KR20050023758A - Condenser - Google Patents
Condenser Download PDFInfo
- Publication number
- KR20050023758A KR20050023758A KR1020030061149A KR20030061149A KR20050023758A KR 20050023758 A KR20050023758 A KR 20050023758A KR 1020030061149 A KR1020030061149 A KR 1020030061149A KR 20030061149 A KR20030061149 A KR 20030061149A KR 20050023758 A KR20050023758 A KR 20050023758A
- Authority
- KR
- South Korea
- Prior art keywords
- tube
- condenser
- performance
- compressor
- power consumption
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/04—Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B40/00—Subcoolers, desuperheaters or superheaters
- F25B40/02—Subcoolers
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Separation By Low-Temperature Treatments (AREA)
- Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
Abstract
Description
본 발명은, 냉방 능력 및 성능 계수를 최고화 할 수 있는 응축기의 튜브 구조에 관한 것으로서, 과냉각에 의하여 액상의 작동 유체가 응축기내의 튜브를 지나므로써 압력강하를 줄여서 압축기의 소비전력을 저감시킬 수 있고, 냉방 능력을 증가시킬 수 있도록 하는 응축기에 관한 것이다.The present invention relates to a tube structure of a condenser capable of maximizing the cooling capacity and the coefficient of performance, the liquid working fluid is passed through the tube in the condenser by the subcooling to reduce the pressure drop to reduce the power consumption of the compressor The present invention relates to a condenser that can increase cooling capacity.
일반적으로 압축 냉동 사이클은 압축기(5), 응축기(1), 팽창밸브(3) 및 증발기(4)에 의하여 완성되게 되는데, 최근 들어 상기의 사이클을 이루는 냉방기등의 소비전력을 최저로 낮추어야 하는 요구가 더욱 크게 부각되고 있다. 따라서 상기의 압축 냉동 사이클을 이루는 주요 구성 요소의 각각에 대한 성능 개선을 포함한 여러가지의 노력들이 강구되어 왔다.Generally, a compression refrigeration cycle is completed by a compressor (5), a condenser (1), an expansion valve (3) and an evaporator (4). In recent years, the requirement to lower the power consumption of the air conditioner and the like that constitutes the cycle has been minimized. Is even more highlighted. Accordingly, various efforts have been made, including improving the performance of each of the major components of the compression refrigeration cycle.
도 1은 일반적인 압축 냉동 사이클의 주요 기관을 나타내는 도면이다.1 is a view showing the main engine of a typical compression refrigeration cycle.
도 1을 참조하면, 일반적으로 냉방기등에 있어서, 압축 냉동 사이클에 의하여 생성되는 냉기에 의하여 그 성능을 발휘하는데, 이를 좀더 자세히 살펴보면 저온 저압의 기체냉매가 고온 고압의 기체냉매로 변환되는 압축기(5), 상기 고온 고압의 기체냉매가 중온 고압의 액체냉매로 변환되는 응축기(1), 상기 중온 고압의 액체냉매가 저온 저압의 액체 냉매로 변환되는 팽창밸브(3) 및 상기 저온 저압의 액체 냉매가 저온 저압의 기체냉매로 변환되는 증발기(4)에 의하여 냉동사이클이 완성되게 된다. 그리고 상기 응축기(1)에는 외기를 공급시키기 위하여 냉각팬(2)을 설치하게 된다.Referring to FIG. 1, in the air conditioner, the compressor exerts its performance by cold air generated by a compression refrigeration cycle. In detail, the compressor 5 converts low-temperature low-pressure gas refrigerant into high-temperature high-pressure gas refrigerant. A condenser (1) in which the high temperature and high pressure gas refrigerant is converted into a medium temperature high pressure liquid refrigerant, an expansion valve (3) in which the medium temperature high pressure liquid refrigerant is converted into a low temperature low pressure liquid refrigerant, and the low temperature low pressure liquid refrigerant is low temperature. The refrigeration cycle is completed by the evaporator 4 which is converted to a low pressure gas refrigerant. The condenser 1 is provided with a cooling fan 2 to supply outside air.
