KR20050049903A - Wafer edge etcher - Google Patents
Wafer edge etcher Download PDFInfo
- Publication number
- KR20050049903A KR20050049903A KR1020030083663A KR20030083663A KR20050049903A KR 20050049903 A KR20050049903 A KR 20050049903A KR 1020030083663 A KR1020030083663 A KR 1020030083663A KR 20030083663 A KR20030083663 A KR 20030083663A KR 20050049903 A KR20050049903 A KR 20050049903A
- Authority
- KR
- South Korea
- Prior art keywords
- wafer
- radicals
- predetermined pattern
- wafer surface
- edge
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32366—Localised processing
- H01J37/32385—Treating the edge of the workpieces
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32009—Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
- H01J37/32357—Generation remote from the workpiece, e.g. down-stream
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67063—Apparatus for fluid treatment for etching
- H01L21/67069—Apparatus for fluid treatment for etching for drying etching
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Drying Of Semiconductors (AREA)
Abstract
본 발명은 웨이퍼 에지 식각 장치에 관한 것으로, 챔버; 상기 챔버 내에 수용되는 소정의 패턴이 형성된 웨이퍼면의 중심부로 비반응 가스가 분사되도록 유도하는 개구와 상기 소정의 패턴이 형성된 웨이퍼면의 에지부로 라디칼이 분사되도록 유도하는 복수개의 개구가 있는 제1샤워헤드와, 상기 라디칼을 생성하여 상기 제1샤워헤드로 공급하는 제1 원격 플라즈마 제네레이터를 포함하는 제1분사부; 및 상기 제1분사부와는 대향되어 소정의 패턴이 형성되지 아니한 웨이퍼면으로 상기 라디칼이 분사되도록 유도하는 복수개의 개구가 있는 제2샤워헤드와, 상기 라디칼을 생성하여 상기 제2샤워헤드로 공급하는 제2 원격 플라즈마 제네레이터와, 웨이퍼를 지지하는 지지부재를 포함하는 제2분사부를 포함하는 것을 특징으로 한다. 이에 따르면, 원격 플라즈마를 이용하여 라디칼을 링 형태의 샤워헤드를 통해 웨이퍼 에지로 플로우시킴으로써 웨이퍼 에지에 머무르는 파티클을 효과적으로 제거할 수 있다. 또한, 라디칼이 일정한 각도로 웨이퍼에 도달하므로 저글링되는 문제점이 방지되고, 웨이퍼 배면의 파티클도 제거된다. 이에 따라, 반도체 소자의 제조 수율이 향상되는 효과가 있다.The present invention relates to a wafer edge etching apparatus, comprising: a chamber; A first shower having an opening for inducing non-reactive gas to be injected into a central portion of the wafer surface on which the predetermined pattern is accommodated in the chamber and a plurality of openings for injecting radicals to the edge of the wafer surface on which the predetermined pattern is formed A first injection unit comprising a head and a first remote plasma generator for generating the radicals and supplying the radicals to the first shower head; And a second shower head having a plurality of openings facing the first spraying part to inject the radicals into the wafer surface on which the predetermined pattern is not formed, and generating and supplying the radicals to the second shower head. And a second injection unit including a second remote plasma generator and a support member supporting the wafer. According to this, it is possible to effectively remove particles remaining at the wafer edge by using a remote plasma to flow radicals through the ring-shaped showerhead to the wafer edge. In addition, since the radicals reach the wafer at a constant angle, the problem of juggling is prevented, and particles on the back surface of the wafer are also removed. Thereby, there is an effect that the manufacturing yield of a semiconductor element improves.
Description
본 발명은 웨이퍼 에지 식각 장치에 관한 것으로, 보다 상세하게는 원격 플라즈마를 이용한 웨이퍼 에지 식각 장치에 관한 것이다.The present invention relates to a wafer edge etching apparatus, and more particularly to a wafer edge etching apparatus using a remote plasma.
반도체 소자란 웨이퍼 표면에 수차례에 걸친 박막의 증착 및 패터닝 등의 공정을 통해 구현되는 고밀도의 집적회로로서 현재 각 산업분야에서 널리 활용되고 있다. 웨이퍼 표면에 회로패턴을 현상하고 식각하는 공정으로 제조되는 집적회로의 생산 단계에서 미세 먼지나 수분 등의 파티클은 회로패턴의 형성에 해를 주기 때문에 적극적으로 제거되어야 한다.Semiconductor devices are high-density integrated circuits that are implemented through processes such as deposition and patterning of thin films on the wafer surface several times, and are widely used in various industries. Particles such as fine dust and moisture in the production stage of the integrated circuit manufactured by the process of developing and etching the circuit pattern on the wafer surface have to be actively removed because they damage the formation of the circuit pattern.
일반적으로, 외적 요인으로 발생되는 파티클은 클린 설비를 통한 공정 분위기의 청정화를 통해 사전에 방지할 수 있다. 그러나, 제조 과정에서 생기는 내적 요인의 파티클은 미연에 제거할 수 없기 때문에 웨이퍼는 공정간을 이동하는 과정에서 여러 단계의 세정을 거치고 있다.In general, particles generated by external factors can be prevented in advance through the cleanliness of the process atmosphere through a clean facility. However, because internal particles generated during the manufacturing process cannot be removed beforehand, the wafer undergoes several stages of cleaning during the process.
웨이퍼 세정은 주지된 바와 같이 용제나 린스에 침적하여 웨이퍼 표면의 파티클이 제거되는 습식 세정과 플라즈마로 웨이퍼 표면을 식각하여 세정하는 건식 세정이 알려져 있다.Wafer cleaning is known as wet cleaning in which particles on the surface of the wafer are removed by dipping in a solvent or rinse, and dry cleaning in which the wafer surface is etched and cleaned by plasma.
습식 세정은 웨이퍼 표면에의 파티클을 제거하는데 효과적으로 활용되고 있다. 그렇지만, 습식 세정에 있어서는 공정 관리가 어렵고 세정액에 소모되는 비용 등 운전비용이 높을 뿐만 아니라 런타임이 길어 생산성이 좋지 않다. 게다가, 산화막과 질화막이 적층된 다층 박막인 경우 습식 세정의 등방성 식각 특성에 의해 각 박막의 선택비 차이에 따른 슬로프 현상과 에지 측벽에의 파티클로 인해 소자의 수율이 떨어지는 단점이 있다. 이러한 점 때문에 플라즈마를 이용한 건식 세정이 널리 시행되는 것이 현재의 추세이다.Wet cleaning is effectively utilized to remove particles on the wafer surface. However, in the wet cleaning, the process management is difficult and the operating cost such as the cost of the cleaning liquid is high, and the runtime is long, resulting in poor productivity. In addition, in the case of the multilayer thin film in which the oxide film and the nitride film are stacked, the yield of the device is reduced due to the slope phenomenon and the particles on the edge sidewalls due to the difference in selectivity of each thin film due to the isotropic etching characteristic of the wet cleaning. For this reason, the current trend is that dry cleaning using plasma is widely practiced.
건식 세정은 웨이퍼 표면에 도포된 포토레지스트나 박막을 식각하여 제거하는 방식으로 공정이 간편하고 런타인이 짧다는 등의 습식 세정이 안고 있는 문제점을 해결하여 주는 장점이 있다. 그러나, 건식 세정은 웨이퍼의 중심축 상방에서 플라즈마를 주사시켜 웨이퍼 표면의 포토레지스트나 박막이 식각되게 하는 것이므로 웨이퍼 표면에서 식각된 파티클 일부가 웨이퍼 에지에 퇴적되는 경향이 있다. 결과적으로, 건식 세정도 역시 반도체 소자의 수율을 저하시키는 결점을 가지고 있다.Dry cleaning has the advantage of solving the problems of wet cleaning, such as easy to process and short running time by etching by removing the photoresist or thin film applied to the wafer surface. However, dry cleaning is to scan the plasma above the center axis of the wafer to etch the photoresist or thin film on the wafer surface, so that some of the particles etched on the wafer surface tend to be deposited on the wafer edge. As a result, dry cleaning also has the disadvantage of lowering the yield of semiconductor devices.
이에 본 발명은 상기한 종래 기술상의 문제점을 해결하기 위하여 안출된 것으로, 본 발명의 목적은 웨이퍼 에지의 파티클을 효과적으로 제거할 수 있는 웨이퍼 에지 식각 장치를 제공함에 있다.Accordingly, the present invention has been made to solve the above-mentioned problems in the prior art, an object of the present invention is to provide a wafer edge etching apparatus that can effectively remove the particles of the wafer edge.
상기 목적을 달성하기 위한 본 발명에 따른 웨이퍼 에지 식각 장치는, 웨이퍼 전면 에지와 웨이퍼 배면 전체를 식각함으로써 웨이퍼 에지의 파티클을 효과적으로 제거할 수 있는 것을 특징으로 한다.The wafer edge etching apparatus according to the present invention for achieving the above object is characterized in that the particles of the wafer edge can be effectively removed by etching the entire wafer front edge and the wafer back surface.
