KR20050021131A - Lithium/sulfur secondary batteries with coated separator having improved charge and discharge properties - Google Patents
Lithium/sulfur secondary batteries with coated separator having improved charge and discharge properties Download PDFInfo
- Publication number
- KR20050021131A KR20050021131A KR1020030059237A KR20030059237A KR20050021131A KR 20050021131 A KR20050021131 A KR 20050021131A KR 1020030059237 A KR1020030059237 A KR 1020030059237A KR 20030059237 A KR20030059237 A KR 20030059237A KR 20050021131 A KR20050021131 A KR 20050021131A
- Authority
- KR
- South Korea
- Prior art keywords
- lithium
- sulfur
- secondary battery
- positive electrode
- sulfur secondary
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/058—Construction or manufacture
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Secondary Cells (AREA)
Abstract
Description
본 발명은 전도성이 좋은 금(Au)이 세퍼레이터 표면에 코팅된 전기 전도성과 유황(Sulfur)의 용해에 의한 손실을 방지하여 전지의 충ㆍ방전 특성을 개선시킬 수 있는 리튬/유황 이차전지에 관한 것이다. 더욱 상세하게는 유황전극의 손실 방지와 전기 전도성을 향상시키기 위해서 전도성이 우수한 재료인 금(Au)으로 코팅된 분리막을 사용하여 양극의 유황이 음극 쪽으로 용해되어 유황의 손실이 일어나는 것을 방지하고 전기 전도성을 높여 전극의 계면 저항을 낮게 할 수 있는 하는 리튬/유황 이차전지에 관한 것이다.The present invention relates to a lithium / sulfur secondary battery capable of improving charge / discharge characteristics of a battery by preventing a loss due to dissolution of sulfur and electrical conductivity coated on a surface of a conductive gold (Au). . More specifically, in order to prevent the loss of the sulfur electrode and improve the electrical conductivity, a separator coated with gold (Au), which is a highly conductive material, is used to prevent the sulfur of the anode from dissolving toward the cathode and to prevent the loss of sulfur. The present invention relates to a lithium / sulfur secondary battery capable of increasing an interfacial resistance of an electrode.
휴대용 전자기기의 급속한 발전에 따라 이차전지의 수요가 증가하고 있고, 휴대용 전자기기의 경박단소의 추세에 부응할 수 있는 고 에너지 밀도의 전지의 등장이 지속적으로 요구되고 있을 뿐 아니라 이러한 요구에 부응하기 위해 값싸고 안전하고 환경친화적인 면을 만족시키는 전지의 개발이 필요하게 되었다.With the rapid development of portable electronic devices, the demand for secondary batteries is increasing, and there is a continuous demand for the emergence of high energy density batteries that can meet the trend of light and small size of portable electronic devices. To this end, there is a need for the development of batteries that satisfy inexpensive, safe and environmentally friendly aspects.
이러한 요구를 만족시키는 여러 가지 전지들 중에서 리튬/유황전지는 현재까지 개발되고 있는 전지 중 에너지 밀도 면에서 가장 유망하며, 리튬의 에너지 밀도는 3830 mAh/g, 황(S8)의 에너지 밀도가 1675 mAh/g로 사용되는 활물질 자체가 값싸고 환경친화적인 물질이나 아직 이 전지시스템으로 상용화에 성공한 예는 없는 실정이다. 미국특허 제 5,523,179호와 미국특허 제 5,814,420호 및 미국특허 제 6,030,720호 그리고 한국특허 제 316,587호에서는 상기의 문제점들을 해결하기 위한 기술적 개선 방향을 제시하고 있다.Lithium / Sulfur battery is the most promising in terms of energy density among the batteries developed so far, and the energy density of lithium is 3830 mAh / g and the energy density of sulfur (S 8 ) is 1675. The active material itself used in mAh / g itself is a cheap and environmentally friendly material, but there are no examples of successful commercialization with this battery system. US Patent No. 5,523,179, US Patent No. 5,814,420, US Patent No. 6,030,720, and Korean Patent No. 316,587 provide technical improvement directions for solving the above problems.