여기서, 압축기(5)로부터 고온 고압의 기체냉매를 공급 받은 응축기(1)는 이를 다시 중온 고압의 액체냉매로 변환시켜 팽창 밸브(3)로 보내게 되는데, 이때 상기 응축기(1)내에서는 증기(vapor), 이상(two-phase) 순으로 작동유체의 상태가 변화한다. 그리고 증기(vapor)나 이상(two-phase)일 경우는 압력강하가 액(liquid)에 비해 상대적으로 매우 높기 때문에 압력강하를 줄이기 위해 분지를 많이 하게 된다.Here, the condenser (1) supplied with the gas refrigerant of high temperature and high pressure from the compressor (5) is converted into a liquid refrigerant of medium temperature and high pressure again and sent to the expansion valve (3). vapor, followed by two-phase, to change the state of the working fluid. In the case of vapor or two-phase, the pressure drop is relatively high compared to the liquid, and thus a lot of branches are used to reduce the pressure drop.
일반적으로 같은 질량이 유동한다고 하면, 기체는 액체에 비하여 부피가 약 1000배 가량되고, 따라서 기체의 유동 속도도 대략 1000배에 이르게 되고, 이때 압력 강하가 발생하여 상기 압축기(5)는 더 많은 일을 해야만 하므로 이를 피하기 위하여 튜브를 분지시키게 된다. In general, if the same mass flows, the gas is about 1000 times the volume of the liquid, and thus the flow rate of the gas is about 1000 times, and a pressure drop occurs, causing the compressor 5 to work more. You must branch off the tube to avoid this.
여기서 성능지수를 살펴 보면, 일반적으로 성능 지수(COP)는 냉방 능력 혹은 난방 능력값을 사용된 소비 전력으로 나눈 값으로서, 국내의 경우 냉방기등에 있어서 1등급으로 인증 받으려면 상기 성능 지수(COP)가 최소한 3.54 이상이 되어야 한다. Here, the performance index (COP) is generally a value obtained by dividing the cooling capacity or heating capacity value by the used power consumption. In the case of domestic certification, the performance index (COP) is at least to be certified as a first class in an air conditioner. Should be at least 3.54.
여기서 상기의 성능 지수(COP)를 향상시키기 위하여서, 상기의 압축 냉동 사이클을 이루는 주요 구성 요소의 각각에 대한 성능 개선외에도 증발 압력을 높히는 대신 응축압을 낯추어서 압력차를 작게하므로써 상기 압축기(5)로 하여금 일을 적게 하도록 하는 것등이 고안되었는데 이들에는 일정한 한계가 있는 등 문제점이 있다.Here, in order to improve the COP, the compressor (5) is made by reducing the pressure difference by reducing the condensation pressure instead of increasing the evaporation pressure in addition to improving the performance of each of the main components constituting the compression refrigeration cycle. Has been devised to make less work, but there are problems such as having a certain limit.
본 발명은 이러한 문제점을 감안하여 창출된 것으로서, 압축 냉동 사이클을 수행하는 응축기에 과냉각 튜브를 더 구비하므로써, 냉방기등의 냉방 능력을 증가시킬수 있도록 함에 그 목적이 있다.The present invention has been made in view of the above problems, and is further provided with a subcooling tube in a condenser for performing a compression refrigeration cycle, and an object thereof is to increase a cooling capacity of a cooler or the like.
본 발명에 따른 응축기는, 과열 영역(superheated vapor region) 튜브와 이상 영역(two-phase region) 튜브를 갖는 응축기에 있어서, 상기 이상 영역 튜브의 후단에 과냉각 영역(sub-cooled liquid region) 튜브를 더 구비한 것을 특징으로 하되, 상기 과냉각 튜브의 비율은 전체 응축기내의 튜브의 대략 7 % ~ 23 %의 범위인 것을 특징으로 한다.The condenser according to the invention, in a condenser having a superheated vapor region tube and a two-phase region tube, further comprises a sub-cooled liquid region tube at the rear end of the abnormal region tube. Characterized in that the ratio of the subcooled tube is characterized in that the range of approximately 7% to 23% of the tube in the total condenser.