상기 특징을 구현할 수 있는 본 발명의 일 태양에 따른 웨이퍼 에지 식각 장치는, 챔버; 및 상기 챔버 내에 수용되는 소정의 패턴이 형성된 웨이퍼면의 중심부로는 비반응 가스를 분사하고, 상기 소정의 패턴이 형성된 웨이퍼면의 에지부와 패턴이 형성되지 아니한 웨이퍼면으로는 라디칼을 분사하는 분사부를 포함하는 것을 특징으로 한다.Wafer edge etching apparatus according to an aspect of the present invention that can implement the above features, the chamber; And injecting an unreacted gas into a center portion of the wafer surface on which the predetermined pattern is accommodated in the chamber, and injecting radicals into an edge portion of the wafer surface on which the predetermined pattern is formed and a wafer surface on which the pattern is not formed. It is characterized by including a wealth.
상기 분사부는, 상기 소정의 패턴이 형성된 웨이퍼면의 중심부로는 비반응 가스를 분사하고 상기 소정의 패턴이 형성된 웨이퍼면의 에지부로는 라디칼을 분사하는 제1분사부; 및 상기 제1분사부와는 대향되어 소정의 패턴이 형성되지 아니한 웨이퍼면으로 상기 라디칼을 분사하는 제2분사부를 포함하는 것을 특징으로 한다.The injection unit may include: a first injection unit which injects non-reactive gas into a central portion of the wafer surface on which the predetermined pattern is formed, and injects radicals into an edge portion of the wafer surface on which the predetermined pattern is formed; And a second spraying unit which is opposed to the first spraying unit and sprays the radicals onto a wafer surface on which a predetermined pattern is not formed.
상기 제1분사부와 제2분사부 각각은 상기 라디칼을 생성하는 원격 플라즈마 제네레이터를 포함하는 것을 특징으로 한다.Each of the first and second injection units includes a remote plasma generator that generates the radicals.
상기 각각의 원격 플라즈마 제네레이터는 독립적으로 구동되는 것을 특징으로 한다.Each remote plasma generator is independently driven.
상기 제1분사부는, 상기 비반응 가스와 라디칼을 상기 챔버 내로 공급하는 샤워헤드를 포함하되, 상기 샤워헤드의 중심부에는 상기 소정의 패턴이 형성된 웨이퍼면의 중심부로 상기 비반응 가스가 분사되도록 유도하는 개구가 있고, 상기 샤워헤드의 에지부에는 상기 소정의 패턴이 형성된 웨이퍼면의 에지부로 상기 라디칼이 분사되도록 유도하는 복수개의 개구가 있는 것을 특징으로 한다.The first injection unit includes a shower head for supplying the unreacted gas and radicals into the chamber, wherein the unreacted gas is injected into the center of the wafer surface on which the predetermined pattern is formed at the center of the shower head. There is an opening, and the edge portion of the showerhead is characterized in that there are a plurality of openings for inducing the radical to be injected into the edge portion of the wafer surface on which the predetermined pattern is formed.
상기 샤워헤드의 에지부는 상기 소정의 패턴이 형성된 웨이퍼면의 에지부를 향하여 경사져 있는 것을 특징으로 한다.The edge portion of the showerhead is inclined toward the edge portion of the wafer surface on which the predetermined pattern is formed.
상기 제2분사부는, 웨이퍼를 지지하는 지지부재와, 상기 라디칼을 상기 챔버 내로 공급하는 샤워헤드를 포함하되, 상기 샤워헤드는 소정의 패턴이 형성되지 아니한 웨이퍼면으로 상기 라디칼이 분사되도록 유도하는 복수개의 개구가 있는 것을 특징으로 한다.The second injection unit includes a support member for supporting a wafer and a shower head for supplying the radicals into the chamber, wherein the shower head is configured to induce the radicals to be injected onto a wafer surface on which a predetermined pattern is not formed. There are two openings.
상기 제2분사부는 배기관을 더 포함하는 것을 특징으로 한다.The second injector further comprises an exhaust pipe.
상기 특징으로 구현할 수 있는 본 발명의 다른 태양에 따른 웨이퍼 에지 식각 장치는, 챔버; 상기 챔버 내에 수용되는 소정의 패턴이 형성된 웨이퍼면의 중심부로 비반응 가스가 분사되도록 유도하는 개구와 상기 소정의 패턴이 형성된 웨이퍼면의 에지부로 라디칼이 분사되도록 유도하는 복수개의 개구가 있는 제1샤워헤드와, 상기 라디칼을 생성하여 상기 제1샤워헤드로 공급하는 제1 원격 플라즈마 제네레이터를 포함하는 제1분사부; 및 상기 제1분사부와는 대향되어 소정의 패턴이 형성되지 아니한 웨이퍼면으로 상기 라디칼이 분사되도록 유도하는 복수개의 개구가 있는 제2샤워헤드와, 상기 라디칼을 생성하여 상기 제2샤워헤드로 공급하는 제2 원격 플라즈마 제네레이터와, 웨이퍼를 지지하는 지지부재를 포함하는 제2분사부를 포함하는 것을 특징으로 한다.According to another aspect of the present invention, an edge etching apparatus capable of implementing the above features may include a chamber; A first shower having an opening for inducing non-reactive gas to be injected into a central portion of the wafer surface on which the predetermined pattern is accommodated in the chamber and a plurality of openings for injecting radicals to the edge of the wafer surface on which the predetermined pattern is formed A first injection unit comprising a head and a first remote plasma generator for generating the radicals and supplying the radicals to the first shower head; And a second shower head having a plurality of openings facing the first spraying part to inject the radicals into the wafer surface on which the predetermined pattern is not formed, and generating and supplying the radicals to the second shower head. And a second injection unit including a second remote plasma generator and a support member supporting the wafer.
상기 제1샤워헤드의 에지부는 상기 소정의 패턴이 형성된 웨이퍼면의 에지부를 향하여 경사져 있는 것을 특징으로 한다.The edge portion of the first shower head may be inclined toward an edge portion of the wafer surface on which the predetermined pattern is formed.
상기 제1 및 제2 원격 플라즈마 제네레이터는 각각 독립적으로 구동되는 것을 특징으로 한다.The first and second remote plasma generators are each independently driven.
상기 각각의 원격 플라즈마 제네레이터는 불소를 포함하는 가스를 사용하여 불소 라디칼을 생성하는 것을 특징으로 한다.Each remote plasma generator is characterized by generating fluorine radicals using a gas comprising fluorine.
상기 가스는 NF3, CH4, C2F6, C3F8, CHF3, SF6 으로 이루어진 군에서 선택된 어느 하나인 것을 특징으로 한다.The gas is characterized in that any one selected from the group consisting of NF 3 , CH 4 , C 2 F 6 , C 3 F 8 , CHF 3 , SF 6 .
상기 제2분사부는 배기관을 더 포함하는 것을 특징으로 한다.The second injector further comprises an exhaust pipe.
상기 비반응 가스는 질소 가스인 것을 특징으로 한다.The unreacted gas is characterized in that the nitrogen gas.
상기 챔버 내의 압력은 최대 2 Torr 인 것을 특징으로 한다.The pressure in the chamber is characterized in that up to 2 Torr.
본 발명에 따르면, 원격 플라즈마를 이용하여 라디칼을 링 형태의 샤워헤드를 통해 웨이퍼 에지로 플로우시킴으로써 웨이퍼 에지에 머무르는 파티클을 효과적으로 제거할 수 있다. 또한, 라디칼이 일정한 각도로 웨이퍼에 도달하므로 저글링되는 문제점이 방지되고, 웨이퍼 배면의 파티클도 제거된다. 이에 따라, 반도체 소자의 제조 수율이 향상되는 효과가 있다.According to the present invention, particles that stay at the wafer edge can be effectively removed by using a remote plasma to flow radicals through the ring-shaped showerhead to the wafer edge. In addition, since the radicals reach the wafer at a constant angle, the problem of juggling is prevented, and particles on the back surface of the wafer are also removed. Thereby, there is an effect that the manufacturing yield of a semiconductor element improves.
이하, 본 발명에 따른 웨이퍼 에지 식각 장치를 첨부한 도면을 참조하여 상세히 설명한다. 본 발명과 종래 기술과 비교한 이점은 첨부된 도면을 참조한 상세한 설명과 특허청구범위를 통하여 명백하게 될 것이다. 특히, 본 발명에 따른 웨이퍼 에지 식각 장치는 특허청구범위에서 잘 지적되고 명백하게 청구된다. 그러나, 본 발명에 따른 웨이퍼 에지 식각 장치는 첨부된 도면과 관련해서 다음의 상세한 설명을 참조함으로써 가장 잘 이해될 수 있다. 도면에 있어서 동일한 참조부호는 다양한 도면을 통해서 동일한 구성요소를 나타낸다.Hereinafter, a wafer edge etching apparatus according to the present invention will be described in detail with reference to the accompanying drawings. Advantages over the present invention and prior art will become apparent through the description and claims with reference to the accompanying drawings. In particular, the wafer edge etching apparatus according to the present invention is well pointed out and claimed in the claims. However, the wafer edge etching apparatus according to the present invention can be best understood by referring to the following detailed description with reference to the accompanying drawings. Like reference numerals in the drawings denote like elements throughout the various drawings.
도 1은 본 발명의 바람직한 실시예에 따른 웨이퍼 에지 식각 장치를 도시한 단면도이고, 도 2는 본 발명의 바람직한 실시예에 따른 웨이퍼 에지 식각 장치의 일부를 도시한 평면도이고, 도 3은 본 발명의 바람직한 실시예에 따른 웨이퍼 에지 식각 장치의 일부를 도시한 단면도이다.1 is a cross-sectional view showing a wafer edge etching apparatus according to a preferred embodiment of the present invention, Figure 2 is a plan view showing a portion of a wafer edge etching apparatus according to a preferred embodiment of the present invention, Figure 3 is A cross-sectional view of a portion of a wafer edge etching apparatus according to a preferred embodiment.
(실시예)(Example)
도 1을 참조하여, 본 발명의 바람직한 실시예에 따른 웨이퍼 에지 식각 장치는, 웨이퍼(400)에 대한 식각 공정이 진행되는 챔버(100)와, 챔버(100) 내부로 라디칼을 공급하는 제1분사부(200)와 제2분사부(300)를 포함한다. 여기서의 식각은 웨이퍼(400) 표면과 에지측벽에 있는 파티클이나 원치않는 박막에 대한 식각을 의미하며, 이하에서도 이와 마찬가지이다.Referring to FIG. 1, a wafer edge etching apparatus according to a preferred embodiment of the present invention may include a chamber 100 in which an etching process is performed on a wafer 400, and a first powder supplying radicals into the chamber 100. A sanding unit 200 and a second spraying unit 300 are included. Etching herein refers to etching of particles or unwanted thin films on the wafer 400 surface and the edge sidewalls, and the same is true below.
챔버(100)는 웨이퍼(400)에 대한 식각 공정이 진행되는 곳으로, 내부 최대 압력이 약 2 Torr 정도로 설정한다. 따라서, 챔버(100)의 내부를 고진공으로 만들기 위한 고진공 펌프는 필요없다.The chamber 100 is a place where an etching process is performed on the wafer 400, and the internal maximum pressure is set to about 2 Torr. Therefore, there is no need for a high vacuum pump to make the interior of the chamber 100 high vacuum.
제1분사부(200)는 챔버(100) 내에 수용되는 웨이퍼(400) 중에서 소정의 패턴이 형성된 웨이퍼면(이하, 웨이퍼 전면이라 칭한다)의 중심부로는 질소(N2)와 같은 비반응 가스를 분사하고 웨이퍼 전면의 에지부로는 라디칼(radical)을 분사하는 제1샤워헤드(210)와, 웨이퍼(400) 중심부로 비반응 가스를 공급하는 비반응 가스관(212)과, 웨이퍼(400) 전면의 에지부로 라디칼을 공급하는 라디칼관(214)과, 라디칼을 생성시키는 제1 원격 플라즈마 제네레이터(220)를 포함한다.The first injection unit 200 is a non-reactive gas such as nitrogen (N 2 ) as a central portion of a wafer surface (hereinafter referred to as a wafer front surface) in which a predetermined pattern is formed among the wafers 400 accommodated in the chamber 100. A first showerhead 210 that sprays and radiates radicals to the edge of the front surface of the wafer, an unreacted gas pipe 212 that supplies an unreacted gas to the center of the wafer 400, and a front surface of the wafer 400. A radical tube 214 for supplying radicals to the edge portion and a first remote plasma generator 220 for generating radicals.
여기서, 비반응 가스로는 위에서 예를 든 질소 이외에 헬륨이나 아르곤과 같은 불활성 기체도 적용 가능하다. 그리고, 라디칼은 제1 원격 플라즈마 제네레이터(220)에서 발생되는데, 제1 원격 플라즈마 제네레이터(220)는 불소(F)를 포함하는 가스, 예를 들어, NF3, CH4, C2F6, C3F 8, CHF3, 또는 SF6 을 사용하여 불소 라디칼(F radical)을 생성한다.Here, as the non-reactive gas, an inert gas such as helium or argon may be applied in addition to the above-mentioned nitrogen. In addition, the radicals are generated in the first remote plasma generator 220, the first remote plasma generator 220 is a gas containing fluorine (F), for example, NF 3 , CH 4 , C 2 F 6 , C 3 F 8 , CHF 3 , or SF 6 is used to generate fluorine radicals.
제1샤워헤드(210)는, 도 2에 도시된 바와 같이, 중심부에는 질소와 같은 비반응 가스를 웨이퍼 중심부로 유도하는 개구(212a)와, 그 에지부는 라디칼을 웨이퍼 에지부로 유도하는 복수개의 개구(214a)가 있다. 따라서, 중심부 개구(212a)를 통해 비반응 가스가 통과하며 에지부 개구(214a)를 통해서는 라디칼이 통과한다. 한편, 제1샤워헤드(210)의 에지부는, 도 1의 A 영역에 도시된 바와 같이, 웨이퍼의 에지부를 향해 경사져 있는 것이 라디칼의 웨이퍼 에지부로의 유도에 바람직하다 할 것이다.As shown in FIG. 2, the first showerhead 210 has an opening 212a for inducing a non-reactive gas such as nitrogen to the center of the wafer at the center thereof, and a plurality of openings for inducing the radicals to the wafer edge thereof. 214a. Thus, unreacted gas passes through the central opening 212a and radicals passes through the edge opening 214a. On the other hand, the edge portion of the first showerhead 210, as shown in region A of FIG. 1, it is preferable to incline toward the edge portion of the wafer is preferable for induction of radicals to the wafer edge portion.
도 1을 다시 참조하여, 제2분사부(300)는 제1분사부(200)와는 대향되도록 배치되는데 챔버(100) 내에 수용되는 웨이퍼(400) 중에서 소정의 패턴이 형성되지 아니한 웨이퍼면(이하, 웨이퍼 배면이라 칭한다) 전체로 라디칼을 분사하는 제2샤워헤드(310)와, 웨이퍼(400) 배면 전체로 라디칼을 공급하는 라디칼관(322)과, 라디칼을 생성시키는 제2 원격 플라즈마 제네레이터(320)를 포함한다. 제2분사부(300)는 웨이퍼(400)가 올려질 수 있는 지지부재(330)와, 펌프의 펌핑 작용으로 배기 가스를 챔버(100) 외부로 배출시키는 배기관(340)을 더 포함한다.Referring back to FIG. 1, the second injection unit 300 is disposed to face the first injection unit 200, but the wafer surface on which the predetermined pattern is not formed among the wafers 400 accommodated in the chamber 100 (hereinafter, referred to as a second injection unit 300). Second showerhead 310 for injecting radicals into the entirety of the wafer), a radical tube 322 for supplying radicals to the entire backside of the wafer 400, and a second remote plasma generator 320 for generating radicals. ). The second injection unit 300 further includes a support member 330 on which the wafer 400 can be mounted, and an exhaust pipe 340 for discharging exhaust gas to the outside of the chamber 100 by a pumping action of the pump.
제2샤워헤드(310)는 전체에 걸쳐 복수개의 개구(310a)가 있어 웨이퍼(400)의 배면 전체로 라디칼이 공급될 수 있는 구조이다.The second shower head 310 has a plurality of openings 310a throughout, so that radicals can be supplied to the entire back surface of the wafer 400.
여기에서의 라디칼은 앞의 예와 같은 불소 라디칼인 것이 바람직하다. 따라서, 제2 원격 플라즈마 제네레이터(320)는 제1 원격 플라즈마 제네레이터(220)와 마찬가지로 불소를 포함하는 가스, 예를 들어, NF3, CH4, C2F6, C3F8, CHF3, 또는 SF6 을 사용하여 불소 라디칼을 생성하는 것이 바람직하다.It is preferable that the radical here is a fluorine radical like the previous example. Accordingly, the second remote plasma generator 320, like the first remote plasma generator 220, is a gas containing fluorine, for example, NF 3 , CH 4 , C 2 F 6 , C 3 F 8 , CHF 3 , Or preference is given to producing fluorine radicals using SF 6 .
