ 5.6 by addition, a repulping process to treat the dissolved residue, and a solvent extraction process to separate lithium and cobalt, in particular waste lithium ion secondary In the subsequent process, aluminum is dissolved and separated using caustic soda and additives before the battery is leached with inorganic acids. Minimizes the process load caused by the process, and efficiently separates metals such as iron, aluminum, and copper through two-step neutralization process, minimizes the input of neutralizing agent, and recovers and purity of cobalt through repulping process and solvent extraction process. It is to provide a means to increase.

Description

폐리튬 이차전지로부터 유가금속의 고효율 회수 방법 {High-rate recovery of valuable metals such as cobalt and lithium from waste lithium secondary batteries}High-rate recovery of valuable metals such as cobalt and lithium from waste lithium secondary batteries}

본 발명은 폐리튬이온 이차전지로부터 코발트와 리튬 등과 같은 유가금속을 고순도로 회수하는 방법에 관한 것으로, 보다 상세하게는 폐리튬이온 이차전지에 가성소다와 첨가제를 이용하여 알루미늄을 액상으로 분리해내는 알루미늄 용해공정, 무기산과 산화환원제로 용해잔사를 액상으로 침출시키는 무기산 침출공정, 용해잔사에 중화제를 첨가하여 pH 3.0~4.5로 조정한 후 철과 알루미늄 등을 고액분리하는 1차 중화공정, 강알칼리를 첨가하여 pH 4.8~5.6에서 동 등을 분리해내는 2차 중화공정, 용해잔사를 처리하는 리펄핑공정, 리튬과 코발트를 분리하는 용매추출공정으로 구성되는 것을 그 특징으로 하며, 특히 폐리튬이온 이차전지를 무기산으로 침출시키기 전에 가성소다와 첨가제를 사용하여 알루미늄을 용해 분리시킴으로써 후속공정에서 알루미늄으로 인한 공정부하를 최소화하며, 두단계의 중화공정을 통해 철과 알루미늄, 동 등의 금속을 효율적으로 분리하고, 중화제의 투입량을 최소화하고, 리펄핑공정과 용매추출공정을 통해 코발트의 회수율과 순도를 높일 수 있는 수단을 제공하는 것이다.The present invention relates to a high-purity recovery method of valuable metals such as cobalt and lithium from a waste lithium ion secondary battery. More particularly, aluminum is separated into a liquid phase by using caustic soda and additives in a waste lithium ion secondary battery. Aluminum dissolution process, inorganic acid leaching process to leach the dissolved residue into liquid phase with inorganic acid and redox agent, neutralization added to the dissolved residue to adjust pH to 3.0 ~ 4.5, primary neutralization process for solid-liquid separation of iron and aluminum, strong alkali It is characterized by consisting of a secondary neutralization step of separating copper at pH 4.8 ~ 5.6 by addition, a repulping process to treat the dissolved residue, and a solvent extraction process to separate lithium and cobalt, in particular waste lithium ion secondary In the subsequent process, aluminum is dissolved and separated using caustic soda and additives before the battery is leached with inorganic acids. Minimizes the process load caused by the process, and efficiently separates metals such as iron, aluminum, and copper through two-step neutralization process, minimizes the input of neutralizing agent, and recovers and purity of cobalt through repulping process and solvent extraction process. It is to provide a means to increase.

리튬이온 이차전지(lithium ion battery, LIB)는 작동전압이 높아 충방전사이클이 우수하고 소형화가 가능해서 휴대전화, 노트북, 디지털카메라, 캠코더 등의 통신, 정보기기 등의 동력원으로 광범위하게 사용되고 있으며, 전세계적으로 수요가 2002년 약 7억8000만개에서 2003년에는 약 9억7000만개로 매년 25%이상 빠르게 증가하고 있어 폐기되는 리튬이온 이차전지의 양도 급속히 늘어나고 있는 추세이다. 리튬이온 이차전지는 일반적으로 LiCo(1-X)MnXO2나 LiXMO2 (M은 코발트Co 혹은 니켈Ni)로 표시되는 복합산화물을 알루미늄박에 도포한 것을 양극으로 하고, 주로 탄소물질재료를 동박에 도포한 것을 음극으로 하여 양극과 음극 사이 혹은 양극이나 음극의 외측에 미공성 폴리프로필렌을 넣어서 이들을 묶어서 철제의 외장을 씌운 형태이며, 리드로서는 금속니켈박을 사용하고 있다. 리튬이온 이차전지의 원료비율은 제조회사마다 다르지만 일반적으로 Fe 25%, Co 17%, Al 7%, Cu 7% ,Li 3~5%, 그리고, Ni가 1% 정도 들어 있다. 이때 사용되는 코발트는 내열, 내마모성이 있으며, 특히 텅스텐, 크롬, 니켈 등과의 합금에는 강한 내성이 있다. 따라서 고속도강, 내열합금 및 초경공구재료의 원료로서 널리 사용되고 있다. 또 자성재로, 촉매재료의 원료로 널리 사용되고 있다. 코발트는 현재 산업사회에서 빼놓을 수 없는 금속이지만, 그 산지가 편재되어 있고, 산출국의 정치, 사회정세에 따라 끊임없이 공급이 불안정한 상태이다. 폐리튬이온 이차전지에 다량 함유된 리튬과 코발트 등과 같은 유가금속을 회수하여 재이용하는 방법에 대한 연구가 널리 이루어져 왔지만 환경문제, 경제성 문제 등으로 실용화에 어려움을 겪고 있다.Lithium ion battery (LIB) has high operating voltage and excellent charge / discharge cycle and miniaturization, so it is widely used as a power source for communication and information devices such as mobile phones, laptops, digital cameras, camcorders, etc. Globally, demand is rapidly increasing by more than 25% every year, from about 780 million in 2002 to about 970 million in 2003, and the amount of lithium-ion secondary batteries that are discarded is rapidly increasing. Lithium-ion secondary batteries are coated with aluminum oxide with a composite oxide, usually represented by LiCo (1-X) MnXO 2 or LiXMO 2 (M is cobalt Co or nickel Ni), and the carbon material is mainly coated on the copper foil. The coated product is a cathode, in which a microporous polypropylene is placed between an anode and a cathode or outside of an anode or a cathode, bundled together, and covered with an iron sheath. A metal nickel foil is used as a lead. The raw material ratio of the lithium ion secondary battery varies from manufacturer to manufacturer, but typically contains 25% Fe, 17% Co, 7% Al, 7% Cu, 3-5% Li, and 1% Ni. At this time, the cobalt used is heat and abrasion resistance, and particularly has strong resistance to alloys with tungsten, chromium, nickel and the like. Therefore, it is widely used as a raw material for high speed steel, heat resistant alloys, and carbide tool materials. It is also widely used as a magnetic material and as a raw material for catalyst materials. Cobalt is an indispensable metal in industrial society, but its production is ubiquitous, and its supply is constantly unstable due to the political and social situation of the producing country. Although the research on the recovery and reuse of valuable metals such as lithium and cobalt contained in a large amount of waste lithium ion secondary batteries has been widely conducted, there are difficulties in practical use due to environmental problems and economic problems.

폐리튬이온 이차전지로부터 유가금속을 회수하는 요소기술은 선별기술, 용해기술, 분리정제기술로 대별된다. 선별공정은 폐전지를 선별, 해체, 절단, 분쇄시키는 단계이고, 용해공정은 분쇄된 스크랩을 무기산 등에 녹여서 금속을 분리 및 농축시키는 단계이며, 분리정제공정은 유가금속을 다른 불순물로부터 분리하여 회수하는 단계이다. 선별공정은 선별, 해체, 절단, 분쇄, 하소 등을 거치는 것이 일반적이며, 용해공정은 대부분 황산이나 염산과 같은 무기산에 과산화수소 등의 환원제를 추가하여 침출시키는 방법이 제시되어 있다. 분리정제공정은 전해채취법, 침전법, 용매추출법 등이 제시되어 있다.Urea technologies for recovering valuable metals from spent lithium ion secondary batteries are classified into screening technology, melting technology, and separation and purification technology. The sorting process is a step of sorting, dismantling, cutting, and crushing waste batteries, and the dissolving process is a step of separating and concentrating metals by dissolving the crushed scrap in an inorganic acid and the like, and separating and recovering valuable metals from other impurities. to be. The sorting process is generally subjected to sorting, dismantling, cutting, pulverization, calcination, and the like, and most of the dissolving processes have been proposed by adding a reducing agent such as hydrogen peroxide to inorganic acids such as sulfuric acid or hydrochloric acid. Separation and purification processes include electrolytic extraction, precipitation and solvent extraction.

본 발명에 따른 회수방법과 관련된 종래 회수방법의 요소기술에 대해 간단히 설명하면 다음과 같다.Brief description of the elements of the conventional recovery method associated with the recovery method according to the present invention.

국내특허 특2001-0106562에는 전극물질을 분말상으로 만들어 전극물질과 금속편으로 분리하고, 분리된 전극물질을 태워서 탄소류나 유기결합제와 같은 불순물을 제거한 다음, 양극활물질인 LiCoO2만을 선별하고, 환원제가 첨가된 황산이나 질산 등의 산용액에 상기 LiCoO2투입하여 코발트와 리튬을 환원침출시켜 분리하는 과정을 포함하며, 상기 환원침출된 코발트와 리튬침출액에 D2EHPA를 혼합하여 코발트와 리튬을 각각 유기용액과 수용액상으로 분리하여 코발트와 리튬을 금속염 형태로 침전시켜 회수하는 방법이 기술되어 있다. 그러나 전극물질을 하소하는 과정에서 에너지 소비가 지나칠 뿐만 아니라 양극활물질인 LiCoO2순수하게 선별하기 어려워 서 침출 후 중화침전공정과 같은 별도의 분리정제 공정을 거치지 않으면 고순도의 코발트를 추출하기가 어려운 단점을 갖고 있다.In Korean Patent No. 2001-0106562, an electrode material is made into a powder and separated into an electrode material and a metal piece, and the separated electrode material is burned to remove impurities such as carbons or organic binders, and then only LiCoO 2 , a cathode active material, is selected and a reducing agent is added. LiCoO 2 is added to an acid solution such as sulfuric acid or nitric acid, and cobalt and lithium are reduced and leached. A method for separating and recovering cobalt and lithium in the form of metal salts by separating them into a liquid phase is described. However, in the process of calcining the electrode material, not only energy consumption is excessive but also LiCoO 2 , a positive electrode active material, is difficult to be purely screened. Have