이하 본 발명에 따른 응축기의 바람직한 실시예에 대하여 첨부된 도면에 의거하여 설명하면 다음과 같다. Hereinafter, a preferred embodiment of the condenser according to the present invention will be described with reference to the accompanying drawings.
도 2는 본 발명에 따른 응축기를 포함한 구조를 개략적으로 나타낸 블럭도이고, 도 3은 과냉각 튜브와 성능 계수등과의 관계를 나타낸 그래프 및 도표이다.2 is a block diagram schematically showing a structure including a condenser according to the present invention, and FIG. 3 is a graph and a diagram showing a relationship between a supercooled tube and a coefficient of performance.
이들 도면을 참조하면, 본 발명은 과열 영역(superheated vapor region) 튜브와 이상 영역(two-phase region) 튜브를 갖는 종래의 응축기에 있어서 상기 이상 영역 튜브의 후단에 과냉각 튜브를 더 구비한 것이 그 특징인바, Referring to these figures, the present invention is characterized in that the conventional condenser having a superheated vapor region tube and a two-phase region tube further includes a subcooling tube at the rear end of the abnormal region tube. Inba,
본 발명에 따른 응축기(1)내에서는 증기(vapor), 이상(two-phase), 액(liquid) 순으로 작동유체의 상태가 변화한다. 그리고 액(liquid)일 경우는 압력강하가 증기(vapor), 이상(two-phase)에 비해 상대적으로 낮기 때문에 압력강하를 줄이기 위해 분지를 많이 하지 않아도 된다.In the condenser 1 according to the present invention, the state of the working fluid changes in the order of vapor, two-phase, and liquid. In the case of liquid, the pressure drop is relatively low compared to vapor and two-phase, so that the branching is not necessary to reduce the pressure drop.
일반적으로 같은 질량이 유동한다고 하면, 액체는 기체에 비하여 부피가 약 1/1000 가량되고, 따라서 액체의 유동 속도도 대략 1/1000 밖에 되지 아니하므로 분지를 많이 하지 않아도 된다. In general, when the same mass flows, the liquid has a volume of about 1/1000 as compared to the gas, and therefore, the flow rate of the liquid is only about 1/1000, so it is not necessary to have many branches.
도 2에서는 응축기(1)내의 전체 튜브의 수를 26단으로 하였으며, 이때 상기 전체 튜브에 대한 각각의 과냉각 튜브 경우의 수에 대한 성능 계수등과의 관계를 실험에 의하여 살펴보면, 과냉각 튜브를 2단(이때 상기 전체 튜브에 대한 과냉각 튜브의 비율은 7 %임)으로 하였을 경우에는, 사용된 소비 전력이 569W인 반면 냉방 능력은 2692W로 측정되어서 이때의 성능계수는 4.73임을 알 수 있다.In FIG. 2, the total number of tubes in the condenser 1 is 26 stages. In this case, the relationship between the coefficients of performance and the like for each of the subcooled tube cases for the entire tube is experimentally examined. In this case, when the ratio of the subcooled tube to the entire tube is 7%), the power consumption is 569W while the cooling capacity is measured as 2692W, it can be seen that the performance coefficient at this time is 4.73.
그리고, 과냉각 튜브를 4단(이때 상기 전체 튜브에 대한 과냉각 튜브의 비율은 15 %임)으로 하였을 경우에는, 사용된 소비 전력이 567W인 반면 냉방 능력은 2745W로 측정되어서 이때의 성능계수는 4.84로 약간 증가 하였다가, 과냉각 튜브를 6단(이때 상기 전체 튜브에 대한 과냉각 튜브의 비율은 23 %임)으로 하였을 경우에는, 사용된 소비 전력이 586W인 반면 냉방 능력은 2726W로 측정되어서 이때의 성능계수는 4.65로 다시 감소하게 됨을 알 수 있다. When the supercooling tube is configured in four stages (the ratio of the supercooling tube to the entire tube is 15%), the power consumption is 567W while the cooling capacity is measured as 2745W, and the performance coefficient at this time is 4.84. Slightly increased, when six stages of supercooled tubes were used (the ratio of the subcooled tubes to the entire tube was 23%), the power consumption was 586W while the cooling capacity was measured as 2726W. It can be seen that the decrease back to 4.65.
이상에서 살펴 보았듯이, 응축기내에 설치하는 과냉각 튜브의 비율을 전체 응축기내의 튜브의 7 % ~ 23 %의 범위로 할때 최적의 성능계수를 얻을 수 있음을 알수 있다.As described above, it can be seen that the optimum coefficient of performance can be obtained when the ratio of the subcooled tube installed in the condenser is in the range of 7% to 23% of the tube in the total condenser.
본 발명에 따른 응축기는, 과냉에 의하여 액상의 작동 유체가 튜브를 지나므로써 압력강하를 줄일수 있는 효과가 있다.The condenser according to the present invention has the effect of reducing the pressure drop by passing the liquid working fluid through the tube by subcooling.
또한, 본 발명에 따른 또 다른 효과로서는 압력강하를 줄이므로써 압축기의 소비전력을 저감시킬수 있고, 냉방 능력을 증가시킬수 있는 효과가 있다.In addition, as another effect according to the present invention, by reducing the pressure drop can reduce the power consumption of the compressor, there is an effect that can increase the cooling capacity.
도 1은 일반적인 압축 냉동 사이클의 주요 기관을 나타내는 도면.1 shows the main engine of a typical compression refrigeration cycle.
도 2는 본 발명에 따른 응축기를 포함한 구조를 개략적으로 나타낸 블럭도.Figure 2 is a block diagram schematically showing a structure including a condenser according to the present invention.
도 3은 과냉각 튜브와 성능 계수등과의 관계를 나타낸 그래프 및 도표.3 is a graph and chart showing the relationship between the subcooled tube and the coefficient of performance.
< 도면의 주요 부분에 대한 부호의 설명 ><Description of Symbols for Main Parts of Drawings>
1 : 응축기 2 : 냉각팬 3 : 팽창 밸브1: condenser 2: cooling fan 3: expansion valve
4 : 증발기 5 : 압축기 6 : 과냉각 튜브4: evaporator 5: compressor 6: subcooling tube
Claims (2)
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030061149A KR20050023758A (en) | 2003-09-02 | 2003-09-02 | Condenser |
EP04077385A EP1512925A3 (en) | 2003-09-02 | 2004-08-23 | Condenser |
JP2004245552A JP2005077088A (en) | 2003-09-02 | 2004-08-25 | Condensation machine |
CNB2004100749007A CN100494814C (en) | 2003-09-02 | 2004-08-30 | Condenser |
US10/929,386 US20050044882A1 (en) | 2003-09-02 | 2004-08-31 | Condenser |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030061149A KR20050023758A (en) | 2003-09-02 | 2003-09-02 | Condenser |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20050023758A true KR20050023758A (en) | 2005-03-10 |
Family
ID=34132223
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020030061149A KR20050023758A (en) | 2003-09-02 | 2003-09-02 | Condenser |
Country Status (5)
Country | Link |
---|---|
US (1) | US20050044882A1 (en) |
EP (1) | EP1512925A3 (en) |
JP (1) | JP2005077088A (en) |
KR (1) | KR20050023758A (en) |
CN (1) | CN100494814C (en) |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100490722B1 (en) | 2004-07-23 | 2005-05-19 | 엘지전자 주식회사 | A condenser of refrigerator |
KR100710352B1 (en) | 2004-11-23 | 2007-04-23 | 엘지전자 주식회사 | Bypassing strainer for refrigerant in air-conditioner ? controlling method for the same |
US7365973B2 (en) | 2006-01-19 | 2008-04-29 | American Power Conversion Corporation | Cooling system and method |
US8672732B2 (en) | 2006-01-19 | 2014-03-18 | Schneider Electric It Corporation | Cooling system and method |
US8327656B2 (en) * | 2006-08-15 | 2012-12-11 | American Power Conversion Corporation | Method and apparatus for cooling |
US8322155B2 (en) | 2006-08-15 | 2012-12-04 | American Power Conversion Corporation | Method and apparatus for cooling |