한편, 제1 원격 플라즈마 제네레이터(220)와 제2 원격 플라즈마 제네레이터(320)는 각각 독립적으로 구동되는 것이 바람직하다. 제1분사부(200)로 공급되는 라디칼의 압력과 제2분사부(300)로 공급되는 라디칼의 압력을 적절히 조절함으로써 라디칼이 웨이퍼 전면 에지부로 치우치거나 또는 그 반대로 웨이퍼 배면쪽로 치우치는 것을 막을 수 있기 때문이다.Meanwhile, the first remote plasma generator 220 and the second remote plasma generator 320 may be driven independently of each other. By appropriately adjusting the pressure of the radicals supplied to the first injection unit 200 and the pressures of the radicals supplied to the second injection unit 300, the radicals are prevented from being biased toward the wafer front edge or vice versa. Because it can.
다음과 같이 구성된 웨이퍼 에지 식각 장치는 다음과 같이 동작한다.The wafer edge etching apparatus configured as follows operates as follows.
도 3을 참조하여, 지지부재(330) 위에 올려진 웨이퍼(400) 중에서 전면의 에지부로는 제1샤워헤드(210)의 에지부 개구(214a)를 통해 라디칼이 공급되며, 웨이퍼(400)이 배면 전체로는 제2샤워헤드(310)의 복수개의 개구(310a)를 통해 라디칼이 공급된다. 여기서, 제1샤워헤드(210)로 공급되는 라디칼의 압력과 제2샤워헤드(310)로 공급되는 라디칼의 압력을 적절히 조절하여 웨이퍼(400)의 전면이나 배면쪽으로 라디칼이 치우쳐 공급되지 않도록 한다.Referring to FIG. 3, radicals are supplied to the front edge portion of the wafer 400 mounted on the support member 330 through the edge opening 214a of the first showerhead 210. Radicals are supplied to the entire rear surface through the plurality of openings 310a of the second shower head 310. Here, the pressure of the radicals supplied to the first showerhead 210 and the pressure of the radicals supplied to the second showerhead 310 are appropriately adjusted so that radicals are not biased toward the front or rear side of the wafer 400.
제1샤워헤드(210)의 에지부는 경사져 있어 라디칼이 웨이퍼(400) 에지부로 집중된다. 게다가, 웨이퍼(400)의 중심부로는 질소와 같은 비반응 가스가 공급되는데, 이는 라디칼이 웨이퍼(400)의 중심부로 침투하지 못하도록 하는 에어 커튼 역할을 한다. 이와 같이, 제1샤워헤드(210)의 경사진 에지부와 비반응 가스의 공급에 의해 라디칼은 웨이퍼(400) 에지부로 집중적으로 공급되어 웨이퍼(400) 에지부 식각 능력이 향상되고 웨이퍼 전면의 중심부에 대한 원하지 않는 식각이 방지된다.The edge portion of the first showerhead 210 is inclined so that radicals concentrate on the edge portion of the wafer 400. In addition, an unreacted gas such as nitrogen is supplied to the center of the wafer 400, which serves as an air curtain to prevent radicals from penetrating into the center of the wafer 400. As such, the radicals are intensively supplied to the edge portion of the wafer 400 by supplying the inclined edge portion of the first showerhead 210 and the non-reactive gas, thereby improving the etching ability of the edge portion of the wafer 400 and the center of the front surface of the wafer. Undesired etching for is avoided.
그리고, 웨이퍼(400)의 에지부 측벽도 상하 양쪽으로 공급되는 라디칼에 의해 충분한 식각이 이루어진다.In addition, the sidewalls of the edge portion of the wafer 400 are also sufficiently etched by radicals supplied to both the upper and lower sides.
이와 같이, 웨이퍼(400)의 전면 에지부와 배면 전체로 라디칼이 공급됨으로써 한번의 식각 공정으로써 웨이퍼(400) 전면 에지부와 에지부 측벽 및 배면 전체를 처리할 수 있다. 따라서, 웨이퍼 에지 측벽이나 배면 에지에 퇴적되는 파티클이 제거된다.As such, since radicals are supplied to the entire front edge portion and the rear surface of the wafer 400, the front edge portion, the edge sidewalls, and the entire rear surface of the wafer 400 may be processed by one etching process. Thus, particles deposited on the wafer edge sidewalls or back edges are removed.
이상의 상세한 설명은 본 발명을 예시하는 것이다. 또한 전술한 내용은 본 발명의 바람직한 실시 형태를 나타내고 설명하는 것에 불과하며, 본 발명은 다양한 다른 조합, 변경 및 환경에서 사용할 수 있다. 그리고, 본 명세서에 개시된 발명의 개념의 범위, 저술한 개시 내용과 균등한 범위 및/또는 당업계의 기술 또는 지식의 범위 내에서 변경 또는 수정이 가능하다. 전술한 실시예들은 본 발명을 실시하는데 있어 최선의 상태를 설명하기 위한 것이며, 본 발명과 같은 다른 발명을 이용하는데 당업계에 알려진 다른 상태로의 실시, 그리고 발명의 구체적인 적용 분야 및 용도에서 요구되는 다양한 변경도 가능하다. 따라서, 이상의 발명의 상세한 설명은 개시된 실시 상태로 본 발명을 제한하려는 의도가 아니다. 또한 첨부된 청구범위는 다른 실시 상태도 포함하는 것으로 해석되어야 한다.The foregoing detailed description illustrates the present invention. In addition, the foregoing description merely shows and describes preferred embodiments of the present invention, and the present invention can be used in various other combinations, modifications, and environments. And, it is possible to change or modify within the scope of the concept of the invention disclosed in this specification, the scope equivalent to the written description, and / or the skill or knowledge in the art. The above-described embodiments are for explaining the best state in carrying out the present invention, the use of other inventions such as the present invention in other state known in the art, and the specific fields of application and uses of the present invention. Various changes are also possible. Accordingly, the detailed description of the invention is not intended to limit the invention to the disclosed embodiments. Also, the appended claims should be construed to include other embodiments.
이상에서 상세히 설명한 바와 같이, 본 발명에 따른 웨이퍼 에지 식각 장치에 따르면, 원격 플라즈마를 이용하여 라디칼을 링 형태의 샤워헤드를 통해 웨이퍼 에지로 플로우시킴으로써 웨이퍼 에지에 머무르는 파티클을 효과적으로 제거할 수 있다. 또한, 라디칼이 일정한 각도로 웨이퍼에 도달하므로 저글링되는 문제점이 방지되고, 웨이퍼 배면의 파티클도 제거된다. 이에 따라, 반도체 소자의 제조 수율이 향상되는 효과가 있다.As described in detail above, according to the wafer edge etching apparatus according to the present invention, by using a remote plasma flow radicals to the wafer edge through the ring-shaped showerhead it is possible to effectively remove the particles staying on the wafer edge. In addition, since the radicals reach the wafer at a constant angle, the problem of juggling is prevented, and particles on the back surface of the wafer are also removed. Thereby, there is an effect that the manufacturing yield of a semiconductor element improves.
도 1은 본 발명의 바람직한 실시예에 따른 웨이퍼 에지 식각 장치를 도시한 단면도이다.1 is a cross-sectional view showing a wafer edge etching apparatus according to a preferred embodiment of the present invention.
도 2는 본 발명의 바람직한 실시예에 따른 웨이퍼 에지 식각 장치의 일부를 도시한 평면도이다.2 is a plan view showing a portion of a wafer edge etching apparatus according to a preferred embodiment of the present invention.
도 3은 본 발명의 바람직한 실시예에 따른 웨이퍼 에지 식각 장치의 일부를 도시한 단면도이다.3 is a cross-sectional view of a portion of a wafer edge etching apparatus according to a preferred embodiment of the present invention.
* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on main parts of drawing
100; 챔버 200; 제1분사부100; Chamber 200; First injection unit
210; 제1샤워헤드 212; 비반응가스관210; First showerhead 212; Unreacted gas pipe
214,322; 라디칼관 220; 제1 원격 플라즈마 제네레이터214,322; Radical tube 220; First Remote Plasma Generator
300; 제2분사부 310; 제2샤워헤드300; A second injection unit 310; 2nd shower head
320; 제2 원격 플라즈마 제네레이터320; Second Remote Plasma Generator
330; 지지부재 340; 배기관330; Support member 340; vent pipe
400; 웨이퍼400; wafer
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030083663A KR100558925B1 (en) | 2003-11-24 | 2003-11-24 | Wafer edge etcher |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030083663A KR100558925B1 (en) | 2003-11-24 | 2003-11-24 | Wafer edge etcher |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20050049903A true KR20050049903A (en) | 2005-05-27 |
KR100558925B1 KR100558925B1 (en) | 2006-03-10 |
Family
ID=38665528
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020030083663A KR100558925B1 (en) | 2003-11-24 | 2003-11-24 | Wafer edge etcher |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100558925B1 (en) |
Cited By (100)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090017635A1 (en) * | 2007-07-12 | 2009-01-15 | Applied Materials, Inc. | Apparatus and method for processing a substrate edge region |
US20090014127A1 (en) * | 2007-07-12 | 2009-01-15 | Applied Materials, Inc. | Systems for plasma enhanced chemical vapor deposition and bevel edge etching |
KR100906377B1 (en) * | 2007-09-04 | 2009-07-07 | 성균관대학교산학협력단 | Apparatus and method for fast wafer thinning |
WO2009125951A3 (en) * | 2008-04-07 | 2009-12-30 | Sosul Co., Ltd. | Plasma processing apparatus and method for plasma processing |
KR101131740B1 (en) * | 2011-06-20 | 2012-04-05 | 주식회사 테라텍 | Dry etching method of wafer backside using remote plasma generator |
KR101276318B1 (en) * | 2011-10-12 | 2013-06-18 | 주식회사 테라텍 | Dry Etching Method of Wafer Backside Using Remote Plasma Generator |
KR101369131B1 (en) * | 2005-09-27 | 2014-03-04 | 램 리써치 코포레이션 | Apparatus and methods to remove films on bevel edge and backside of wafer |
WO2014046864A1 (en) * | 2012-09-21 | 2014-03-27 | Applied Materials, Inc. | Radical chemistry modulation and control using multiple flow pathways |
KR101423554B1 (en) * | 2007-07-31 | 2014-07-25 | (주)소슬 | Plasma etching equipment and method of etching a wafer using the same |
KR101433411B1 (en) * | 2007-01-26 | 2014-08-26 | 램 리써치 코포레이션 | Bevel etcher with gap control |
US9711366B2 (en) | 2013-11-12 | 2017-07-18 | Applied Materials, Inc. | Selective etch for metal-containing materials |
US9721789B1 (en) | 2016-10-04 | 2017-08-01 | Applied Materials, Inc. | Saving ion-damaged spacers |
US9728437B2 (en) | 2015-02-03 | 2017-08-08 | Applied Materials, Inc. | High temperature chuck for plasma processing systems |
US9741593B2 (en) | 2015-08-06 | 2017-08-22 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
US9754800B2 (en) | 2010-05-27 | 2017-09-05 | Applied Materials, Inc. | Selective etch for silicon films |
US9768034B1 (en) | 2016-11-11 | 2017-09-19 | Applied Materials, Inc. | Removal methods for high aspect ratio structures |
US9773695B2 (en) | 2014-07-31 | 2017-09-26 | Applied Materials, Inc. | Integrated bit-line airgap formation and gate stack post clean |
US9773648B2 (en) | 2013-08-30 | 2017-09-26 | Applied Materials, Inc. | Dual discharge modes operation for remote plasma |
US9837249B2 (en) | 2014-03-20 | 2017-12-05 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
US9837284B2 (en) | 2014-09-25 | 2017-12-05 | Applied Materials, Inc. | Oxide etch selectivity enhancement |
US9842744B2 (en) | 2011-03-14 | 2017-12-12 | Applied Materials, Inc. | Methods for etch of SiN films |
US9865484B1 (en) | 2016-06-29 | 2018-01-09 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
US9881805B2 (en) | 2015-03-02 | 2018-01-30 | Applied Materials, Inc. | Silicon selective removal |
US9885117B2 (en) | 2014-03-31 | 2018-02-06 | Applied Materials, Inc. | Conditioned semiconductor system parts |
US9934942B1 (en) | 2016-10-04 | 2018-04-03 | Applied Materials, Inc. | Chamber with flow-through source |
US9947549B1 (en) | 2016-10-10 | 2018-04-17 | Applied Materials, Inc. | Cobalt-containing material removal |
US9966240B2 (en) | 2014-10-14 | 2018-05-08 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US9978564B2 (en) | 2012-09-21 | 2018-05-22 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US10026621B2 (en) | 2016-11-14 | 2018-07-17 | Applied Materials, Inc. | SiN spacer profile patterning |
US10032606B2 (en) | 2012-08-02 | 2018-07-24 | Applied Materials, Inc. | Semiconductor processing with DC assisted RF power for improved control |
US10043684B1 (en) | 2017-02-06 | 2018-08-07 | Applied Materials, Inc. | Self-limiting atomic thermal etching systems and methods |
US10043674B1 (en) | 2017-08-04 | 2018-08-07 | Applied Materials, Inc. | Germanium etching systems and methods |
US10049891B1 (en) | 2017-05-31 | 2018-08-14 | Applied Materials, Inc. | Selective in situ cobalt residue removal |
US10062579B2 (en) | 2016-10-07 | 2018-08-28 | Applied Materials, Inc. | Selective SiN lateral recess |
US10062575B2 (en) | 2016-09-09 | 2018-08-28 | Applied Materials, Inc. | Poly directional etch by oxidation |
US10062587B2 (en) | 2012-07-18 | 2018-08-28 | Applied Materials, Inc. | Pedestal with multi-zone temperature control and multiple purge capabilities |
US10062585B2 (en) | 2016-10-04 | 2018-08-28 | Applied Materials, Inc. | Oxygen compatible plasma source |
US10128086B1 (en) | 2017-10-24 | 2018-11-13 | Applied Materials, Inc. | Silicon pretreatment for nitride removal |
US10147620B2 (en) | 2015-08-06 | 2018-12-04 | Applied Materials, Inc. | Bolted wafer chuck thermal management systems and methods for wafer processing systems |
US10163696B2 (en) | 2016-11-11 | 2018-12-25 | Applied Materials, Inc. | Selective cobalt removal for bottom up gapfill |
US10170336B1 (en) | 2017-08-04 | 2019-01-01 | Applied Materials, Inc. | Methods for anisotropic control of selective silicon removal |
US10224210B2 (en) | 2014-12-09 | 2019-03-05 | Applied Materials, Inc. | Plasma processing system with direct outlet toroidal plasma source |
US10256112B1 (en) | 2017-12-08 | 2019-04-09 | Applied Materials, Inc. | Selective tungsten removal |
US10256079B2 (en) | 2013-02-08 | 2019-04-09 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
US10283324B1 (en) | 2017-10-24 | 2019-05-07 | Applied Materials, Inc. | Oxygen treatment for nitride etching |
US10283321B2 (en) | 2011-01-18 | 2019-05-07 | Applied Materials, Inc. | Semiconductor processing system and methods using capacitively coupled plasma |
US10297458B2 (en) | 2017-08-07 | 2019-05-21 | Applied Materials, Inc. | Process window widening using coated parts in plasma etch processes |
US10319600B1 (en) | 2018-03-12 | 2019-06-11 | Applied Materials, Inc. | Thermal silicon etch |
US10319649B2 (en) | 2017-04-11 | 2019-06-11 | Applied Materials, Inc. | Optical emission spectroscopy (OES) for remote plasma monitoring |
US10319739B2 (en) | 2017-02-08 | 2019-06-11 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10354889B2 (en) | 2017-07-17 | 2019-07-16 | Applied Materials, Inc. | Non-halogen etching of silicon-containing materials |
US10403507B2 (en) | 2017-02-03 | 2019-09-03 | Applied Materials, Inc. | Shaped etch profile with oxidation |
US10424485B2 (en) | 2013-03-01 | 2019-09-24 | Applied Materials, Inc. | Enhanced etching processes using remote plasma sources |
US10424463B2 (en) | 2015-08-07 | 2019-09-24 | Applied Materials, Inc. | Oxide etch selectivity systems and methods |
US10431429B2 (en) | 2017-02-03 | 2019-10-01 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
US10468267B2 (en) | 2017-05-31 | 2019-11-05 | Applied Materials, Inc. | Water-free etching methods |
US10465294B2 (en) | 2014-05-28 | 2019-11-05 | Applied Materials, Inc. | Oxide and metal removal |
US10490406B2 (en) | 2018-04-10 | 2019-11-26 | Appled Materials, Inc. | Systems and methods for material breakthrough |
US10497573B2 (en) | 2018-03-13 | 2019-12-03 | Applied Materials, Inc. | Selective atomic layer etching of semiconductor materials |
US10504754B2 (en) | 2016-05-19 | 2019-12-10 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US10504700B2 (en) | 2015-08-27 | 2019-12-10 | Applied Materials, Inc. | Plasma etching systems and methods with secondary plasma injection |
US10522371B2 (en) | 2016-05-19 | 2019-12-31 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US10541246B2 (en) | 2017-06-26 | 2020-01-21 | Applied Materials, Inc. | 3D flash memory cells which discourage cross-cell electrical tunneling |
US10541184B2 (en) | 2017-07-11 | 2020-01-21 | Applied Materials, Inc. | Optical emission spectroscopic techniques for monitoring etching |
US10546729B2 (en) | 2016-10-04 | 2020-01-28 | Applied Materials, Inc. | Dual-channel showerhead with improved profile |
US10566206B2 (en) | 2016-12-27 | 2020-02-18 | Applied Materials, Inc. | Systems and methods for anisotropic material breakthrough |
US10573527B2 (en) | 2018-04-06 | 2020-02-25 | Applied Materials, Inc. | Gas-phase selective etching systems and methods |
US10593560B2 (en) | 2018-03-01 | 2020-03-17 | Applied Materials, Inc. | Magnetic induction plasma source for semiconductor processes and equipment |
US10593523B2 (en) | 2014-10-14 | 2020-03-17 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
US10615047B2 (en) | 2018-02-28 | 2020-04-07 | Applied Materials, Inc. | Systems and methods to form airgaps |
US10629473B2 (en) | 2016-09-09 | 2020-04-21 | Applied Materials, Inc. | Footing removal for nitride spacer |
US10672642B2 (en) | 2018-07-24 | 2020-06-02 | Applied Materials, Inc. | Systems and methods for pedestal configuration |
US10679870B2 (en) | 2018-02-15 | 2020-06-09 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus |
US10699879B2 (en) | 2018-04-17 | 2020-06-30 | Applied Materials, Inc. | Two piece electrode assembly with gap for plasma control |
US10727080B2 (en) | 2017-07-07 | 2020-07-28 | Applied Materials, Inc. | Tantalum-containing material removal |
US10755941B2 (en) | 2018-07-06 | 2020-08-25 | Applied Materials, Inc. | Self-limiting selective etching systems and methods |
US10854426B2 (en) | 2018-01-08 | 2020-12-01 | Applied Materials, Inc. | Metal recess for semiconductor structures |
US10872778B2 (en) | 2018-07-06 | 2020-12-22 | Applied Materials, Inc. | Systems and methods utilizing solid-phase etchants |
US10886137B2 (en) | 2018-04-30 | 2021-01-05 | Applied Materials, Inc. | Selective nitride removal |
US10892198B2 (en) | 2018-09-14 | 2021-01-12 | Applied Materials, Inc. | Systems and methods for improved performance in semiconductor processing |
US10903054B2 (en) | 2017-12-19 | 2021-01-26 | Applied Materials, Inc. | Multi-zone gas distribution systems and methods |
US10920319B2 (en) | 2019-01-11 | 2021-02-16 | Applied Materials, Inc. | Ceramic showerheads with conductive electrodes |
US10920320B2 (en) | 2017-06-16 | 2021-02-16 | Applied Materials, Inc. | Plasma health determination in semiconductor substrate processing reactors |
US10943834B2 (en) | 2017-03-13 | 2021-03-09 | Applied Materials, Inc. | Replacement contact process |
US10964512B2 (en) | 2018-02-15 | 2021-03-30 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus and methods |
US11049755B2 (en) | 2018-09-14 | 2021-06-29 | Applied Materials, Inc. | Semiconductor substrate supports with embedded RF shield |
US11062887B2 (en) | 2018-09-17 | 2021-07-13 | Applied Materials, Inc. | High temperature RF heater pedestals |
US11121002B2 (en) | 2018-10-24 | 2021-09-14 | Applied Materials, Inc. | Systems and methods for etching metals and metal derivatives |
US11239061B2 (en) | 2014-11-26 | 2022-02-01 | Applied Materials, Inc. | Methods and systems to enhance process uniformity |
US11257693B2 (en) | 2015-01-09 | 2022-02-22 | Applied Materials, Inc. | Methods and systems to improve pedestal temperature control |
US11276559B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Semiconductor processing chamber for multiple precursor flow |
US11276590B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
WO2022076299A1 (en) * | 2020-10-05 | 2022-04-14 | Applied Materials, Inc. | Bevel backside deposition elimination |
US11328909B2 (en) | 2017-12-22 | 2022-05-10 | Applied Materials, Inc. | Chamber conditioning and removal processes |
US11417534B2 (en) | 2018-09-21 | 2022-08-16 | Applied Materials, Inc. | Selective material removal |
US11437242B2 (en) | 2018-11-27 | 2022-09-06 | Applied Materials, Inc. | Selective removal of silicon-containing materials |
US11594428B2 (en) | 2015-02-03 | 2023-02-28 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
US11682560B2 (en) | 2018-10-11 | 2023-06-20 | Applied Materials, Inc. | Systems and methods for hafnium-containing film removal |
US11721527B2 (en) | 2019-01-07 | 2023-08-08 | Applied Materials, Inc. | Processing chamber mixing systems |
US12148597B2 (en) | 2023-02-13 | 2024-11-19 | Applied Materials, Inc. | Multi-zone gas distribution systems and methods |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101397413B1 (en) * | 2008-06-10 | 2014-05-21 | (주)소슬 | Method of etching a wafer using a plasma etching equipment |
-
2003
- 2003-11-24 KR KR1020030083663A patent/KR100558925B1/en not_active IP Right Cessation
Cited By (140)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101369131B1 (en) * | 2005-09-27 | 2014-03-04 | 램 리써치 코포레이션 | Apparatus and methods to remove films on bevel edge and backside of wafer |
KR101433411B1 (en) * | 2007-01-26 | 2014-08-26 | 램 리써치 코포레이션 | Bevel etcher with gap control |
KR101354571B1 (en) * | 2007-07-12 | 2014-01-23 | 어플라이드 머티어리얼스, 인코포레이티드 | Systems for plasma enhanced chemical vapor deposition and bevel edge etching |
US20090017635A1 (en) * | 2007-07-12 | 2009-01-15 | Applied Materials, Inc. | Apparatus and method for processing a substrate edge region |
US8197636B2 (en) * | 2007-07-12 | 2012-06-12 | Applied Materials, Inc. | Systems for plasma enhanced chemical vapor deposition and bevel edge etching |
US20090014127A1 (en) * | 2007-07-12 | 2009-01-15 | Applied Materials, Inc. | Systems for plasma enhanced chemical vapor deposition and bevel edge etching |
KR101423554B1 (en) * | 2007-07-31 | 2014-07-25 | (주)소슬 | Plasma etching equipment and method of etching a wafer using the same |
KR100906377B1 (en) * | 2007-09-04 | 2009-07-07 | 성균관대학교산학협력단 | Apparatus and method for fast wafer thinning |
WO2009125951A3 (en) * | 2008-04-07 | 2009-12-30 | Sosul Co., Ltd. | Plasma processing apparatus and method for plasma processing |
US8373086B2 (en) | 2008-04-07 | 2013-02-12 | Charm Engineering Co., Ltd. | Plasma processing apparatus and method for plasma processing |
US9754800B2 (en) | 2010-05-27 | 2017-09-05 | Applied Materials, Inc. | Selective etch for silicon films |
US10283321B2 (en) | 2011-01-18 | 2019-05-07 | Applied Materials, Inc. | Semiconductor processing system and methods using capacitively coupled plasma |
US9842744B2 (en) | 2011-03-14 | 2017-12-12 | Applied Materials, Inc. | Methods for etch of SiN films |
KR101131740B1 (en) * | 2011-06-20 | 2012-04-05 | 주식회사 테라텍 | Dry etching method of wafer backside using remote plasma generator |
KR101276318B1 (en) * | 2011-10-12 | 2013-06-18 | 주식회사 테라텍 | Dry Etching Method of Wafer Backside Using Remote Plasma Generator |
US10062587B2 (en) | 2012-07-18 | 2018-08-28 | Applied Materials, Inc. | Pedestal with multi-zone temperature control and multiple purge capabilities |
US10032606B2 (en) | 2012-08-02 | 2018-07-24 | Applied Materials, Inc. | Semiconductor processing with DC assisted RF power for improved control |
US11264213B2 (en) | 2012-09-21 | 2022-03-01 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
CN111463125A (en) * | 2012-09-21 | 2020-07-28 | 应用材料公司 | Free radical chemical modulation and control using multiple flow pathways |
WO2014046864A1 (en) * | 2012-09-21 | 2014-03-27 | Applied Materials, Inc. | Radical chemistry modulation and control using multiple flow pathways |
US10354843B2 (en) | 2012-09-21 | 2019-07-16 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
US9978564B2 (en) | 2012-09-21 | 2018-05-22 | Applied Materials, Inc. | Chemical control features in wafer process equipment |
TWI663646B (en) * | 2012-09-21 | 2019-06-21 | 美商應用材料股份有限公司 | Radical chemistry modulation and control using multiple flow pathways |
US11024486B2 (en) | 2013-02-08 | 2021-06-01 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
US10256079B2 (en) | 2013-02-08 | 2019-04-09 | Applied Materials, Inc. | Semiconductor processing systems having multiple plasma configurations |
US10424485B2 (en) | 2013-03-01 | 2019-09-24 | Applied Materials, Inc. | Enhanced etching processes using remote plasma sources |
US9773648B2 (en) | 2013-08-30 | 2017-09-26 | Applied Materials, Inc. | Dual discharge modes operation for remote plasma |
US9711366B2 (en) | 2013-11-12 | 2017-07-18 | Applied Materials, Inc. | Selective etch for metal-containing materials |
US9837249B2 (en) | 2014-03-20 | 2017-12-05 | Applied Materials, Inc. | Radial waveguide systems and methods for post-match control of microwaves |
US9885117B2 (en) | 2014-03-31 | 2018-02-06 | Applied Materials, Inc. | Conditioned semiconductor system parts |
US9903020B2 (en) | 2014-03-31 | 2018-02-27 | Applied Materials, Inc. | Generation of compact alumina passivation layers on aluminum plasma equipment components |
US10465294B2 (en) | 2014-05-28 | 2019-11-05 | Applied Materials, Inc. | Oxide and metal removal |
US9773695B2 (en) | 2014-07-31 | 2017-09-26 | Applied Materials, Inc. | Integrated bit-line airgap formation and gate stack post clean |
US9837284B2 (en) | 2014-09-25 | 2017-12-05 | Applied Materials, Inc. | Oxide etch selectivity enhancement |
US10490418B2 (en) | 2014-10-14 | 2019-11-26 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US10707061B2 (en) | 2014-10-14 | 2020-07-07 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
US10796922B2 (en) | 2014-10-14 | 2020-10-06 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US9966240B2 (en) | 2014-10-14 | 2018-05-08 | Applied Materials, Inc. | Systems and methods for internal surface conditioning assessment in plasma processing equipment |
US10593523B2 (en) | 2014-10-14 | 2020-03-17 | Applied Materials, Inc. | Systems and methods for internal surface conditioning in plasma processing equipment |
US11239061B2 (en) | 2014-11-26 | 2022-02-01 | Applied Materials, Inc. | Methods and systems to enhance process uniformity |
US11637002B2 (en) | 2014-11-26 | 2023-04-25 | Applied Materials, Inc. | Methods and systems to enhance process uniformity |
US10224210B2 (en) | 2014-12-09 | 2019-03-05 | Applied Materials, Inc. | Plasma processing system with direct outlet toroidal plasma source |
US11257693B2 (en) | 2015-01-09 | 2022-02-22 | Applied Materials, Inc. | Methods and systems to improve pedestal temperature control |
US9728437B2 (en) | 2015-02-03 | 2017-08-08 | Applied Materials, Inc. | High temperature chuck for plasma processing systems |
US12009228B2 (en) | 2015-02-03 | 2024-06-11 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
US11594428B2 (en) | 2015-02-03 | 2023-02-28 | Applied Materials, Inc. | Low temperature chuck for plasma processing systems |
US10468285B2 (en) | 2015-02-03 | 2019-11-05 | Applied Materials, Inc. | High temperature chuck for plasma processing systems |
US9881805B2 (en) | 2015-03-02 | 2018-01-30 | Applied Materials, Inc. | Silicon selective removal |
US10468276B2 (en) | 2015-08-06 | 2019-11-05 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
US10607867B2 (en) | 2015-08-06 | 2020-03-31 | Applied Materials, Inc. | Bolted wafer chuck thermal management systems and methods for wafer processing systems |
US9741593B2 (en) | 2015-08-06 | 2017-08-22 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
US11158527B2 (en) | 2015-08-06 | 2021-10-26 | Applied Materials, Inc. | Thermal management systems and methods for wafer processing systems |
US10147620B2 (en) | 2015-08-06 | 2018-12-04 | Applied Materials, Inc. | Bolted wafer chuck thermal management systems and methods for wafer processing systems |
US10424464B2 (en) | 2015-08-07 | 2019-09-24 | Applied Materials, Inc. | Oxide etch selectivity systems and methods |
US10424463B2 (en) | 2015-08-07 | 2019-09-24 | Applied Materials, Inc. | Oxide etch selectivity systems and methods |
US10504700B2 (en) | 2015-08-27 | 2019-12-10 | Applied Materials, Inc. | Plasma etching systems and methods with secondary plasma injection |
US11476093B2 (en) | 2015-08-27 | 2022-10-18 | Applied Materials, Inc. | Plasma etching systems and methods with secondary plasma injection |
US10522371B2 (en) | 2016-05-19 | 2019-12-31 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US10504754B2 (en) | 2016-05-19 | 2019-12-10 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US11735441B2 (en) | 2016-05-19 | 2023-08-22 | Applied Materials, Inc. | Systems and methods for improved semiconductor etching and component protection |
US12057329B2 (en) | 2016-06-29 | 2024-08-06 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
US9865484B1 (en) | 2016-06-29 | 2018-01-09 | Applied Materials, Inc. | Selective etch using material modification and RF pulsing |
US10062575B2 (en) | 2016-09-09 | 2018-08-28 | Applied Materials, Inc. | Poly directional etch by oxidation |
US10629473B2 (en) | 2016-09-09 | 2020-04-21 | Applied Materials, Inc. | Footing removal for nitride spacer |
US9934942B1 (en) | 2016-10-04 | 2018-04-03 | Applied Materials, Inc. | Chamber with flow-through source |
US10062585B2 (en) | 2016-10-04 | 2018-08-28 | Applied Materials, Inc. | Oxygen compatible plasma source |
US11049698B2 (en) | 2016-10-04 | 2021-06-29 | Applied Materials, Inc. | Dual-channel showerhead with improved profile |
US10546729B2 (en) | 2016-10-04 | 2020-01-28 | Applied Materials, Inc. | Dual-channel showerhead with improved profile |
US10224180B2 (en) | 2016-10-04 | 2019-03-05 | Applied Materials, Inc. | Chamber with flow-through source |
US10541113B2 (en) | 2016-10-04 | 2020-01-21 | Applied Materials, Inc. | Chamber with flow-through source |
US9721789B1 (en) | 2016-10-04 | 2017-08-01 | Applied Materials, Inc. | Saving ion-damaged spacers |
US10319603B2 (en) | 2016-10-07 | 2019-06-11 | Applied Materials, Inc. | Selective SiN lateral recess |
US10062579B2 (en) | 2016-10-07 | 2018-08-28 | Applied Materials, Inc. | Selective SiN lateral recess |
US9947549B1 (en) | 2016-10-10 | 2018-04-17 | Applied Materials, Inc. | Cobalt-containing material removal |
US10186428B2 (en) | 2016-11-11 | 2019-01-22 | Applied Materials, Inc. | Removal methods for high aspect ratio structures |
US9768034B1 (en) | 2016-11-11 | 2017-09-19 | Applied Materials, Inc. | Removal methods for high aspect ratio structures |
US10163696B2 (en) | 2016-11-11 | 2018-12-25 | Applied Materials, Inc. | Selective cobalt removal for bottom up gapfill |
US10770346B2 (en) | 2016-11-11 | 2020-09-08 | Applied Materials, Inc. | Selective cobalt removal for bottom up gapfill |
US10600639B2 (en) | 2016-11-14 | 2020-03-24 | Applied Materials, Inc. | SiN spacer profile patterning |
US10026621B2 (en) | 2016-11-14 | 2018-07-17 | Applied Materials, Inc. | SiN spacer profile patterning |
US10566206B2 (en) | 2016-12-27 | 2020-02-18 | Applied Materials, Inc. | Systems and methods for anisotropic material breakthrough |
US10903052B2 (en) | 2017-02-03 | 2021-01-26 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
US10403507B2 (en) | 2017-02-03 | 2019-09-03 | Applied Materials, Inc. | Shaped etch profile with oxidation |
US10431429B2 (en) | 2017-02-03 | 2019-10-01 | Applied Materials, Inc. | Systems and methods for radial and azimuthal control of plasma uniformity |
US10043684B1 (en) | 2017-02-06 | 2018-08-07 | Applied Materials, Inc. | Self-limiting atomic thermal etching systems and methods |
US10325923B2 (en) | 2017-02-08 | 2019-06-18 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10529737B2 (en) | 2017-02-08 | 2020-01-07 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10319739B2 (en) | 2017-02-08 | 2019-06-11 | Applied Materials, Inc. | Accommodating imperfectly aligned memory holes |
US10943834B2 (en) | 2017-03-13 | 2021-03-09 | Applied Materials, Inc. | Replacement contact process |
US10319649B2 (en) | 2017-04-11 | 2019-06-11 | Applied Materials, Inc. | Optical emission spectroscopy (OES) for remote plasma monitoring |
US11361939B2 (en) | 2017-05-17 | 2022-06-14 | Applied Materials, Inc. | Semiconductor processing chamber for multiple precursor flow |
US11276590B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
US11915950B2 (en) | 2017-05-17 | 2024-02-27 | Applied Materials, Inc. | Multi-zone semiconductor substrate supports |
US11276559B2 (en) | 2017-05-17 | 2022-03-15 | Applied Materials, Inc. | Semiconductor processing chamber for multiple precursor flow |
US10049891B1 (en) | 2017-05-31 | 2018-08-14 | Applied Materials, Inc. | Selective in situ cobalt residue removal |
US10497579B2 (en) | 2017-05-31 | 2019-12-03 | Applied Materials, Inc. | Water-free etching methods |
US10468267B2 (en) | 2017-05-31 | 2019-11-05 | Applied Materials, Inc. | Water-free etching methods |
US10920320B2 (en) | 2017-06-16 | 2021-02-16 | Applied Materials, Inc. | Plasma health determination in semiconductor substrate processing reactors |
US10541246B2 (en) | 2017-06-26 | 2020-01-21 | Applied Materials, Inc. | 3D flash memory cells which discourage cross-cell electrical tunneling |
US10727080B2 (en) | 2017-07-07 | 2020-07-28 | Applied Materials, Inc. | Tantalum-containing material removal |
US10541184B2 (en) | 2017-07-11 | 2020-01-21 | Applied Materials, Inc. | Optical emission spectroscopic techniques for monitoring etching |
US10354889B2 (en) | 2017-07-17 | 2019-07-16 | Applied Materials, Inc. | Non-halogen etching of silicon-containing materials |
US10043674B1 (en) | 2017-08-04 | 2018-08-07 | Applied Materials, Inc. | Germanium etching systems and methods |
US10170336B1 (en) | 2017-08-04 | 2019-01-01 | Applied Materials, Inc. | Methods for anisotropic control of selective silicon removal |
US10593553B2 (en) | 2017-08-04 | 2020-03-17 | Applied Materials, Inc. | Germanium etching systems and methods |
US11101136B2 (en) | 2017-08-07 | 2021-08-24 | Applied Materials, Inc. | Process window widening using coated parts in plasma etch processes |
US10297458B2 (en) | 2017-08-07 | 2019-05-21 | Applied Materials, Inc. | Process window widening using coated parts in plasma etch processes |
US10128086B1 (en) | 2017-10-24 | 2018-11-13 | Applied Materials, Inc. | Silicon pretreatment for nitride removal |
US10283324B1 (en) | 2017-10-24 | 2019-05-07 | Applied Materials, Inc. | Oxygen treatment for nitride etching |
US10256112B1 (en) | 2017-12-08 | 2019-04-09 | Applied Materials, Inc. | Selective tungsten removal |
US10903054B2 (en) | 2017-12-19 | 2021-01-26 | Applied Materials, Inc. | Multi-zone gas distribution systems and methods |
US11328909B2 (en) | 2017-12-22 | 2022-05-10 | Applied Materials, Inc. | Chamber conditioning and removal processes |
US10861676B2 (en) | 2018-01-08 | 2020-12-08 | Applied Materials, Inc. | Metal recess for semiconductor structures |
US10854426B2 (en) | 2018-01-08 | 2020-12-01 | Applied Materials, Inc. | Metal recess for semiconductor structures |
US10964512B2 (en) | 2018-02-15 | 2021-03-30 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus and methods |
US10679870B2 (en) | 2018-02-15 | 2020-06-09 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus |
US10699921B2 (en) | 2018-02-15 | 2020-06-30 | Applied Materials, Inc. | Semiconductor processing chamber multistage mixing apparatus |
US10615047B2 (en) | 2018-02-28 | 2020-04-07 | Applied Materials, Inc. | Systems and methods to form airgaps |
US10593560B2 (en) | 2018-03-01 | 2020-03-17 | Applied Materials, Inc. | Magnetic induction plasma source for semiconductor processes and equipment |
US10319600B1 (en) | 2018-03-12 | 2019-06-11 | Applied Materials, Inc. | Thermal silicon etch |
US11004689B2 (en) | 2018-03-12 | 2021-05-11 | Applied Materials, Inc. | Thermal silicon etch |
US10497573B2 (en) | 2018-03-13 | 2019-12-03 | Applied Materials, Inc. | Selective atomic layer etching of semiconductor materials |
US10573527B2 (en) | 2018-04-06 | 2020-02-25 | Applied Materials, Inc. | Gas-phase selective etching systems and methods |
US10490406B2 (en) | 2018-04-10 | 2019-11-26 | Appled Materials, Inc. | Systems and methods for material breakthrough |
US10699879B2 (en) | 2018-04-17 | 2020-06-30 | Applied Materials, Inc. | Two piece electrode assembly with gap for plasma control |
US10886137B2 (en) | 2018-04-30 | 2021-01-05 | Applied Materials, Inc. | Selective nitride removal |
US10872778B2 (en) | 2018-07-06 | 2020-12-22 | Applied Materials, Inc. | Systems and methods utilizing solid-phase etchants |
US10755941B2 (en) | 2018-07-06 | 2020-08-25 | Applied Materials, Inc. | Self-limiting selective etching systems and methods |
US10672642B2 (en) | 2018-07-24 | 2020-06-02 | Applied Materials, Inc. | Systems and methods for pedestal configuration |
US10892198B2 (en) | 2018-09-14 | 2021-01-12 | Applied Materials, Inc. | Systems and methods for improved performance in semiconductor processing |
US11049755B2 (en) | 2018-09-14 | 2021-06-29 | Applied Materials, Inc. | Semiconductor substrate supports with embedded RF shield |
US11062887B2 (en) | 2018-09-17 | 2021-07-13 | Applied Materials, Inc. | High temperature RF heater pedestals |
US11417534B2 (en) | 2018-09-21 | 2022-08-16 | Applied Materials, Inc. | Selective material removal |
US11682560B2 (en) | 2018-10-11 | 2023-06-20 | Applied Materials, Inc. | Systems and methods for hafnium-containing film removal |
US11121002B2 (en) | 2018-10-24 | 2021-09-14 | Applied Materials, Inc. | Systems and methods for etching metals and metal derivatives |
US11437242B2 (en) | 2018-11-27 | 2022-09-06 | Applied Materials, Inc. | Selective removal of silicon-containing materials |
US11721527B2 (en) | 2019-01-07 | 2023-08-08 | Applied Materials, Inc. | Processing chamber mixing systems |
US10920319B2 (en) | 2019-01-11 | 2021-02-16 | Applied Materials, Inc. | Ceramic showerheads with conductive electrodes |
WO2022076299A1 (en) * | 2020-10-05 | 2022-04-14 | Applied Materials, Inc. | Bevel backside deposition elimination |
US12148597B2 (en) | 2023-02-13 | 2024-11-19 | Applied Materials, Inc. | Multi-zone gas distribution systems and methods |
Also Published As
Publication number | Publication date |
---|---|
KR100558925B1 (en) | 2006-03-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100558925B1 (en) | Wafer edge etcher | |
KR101811910B1 (en) | Method of etching features in silicon nitride films | |
US8888950B2 (en) | Apparatus for plasma processing and method for plasma processing | |
KR100775175B1 (en) | Method of etching high aspect ratio features | |
KR100574141B1 (en) | Techniques for forming trenches in a silicon layer of a substrate in a high density plasma processing system | |
US9384997B2 (en) | Dry-etch selectivity | |
KR102023784B1 (en) | Method of etching silicon nitride films | |
US20030119328A1 (en) | Plasma processing apparatus, and cleaning method therefor | |
US20070243714A1 (en) | Method of controlling silicon-containing polymer build up during etching by using a periodic cleaning step | |
US8232207B2 (en) | Substrate processing method | |
JP2006524914A (en) | Plasma processing system and method | |
US11075057B2 (en) | Device for treating an object with plasma | |
KR101702869B1 (en) | Atomic layer etching apparatus | |
KR100428813B1 (en) | Plama generation apparatus and SiO2 thin film etching method using the same | |
JP3921364B2 (en) | Manufacturing method of semiconductor device | |
KR100906377B1 (en) | Apparatus and method for fast wafer thinning | |
US20080271751A1 (en) | Apparatus and method for cleaning semiconductor wafer | |
KR102575677B1 (en) | Plasma Etching Apparatus for Etching Multiple Composite Materials | |
KR100355862B1 (en) | A cleaning method of pecvd chamber | |
KR100506630B1 (en) | Wafer edge etcher | |
KR20050023785A (en) | Apparatus for semiconductor wafer | |
KR19980048686A (en) | Vacuum Exhaust to Prevent Polymer Adsorption | |
KR20040094240A (en) | Semicounductor manufacture equipment having improving focus ring | |
TW448705B (en) | Plasma striking method for high density plasma etcher | |
JP2003059900A (en) | Plasma processing system and plasma processing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20090129 Year of fee payment: 4 |
|
LAPS | Lapse due to unpaid annual fee |