한편, 리튬 금속을 음극으로 사용함으로써 전지수명의 열화를 해결해야 한다는 문제점이 있다. 즉, 방전이 진행됨으로 인해 전지 반응에 의해 황이 전해질에 용해되어 리튬 전극 쪽으로 이동하게 되면 리튬표면과 전해질과의 반응으로 야기되는 리튬의 부식으로 전지용량의 감소한다는 것이다. On the other hand, there is a problem in that deterioration of battery life should be solved by using lithium metal as a negative electrode. In other words, when the sulfur dissolves in the electrolyte and moves toward the lithium electrode due to the discharge, the battery capacity decreases due to the corrosion of lithium caused by the reaction between the lithium surface and the electrolyte.
본 발명은 상기한 바와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 리튬유황 이차전지의 수명특성을 개선하기 위하여 금(Au) 등의 금속이 코팅된 분리막을 통해 유황전극으로부터 유황이 리튬전극으로의 이동을 최소화하고, 전기적 물성이 우수하고 신뢰성에서 유리한 리튬/유황 이차전지를 제공하고자 하는 데 있다.The present invention has been made to solve the above problems, an object of the present invention is to provide sulfur from the sulfur electrode through a metal-coated separator such as gold (Au) to improve the life characteristics of the lithium sulfur secondary battery It is to provide a lithium / sulfur secondary battery that minimizes movement to a lithium electrode and has excellent electrical properties and advantageous in reliability.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 리튬/유황 이차전지는 양극집전체, 단체 황, 리튬설파이드 및 리튬폴리설파이드로 이루어진 군으로부터 적어도 하나를 선택하여서 된 활물질로 제조된 양극, 이온이동에 의한 전지반응을 가능하게 하는 전해질이 함침된 분리막, 리튬금속 또는 리튬 합금으로 된 음극 및 음극 집전체로 이루어진 것을 특징으로 한다. The lithium / sulfur secondary battery of the present invention for achieving the above object is a positive electrode made of an active material selected from the group consisting of a positive electrode current collector, a single element sulfur, lithium sulfide and lithium polysulfide, ion transfer It characterized by consisting of a separator, a negative electrode and a negative electrode current collector made of a lithium metal or lithium alloy impregnated with an electrolyte that enables the battery reaction by.
본 발명에 의하면, 상기 양극은 황을 포함하는 활물질, 예를 들면 단체 황(S8), 리튬설파이드 및 폴리리튬설파이드(Li2Sx, X>1)로 이루어진 군으로부터 적어도 하나를 선택하여서 된 활물질, 탄소 또는 전도성 고분자로 이루어지는 도전재, PVdF와 같은 바인더, 테트라하이드로퓨란(THF)과 같은 용매로부터 제조된 균질한 슬러리를 글래스 캐스팅에 의해 필름형으로 제조한다.According to the present invention, the positive electrode is formed by selecting at least one active material containing sulfur, for example, from the group consisting of elemental sulfur (S 8 ), lithium sulfide and polylithium sulfide (Li 2 S x , X> 1). A homogeneous slurry prepared from an active material, a conductive material made of carbon or a conductive polymer, a binder such as PVdF, and a solvent such as tetrahydrofuran (THF) is produced in a film form by glass casting.
상기 음극의 활물질로는 천이금속, 예를 들면 Li, Na, Mg 또는 천이금속의 합금 또는 탄소 등으로 이루어지며, 가장 바람직하기로는 리튬금속 또는 리튬합금이다. The active material of the negative electrode is made of a transition metal, for example, Li, Na, Mg or an alloy of transition metal or carbon, and most preferably a lithium metal or a lithium alloy.
상기 이온 이동에 의한 전지반응을 가능하게 하는 전해질은 리튬염을 가소제에 완전히 용해시켜서 자기 교반법에 의해서 제조하며, 상기 가소제로는 폴리에틸렌글리콜디메틸에테르(PEGDME), 트리에틸렌글리콜디메틸에테르(TRGDME), 테트라에틸렌글리콜디메틸에테르(TEGDME), 에틸렌카보네이트(EC), 프로필렌카보네이트(PC), 디옥솔란, 설포란, 디메틸에스테르(DME)로 이루어진 군으로부터 적어도 하나를 선택하여 사용할 수 있다.The electrolyte which enables the battery reaction by the ion migration is prepared by magnetic stirring by completely dissolving lithium salt in a plasticizer. The plasticizer is polyethylene glycol dimethyl ether (PEGDME), triethylene glycol dimethyl ether (TRGDME), At least one selected from the group consisting of tetraethylene glycol dimethyl ether (TEGDME), ethylene carbonate (EC), propylene carbonate (PC), dioxolane, sulfolane and dimethyl ester (DME) can be used.
본 발명에 의하면, 상기 전해질이 함침되는 분리막은 평균직경이 0.005 내지 50㎛ 사이의 기공을 가지며, 기공율은 적어도 20부피% 이상인 고분자막으로서, 그의 표면에는 금(Au), 탄소(C), 은(Ag), 백금(Pt) 및 구리(Cu)로 이루어진 군으로부터 적어도 하나, 바람직하기로는 금(Au)이 균질하게 박막 코팅되어 있다. 이러한 분리막에 대한 코팅방법은 도금, 스퍼터링, 기상층착, 진공증착법 중에서 어느 한가지 방법을 사용할 수 있다.According to the present invention, the separator impregnated with the electrolyte has a pore having an average diameter of 0.005 to 50 μm and a porosity of at least 20% by volume or more, and the surface thereof includes gold (Au), carbon (C), and silver ( At least one from the group consisting of Ag), platinum (Pt) and copper (Cu), preferably gold (Au), is homogeneously thinly coated. The coating method for such a separator may be any one of plating, sputtering, vapor phase deposition, and vacuum deposition.
상기의 코팅된 분리막의 작동원리는 분리막 표면에 형성된 금(Au)과 같은 코팅막이 분리막의 기공들을 막는 역할을 하여 기공의 크기를 코팅시간에 따라 임의로 조절 가능하게 되고, 기공의 적정 크기는 리튬 이온의 출입은 자유롭게 하나 유황이 전해질에 용해되어 리튬전극 쪽으로 이동하는 것은 막게 된다. The operation principle of the coated separator is a coating film such as gold (Au) formed on the surface of the separator serves to block the pores of the separator to be able to arbitrarily adjust the size of the pore according to the coating time, the appropriate size of the pores It is free to go in and out, but sulfur is dissolved in electrolyte and it is prevented from moving toward the lithium electrode.
이와 같은 본 발명을 실시예에 의거하여 더욱 상세히 설명한다.This invention will be described in more detail based on the examples.
실시예 1 Example 1
분리막의 제조Preparation of Membrane
분리막은 평균 직경이 0.005 내지 50 ㎛ 사이의 기공으로 구성되며, 기공율은 적어도 20 부피% 이상이고, 정해진 조성을 갖는 고분자로 이루어진 것을 사용하였다.The separator is composed of pores with an average diameter of 0.005 to 50 ㎛, porosity is at least 20% by volume or more, it was used made of a polymer having a predetermined composition.
분리막의 금 코팅은 DC 마그네트론 스퍼터링 장치를 이용하여 타겟(Target) 물질로 금을 사용하고 기판 위에 분리막을 올려 놓고 임의의 시간 동안 분리막 표면 박막 코팅을 실시하였다. 기판과 타겟과의 거리는 12cm로 일정하게 두고 스퍼터되는 각도도 일정하게 유지시켜 분리막 표면에 금이 균질하게 코팅될 수 있게 하였다. The gold coating of the separator was performed using a DC magnetron sputtering apparatus using gold as a target material, the separator was placed on a substrate, and the membrane surface thin film coating was performed for an arbitrary time. The distance between the substrate and the target was 12 cm and the sputtered angle was kept constant so that the surface of the separator could be uniformly coated with gold.
도 2a는 본 실시예 1에서 제조된 금이 코팅된 분리막을 촬영한 SEM 사진이다. Figure 2a is a SEM photograph of the gold-coated separator prepared in Example 1.
양극 제조 및 전지구성Positive electrode manufacturing and battery composition
활물질로서 50% 유황(-200 메쉬, ALDRICH Co.) 분말, 도전체로서 30% 탄소(<1㎛, 아세틸렌 블랙), 바인더로서 20% PVdF를 아트리터 용기에 넣고 5분간 볼밀링하여 분말을 고루 섞은 다음 용매인 테트라하이드로퓨란(THF)을 40㎖ 넣고, 1시간 동안 교반시켜 균질한 슬러리를 얻었다. 아트리터용기와 볼은 스테인레스스틸로 되어 있고 아트리터 용기는 직경이 5㎝, 높이가 7㎝이며, 볼 : 시료의 무게비는 20 : 1 중량%이었다. 볼밀링 후 시료의 상태는 점성을 갖는 액체가 되며 이 시료를 유리판위에 글래스 캐스팅하였다.50% sulfur (-200 mesh, ALDRICH Co.) powder as an active material, 30% carbon (<1 μm, acetylene black) as a conductor, 20% PVdF as a binder, were ball milled for 5 minutes, and the powder was evenly distributed. After mixing, 40 ml of a solvent, tetrahydrofuran (THF) was added thereto, and stirred for 1 hour to obtain a homogeneous slurry. The atliter container and the ball were made of stainless steel, the atliter container was 5 cm in diameter and 7 cm in height, and the weight ratio of the ball to the sample was 20: 1 wt%. After ball milling, the state of the sample became a viscous liquid, and the sample was glass cast on a glass plate.
글래스 캐스팅 후 시편을 상온에서 24시간 건조시키고, 24시간, 60℃에서 진공건조(5 ×10-4토르)시켰다. 건조 후 시료는 약 40㎛두께의 필름형태가 되도록 하였다.After glass casting, the specimens were dried at room temperature for 24 hours, and vacuum dried (5 × 10 −4 Torr) at 60 ° C. for 24 hours. After drying, the sample was formed into a film having a thickness of about 40 μm.
음극의 전극재료로서 리튬금속(Cyprus Foote mimeral Co.)을 사용하였다. Lithium metal (Cyprus Foote mimeral Co.) was used as the electrode material of the cathode.
전해질은 리튬염으로 리튬 트리플루오로메탄술포네이트(LiCF₃SO₃, Aldrich Co.) 1.56mg와 가소제로는 테트라(에틸렌글리콜)디메틸에테르를 10㎖ 사용하였다. 두 물질을 삼각플라스크 속에 넣고 리튬염이 가소제에 완전히 용해될 수 있도록 3시간 동안 마그네틱바를 이용한 자기교반법으로 용해시켰다. As the electrolyte, 1.56 mg of lithium trifluoromethanesulfonate (LiCF 3 SO 3, Aldrich Co.) as a lithium salt and 10 ml of tetra (ethylene glycol) dimethyl ether as a plasticizer were used. The two materials were placed in a Erlenmeyer flask and dissolved by magnetic stirring using a magnetic bar for 3 hours to completely dissolve the lithium salt in the plasticizer.
전지조립은 제조된 양극과 분리막을 진공 오븐(60℃)에서 하루 이상 방치한 후 수분과 산소가 제어되는 글로브 박스로 옮기고 이후 작업은 글로브 박스에서 진행하였다. 양극판과 음극판, 그리고 분리막을 일정한 크기로 잘라 Swagelok 셀을 사용하여 도 1에 나타낸 바와 같이 리튬/액체 전해질이 함침된 분리막/유황전극 순으로 적층하였다. 제조된 전지를 50mAh/g of sulfur의 일정한 전류밀도로 충ㆍ방전을 반복하여 수명특성을 비교하였으며 이에 대한 결과를 도 3에 나타내었다. 여기서, 충전 및 방전 컷-오프(cut-off)는 각각 3.5V와 1.7V에서 하였다. In the cell assembly, the prepared anode and separator were left in a vacuum oven (60 ° C.) for at least one day, and then moved to a glove box where moisture and oxygen were controlled. The positive electrode plate, the negative electrode plate, and the separator were cut to a predetermined size and stacked using a Swagelok cell in the order of the separator / sulfur electrode impregnated with a lithium / liquid electrolyte as shown in FIG. 1. The prepared battery was repeatedly charged and discharged at a constant current density of 50 mAh / g of sulfur to compare the life characteristics thereof. The results are shown in FIG. 3. Here, the charge and discharge cut-offs were made at 3.5V and 1.7V, respectively.
비교예 1Comparative Example 1
상기 실시예 1에서 분리막에 금을 코팅하지 않는 것을 제외하고는 상기 실시예 1과 동일하게 실시하여 리튬/유황 이차전지를 제조하고, 제조된 전지를 50mAh/g of sulfur의 일정한 전류밀도로 충ㆍ방전을 반복하여 수명특성을 비교하였으며 이에 대한 결과를 도 3에 나타내었다. 여기서, 충전 및 방전 컷-오프(cut-off)는 각각 3.5V와 1.7V에서 하였다. 도 2b는 금이 코팅되지 않은 분리막에 대한 SEM 사진이다.A lithium / sulfur secondary battery was prepared in the same manner as in Example 1 except that gold was not coated on the separator in Example 1, and the prepared battery was charged and charged at a constant current density of 50 mAh / g of sulfur. The discharge was repeated to compare the life characteristics and the results are shown in FIG. 3. Here, the charge and discharge cut-offs were made at 3.5V and 1.7V, respectively. 2b is a SEM photograph of the membrane not coated with gold.
도 3에 나타낸 바와 같이 본 발명에 따른 실시예 1의 리튬/유황 이차전지의 경우 반복되는 충ㆍ방전과 사이클의 진행에 따른 전기 전도도의 감소율이 현저하게 낮은 반면에 비교예 1의 경우에는 전기 전도도의 감소율이 크게 발생함을 알 수 있다. As shown in FIG. 3, in the case of the lithium / sulfur secondary battery of Example 1 according to the present invention, the rate of decrease in electrical conductivity due to repeated charging and discharging and cycle progress was significantly low, whereas in Comparative Example 1, the electrical conductivity was low. It can be seen that the rate of decrease occurs significantly.
본 발명은 리튬/유황 이차전지의 수명특성을 향상시키기 위하여 금(Au)이 코팅된 분리막을 통해 유황의 손실을 최소화하고자 한 것으로 금 코팅된 분리막은 리튬/유황 이차전지의 단점인 전기화학적 특성을 보완해 주는 방법으로 전지의 수명 향상에 유리한 전지를 제공하는 효과가 있다. The present invention is intended to minimize the loss of sulfur through the gold (Au) coated separator in order to improve the life characteristics of the lithium / sulfur secondary battery, the gold coated separator is characterized by the electrochemical characteristics, which is a disadvantage of the lithium / sulfur secondary battery As a complementary method, there is an effect of providing a battery which is advantageous for improving the life of the battery.
본 발명에 의하면, 금 코팅된 분리막은 전지의 충·방전 시에 양극의 유황이 전해질에 용해되어 양극으로부터 빠져나가는 것을 최소화하고 이로 인해 용해된 유황과 음극의 리튬이 반응하여 리튬 전극이 부식되는 것을 감소시켜 사이클 진행에 따른 전기 전도도의 감소와 유황의 손실 양에 따라 형성되는 리튬 전극에서의 덴드라이트의 성장을 줄여 리튬/유황 이차전지의 수명특성을 향상시키며, 동시에 전지의 안정성 및 신뢰성을 향상시킬 수 있는 효과가 있다. According to the present invention, the gold-coated separator minimizes that sulfur of the anode dissolves in the electrolyte and escapes from the cathode during charging and discharging of the battery, thereby causing the lithium electrode to corrode by reacting the dissolved sulfur with lithium of the anode. By reducing the electrical conductivity and the growth of dendrite in the lithium electrode formed according to the amount of sulfur loss due to the progress of the cycle to improve the life characteristics of the lithium / sulfur secondary battery, while improving the stability and reliability of the battery It can be effective.
도 1은 본 발명에 따른 리튬/유황 이차전지의 단면도이다.1 is a cross-sectional view of a lithium / sulfur secondary battery according to the present invention.
도 2a는 본 발명의 실시예 1에서 제조된 금이 코팅된 분리막의 SEM 사진이다. Figure 2a is a SEM photograph of the gold-coated separator prepared in Example 1 of the present invention.
도 2b는 비교예 1의 어떤 금속도 코팅되지 않은 분리막의 SEM 사진이다.FIG. 2B is a SEM photograph of the separator not coated with any metal of Comparative Example 1. FIG.
도 3은 실시예 1과 비교예 1의 사이클 진행에 따른 전기 전도도의 변화를 보여주기 위한 그래프이다. 3 is a graph for showing a change in electrical conductivity according to the progress of the cycle of Example 1 and Comparative Example 1.
<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>
11 : 양극집전체 12 : 양극11: positive electrode current collector 12: positive electrode
13 : 코팅층 14 : 분리막13 coating layer 14 separator
15 : 음극 16 : 음극집전체15: negative electrode 16: negative electrode current collector
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030059237A KR20050021131A (en) | 2003-08-26 | 2003-08-26 | Lithium/sulfur secondary batteries with coated separator having improved charge and discharge properties |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020030059237A KR20050021131A (en) | 2003-08-26 | 2003-08-26 | Lithium/sulfur secondary batteries with coated separator having improved charge and discharge properties |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20050021131A true KR20050021131A (en) | 2005-03-07 |
Family
ID=37229658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020030059237A KR20050021131A (en) | 2003-08-26 | 2003-08-26 | Lithium/sulfur secondary batteries with coated separator having improved charge and discharge properties |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20050021131A (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100758383B1 (en) * | 2006-07-20 | 2007-09-14 | 경상대학교산학협력단 | Sulfur electrode coated with carbon for using in the li/s secondary battery |
KR100924413B1 (en) * | 2006-09-27 | 2009-10-29 | 다라믹 엘엘씨 | A battery separator for extending the cycle life of a battery |
DE102014225182A1 (en) | 2013-12-30 | 2015-07-02 | Hyundai Motor Company | Separator for a lithium-sulfur secondary battery |
WO2017172880A1 (en) * | 2016-03-29 | 2017-10-05 | Celgard, Llc | Improved depositions or layers for microporous membranes, improved membranes, improved lithium battery separators, improved batteries, improved high voltage lithium batteries, and related methods |
KR101856830B1 (en) * | 2015-12-08 | 2018-06-19 | 주식회사 엘지화학 | Electrode Assembly Comprising Separator Coated with Lithium or Lithium Compound and Method for Preparing the Same |
CN109167005A (en) * | 2018-08-31 | 2019-01-08 | 深圳市星源材质科技股份有限公司 | Composite diaphragm and preparation method thereof |
US10622669B2 (en) | 2016-01-28 | 2020-04-14 | Lg Chem, Ltd. | Lithium-sulfur battery separation film having composite coating layer including polydopamine, manufacturing method therefor, and lithium-sulfur battery comprising same |
CN111224082A (en) * | 2019-12-02 | 2020-06-02 | 大连理工大学 | Copper/porous carbon material capable of being used as lithium-sulfur battery anode carrier material, preparation method and application |
CN116264266A (en) * | 2021-12-14 | 2023-06-16 | 比亚迪股份有限公司 | Electrode and battery |
CN116404247A (en) * | 2023-06-09 | 2023-07-07 | 西北工业大学 | PE-based polymer solid electrolyte and preparation method and application thereof |
-
2003
- 2003-08-26 KR KR1020030059237A patent/KR20050021131A/en active IP Right Grant
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100758383B1 (en) * | 2006-07-20 | 2007-09-14 | 경상대학교산학협력단 | Sulfur electrode coated with carbon for using in the li/s secondary battery |
KR100924413B1 (en) * | 2006-09-27 | 2009-10-29 | 다라믹 엘엘씨 | A battery separator for extending the cycle life of a battery |
DE102014225182A1 (en) | 2013-12-30 | 2015-07-02 | Hyundai Motor Company | Separator for a lithium-sulfur secondary battery |
DE102014225182B4 (en) | 2013-12-30 | 2021-12-30 | Hyundai Motor Company | Separator for a lithium-sulfur secondary battery |
KR101856830B1 (en) * | 2015-12-08 | 2018-06-19 | 주식회사 엘지화학 | Electrode Assembly Comprising Separator Coated with Lithium or Lithium Compound and Method for Preparing the Same |
US10622669B2 (en) | 2016-01-28 | 2020-04-14 | Lg Chem, Ltd. | Lithium-sulfur battery separation film having composite coating layer including polydopamine, manufacturing method therefor, and lithium-sulfur battery comprising same |
WO2017172880A1 (en) * | 2016-03-29 | 2017-10-05 | Celgard, Llc | Improved depositions or layers for microporous membranes, improved membranes, improved lithium battery separators, improved batteries, improved high voltage lithium batteries, and related methods |
CN109075297A (en) * | 2016-03-29 | 2018-12-21 | 赛尔格有限责任公司 | It is improved for the deposition or layer of microporous barrier, improved film, improved lithium battery separator, improved battery, improved high pressure lithium battery with and related methods |
CN115224442A (en) * | 2016-03-29 | 2022-10-21 | 赛尔格有限责任公司 | Microporous membrane or substrate, battery separator, battery, and related methods |
CN109167005A (en) * | 2018-08-31 | 2019-01-08 | 深圳市星源材质科技股份有限公司 | Composite diaphragm and preparation method thereof |
CN111224082A (en) * | 2019-12-02 | 2020-06-02 | 大连理工大学 | Copper/porous carbon material capable of being used as lithium-sulfur battery anode carrier material, preparation method and application |
CN116264266A (en) * | 2021-12-14 | 2023-06-16 | 比亚迪股份有限公司 | Electrode and battery |
CN116404247A (en) * | 2023-06-09 | 2023-07-07 | 西北工业大学 | PE-based polymer solid electrolyte and preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100385357B1 (en) | Lithium-sulfur battery | |
Fauteux et al. | Rechargeable lithium battery anodes: alternatives to metallic lithium | |
US4002492A (en) | Rechargeable lithium-aluminum anode | |
KR100612227B1 (en) | Positive electrode for lithium sulfur battery and lithium sulfur battery comprising same | |
US6358643B1 (en) | Liquid electrolyte lithium-sulfur batteries | |
KR100484642B1 (en) | Positive active material for lithium-sulfur battery and method for preparing the same | |
US6955866B2 (en) | Coated lithium electrodes | |
JP7283657B2 (en) | Sulfur positive electrode mixture and manufacturing method thereof, sulfur positive electrode, lithium sulfur solid state battery | |
JP2014089964A (en) | Lithium sulfide battery and manufacturing method thereof | |
JP2002110237A (en) | Positive electrode active material composition for lithium-sulfur battery, its manufacturing method and lithium-sulfur battery | |
KR101475763B1 (en) | Positive electrode for lithium-sulfur battery and lithium-sulfur battery comprising the same | |
Zhong et al. | Ionically and electronically conductive phases in a composite anode for high-rate and stable lithium stripping and plating for solid-state lithium batteries | |
KR20060085625A (en) | Cathode for battery and battery using thereof | |
KR20050021131A (en) | Lithium/sulfur secondary batteries with coated separator having improved charge and discharge properties | |
KR101365679B1 (en) | Method for manufacturing positive electrode for lithium-sulfur battery and lithium-sulfur battery | |
KR20020048447A (en) | Positive active material composition for lithium-sulfur battery and lithium-sulfur battery manufactured using same | |
KR101892453B1 (en) | Tungsten compound additive for Lithium sulfur batteries | |
KR100570604B1 (en) | An Electrolyte for Lithium-Sulfur Batteries and Lithium-Sulfur Batteries Comprising The Same | |
KR100570606B1 (en) | An Electrolyte for Lithium-Sulfur Batteries and Lithium-Sulfur Batteries Comprising The Same | |
KR100570605B1 (en) | An Electrolyte for Lithium-Sulfur Batteries and Lithium-Sulfur Batteries Comprising The Same | |
JP2023513815A (en) | Anode piece, battery and electronic device employing said electrode piece | |
WO2023017672A1 (en) | Battery | |
KR100502896B1 (en) | Current collector for positive electrode of lithium-sulfur battery, positive electrode for lithium-sulfur battery comprising same and lithium-sulfur battery comprising same | |
KR101923861B1 (en) | Slurry for cathode of Li battery and Li battery including the same | |
CA1237767A (en) | Coatings for electrochemical electrodes and methods of making the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
NORF | Unpaid initial registration fee |