US9568206B2 (en) | 2006-08-15 | 2017-02-14 | Schneider Electric It Corporation | Method and apparatus for cooling |
US7681404B2 (en) | 2006-12-18 | 2010-03-23 | American Power Conversion Corporation | Modular ice storage for uninterruptible chilled water |
US8425287B2 (en) | 2007-01-23 | 2013-04-23 | Schneider Electric It Corporation | In-row air containment and cooling system and method |
US20090138313A1 (en) | 2007-05-15 | 2009-05-28 | American Power Conversion Corporation | Methods and systems for managing facility power and cooling |
US8219362B2 (en) | 2009-05-08 | 2012-07-10 | American Power Conversion Corporation | System and method for arranging equipment in a data center |
US8688413B2 (en) | 2010-12-30 | 2014-04-01 | Christopher M. Healey | System and method for sequential placement of cooling resources within data center layouts |
AU2011383606A1 (en) | 2011-12-22 | 2014-07-17 | Schneider Electric It Corporation | System and method for prediction of temperature values in an electronics system |
CN104137105B (en) | 2011-12-22 | 2017-07-11 | 施耐德电气It公司 | Impact analysis on temporal event to the temperature in data center |
CN102798203B (en) * | 2012-08-29 | 2014-08-27 | 海信(山东)空调有限公司 | Air-conditioning outdoor unit condenser and air-conditioning outdoor unit with condenser |
US9791221B1 (en) * | 2012-10-30 | 2017-10-17 | Whirlpool Corporation | Condenser assembly system for an appliance |
CN102954626B (en) * | 2012-11-08 | 2015-07-08 | 南京师范大学 | Multi-branch indoor heat exchanger for synchronous heat exchange |
JP6351494B2 (en) * | 2014-12-12 | 2018-07-04 | 日立ジョンソンコントロールズ空調株式会社 | Air conditioner |
CN105987539B (en) * | 2015-02-03 | 2018-09-18 | 上海海立电器有限公司 | Air conditioner and its heat exchanger |
JP6573484B2 (en) | 2015-05-29 | 2019-09-11 | 日立ジョンソンコントロールズ空調株式会社 | Heat exchanger |
CN106322853B (en) * | 2015-06-30 | 2019-02-05 | 青岛海尔空调器有限总公司 | A kind of single-cooling type condenser pipe system, air conditioner and its application method |
CN105972845A (en) * | 2016-03-16 | 2016-09-28 | 合肥天鹅制冷科技有限公司 | Energy-saving economical high-temperature-resistant air conditioner refrigerating system |
CN107300266B (en) * | 2017-06-12 | 2019-10-15 | 广东美的制冷设备有限公司 | Air-conditioning system, the control method of air-conditioning system |
CN111373205B (en) * | 2017-11-29 | 2021-08-10 | 三菱电机株式会社 | Air conditioner |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3843305A1 (en) * | 1988-12-22 | 1990-06-28 | Thermal Waerme Kaelte Klima | CONDENSER FOR A VEHICLE AIR CONDITIONING REFRIGERANT |
US5224358A (en) * | 1990-10-04 | 1993-07-06 | Nippondenso Co., Ltd. | Refrigerating apparatus and modulator |
JP3301169B2 (en) * | 1992-11-06 | 2002-07-15 | 株式会社デンソー | Refrigeration equipment |
DE4245046C8 (en) * | 1992-11-18 | 2008-08-21 | Behr Gmbh & Co. Kg | Condenser for an air conditioning system of a vehicle |
JPH109714A (en) * | 1996-06-25 | 1998-01-16 | Hitachi Ltd | Freezer |
FR2754886B1 (en) * | 1996-10-23 | 1998-12-31 | Valeo Thermique Moteur Sa | COIL CONDENSER FOR REFRIGERATION CIRCUIT, ESPECIALLY OF MOTOR VEHICLE |
JP3116996B2 (en) * | 1996-10-30 | 2000-12-11 | 株式会社デンソー | Recipient integrated refrigerant condenser |
JP3185687B2 (en) * | 1996-11-13 | 2001-07-11 | ダイキン工業株式会社 | Heat exchanger |