국내특허 특2000-0055084에는 리튬이온전지의 양극판으로부터 양극활물질인 리튬-전이금속 산화물을 박리하여 400℃ 내지 1,000℃의 범위의 온도에서 연소시키고 잔류물을 수세한 후, 수세된 수득물을 염산 등의 산수용액에 용해시킨 후에 수득된 용액에 옥살산, 개미산 등의 카르복실산의 알칼리금속염 또는 알칼리토금속염들로 이루어진 카르복실산염을 가하여 카르복실산-전이금속염을 생성시킨 후에 이를 환원분위기에서 가열하여 코발트 분말을 얻는 방법이 제시되어 있다. 그리고, 국내특허 특2001-0107390에는 할로겐화 리튬염이 제거된 폐리튬이차전지를 소각후 분쇄하는 공정, 얻어진 분쇄물중 철 및 분쇄찌꺼기를 물리적으로 분리, 제거하는 공정, 철 및 분쇄찌꺼기가 제거된 분쇄물을 강산 수용액에 넣고 여기에 산화환원제를 첨가하여 금속성분을 용해시키는 공정, 얻어진 용액을 여과하는 공정, 여과에 의해 얻어진 1차 여과액을 일정 시간 정치한 후 강알칼리를 넣어 pH 3∼4.5로 중화하는 공정, 얻어진 용액을 여과하는 공정, 얻어진 2차 여과액에 탄산나트륨을 2차여과액의 pH가 8 ∼10이 되게 첨가하여 코발트를 침전시키는 방법이 제시되어 있다. 그러나 이 방법들 역시 용해과정에서 알루미늄이 무기산에 모두 용해되어 후속공정에서 알루미늄을 완전하게 제거하기 어려운 단점을 갖고 있다.In Korean Patent No. 2000-0055084, a lithium-transition metal oxide, which is a cathode active material, is peeled from a cathode plate of a lithium ion battery, burned at a temperature in the range of 400 ° C to 1,000 ° C, washed with water, and then washed with water. After dissolving in an aqueous acid solution of carboxylic acid, an alkali metal salt or alkaline earth metal salt of carboxylic acid such as oxalic acid or formic acid was added to the resulting solution to form a carboxylic acid-transition metal salt, which was then heated in a reducing atmosphere. A method of obtaining cobalt powder is shown. In addition, Korean Patent No. 2001-0107390 discloses a process of incineration of a waste lithium secondary battery from which lithium halide salts have been removed, followed by pulverization, physical separation and removal of iron and ground debris from the obtained ground product, and removal of iron and ground debris. The pulverized product is placed in an aqueous strong acid solution, and a redox agent is added thereto to dissolve the metal component, the obtained solution is filtered, and the primary filtrate obtained by the filtration is allowed to stand for a certain period of time, followed by the addition of strong alkali to pH 3 to 4.5. The method of neutralizing, the process of filtering the obtained solution, and the method of precipitating cobalt by adding sodium carbonate to the obtained secondary filtrate so that pH of a secondary filtrate becomes 8-10 are shown. However, these methods also have the disadvantage that aluminum is completely dissolved in the inorganic acid during the dissolution process, so that aluminum cannot be completely removed in a subsequent process.

국내특허 특2003-0004657에는 LiCoO2분체를 무기산 및 과산화수소가 용해되어 있는 수용액에 용해한 다음, 옥살산을 첨가하여 코발트를 옥살산 코발트의 형태로 침전시켜 코발트를 회수하고, 그 여액에 탄산소다를 첨가하여 리튬을 회수하는 방법이 제시되어 있다. 그러나 이 방법은 LiCoO2분체이외의 다른 불순물인 알루미늄, 철, 동 등이 포함되어 있는 경우에는 코발트와 리튬과 같은 유가금속을 효과적으로 분리할 수 없는 단점을 갖고 있다.In Korean Patent No. 2003-0004657, LiCoO 2 powder is dissolved in an aqueous solution in which inorganic acid and hydrogen peroxide are dissolved, followed by addition of oxalic acid to precipitate cobalt in the form of cobalt oxalate, to recover cobalt, and to add lithium carbonate to the filtrate. A method of recovering is provided. However, this method has a disadvantage in that it is not possible to effectively separate valuable metals such as cobalt and lithium in the case of containing aluminum, iron, copper, etc. other impurities other than LiCoO 2 powder.

상기 종래 방법들은 선별과 용해공정에서 알루미늄 등이 혼입되어 후속공정에서 침전과 여과특성이 떨어져 코발트 및 리튬의 회수율이 낮아지며, 처리과정에서 다량의 폐산과 폐알칼리가 발생하는 환경적 문제와 처리시간이 장시간인 단점을 갖고 있다. 그리고, 리튬의 회수가 어려울 뿐만 아니라 다른 희소유가금속성분이 함유된 전극재를 처리할 때에는 별도의 금속에 적합한 처리방법을 사용할 필요가 있다.In the conventional methods, aluminum and the like are mixed in the sorting and dissolving process, and precipitation and filtration characteristics are decreased in the subsequent process, so that the recovery rate of cobalt and lithium is lowered. It has a long time disadvantage. In addition, it is necessary to use a treatment method suitable for a separate metal when treating the electrode material containing not only the recovery of lithium but also other rare valuable metal components.

이에, 본 발명자들은 폐리튬이온 이차전지로부터 고가의 유가금속인 코발트와 리튬을 분리회수하는 과정을 개선시켜 일련의 회수과정 중에 생성되는 폐산과 폐알카리의 발생을 최소화하고 보다 짧은 시간에 회수하여 결과적으로 유가금속의 회수율을 높이는 동시에 경제성을 향상시키는 회수방법을 개발하고자 노력하였다.Accordingly, the present inventors have improved the process of separating and recovering cobalt and lithium, which are expensive metals, from the waste lithium ion secondary battery, thereby minimizing the generation of waste acid and waste alkali generated during a series of recovery processes and recovering them in a shorter time. In order to improve the recovery rate of valuable metals and to improve the economic efficiency, efforts were made to develop a recovery method.

그 결과, 폐리튬이온 이차전지를 무기산으로 침출시키기 전에 가성소다와 첨가제를 사용하여 알루미늄을 용해 분리시킴으로써 후속공정에서 알루미늄으로 인한 공정부하를 최소화하였으며, 두단계의 중화공정에서는 중화제의 투입량을 현격히 줄이면서도 철과 알루미늄, 동 등의 금속을 효율적으로 분리할 수 있었고, 또한 리펄핑공정을 통해 코발트의 회수율을 높이고, 용매추출공정에서는 다른 불순물로 부터 순수한 코발트만을 회수함으로써 순도가 높은 코발트를 회수할 수 있었다.As a result, aluminum was dissolved and separated using caustic soda and additives before leaching the waste lithium ion secondary battery with inorganic acids, minimizing the process load due to aluminum in the subsequent process, and significantly reducing the input of neutralizer in the two-stage neutralization process. In addition, it was possible to efficiently separate metals such as iron, aluminum, and copper, and also to increase the recovery of cobalt through the repulping process, and to recover high purity cobalt by recovering only pure cobalt from other impurities in the solvent extraction process. there was.

따라서, 본 발명은 폐리튬이온 이차전지로부터 코발트와 같은 유가금속을 환경적으로 건전하며, 경제성 있게 고순도로 회수하는 방법을 제공하는데 그 목적이 있다.Accordingly, an object of the present invention is to provide a method for recovering valuable metals such as cobalt from a waste lithium ion secondary battery in an environmentally sound and economical manner with high purity.

도 1은 본 발명의 바람직한 실시예에 따라 폐리튬이온전지로 부터 고효율로 코발트와 리튬과 같은 유가금속을 회수하는 공정을 나타내는 공정도이다.1 is a process chart showing a process for recovering valuable metals such as cobalt and lithium from waste lithium ion batteries with high efficiency according to a preferred embodiment of the present invention.

도 1을 참조하면, 본 발명은 ⅰ) 폐리튬이온 이차전지 스크랩으로 부터 가성소다와 첨가제를 이용하여 알루미늄을 액상으로 분리하는 알루미늄 용해공정(S101), ⅱ) 무기산과 산화환원제로 용해잔사를 액상으로 침출시키는 무기산 침출공정(S102), ⅲ) 용해잔사에 중화제를 첨가하여 pH 3.0~4.5로 조정한 후 고액분리하여 철과 알루미늄 등을 분리하는 1차 중화공정(S103), ⅳ) 강알칼리를 첨가하여 pH 4.8~5.6에서 동 등을 분리하는 2차 중화공정(S105), ⅴ) 용해잔사를 처리하는 리펄핑공정(S107), 그리고 ⅵ) 리튬과 코발트를 분리하는 용매추출공정(S106)을 포함한다. 폐리튬이온 이차전지 스크랩은 전지생산공정에서 발생하는 코발트가 포함된 슬러리, 전지 불량품, 사용 후 폐기된 전지를 통칭한다.Referring to FIG. 1, the present invention is an aluminum dissolving process (S101) for separating aluminum into a liquid phase using caustic soda and additives from waste lithium ion secondary battery scraps, and ii) dissolving the residue with inorganic acids and redox agents. Inorganic acid leaching step (S102), iii) adding neutralizing agent to the dissolved residue, adjusting the pH to 3.0 ~ 4.5, and then solidifying liquid separation to separate iron and aluminum (S103), 강) strong alkali is added Secondary neutralization step (S105) for separating copper and the like from pH 4.8 to 5.6, iii) repulping step (S107) for treating dissolved residues, and iii) solvent extraction step (S106) for separating lithium and cobalt. do. The waste lithium ion secondary battery scrap is a collective term for a slurry containing cobalt generated in a battery production process, a defective battery, and a battery discarded after use.

이와 같은 본 발명을 더욱 상세히 설명하면 다음과 같다.Referring to the present invention in more detail as follows.

알루미늄 용해공정(S101)에서는 전지스크랩을 강알칼리 용액에 첨가제를 넣고 용해하여 알루미늄은 수용액상태로 분리시키고 리튬코발트옥사이드와 카본은 침전시켜 알루미늄을 분리한다. 알루미늄을 용해할 때 사용하는 알칼리는 수산화나트륨(NaOH), 수산화칼륨(KOH), 3인산나트륨(Na3PO4)을 사용하며, 바람직하게는 수산화나트륨 5~15%용액을 사용한다. 수산화코발트의 농도가 너무 낮으면, 알루미늄의 침출시간이 길어지고, 농도가 너무 높을 경우 코발트의 일부가 침출된다.In the aluminum dissolving step (S101), the battery scrap is added with a strong alkali solution to dissolve the aluminum, and the aluminum is separated into an aqueous solution, and lithium cobalt oxide and carbon are precipitated to separate the aluminum. Alkali used when dissolving aluminum is used sodium hydroxide (NaOH), potassium hydroxide (KOH), sodium triphosphate (Na 3 PO 4 ), preferably 5-15% sodium hydroxide solution. If the concentration of cobalt hydroxide is too low, the leaching time of aluminum is long, and if the concentration is too high, part of the cobalt is leached.

반응식 1Scheme 1

2Al + NaOH + H2O → 2NaAlO2 +3H2 2Al + NaOH + H 2 O → 2NaAlO 2 + 3H 2

NaAlO2 + H2O → Al(OH)3 +NaOHNaAlO 2 + H 2 O → Al (OH) 3 + NaOH

알루미늄의 침전을 억제하고 수산화알루미늄의 생성을 막아주는 역할을 하는 첨가제로는 sorbitol, gluconic acid, sodium gluconate, glucamines 등을 사용할 수 있으며, 바람직하게는 글루콘산나트륨(sodium gluconate)을 1~5%정도로 첨가한다. 이 때 발생하는 알루미늄을 포함하는 알칼리 폐액은 폐수처리과정의 응집제로 사용될 수 있다.As an additive that inhibits the precipitation of aluminum and prevents the formation of aluminum hydroxide, sorbitol, gluconic acid, sodium gluconate, glucamines, and the like may be used. Preferably, sodium gluconate (1-5%) is used. Add. At this time, the alkaline waste liquid containing aluminum may be used as a flocculant in the wastewater treatment process.

산 용해공정(S102)에서는 무기산과 산화환원제를 첨가하여 탄소를 남기고 금속성분을 침출시킨다. pH는 2정도까지 올린다. 무기산은 황산(H2SO4)과 염산(HCl)을 쓰는 것이 바람직하며, 첨가제로는 과산화수소(H2O2), 과염소산(HClO4) 티오황산나트륨(Na2S2O3) 등을 사용한다. 무기산의 농도는 높을수록 바람직하며, 최종 침출액의 pH가 높을수록 후속 중화공정에서 중화제의 소비량을 줄일 수 있으며, 2이상이 되도록 하는 것이 바람직하다. 용해 후 잔사는 다시 강산과 과산화수소의 혼합액으로 침출시켜 미반응된 코발트를 모두 침출시킨다.In the acid dissolving step (S102), the inorganic acid and the redox agent are added to leave the carbon and leave the metal component. The pH is raised to 2 degrees. It is preferable to use sulfuric acid (H 2 SO 4 ) and hydrochloric acid (HCl) as the inorganic acid, and as an additive, hydrogen peroxide (H 2 O 2 ), perchloric acid (HClO 4 ) sodium thiosulfate (Na 2 S 2 O 3 ), and the like are used. . The higher the concentration of the inorganic acid is preferable, the higher the pH of the final leachate can reduce the consumption of the neutralizing agent in the subsequent neutralization step, it is preferred to be at least two. After dissolution, the residue is again leached with a mixture of strong acid and hydrogen peroxide to leach out all unreacted cobalt.

1차 중화공정(S103)에서는 잔사와 액을 분리하지 않고, 인산과 가성소다를 첨가하여 pH를 3.0~4.5사이로 조정한 후 철과 알루미늄을 침출시킨 후 진공여과(흡인여과)(S104)한다. 인산의 사용량을 최소화하기 위하여 인산의 투입은 pH 3.0∼4.0 사이에서 하는 것이 바람직하며 더욱 바람직하게는 pH가 3.5가 되었을 때 인산을 첨가한다.In the first neutralization step (S103), the residue and the liquid are not separated, and the pH is adjusted to 3.0 to 4.5 by adding phosphoric acid and caustic soda, followed by leaching iron and aluminum, followed by vacuum filtration (suction filtration) (S104). In order to minimize the amount of phosphoric acid used, it is preferable to add phosphoric acid at a pH of 3.0 to 4.0. More preferably, when the pH reaches 3.5, phosphoric acid is added.

2차 중화공정(S105)에서는 용액내 동과 다른 금속성분들을 분리하기 위하여 pH를 5.6까지 올려서 침전시킨 후 필터프레스로 여과한다. 중화제로는 수산화나트륨과 탄산코발트를 사용한다. 탄산코발트는 이후 용매추출과정에 투입되는 용액 내의 코발트의 농도를 일정하게 유지하고, 중화제의 투입량을 최소화하는 효과가 있다.In the second neutralization step (S105), in order to separate the copper and other metal components in the solution, the pH is raised to 5.6, and then filtered through a filter press. Sodium hydroxide and cobalt carbonate are used as neutralizing agents. Cobalt carbonate has an effect of maintaining a constant concentration of cobalt in the solution to be added to the solvent extraction process afterwards, minimizing the amount of neutralizing agent.

리펄핑 공정(S107)은 잔사를 강산과 첨가제를 넣고 용해한 후 단계적으로 1차중화공정(S103)과 2차중화공정(S105)을 거치거나 흡인여과 후 용해액으로 다시 사용하기 위한 것이다. 무기산으로 이차전지 스크랩을 용해할 경우 후속공정에서 중화제의 투입을 최소화하기 위해서는 가능한한 pH를 높이는 것이 바람직하며 최종 용해 후의 pH는 2~3사이가 좋다. 그러나 이와 같은 방법으로 용해할 경우 전지스크랩에 포함되어 있는 코발트가 완전하게 용해되지 않아 전체적인 수율이 낮아진다. 따라서 용해 후의 잔사를 재처리하는 것이 필수적이며, 잔사의 재처리시에는 코발트를 완전하게 용해시키기 위해 가능한 산도를 높이는 것이 바람직하다. 그러나 강산에 용해한 잔사 후액을 그대로 중화할 경우 중화제의 투입량이 과다하게 되는 문제가 있으므로 이를 용해시에 재사용하는 것이 바람직하다.The repulping process (S107) is to dissolve the residue by adding a strong acid and an additive, and then stepwise through the first neutralization step (S103) and the second neutralization step (S105) or to use it again as a solution after suction filtration. When dissolving the secondary battery scrap with an inorganic acid, it is desirable to increase the pH as much as possible in order to minimize the input of the neutralizing agent in the subsequent process, and the pH after the final dissolution is preferably 2-3. However, when dissolving in this way, the cobalt contained in the battery scrap is not completely dissolved, and the overall yield is lowered. Therefore, it is essential to reprocess the residue after dissolution, and when reprocessing the residue, it is desirable to increase the acidity as much as possible to completely dissolve cobalt. However, if the residue after-solution dissolved in strong acid is neutralized as it is, there is a problem that the input amount of the neutralizing agent is excessive, it is preferable to reuse it when dissolving.

용매추출공정(S106)에서는 중화후액을 PC88A와 TBP를 포함하는 유기용매와 혼합하여 코발트와 리튬을 각각 유기용액과 수용액상으로 분리한 후 코발트는 황산 코발트 형태로 리튬은 탄산리튬형태로 침전시켜 회수한다. 코발트가 추출된 유기용액에 0.05M 황산용액을 반응시켜, 코발트를 수용액상으로 역추출(stripping)하고, 수용액에는 Na2CO3를 첨가하여 리튬을 Li2CO3로 침전시킨다.In the solvent extraction step (S106), the neutralizing solution is mixed with an organic solvent containing PC88A and TBP, and cobalt and lithium are separated into an organic solution and an aqueous solution, respectively, and cobalt is precipitated in the form of cobalt sulfate and lithium is lithium carbonate. do. The cobalt extracted organic solution was reacted with 0.05M sulfuric acid solution, the cobalt was stripped into an aqueous solution, and the aqueous solution was added with Na 2 CO 3 to precipitate lithium as Li 2 CO 3 .

마지막으로 폐액 처리공정에서는 용매추출 후의 폐액에 알미늄 용해액을 첨가하여 pH를 7까지 올린 후 중화 후 남아있는 인산을 제거한다.Finally, in the waste liquid treatment process, aluminum solution is added to the waste liquid after the solvent extraction to raise the pH to 7 and then remove the remaining phosphoric acid after neutralization.

이와 같은 본 발명은 다음의 실시 예에 의거하여 더욱 상세히 설명하겠는 바, 본 발명이 이에 한정되는 것은 아니다.Such a present invention will be described in more detail based on the following examples, but the present invention is not limited thereto.

실시예 1: 알루미늄 용해공정Example 1 Aluminum Melting Process

전지생산 공정에서 나온 전지 스크랩(코발트 함량 45%) 200g을 5%의 수산화 나트륨용액 1리터에 글루콘산나트륨을 첨가한 후, 공기를 주입하여 교반하면서 알루미늄을 용해하였다. 글루콘산나트륨의 농도는 1, 3, 5%로 조정하였다. 반응이 끝난 후 잔사를 물 2리터로 수세한 후 1M의 황산용액을 침출시켰을 때, 용해액 내의 알루미늄의 농도는 각각 1230 mg/L, 245 mg/L, 95 mg/L이었다.200 g of the battery scrap (cobalt content 45%) from the battery production process was added sodium gluconate to 1 liter of 5% sodium hydroxide solution, and then aluminum was dissolved while stirring by injecting air. The concentration of sodium gluconate was adjusted to 1, 3, 5%. After the reaction was completed, the residue was washed with 2 liters of water and then leached into 1 M sulfuric acid solution. The concentrations of aluminum in the solution were 1230 mg / L, 245 mg / L and 95 mg / L, respectively.

실시예 2: 전지 스크랩에서 코발트의 회수Example 2: Recovery of Cobalt from Cell Scrap

전지생산 공정에서 나온 전지 스크랩(코발트 함량 45%) 200g을 5%의 수산화나트륨용액 1리터에 넣고, 공기를 주입하여 교반하면서 알루미늄을 용해하였다. 반응이 끝난 후 흡인 여과한 후의 잔사를 물 2리터로 수세한 후 1M의 황산용액으로 침출시켜 62%의 코발트를 회수하였다. 최종 용해액의 pH는 2.1 이었다.200 g of the battery scrap (cobalt content 45%) from the battery production process was put in 1 liter of 5% sodium hydroxide solution, and air was injected to dissolve aluminum while stirring. After the reaction was completed, the residue after suction filtration was washed with 2 liters of water and then leached with 1 M sulfuric acid solution to recover 62% of cobalt. The pH of the final solution was 2.1.

실시예 3: 용해잔사로부터 코발트의 회수Example 3: Recovery of Cobalt from Dissolution Residue

실시예 1)과 같이 침출 한 후, 여과하고 남은 잔사를 다시 1M의 황산용액에 5%의 과산화수소를 첨가하여 침출시켰더니, 95%의 코발트가 회수 되었다. 최종 용해액의 pH는 2.1 이었다.After leaching as in Example 1), the remaining residue was filtered and leached again by adding 5% hydrogen peroxide to 1M sulfuric acid solution, whereby 95% of cobalt was recovered. The pH of the final solution was 2.1.

이상에서 설명한 바와 같은 본 발명에 따른 회수방법에 의하면 폐리튬이온 이차전지로부터 자원적 가치가 높은 코발트와 리튬을 회수할 수 있으므로 희소금속자원의 재자원화에 큰 기여를 할 것으로 사료된다. 특히 코발트는 자원부존량이 희박한 희소금속이기 때문에 폐기물을 리사이클링하는 것은 자원전략상으로도 중요한 의미를 갖는다. 더욱이 본 발명이 제공하는 유가금속 회수방법은 경제성이 높고, 환경적으로 건전하며 조업성도 우수하기 때문에 폐리튬이온 이차전지의 리사이클링분야에 미치는 파급효과가 지대하다.According to the recovery method according to the present invention as described above it can be recovered a high resource value of cobalt and lithium from the waste lithium ion secondary battery is considered to contribute significantly to the recycling of rare metal resources. In particular, because cobalt is a rare metal with a scarcity of resource, recycling of waste has a significant meaning in resource strategy. Furthermore, the valuable metal recovery method provided by the present invention has high economical efficiency, environmentally soundness, and excellent operability, and thus has a profound effect on the recycling field of waste lithium ion secondary batteries.

도 1은 본 발명을 설명하기 위한 기본 공정도이다.1 is a basic process diagram for explaining the present invention.

Claims (2)

(ⅰ) 생산 공정에서 발생한 박막형태의 리튬이차전지 스크랩을, 수산화나트륨과 첨가제가 포함된 반응기에서 알루미늄을 용해하여 제거하는 알칼리 용해단계;(Iii) an alkali dissolving step of dissolving and removing the thin film lithium secondary battery scrap generated in the production process by dissolving aluminum in a reactor containing sodium hydroxide and an additive; (ⅱ) 상기 용해 후 여과된 잔류물을 황산용액으로 침출시켜 코발트를 분리하는 산 용해단계;(Ii) an acid dissolving step of leaching the filtered residue after dissolution into a sulfuric acid solution to separate cobalt; (ⅲ) 상기 산 용해 후 잔류물을 무기산과 산화환원제가 포함된 용액으로 코발트를 침출시키는 리펄핑단계;(Iii) a repulping step of leaching the residue after dissolving the acid into a solution containing an inorganic acid and a redox agent; (ⅳ) 상기 용해과정 후에 잔류물이 포함된 조건에서 pH를 4.0으로 중화하여 여과시키는 1차 중화단계;(Iii) a first neutralization step of neutralizing and filtering the pH to 4.0 under conditions including the residue after the dissolution process; (ⅴ) 1차 중화 후 용액을 중화조에서 pH 5.6에서 여과하여 중화하는 2차 중화단계;(Iii) a second neutralization step of neutralizing the solution after the first neutralization by filtration at a pH of 5.6 in a neutralization tank; (ⅵ) 2차 중화후액에 용매추출을 거쳐서 황산코발트등을 제조하는 용매추출단계; 를 포함하여 진행하는 것을 특징으로 하는 리튬이온 이차전지로 부터 유가금속을 회수하는 방법.(Iii) a solvent extraction step of producing cobalt sulfate and the like by subjecting the secondary neutralization solution to solvent extraction; Method of recovering valuable metals from a lithium ion secondary battery, characterized in that the progress. 청구항 1의 알칼리 용해과정에서 첨가제로 sorbitol, gluconic acid, sodium gluconate, glucamines 등을 1~5%정도로 사용하는 방법.Method of using sorbitol, gluconic acid, sodium gluconate, glucamines, etc. as an additive in the alkali dissolving process of claim 1 to about 1-5%.
KR20040040586A 2004-05-25 2004-05-25 High-rate recovery of valuable metals such as cobalt and lithium from waste lithium secondary batteries KR100644902B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR20040040586A KR100644902B1 (en) 2004-05-25 2004-05-25 High-rate recovery of valuable metals such as cobalt and lithium from waste lithium secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR20040040586A KR100644902B1 (en) 2004-05-25 2004-05-25 High-rate recovery of valuable metals such as cobalt and lithium from waste lithium secondary batteries

Publications (2)

Publication Number Publication Date
KR20050112487A true KR20050112487A (en) 2005-11-30
KR100644902B1 KR100644902B1 (en) 2006-11-10

Family

ID=37287383

Family Applications (1)

Application Number Title Priority Date Filing Date
KR20040040586A KR100644902B1 (en) 2004-05-25 2004-05-25 High-rate recovery of valuable metals such as cobalt and lithium from waste lithium secondary batteries

Country Status (1)

Country Link
KR (1) KR100644902B1 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100759751B1 (en) * 2006-05-08 2007-10-04 주식회사 에코프로 A manufacturing method and device of anode active material of lithium secondary battery using hydro cyclone
CN102544628A (en) * 2010-08-30 2012-07-04 吉坤日矿日石金属株式会社 Method for leaching positive electrode active material
KR101254390B1 (en) * 2010-11-01 2013-04-12 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Method for recovering metal
CN106299526A (en) * 2016-09-19 2017-01-04 中国电子科技集团公司第十八研究所 Recycling method of strong alkali solution in waste lithium battery recycling industry
CN110747340A (en) * 2019-10-30 2020-02-04 中国科学院过程工程研究所 Method for extracting lithium from lithium-containing secondary battery waste
KR102255898B1 (en) 2020-11-18 2021-05-25 (주)세화이에스 method for recovering lithium from used anode of lithium ion secondary battery
KR102334855B1 (en) * 2021-07-16 2021-12-03 에스아이에스 주식회사 Batch processing system for waste lithium secondary battery
WO2021246606A1 (en) * 2020-06-04 2021-12-09 주식회사 엘지에너지솔루션 Method for reusing active material using positive electrode scrap
WO2021261697A1 (en) * 2020-06-23 2021-12-30 주식회사 엘지에너지솔루션 Method for reusing active material by using cathode scrap

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101294335B1 (en) * 2012-05-25 2013-08-16 한국과학기술연구원 Fabricating method of lifepo4 cathode electroactive material for lithium secondary battery by recycling, lifepo4 cathode electroactive material for lithium secondary battery, lifepo4 cathode and lithium secondary battery fabricated thereby
KR101516376B1 (en) * 2012-12-21 2015-05-11 주식회사 포스코 Mothod for recovery resource from scrap of lithium rechargable battery
KR101584172B1 (en) * 2013-10-01 2016-02-19 한국에너지기술연구원 Method for recoverying metal of solar cell
KR101509086B1 (en) * 2013-10-01 2015-04-07 한국에너지기술연구원 Method for recoverying metal of solar cell
WO2015111761A1 (en) * 2014-01-21 2015-07-30 (주)이엠티 A method for regenerating precursor raw material using waste positive electrode material of lithium ion battery, and precursor, positive electrode material, and lithium ion battery manufactured using raw material regenerated thereby
KR102341658B1 (en) 2020-02-04 2021-12-21 목포대학교산학협력단 Recovery of valuable metals from spent lithium ion battery leaching solution
KR20220013809A (en) * 2020-07-27 2022-02-04 주식회사 엘지에너지솔루션 Method of selectively removing aluminum from waste electrode and a method of recovering metal components from the waste electrode using the method
KR102450098B1 (en) 2020-10-27 2022-10-05 목포대학교산학협력단 Separation method of cobalt, nickel and copper comprised in wasted lithium ion battery by selective dissolution

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100759751B1 (en) * 2006-05-08 2007-10-04 주식회사 에코프로 A manufacturing method and device of anode active material of lithium secondary battery using hydro cyclone
CN102544628A (en) * 2010-08-30 2012-07-04 吉坤日矿日石金属株式会社 Method for leaching positive electrode active material
KR101254390B1 (en) * 2010-11-01 2013-04-12 제이엑스 닛코 닛세키 킨조쿠 가부시키가이샤 Method for recovering metal
CN106299526A (en) * 2016-09-19 2017-01-04 中国电子科技集团公司第十八研究所 Recycling method of strong alkali solution in waste lithium battery recycling industry
CN106299526B (en) * 2016-09-19 2018-11-06 中国电子科技集团公司第十八研究所 Recycling method of strong alkali solution in waste lithium battery recycling industry
CN110747340A (en) * 2019-10-30 2020-02-04 中国科学院过程工程研究所 Method for extracting lithium from lithium-containing secondary battery waste
WO2021246606A1 (en) * 2020-06-04 2021-12-09 주식회사 엘지에너지솔루션 Method for reusing active material using positive electrode scrap
WO2021261697A1 (en) * 2020-06-23 2021-12-30 주식회사 엘지에너지솔루션 Method for reusing active material by using cathode scrap
KR102255898B1 (en) 2020-11-18 2021-05-25 (주)세화이에스 method for recovering lithium from used anode of lithium ion secondary battery
KR102334855B1 (en) * 2021-07-16 2021-12-03 에스아이에스 주식회사 Batch processing system for waste lithium secondary battery

Also Published As

Publication number Publication date
KR100644902B1 (en) 2006-11-10

Similar Documents

Publication Publication Date Title
TWI726033B (en) Process for recovering metal values from spent lithium ion batteries with high manganese content
US6514311B1 (en) Clean process of recovering metals from waste lithium ion batteries
KR100644902B1 (en) High-rate recovery of valuable metals such as cobalt and lithium from waste lithium secondary batteries
CN104105803B (en) The recovery method of lithium
US6261712B1 (en) Method of reclaiming cathodic active material of lithium ion secondary battery
CN111278998A (en) Method for recovering cobalt, lithium and other metals from spent lithium-based batteries and other feeds
JP3918041B2 (en) Method for recovering metals from used nickel-metal hydride batteries
EP3956487B1 (en) Process for the recovery of cathode materials in the recycling of batteries
JP5488376B2 (en) Lithium recovery method
CN101871048A (en) Method for recovering cobalt, nickel and manganese from waste lithium cells
CN107046154B (en) Method for enhanced reduction leaching of waste ternary lithium battery
CN105969993A (en) Comprehensive recycling method for high-arsenic soot
CN109097581A (en) The recovery method of valuable metal in waste and old nickel cobalt manganese lithium ion battery
JPH116020A (en) Method for recovering high-purity cobalt compound from scrap lithium ion battery
CN102244309A (en) Method for recovering lithium from lithium power battery of electric automobile
CN110669933A (en) Method for removing fluorine in nickel-cobalt-manganese solution
CN111254294A (en) Method for selectively extracting lithium from waste lithium ion battery powder and recovering manganese dioxide through electrolytic separation
CN113104897A (en) Method for preparing battery-grade manganese sulfate by separating nickel, cobalt, lithium and manganese from battery black powder
CN109004307A (en) The recyclable device of valuable metal in waste and old nickel cobalt manganese lithium ion battery
KR102324910B1 (en) Manufacturing method of precursor raw material from disposed cathode material of lithium secondary battery
JP6314730B2 (en) Method for recovering valuable metals from waste nickel metal hydride batteries
CN113846219A (en) Method for extracting lithium from waste lithium batteries
CN113603120A (en) Method for recovering battery-grade lithium from waste lithium iron phosphate through short-process acid leaching
KR102496184B1 (en) Method for recovering nickel hydroxide and nickel sulfate from multilayer ceramic capacitor sludge
CN115161483A (en) Method for fully recycling waste lithium ion batteries and realizing metal separation

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20111103

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee