[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20050000894A - Method for fabricating mosfet with direct metal gate electrode - Google Patents

Method for fabricating mosfet with direct metal gate electrode Download PDF

Info

Publication number
KR20050000894A
KR20050000894A KR1020030041484A KR20030041484A KR20050000894A KR 20050000894 A KR20050000894 A KR 20050000894A KR 1020030041484 A KR1020030041484 A KR 1020030041484A KR 20030041484 A KR20030041484 A KR 20030041484A KR 20050000894 A KR20050000894 A KR 20050000894A
Authority
KR
South Korea
Prior art keywords
layer
metal
gate
gate electrode
forming
Prior art date
Application number
KR1020030041484A
Other languages
Korean (ko)
Inventor
임관용
조흥재
장세억
Original Assignee
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 하이닉스반도체 filed Critical 주식회사 하이닉스반도체
Priority to KR1020030041484A priority Critical patent/KR20050000894A/en
Publication of KR20050000894A publication Critical patent/KR20050000894A/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28247Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon passivation or protection of the electrode, e.g. using re-oxidation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823468MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate sidewall spacers, e.g. double spacers, particular spacer material or shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE: A method for manufacturing a MOSFET having a direct metal gate electrode is provided to reduce GIDL(Gate Induced Drain Leakage) by easily forming a gate bird's beak using under-cut. CONSTITUTION: A gate insulating layer(102) is formed on a silicon substrate(101). A metal film(103) as a gate electrode is formed on the gate insulating layer. The metal film is etched to form a gate pattern. An under-cut is formed at the lower edges of the metal pattern. A capping layer(106) is formed to fill the under-cut for preventing oxidation of the metal film. Annealing is performed to cure the etch damage.

Description

다이렉트 메탈 게이트 전극을 갖는 MOSFET 제조 방법{METHOD FOR FABRICATING MOSFET WITH DIRECT METAL GATE ELECTRODE}Method for manufacturing MOS FETT having a direct metal gate electrode {METHOD FOR FABRICATING MOSFET WITH DIRECT METAL GATE ELECTRODE}

본 발명은 메탈 게이트 전극을 갖는 MOSFET 제조 방법에 관한 것으로, 더욱 상세하게는 GIDL(Gate Induced Drain Leakage) 전류를 감소시키기 위하여 게이트 버즈비크(bird's beak)를 형성하는 방법에 관한 것이다.The present invention relates to a method of manufacturing a MOSFET having a metal gate electrode, and more particularly, to a method of forming a gate bird's beak to reduce the gate induced drain leakage (GIDL) current.

일반적으로, 실리콘산화막(SiO2)를 게이트산화막으로 사용하는 폴리사이드 또는 폴리메탈 게이트의 MOSFET 소자의 경우 게이트산화막 상부에 있는 폴리실리콘의 폴리 공핍 효과로 인하여 게이트산화막의 물리적 두께에 비해 전기적 두께가 3∼5Å 정도 증가한다. 최근에는 저전압에서도 매우 빠른 속도로 작동하는 반도체소자가 요구되기 때문에, 10Å 이하의 매우 작은 전기적 두께를 가지는 MOSFET 소자의 개발이 필요하다.In general, a MOSFET having a polyside or polymetal gate using a silicon oxide film (SiO 2 ) as a gate oxide film has an electrical thickness of 3 compared to the physical thickness of the gate oxide film due to the poly depletion effect of polysilicon on the gate oxide film. It increases about -5Å. Recently, there is a need for a semiconductor device that operates at a very high speed even at low voltages, and therefore, it is necessary to develop a MOSFET device having a very small electrical thickness of less than 10 k?

10Å 이하의 매우 작은 전기적 두께를 가지는 MOSFET을 구현하기 위한 방법으로 고유전율을 가지는 게이트 절연막(Hige-k Gate Dielectric) 물질을 게이트산화막으로 적용하는 방법도 있지만, 이 경우에도 폴리실리콘을 게이트 전극으로 사용할 경우에는 폴리 공핍 효과로 인하여 10Å 이하의 전기적 두께를 갖도록 제조하기 힘들다.As a method for realizing a MOSFET having a very small electrical thickness of 10 Å or less, a method of applying a high-k gate dielectric material (Hige-K Gate Dielectric) as a gate oxide may be used, but in this case, polysilicon may be used as a gate electrode. In the case it is difficult to manufacture to have an electrical thickness of less than 10Å due to the poly depletion effect.

따라서, 메탈을 폴리실리콘 없이 직접 게이트 전극으로 적용하는 경우(Direct Metal Gate) 폴리 공핍 효과가 사라지기 때문에 게이트절연층의 전기적 두께를 낮추는 것이 훨씬 용이 해진다.Therefore, when the metal is applied as a direct gate electrode without polysilicon (Direct Metal Gate), the poly-depletion effect disappears, so it is much easier to lower the electrical thickness of the gate insulating layer.

한편, 게이트절연막 상에서 게이트 패턴을 형성하기 위한 마스크 및 식각 공정이 이루어지기 때문에 게이트산화막에는 마이크로 트렌치(micro trench) 및 플라즈마(Plasma) 데미지(Damage)가 발생하게 된다. 이를 회복시켜 주기 게이트 식각 공정 이후에는 게이트 재산화(Re-Oxidation) 공정을 진행하고 있다. 게이트 재산화 공정은 상기 장점 이외에도 GIDL(Gate Induced Drain Leakage) 전류를 감소시키기 위하여 게이트 버즈비크(bird's beak)를 형성하는 장점이 있다.Meanwhile, since a mask and an etching process for forming a gate pattern are formed on the gate insulating layer, micro trenches and plasma damage may occur in the gate oxide layer. Restoration After the gate etching process, the gate re-oxidation process is performed. In addition to the above advantages, the gate reoxidation process has the advantage of forming gate bird's beak to reduce the gate induced drain leakage (GIDL) current.

하지만, 다이렉트 메탈 게이트 전극의 경유에는 폴리실리콘 전극과는 달리 재산화 공정이 거의 불가능하다. 물론 W, WNx, Mo, MoNx와 같은 물질만을 다이렉트 메탈 게이트로 사용할 경우에는 H2O/H2분위기에서 재산화하는 선택적 재산화 공정(메탈은 산화되지 않고 게이트산호막을 재성장 시킨다)이 가능하지만. 이경우 실리콘기판 쪽만 제한적으로 게이트 버즈비크가 형성되기 때문에 GIDL 감소 효과는 크지가 않다.However, unlike the polysilicon electrode, the reoxidation process is almost impossible via the direct metal gate electrode. Of course, if only materials such as W, WN x , Mo, and MoN x are used as direct metal gates, selective reoxidation process (metal re-grown gate coral film without reoxidation) can be reoxidized in H 2 O / H 2 atmosphere. However. In this case, GIDL reduction is not significant because gate burj beks are formed on the silicon substrate side only.

본 발명은 상술한 바와 같은 종래기술의 문제점을 해결하기 위한 것으로서, 게이트 재산화 공정과는 별도로 게이트 버즈비크의 형성이 용이하여 MOSFET의 GIDL를 크게 감소시키는 다이렉트 메탈 게이트를 갖는 MOSFET 제조 방법을 제공하는데 그 목적이 있다.The present invention is to solve the problems of the prior art as described above, and to provide a MOSFET manufacturing method having a direct metal gate that is easy to form a gate buzz be apart from the gate reoxidation process to significantly reduce the GIDL of the MOSFET. The purpose is.

도 1a 내지 도 1d는 본 발명의 바람직한 실시예에 따른 다이렉트 메탈 게이트 전극을 갖는 MOSFET 제조 공정 단면도.1A-1D are cross-sectional views of a MOSFET fabrication process with a direct metal gate electrode in accordance with a preferred embodiment of the present invention.

* 도면의 주요부분에 대한 부호의 설명 *Explanation of symbols on the main parts of the drawings

101 : 실리콘기판 102 : 게이트절연층101 silicon substrate 102 gate insulating layer

103 : 메탈층 또는 메탈질화층 104 : 하드마스크 절연층103: metal layer or metal nitride layer 104: hard mask insulating layer

105 : 포토레지스트 패턴 106 : 캡핑층105: photoresist pattern 106: capping layer

120 : 언더컷 130 : 게이트 버즈 비크120: Undercut 130: Gate Buzz Beek

상기 목적을 달성하기 위하여 본 발명의 일측면에 따른 다이렉트 메탈 게이트 전극을 갖는 MOSFET 제조 방법은 반도체기판상에 게이트절연층을 형성하는 단계; 상기 게이트절연층 상에 게이트전극 물질로서 메탈층을 형성하는 단계; 게이트 패턴으로 상기 메탈층을 식각하는 단계; 상기 패턴된 메탈층의 하부 에지에 언더컷을 형성하는 단계; 상기 메탈층이 후속 열처리 공정에서 산화되는 것을 방지하기 위한 캐핑층을 상기 언더컷이 매립되도록 형성하는 단계; 및 상기 식각에 의한 손상을 치유하기 위한 열처리를 수행하는 단계를 포함하는 것을 특징으로 한다.According to an aspect of the present invention, there is provided a method of fabricating a MOSFET having a direct metal gate electrode, including: forming a gate insulating layer on a semiconductor substrate; Forming a metal layer as a gate electrode material on the gate insulating layer; Etching the metal layer using a gate pattern; Forming an undercut on a lower edge of the patterned metal layer; Forming a capping layer to bury the undercut to prevent the metal layer from being oxidized in a subsequent heat treatment process; And performing a heat treatment to cure the damage caused by the etching.

본 발명에서 상기 캡핑층은 SiO2, SiOxFy및 SiOxNy의 그룹으로부터 선택된 어느 하나를 사용하는 것이 바람직하고, 상기 캡핑층의 형성은 70∼400℃의 온도에서 원자층증착(ALD) 또는 플라즈마화학기상증착(PECVD)으로 50∼200Å 두께 정도를 형성하는 것이 바람직하다.In the present invention, the capping layer is preferably any one selected from the group of SiO 2 , SiO x F y and SiO x N y , the formation of the capping layer is atomic layer deposition (ALD) at a temperature of 70 ~ 400 ℃ Or by plasma chemical vapor deposition (PECVD), it is preferable to form a thickness of 50 to 200 mm 3.

본 발명에서 상기 메탈층은 W, Mo, Ta, Al, Ti, Hf, Zr, Ru, Ir 및 Pt의 그룹으로부터 선택된 어느하나를 사용할 수 있고, 그 혼합물을 사용할 수 있고 이들의 메탈질화막(도전층)을 사용할 수도 있다.In the present invention, the metal layer may be any one selected from the group of W, Mo, Ta, Al, Ti, Hf, Zr, Ru, Ir, and Pt, a mixture thereof may be used, and a metal nitride film thereof (conductive layer). ) Can also be used.

본 발명의 다른 측면에 따른 다이렉트 메탈 게이트 전극을 갖는 MOSFET 제조 방법은 반도체기판상에 게이트절연층을 형성하는 단계; 상기 게이트절연층 상에 게이트전극 물질로서 후속 선택적 재산화 공정에서 산화되지 않는 메탈층을 형성하는 단계; 게이트 패턴으로 상기 메탈층을 식각하는 단계; 상기 패턴된 메탈층의 하부 에지에 언더컷을 형성하는 단계; 및 상기 식각에 의한 손상을 치유하면서 상기 언더컷에 버즈비크 형상의 산화막을 성장시키는 위하여 선택적 재산화 공정을 수행하는 단계를 포함하는 것을 특징으로 한다.According to another aspect of the present invention, there is provided a method of fabricating a MOSFET having a direct metal gate electrode, including: forming a gate insulating layer on a semiconductor substrate; Forming a metal layer on the gate insulating layer that is not oxidized in a subsequent selective reoxidation process as a gate electrode material; Etching the metal layer using a gate pattern; Forming an undercut on a lower edge of the patterned metal layer; And performing a selective reoxidation process to grow a burj beck shaped oxide film in the undercut while healing the damage caused by the etching.

다른 측면에 따른 본 발명에서는 캐핑층 없이 선택적 재산화 공정이 적용가능한 W, WNx, Mo, MoNx과 같은 메탈층 또는 메탈질화층을 게이트로 사용하는 경우적용 가능하며, 언더컷이 생성되어 있기에 이 부분에 재산화시 충분한 크기의 산화층인 게이트 버즈비크의 형성이 가능하다.According to another aspect of the present invention, a metal layer or a metal nitride layer, such as W, WN x , Mo, MoN x , to which a selective reoxidation process is applicable without a capping layer, is applicable, and since an undercut is generated, It is possible to form a gate burj vic, an oxide layer of sufficient size upon reoxidization of the part.

이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시예 및 그 작용효과를 첨부된 도면을 참조하여 설명하기로 한다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In order to explain in detail enough that a person having ordinary skill in the art to which the present invention pertains can easily carry out the technical idea of the present invention, the most preferred embodiments of the present invention and the effects thereof are referred to the accompanying drawings. This will be described.

(제1실시예)(First embodiment)

도 1a 내지 도 1d는 본 발명의 제1실시예에 따른 다이렉트 메탈 게이트 전극을 갖는 MOSFET 제조 공정 단면도이다.1A to 1D are cross-sectional views of a MOSFET fabrication process having a direct metal gate electrode according to a first embodiment of the present invention.

먼저, 도 1a를 참조하면, 실리콘기판(101) 상에 게이트절연층(102)과 게이트 전극용 메탈층 또는 메탈질화층(103), 하드 마스크 절연층(104)을 차례로 성장 또는/및 증착한다.First, referring to FIG. 1A, a gate insulating layer 102, a gate electrode metal layer or a metal nitride layer 103, and a hard mask insulating layer 104 are sequentially grown or / and deposited on the silicon substrate 101. .

여기서, 실리콘기판(101) 대신에 SOI(Silicon On Insulator) 기판, GOI(Germanium On Insulator) 기판, SiGe 기판, 및 strained-Si 기판 등을 사용할 수 있다. 게이트절연층(102)은 실리콘산화막(SiO2)를 사용할 수 있고, 산화막/질화막/산화막과 같은 복합절연막을 사용할 수 있으며, 실리콘산화막에 질소가 함유된 질화실리콘산화막을 적용할 수 있다. 또한, 고유전율을 갖는 금속산화물이나 금속실리케이트 및 질화금속실리케이트 등을 사용할 수도 있다. 여기서 금속은 Hf, Zr,Ta, Al, Ti, Ce, TH, Pr, Gd, La 등이다)Here, instead of the silicon substrate 101, a silicon on insulator (SOI) substrate, a germanium on insulator (GOI) substrate, a SiGe substrate, a strained-Si substrate, or the like may be used. The gate insulating layer 102 may use a silicon oxide film (SiO 2 ), a composite insulating film such as an oxide film / nitride film, or an oxide film may be used, and a silicon nitride oxide film containing nitrogen may be applied to the silicon oxide film. In addition, a metal oxide, a metal silicate, a metal nitride, or the like having a high dielectric constant may be used. Where the metal is Hf, Zr, Ta, Al, Ti, Ce, TH, Pr, Gd, La, etc.)

이어서, 도 1b를 참조하면 포토리소그라피 공정에 의해 게이트 패터닝을 위한 식각베리어로서 포토레지스트 패턴(105)를 형성한다.Next, referring to FIG. 1B, a photoresist pattern 105 is formed as an etch barrier for gate patterning by a photolithography process.

이어서, 도 1c와 같이 포토레지스트 패턴(105)를 식각베리어로하여 게이트절연층(102)가 드러나도록 마스크 절연층(104), 메탈층 또는 메탈질화층(103)을 식각하고, 메탈층 또는 메탈질화층(103)의 하부 에지에 언더컷(120)을 형성한다.Subsequently, as shown in FIG. 1C, the mask insulating layer 104, the metal layer, or the metal nitride layer 103 are etched to expose the gate insulating layer 102 using the photoresist pattern 105 as an etching barrier, and the metal layer or metal An undercut 120 is formed at the lower edge of the nitride layer 103.

언더컷(120)은 메탈층 또는 메탈질화층(103)을 식각할 때 , 마지막 식각 처리시에 등방성 건식 식각 처리 조건을 수행하는 것에 의해 형성 가능하며, 메탈층 또는 메탈질화층(103)을 식각이후에 별도의 식각을 통해 형성하는 것이 가능하다.The undercut 120 may be formed by performing isotropic dry etching conditions during the final etching process when the metal layer or the metal nitride layer 103 is etched, and after etching the metal layer or the metal nitride layer 103. It is possible to form through a separate etching on.

포토레지스트 패턴(307)은 식각과정에서 자연 손실되어 제거되거나 별도의 스트립(strip)공정을 통해 제거한다.The photoresist pattern 307 is naturally removed during the etching process or removed through a separate strip process.

이어서, 도 1d와 같이 게이트 스택(103, 104)의 상면 및 측면과 드러난 게이트절연층(102) 상에 70∼400℃의 저온 공정으로 50∼200Å의 두께의 예컨대 SiO2, SiOxFy및 SiOxNy와 같은 캡핑층(308)을 형성한다. 캡피층(106)은 이후 열처리 공정시 메탈층 또는 메탈질화층(103)이 산화되는 것을 방지하는 기능을 갖을 뿐만 아니라, 언더컷(120)을 매립하므로써 이 부위에서 게이트 버즈비크를 형성하여 MOSFET의 GIDL을 크게 감소시키는 기능을 한다.Subsequently, for example, SiO 2 , SiO x F y , having a thickness of 50 to 200 μm in a low temperature process of 70 to 400 ° C. on the top and side surfaces of the gate stacks 103 and 104 and the exposed gate insulating layer 102 as shown in FIG. 1D. A capping layer 308, such as SiO x N y , is formed. The cappi layer 106 not only has a function of preventing the metal layer or the metal nitride layer 103 from being oxidized during the subsequent heat treatment process, and also forms a gate buzz beak at this region by embedding the undercut 120 to form the GIDL of the MOSFET. It greatly reduces the function.

70∼400℃의 저온 공정으로 캡핑층(106)을 형성하는 이유는 고온 공정일 경우 메탈 또는 메탈질화층이 산화되기 때문이다. 400℃ 이하의 저온 공정으로 캡핑층(106)을 형성하는 방법은 원자층증착법(ALD), 열 산화법, 화학기상증착법(CVD) 등이 있을 수 있으나, 실질적으로 현재 개발된 실리콘 제조 공정으로는 원자층증착법이 가장 바람직하다. 열 산화 방법은 낮은 온도이기에 장시간의 공정 시간이 필요하여 적용 불가능하고, 또한 CVD 방법은 50∼200Å의 두께로 캡핑층을 형성할 때 박막의 균일도를 제어하기 어렵기 때문이다. 캡핑층(106)이 너무 두꺼울 경우 후속 게이트 재산화 공정시 재산화가 용이하지 않고, 또한 너무 얇을 경우 언더컷(120)이 완전히 매립되지 않기 때문에 그 두께는 앞서 언급한 바와 같이 50∼200Å의 두께가 바람직하다.The reason why the capping layer 106 is formed by a low temperature process of 70 to 400 ° C. is because the metal or metal nitride layer is oxidized in the high temperature process. A method of forming the capping layer 106 by a low temperature process of 400 ° C. or less may include atomic layer deposition (ALD), thermal oxidation, and chemical vapor deposition (CVD). Layer deposition is most preferred. This is because the thermal oxidation method is not applicable because it requires a long process time because of the low temperature, and the CVD method is difficult to control the uniformity of the thin film when forming a capping layer with a thickness of 50 to 200 kPa. If the capping layer 106 is too thick, the reoxidation is not easy during the subsequent gate reoxidation process, and if the thickness is too thin, the undercut 120 is not completely buried, so the thickness thereof is preferably 50 to 200 mm 3. Do.

이후, 400∼1000℃에서 10∼300초 동안 열처리를 수행하여 게이트 식각 데미지를 치유한 다음, LDD 이온주입, 게이트 측벽 스페이서 형성, 소스/드레인 이온주입 공정 등 MOSFET 제조를 위한 통상의 일련의 공정을 수행한다.Thereafter, heat treatment is performed at 400 to 1000 ° C. for 10 to 300 seconds to heal gate etching damage, and then a series of conventional processes for manufacturing a MOSFET, such as LDD ion implantation, gate sidewall spacer formation, and source / drain ion implantation processes, are performed. Perform.

열처리는 H2, D2,H2O, D2O, O2, O3, HN3, N2O, N2, NO의 그룹으로부터 선택된 어느 하나 또는 이들의 혼합 기체 분위기에서 실시 가능하며, 상기 기체들의 플라즈마 여기 상태에서 열처리하는 것도 가능하다.Heat treatment can be carried out in any one or a mixed gas atmosphere selected from the group of H 2 , D 2 , H 2 O, D 2 O, O 2 , O 3 , HN 3 , N 2 O, N 2 , NO, It is also possible to heat-treat in the plasma excited state of the gases.

(제2실시예)Second Embodiment

게이트전극용 메탈층 또는 메탈질화층(103)으로 선택적 재산화시 산화되지 않는 물질(예컨대 W, WNx, Mo, MoNx)을 사용할 경우에는 제1실시예서와 같이 언더컷이 형성되도록 메탈층 또는 메탈질화층(103)을 식각한 다음, 캡핍층의 형성 및열처리 없이 바로 H2O/H2분위기에서 선택적 게이트 재산화를 실시하는 것이다.In the case of using a material (eg, W, WN x , Mo, MoN x ) that is not oxidized during selective reoxidation to the gate electrode metal layer or the metal nitride layer 103, the metal layer or the undercut is formed as in the first embodiment. After the metal nitride layer 103 is etched, selective gate reoxidation is immediately performed in an H 2 O / H 2 atmosphere without formation of a capp layer and heat treatment.

이에 의해 언더컷 부위에서 산화층이 크게 형성되도록 할 수 있어 게이트 버즈비크가 크게 형성되도록 하는 것이 가능하다.As a result, the oxide layer can be largely formed in the undercut portion, so that the gate buzz be large can be formed.

본 발명의 기술 사상은 상기 바람직한 실시예에 따라 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술 분야의 통상의 전문가라면 본 발명의 기술 사상의 범위내에서 다양한 실시예가 가능함을 이해할 수 있을 것이다.Although the technical idea of the present invention has been described in detail according to the above preferred embodiment, it should be noted that the above-described embodiment is for the purpose of description and not of limitation. In addition, those skilled in the art will understand that various embodiments are possible within the scope of the technical idea of the present invention.

본 발명에 따른 다이렉트 메탈 게이트 전극 구조의 MOSFET 제조 방법은, 게이트 재산화 공정과는 별도로 게이트 버즈비크의 형성이 용이하여 MOSFET의 GIDL를 크게 감소시키는 효과를 갖는다.The MOSFET manufacturing method of the direct metal gate electrode structure according to the present invention has the effect of easily forming a gate burj bek separately from the gate reoxidation process and greatly reducing the GIDL of the MOSFET.

Claims (9)

반도체기판상에 게이트절연층을 형성하는 단계;Forming a gate insulating layer on the semiconductor substrate; 상기 게이트절연층 상에 게이트전극 물질로서 메탈층을 형성하는 단계;Forming a metal layer as a gate electrode material on the gate insulating layer; 게이트 패턴으로 상기 메탈층을 식각하는 단계;Etching the metal layer using a gate pattern; 상기 패턴된 메탈층의 하부 에지에 언더컷을 형성하는 단계;Forming an undercut on a lower edge of the patterned metal layer; 상기 메탈층이 후속 열처리 공정에서 산화되는 것을 방지하기 위한 캐핑층을 상기 언더컷이 매립되도록 형성하는 단계; 및Forming a capping layer to bury the undercut to prevent the metal layer from being oxidized in a subsequent heat treatment process; And 상기 식각에 의한 손상을 치유하기 위한 열처리를 수행하는 단계Performing a heat treatment to cure damage caused by the etching 를 포함하는 다이렉트 메탈 게이트 전극 구조의 MOSFET 제조 방법.MOSFET manufacturing method of the direct metal gate electrode structure comprising a. 제1항에 있어서,The method of claim 1, 상기 캡핑층은 SiO2, SiOxFy및 SiOxNy의 그룹으로부터 선택된 어느 하나인 것을 특징으로 하는 다이렉트 메탈 게이트 전극 구조의 MOSFET 제조 방법.And the capping layer is any one selected from the group of SiO 2 , SiO x F y, and SiO x N y . 제1항에 있어서,The method of claim 1, 상기 캡핑층의 형성은 70∼400℃의 온도에서 원자층증착(ALD) 또는 플라즈마화학기상증착(PECVD)으로 이루어지는 것을 특징으로 하는 다이렉트 메탈 게이트 전극 구조의 MOSFET 제조 방법.Forming the capping layer is a MOSFET manufacturing method of a direct metal gate electrode structure, characterized in that the atomic layer deposition (ALD) or plasma chemical vapor deposition (PECVD) at a temperature of 70 ~ 400 ℃. 제1항 내지 제3항중 어느한 항에 있어서,The method according to any one of claims 1 to 3, 상기 캡핑층을 50∼200Å으로 형성하는 것을 특징으로 하는 다이렉트 메탈 게이트 전극 구조의 MOSFET 제조 방법.And the capping layer is formed in a range of 50 to 200 microseconds. 제1항에 있어서,The method of claim 1, 상기 메탈층은 W, Mo, Ta, Al, Ti, Hf, Ru, Ir 및 Pt의 그룹으로부터 선택된 어느 하나인 것을 특징으로 하는 다이렉트 메탈 게이트 전극 구조의 MOSFET 제조 방법.The metal layer is a MOSFET manufacturing method of a direct metal gate electrode structure, characterized in that any one selected from the group of W, Mo, Ta, Al, Ti, Hf, Ru, Ir and Pt. 제1항에 있어서,The method of claim 1, 상기 메탈층은 W, Mo, Ta, Al, Ti, Hf, Ru, Ir 및 Pt의 그룹으로부터 선택된 어느 하나한 물질에 질소를 포함하는 메탈질화층인 것을 특징으로 하는 다이렉트 메탈 게이트 전극 구조의 MOSFET 제조 방법.The metal layer is a MOSFET of a direct metal gate electrode structure, characterized in that the metal nitride layer containing nitrogen in any one material selected from the group of W, Mo, Ta, Al, Ti, Hf, Ru, Ir and Pt. Way. 반도체기판상에 게이트절연층을 형성하는 단계;Forming a gate insulating layer on the semiconductor substrate; 상기 게이트절연층 상에 게이트전극 물질로서 후속 선택적 재산화 공정에서 산화되지 않는 메탈층을 형성하는 단계;Forming a metal layer on the gate insulating layer that is not oxidized in a subsequent selective reoxidation process as a gate electrode material; 게이트 패턴으로 상기 메탈층을 식각하는 단계;Etching the metal layer using a gate pattern; 상기 패턴된 메탈층의 하부 에지에 언더컷을 형성하는 단계; 및Forming an undercut on a lower edge of the patterned metal layer; And 상기 식각에 의한 손상을 치유하면서 상기 언더컷에 버즈비크 형상의 산화막을 성장시키는 위하여 선택적 재산화 공정을 수행하는 단계Performing a selective reoxidation process to grow a burj beak-shaped oxide film in the undercut while healing the damage caused by the etching; 를 포함하는 다이렉트 메탈 게이트 전극 구조의 MOSFET 제조 방법.MOSFET manufacturing method of the direct metal gate electrode structure comprising a. 제7항에 있어서,The method of claim 7, wherein 상기 선택적 재산화는 H2O/H2분위기에서 이루어짐을 특징으로 하는 다이렉트 메탈 게이트 전극 구조의 MOSFET 제조 방법.Wherein said selective reoxidation is performed in an H 2 O / H 2 atmosphere. 제7항에 있어서,The method of claim 7, wherein 상기 메탈층은 W, WNx, Mo, MoNx의 그룹으로부터 선택된 어느 하나인 것을 특징으로 하는 다이렉트 메탈 게이트 전극 구조의 MOSFET 제조 방법.The metal layer is a MOSFET manufacturing method of a direct metal gate electrode structure, characterized in that any one selected from the group of W, WN x , Mo, MoN x .
KR1020030041484A 2003-06-25 2003-06-25 Method for fabricating mosfet with direct metal gate electrode KR20050000894A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020030041484A KR20050000894A (en) 2003-06-25 2003-06-25 Method for fabricating mosfet with direct metal gate electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020030041484A KR20050000894A (en) 2003-06-25 2003-06-25 Method for fabricating mosfet with direct metal gate electrode

Publications (1)

Publication Number Publication Date
KR20050000894A true KR20050000894A (en) 2005-01-06

Family

ID=37216766

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020030041484A KR20050000894A (en) 2003-06-25 2003-06-25 Method for fabricating mosfet with direct metal gate electrode

Country Status (1)

Country Link
KR (1) KR20050000894A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7846836B2 (en) 2008-05-07 2010-12-07 Samsung Electronics Co., Ltd. Method of forming a conductive structure in a semiconductor device and method of manufacturing a semiconductor device
US12014988B2 (en) 2020-07-13 2024-06-18 Samsung Electronics Co., Ltd. Semiconductor device having a graphene film and method for fabricating thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7846836B2 (en) 2008-05-07 2010-12-07 Samsung Electronics Co., Ltd. Method of forming a conductive structure in a semiconductor device and method of manufacturing a semiconductor device
US12014988B2 (en) 2020-07-13 2024-06-18 Samsung Electronics Co., Ltd. Semiconductor device having a graphene film and method for fabricating thereof

Similar Documents

Publication Publication Date Title
US6514808B1 (en) Transistor having a high K dielectric and short gate length and method therefor
US6900092B2 (en) Surface engineering to prevent epi growth on gate poly during selective epi processing
JP3600476B2 (en) Method for manufacturing semiconductor device
JP2004134753A (en) Process for forming gate insulator layer having multiple dielectric constant and multiple thickness
JP2008166713A (en) Manufacturing method of semiconductor device with a plurality of dielectrics
KR20200012038A (en) Integration of non-volatile charge trap memory devices and logic cmos devices
US8574978B1 (en) Method for forming semiconductor device
JP2009152342A (en) Method of manufacturing semiconductor device
CN100485962C (en) Semiconductor device and method for fabricating the same
KR20050002009A (en) Method for fabricating transistor with polymetal gate electrode
US6969646B2 (en) Method of activating polysilicon gate structure dopants after offset spacer deposition
US20040203210A1 (en) Method of fabricating a semiconductor device having a shallow source/drain region
US6087248A (en) Method of forming a transistor having thin doped semiconductor gate
KR20050000894A (en) Method for fabricating mosfet with direct metal gate electrode
KR100411025B1 (en) Method of manufacturing a semiconductor device
KR100223736B1 (en) Method of manufacturing semiconductor device
JPH023244A (en) Manufacture of semiconductor device
KR101062835B1 (en) Method for manufacturing gate electrode of semiconductor device using double hard mask
US6238958B1 (en) Method for forming a transistor with reduced source/drain series resistance
JP4538978B2 (en) Semiconductor device and manufacturing method thereof
JP2005101449A (en) Semiconductor device and its manufacturing method
KR100806136B1 (en) Method for fabricating semiconductor device having meta-gate electrode
KR100844929B1 (en) Method for fabricating semiconductor device having metal-gate electrode
JP2002343965A (en) Mis semiconductor device and its manufacturing method
KR100607731B1 (en) Method for forming a semiconductor gate line

Legal Events

Date Code Title Description
WITN Withdrawal due to no request for examination