JPH10205920A (en) * | 1997-01-24 | 1998-08-04 | Calsonic Corp | Condenser |
KR100264815B1 (en) * | 1997-06-16 | 2000-09-01 | 신영주 | Multi-stage air and liquid separable type condenser |
US6009719A (en) * | 1998-05-06 | 2000-01-04 | York International Corporation | System for thermal treating of food products |
DE19918616C2 (en) * | 1998-10-27 | 2001-10-31 | Valeo Klimatechnik Gmbh | Condenser for condensing the internal refrigerant of an automotive air conditioning system |
JP2002031436A (en) * | 2000-05-09 | 2002-01-31 | Sanden Corp | Sub-cooling type condenser |
-
2003
- 2003-09-02 KR KR1020030061149A patent/KR20050023758A/en not_active Application Discontinuation
-
2004
- 2004-08-23 EP EP04077385A patent/EP1512925A3/en not_active Withdrawn
- 2004-08-25 JP JP2004245552A patent/JP2005077088A/en active Pending
- 2004-08-30 CN CNB2004100749007A patent/CN100494814C/en not_active Expired - Fee Related
- 2004-08-31 US US10/929,386 patent/US20050044882A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
CN1590924A (en) | 2005-03-09 |
EP1512925A3 (en) | 2007-12-26 |
CN100494814C (en) | 2009-06-03 |
JP2005077088A (en) | 2005-03-24 |
US20050044882A1 (en) | 2005-03-03 |
EP1512925A2 (en) | 2005-03-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR20050023758A (en) | Condenser | |
KR100248683B1 (en) | Cooling apparatus | |
KR20080042178A (en) | Air conditioner | |
CN105004100B (en) | Vapor compression refrigeration/heat pump system of single refrigerant circuit, more pressures of inspiration(Pi) | |
JPWO2018008139A1 (en) | Refrigeration cycle apparatus and air conditioner equipped with the same | |
KR102674404B1 (en) | Cooling system for a low temperature storage | |
KR100803145B1 (en) | Air conditioner | |
JPH11248273A (en) | Refrigerating air conditioner and facility selecting method therefor | |
KR102582578B1 (en) | Cooling system for a low temperature storage | |
JP4665560B2 (en) | Refrigeration equipment | |
US20120000240A1 (en) | Refrigerant cooling device | |
US11466902B2 (en) | Vapor compression refrigeration system | |
KR20120020425A (en) | Liquid refrigerant supercooling device for air conditioner system of vehicle | |
KR200251008Y1 (en) | Refrigeration cycle device for refrigerator | |
KR101146216B1 (en) | Sectional cooling type refrigerator | |
CN220981633U (en) | Multi-evaporation-temperature water chilling unit capable of adjusting cooling capacity | |
JPS5837457A (en) | Refrigerant circuit for refrigerator | |
Taghavi et al. | Experimental Investigation of a Domestic Refrigeration Appliance Based on Exergy Destruction | |
CN212157711U (en) | Refrigerating device of air-cooled refrigeration display cabinet | |
KR102583881B1 (en) | Cooling system for a low temperature storage | |
KR20130100424A (en) | Heat-pump and outdoor heat exchanging unit used for the same | |
KR100357091B1 (en) | Heat exchange structure of refrigerating cycle for air conditioner | |
KR100442380B1 (en) | Refrigerator | |
RU2002110690A (en) | Working substance for compression refrigeration units and heat pumps and installation for its implementation | |
KR20040053696A (en) | Refrigerating system using two stage refrigerating cycle |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |