KR20040100082A - Process for removing COD and heavy metals from FGD wastewater using electrolysis - Google Patents
Process for removing COD and heavy metals from FGD wastewater using electrolysis Download PDFInfo
- Publication number
- KR20040100082A KR20040100082A KR1020030032291A KR20030032291A KR20040100082A KR 20040100082 A KR20040100082 A KR 20040100082A KR 1020030032291 A KR1020030032291 A KR 1020030032291A KR 20030032291 A KR20030032291 A KR 20030032291A KR 20040100082 A KR20040100082 A KR 20040100082A
- Authority
- KR
- South Korea
- Prior art keywords
- electrolysis
- cod
- heavy metals
- wastewater
- electrode
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F9/00—Multistage treatment of water, waste water or sewage
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/52—Treatment of water, waste water, or sewage by flocculation or precipitation of suspended impurities
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/58—Treatment of water, waste water, or sewage by removing specified dissolved compounds
- C02F1/62—Heavy metal compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F2001/007—Processes including a sedimentation step
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/46—Treatment of water, waste water, or sewage by electrochemical methods
- C02F1/461—Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
- C02F1/46104—Devices therefor; Their operating or servicing
- C02F1/46109—Electrodes
- C02F2001/46133—Electrodes characterised by the material
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2101/00—Nature of the contaminant
- C02F2101/10—Inorganic compounds
- C02F2101/20—Heavy metals or heavy metal compounds
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/46—Apparatus for electrochemical processes
- C02F2201/461—Electrolysis apparatus
- C02F2201/46105—Details relating to the electrolytic devices
- C02F2201/4612—Controlling or monitoring
- C02F2201/46125—Electrical variables
- C02F2201/4613—Inversing polarity
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/46—Apparatus for electrochemical processes
- C02F2201/461—Electrolysis apparatus
- C02F2201/46105—Details relating to the electrolytic devices
- C02F2201/4612—Controlling or monitoring
- C02F2201/46125—Electrical variables
- C02F2201/4614—Current
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2201/00—Apparatus for treatment of water, waste water or sewage
- C02F2201/46—Apparatus for electrochemical processes
- C02F2201/461—Electrolysis apparatus
- C02F2201/46105—Details relating to the electrolytic devices
- C02F2201/4612—Controlling or monitoring
- C02F2201/46145—Fluid flow
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Water Treatment By Electricity Or Magnetism (AREA)
Abstract
Description
본 발명은 전기분해를 이용한 탈황폐수 중 COD 및 중금속 제거방법에 관한 것이다. 더욱 상세하게는 전기분해를 이용하여 처리 대상 폐수 중 난분해성인 COD와 중금속 처리를 용이하게 함으로써 화공약품의 사용량을 크게 줄이면서 환경친화적으로 처리가 가능하고, 기존의 공정에 비해 간단하고, 장치의 소요면적도 상대적으로 적어 경제성이 우수한 전기분해를 이용한 탈황폐수 중 COD 및 중금속 제거방법에 관한 것이다.The present invention relates to a method for removing COD and heavy metals in desulfurized wastewater using electrolysis. More specifically, by using electrolysis, it is easy to treat COD and heavy metals in the wastewater to be treated, which can significantly reduce the amount of chemicals and is environmentally friendly, and is simpler than conventional processes. The present invention relates to a method for removing COD and heavy metals in desulfurized wastewater by using electrolysis, which has a relatively small required area.
일반적으로, 탈황폐수는 발전소의 탈황설비 운영시에 발생하게 되는 폐수로써 COD(화학적 산소 요구량), 중금속 성분 등을 다량 함유하고 있으며, 이의 제거를 위한 종래의 기술로는 산화제, 응집제 등의 약품을 이용한 화학적 처리방법이 있다. 그러나, 탈황폐수중의 불순물을 제거하여 방류허용 기준에 적합한 처리를 하기 위해서는 부유 고형물 침전, 산화제 주입 및 혼합, 무기성 COD 산화, 산화제성분 환원, 불소 및 중금속 제거, 칼슘이온 제거, 부유물 제거, 유기성 COD 제거, 불소흡착제거 등의 복잡한 공정을 거쳐야만 하였고, 각 공정별 적정 pH에 큰 차이가 있어 이를 조절하기 위하여 많은 양의 가성소다 및 염산이 사용됨으로 인해 처리비용이 많이 소요되는 단점이 있다.In general, desulfurization wastewater is a wastewater generated during operation of a desulfurization plant of a power plant and contains a large amount of chemical oxygen demand (COD), heavy metals, and the like, and conventional techniques for removing the same include chemicals such as oxidizing agents and flocculants. There is a chemical treatment method used. However, in order to remove impurities in the desulfurized wastewater and to meet the discharge acceptance criteria, suspended solids precipitation, oxidant injection and mixing, inorganic COD oxidation, oxidant reduction, fluorine and heavy metal removal, calcium ion removal, suspended solids removal, organic It had to go through complicated processes such as COD removal, fluorine adsorption removal, and there is a big difference in the proper pH for each process, so that a large amount of caustic soda and hydrochloric acid are used to control this, which requires a high treatment cost.
특히, 탈황폐수중의 COD 성분은 석탄 등의 연소시에 발생하는 질소산화물과 황산화물에 의해 형성된 난분해성의 무기성 COD로 구성되어 있어 이의 제거를 위해서는 과량의 산화제가 사용되고, 반응에 사용되지 않은 산화제 성분은 다시 환원제를 사용하여 환원시키는 공정을 거쳐야만 되므로 공정이 복잡하고 유지비용이 많이 소요되었다.In particular, the COD component in the desulfurized waste water is composed of a hardly decomposable inorganic COD formed by nitrogen oxides and sulfur oxides generated during combustion of coal and the like. Since the oxidant component has to go through a process of reducing again using a reducing agent, the process is complicated and maintenance costs are high.
이에 본 발명은 발전소에서 발생되는 탈황폐수의 효과적인 처리를 목적으로 하고 있으며 침전, 전기분해, 불소제거 공정을 포함한 탈황폐수 처리방법을 제공하기 위한 것이다.Accordingly, the present invention aims to provide an effective treatment of desulfurized wastewater generated in a power plant, and to provide a method for treating desulfurized wastewater including precipitation, electrolysis, and fluorine removal processes.
본 발명은 탈황폐수의 처리에 있어서 부유물 침전, COD 산화, 산화제 환원, 중금속 및 불소 제거, 칼슘이온 제거, 부유물 제거, 유기 COD 제거 등 유지관리가 복잡하고, 운영비가 고가인 기존의 공정을 부유물 침전조, 전기분해장치, 스케일 침전조, 부유물 제거 공정으로 대체할 수 있는 간편하고, 경제적인 탈황폐수 처리방법을 제공하는데 그 목적이 있다.In the present invention, in the treatment of desulfurized wastewater, the flotation sedimentation tank is complicated to maintain the complex processes such as flotation, COD oxidation, oxidant reduction, heavy metal and fluorine removal, calcium ion removal, suspended solids removal, organic COD removal, and operation cost. The aim is to provide a simple and economical method for treating desulfurized wastewater, which can be replaced by an electrolysis device, a scale settling tank and a float removal process.
도 1은 본 발명에 의한 전기분해를 이용한 탈황폐수 처리과정의 전체 모식도이다.1 is an overall schematic diagram of a desulfurization wastewater treatment process using electrolysis according to the present invention.
도 2는 종래의 탈황폐수 처리방법에 의해 COD 및 중금속 성분의 처리결과를 나타낸 그래프이다.2 is a graph showing treatment results of COD and heavy metal components by a conventional desulfurization wastewater treatment method.
도 3은 본 발명의 탈황폐수 처리방법에 의해 COD 및 중금속 성분의 처리결과를 나타낸 그래프이다.3 is a graph showing treatment results of COD and heavy metal components by the desulfurization wastewater treatment method of the present invention.
<도면의 주요부분에 대한 부호의 설명><Description of the symbols for the main parts of the drawings>
2 ---- 침전조 4,6 --- 전해조2 ---- sedimentation tank 4,6 --- electrolyzer
8 --- 침전조 10 --- 모래여과기8 --- Sedimentation tank 10 --- Sand filter
본 발명의 전기분해를 이용한 탈황폐수 중 COD 및 중금속 제거방법은 탈황폐수로부터 부유 고형물을 자연침강방식에 의해 제거하는 부유 고형물 침전단계; 상기 부유 고형물이 침전 제거된 탈황폐수로부터 전기분해에 의해 난분해성인 COD 성분 이외에 중금속, 불소, 칼슘 등을 처리 및 제거하게 되는 전기분해 단계; 상기 전기분해에 의해 생성된 스케일 성분을 침전에 의해 슬러리 형태로 제거하는 단계; 및 상기 침전단계에서 제거되지 않고 남은 부유물을 추가로 제거하는 단계로 이루어지는 것을 특징으로 한다.COD and heavy metal removal method in the desulfurized wastewater using the electrolysis of the present invention is a suspended solids precipitation step of removing the suspended solids from the desulfurized wastewater by natural sedimentation method; An electrolysis step of treating and removing heavy metals, fluorine, calcium, etc. in addition to COD components that are hardly decomposable by electrolysis from the desulfurized wastewater from which the suspended solids are precipitated and removed; Removing the scale component produced by the electrolysis into a slurry form by precipitation; And it is characterized in that it comprises a step of further removing the remaining suspended matter not removed in the precipitation step.
본 발명에 의한 탈황폐수 처리방법은 탈황폐수에 존재하는 염소이온(Cl-)의 농도가 약 20,000 ppm으로, 전기분해시 OCl-등 산화성분의 생성에 충분한 농도임에 착안하여, 기존의 약품에 의한 산화방법을 전기분해 방법으로 대체하여 적용하였으며, 폐수의 전기분해시 일반적으로 필요로 하는 염화나트륨 등의 투입 없이 충분한 COD 산화효과를 얻을 수 있다.Desulfurization waste water treatment method according to the present invention is the chloride ion (Cl -) present in the desulfurization waste water a concentration of about 20,000 ppm, electrolysis when OCl - in view of the Lim concentration sufficient to produce such oxide components, the conventional drug The oxidation method was replaced by the electrolysis method, and sufficient COD oxidation effect can be obtained without the input of sodium chloride, which is generally required for the electrolysis of waste water.
또한, 전기분해 과정에서 발생을 최대한 억제하여야 하는 전극표면의 스케일 형성을 유속 및 극간 거리의 조정으로 촉진시킨 후 운전과정에서 제거함으로써 COD의 제거 이외에 중금속, 불소, 칼슘 등의 제거효율을 향상시켰다.In addition, the formation of the electrode surface, which should be minimized in the electrolysis process, was promoted by adjusting the flow rate and the inter-pole distance, and then removed during the operation to improve the removal efficiency of heavy metals, fluorine, calcium, etc. in addition to the removal of COD.
전기분해방법을 탈황폐수의 처리에 적용할 경우 전극표면에는 칼슘, 마그네슘 등의 무기물이 스케일 형태로 석출되고 이때 중금속 및 불소이온 등이 같이 침전으로 형성되므로, 기존의 탈황폐수 처리공정에 포함되어 있는 COD, 중금속, 칼슘이온, 불소 제거공정의 효과를 동시에 이룰 수 있으며, 난분해성 COD 성분의 제거에 특히 효과를 얻을 수 있다. 이때 전극표면에서 형성된 스케일 성분은 전해조 내부의 유속 변경, 또는 역전의 방법으로 자동적으로 제거되게 하여 전기분해장치 후단의 스케일 침전조에서 고형물로 제거하게 된다.When the electrolysis method is applied to the treatment of desulfurized wastewater, inorganic substances such as calcium and magnesium are precipitated on the surface of the electrode in the form of scale, and heavy metals and fluorine ions are formed by precipitation, which is included in the existing desulfurized wastewater treatment process. The effects of COD, heavy metals, calcium ions, fluorine removal process can be achieved at the same time, and can be particularly effective in the removal of hardly decomposable COD components. At this time, the scale component formed on the surface of the electrode is automatically removed by a method of changing or reversing the flow rate inside the electrolytic cell to remove the solids in the scale settling tank at the rear of the electrolysis device.
이와 같은 본 발명을 첨부도면에 의거하여 더욱 상세히 설명하면 다음과 같다.The present invention will be described in more detail based on the accompanying drawings as follows.
본 발명의 전기분해를 이용한 탈황폐수 중 COD 및 중금속 제거를 위한 장치는 도 1에 예시한 바와 같이, 침전조(2), 전해조(4, 6), 침전조(8), 모래여과기 (10)로 구성되어 있다.The apparatus for removing COD and heavy metals in the desulfurized wastewater using the electrolysis of the present invention, as illustrated in FIG. 1, is composed of a settling tank 2, an electrolytic tank 4, 6, a settling tank 8, and a sand filter 10. It is.
탈황폐수는 침전조(2)에서 대부분의 부유 고형물이 제거되고, 상등액은 전해조(4, 6)로 넘어간다. 이때 침전조(2)는 일반적인 자연침강방식이 적용되며, 탈황폐수의 특성상 부유물의 양이 아주 많을 경우 침전조의 전단에서 응집제, 응집보조제, 킬레이트제 등을 주입하여 침전조(2)의 부유물 제거 성능을 높일 수 있다.The desulfurized waste water is removed most of the suspended solids in the settling tank (2), the supernatant is passed to the electrolytic bath (4, 6). At this time, the sedimentation tank (2) is applied to the general natural sedimentation method, if the amount of suspended solids in the nature of the desulfurization waste water to increase the removal performance of the sedimentation tank (2) by injecting flocculant, flocculent aid, chelating agent at the front of the sedimentation tank. Can be.
전해조(4, 6)의 음극에는 SUS316 또는 Ti 등의 전극을 사용하고, 양극에는불용성전극(DSA), 예를 들면 Ti/RuO2-IrO2전극의 사용시 COD 처리효율을 높일 수 있으며, 탈황폐수의 성상에 따라 도금을 하지 않은 SUS, Ti, Inconell, Zn, Fe, Ni 등의 전극도 사용할 수 있다. 사용되는 전극의 수량과 전극의 규격은 처리하고자 하는 폐수의 양에 따라 달라질 수 있다.Electrodes such as SUS316 or Ti are used for the cathodes of the electrolytic cells 4 and 6, and COD treatment efficiency can be improved when using insoluble electrodes (DSA), for example, Ti / RuO 2 -IrO 2 electrodes, for the anode. Electrodes such as SUS, Ti, Inconell, Zn, Fe, and Ni, which are not plated, can also be used depending on their properties. The quantity of electrodes used and the specifications of the electrodes can vary depending on the amount of wastewater to be treated.
전기분해장치로 탈황폐수중의 COD 및 중금속 제거운전을 할 경우 전극의 표면에 스케일 성분이 다량 생성되며, 탈황폐수의 처리시 극간 거리가 가까울수록 스케일의 형성 및 제거효율이 촉진된다. COD의 제거효율은 유속 25 cm/sec 이하에서는 유속의 변화에 거의 영향을 받지 않고, 전극과의 접촉시간에 영향을 받으며, 전극표면에서의 유속이 5 cm/sec 이상일 경우 전극표면에 형성된 스케일 성분이 유체의 흐름에 의해 제거되는 경향을 보인다.When COD and heavy metals are removed from the desulfurized wastewater by the electrolysis device, a large amount of scale components are generated on the surface of the electrode. As the distance between poles increases, the formation and removal efficiency of the scale is accelerated. The removal efficiency of COD is hardly affected by the change of the flow rate at the flow rate of 25 cm / sec or less, it is affected by the contact time with the electrode, and the scale component formed on the electrode surface when the flow rate at the electrode surface is 5 cm / sec or more. This tends to be removed by the flow of fluid.
본 발명은 최소한 하나 이상의 전해조를 직렬로 연결한 구성으로, 두 개의 전해조 구성을 병렬로 운전시에는 유속이 예를 들어 5 cm/sec 이하가 되게 낮추어 COD 제거 및 스케일 형성을 촉진시키고, 중금속, 불소 등의 제거효율을 높일 수 있다. 전극표면에 스케일의 형성이 진행되어 전압이 일정한계까지 상승하면 다시 직렬로 운전하여 유속을 예를 들어 5cm/sec 이상으로 높임으로써 COD 제거효율은 그대로 유지한 채 전극표면에 형성된 스케일 성분만을 제거할 수 있다.The present invention is a configuration in which at least one electrolytic cell is connected in series, and when the two electrolytic cell configurations are operated in parallel, the flow rate is lowered to be 5 cm / sec or less, for example, to promote COD removal and scale formation, and to promote heavy metals and fluorine. It is possible to increase the removal efficiency of the back. As the formation of scale on the electrode surface progresses and the voltage rises up to a certain level, it is operated in series again to increase the flow rate to 5 cm / sec or more, thereby removing only the scale component formed on the electrode surface while maintaining the COD removal efficiency. Can be.
이때 스케일이 효율적으로 제거되는 유속은 탈황폐수의 성상 특히 부유물 및 무기이온의 양에 따라 변화된다. 전기분해장치의 운전시 전극표면에 형성되는 스케일 성분은 직렬로 운전시 병렬에 비해 형성되는 양은 약간 감소하지만 스케일의 형성은 지속되며 대부분의 중금속 및 불소, 칼슘이온 등의 제거효과가 지속된다. 그러나, 전극표면에 형성된 스케일의 제거효율이 높은 범위는 유속 5 cm/sec 이상이며, COD는 유속 25 cm/sec 이하에서 제거효율이 좋으므로 병렬로 운전시 유속 5 cm/sec 이하, 직렬로 운전시 유속 5 ∼ 25 cm/sec 의 범위에서 제거효율이 가장 좋다.At this time, the flow rate at which the scale is efficiently removed varies depending on the properties of the desulfurized wastewater, especially the amount of suspended matter and inorganic ions. The scale component formed on the surface of the electrode during the operation of the electrolysis device is slightly reduced compared to the parallel when operating in series, but the formation of the scale is continued and most heavy metals, fluorine, calcium ions and other removal effects are maintained. However, the range of high removal efficiency of the scale formed on the electrode surface is 5 cm / sec or higher and the COD has good removal efficiency at 25 cm / sec or less. Removal efficiency is best in the range of 5 to 25 cm / sec.
이때, 탈황폐수의 성상에 따라 SUS, Ti 등 도금을 하지 않은 전극을 사용한 경우에는 전극의 극성을 서로 바꾸어 주는 역전의 방법으로도 스케일 제거가 가능하다. 만약 전기분해장치에 불용성전극(DSA)을 사용한 경우에는 전극의 극성을 바꿀 경우 도금된 피막이 떨어져 나오게 되므로 역전의 방법은 바람직하지 않다. 또한 국내에 설치되어 있는 발전소의 탈황설비의 경우 제조회사 및 방식이 서로 상이하고 운전방법 및 사용되는 탄종, 석회석 등에 의해 탈황폐수의 성상에 차이가 있으며 이에 따라 전기분해공정의 적용시 상기의 유속, 전극재질 등 운전인자에 차이를 둘 수 있다At this time, in the case of using an electrode which is not plated with SUS, Ti or the like depending on the properties of the desulfurized wastewater, the scale can be removed by a method of reversing the polarity of the electrodes. If an insoluble electrode (DSA) is used in the electrolysis device, the reversed method is not preferable because the plated film is peeled off when the polarity of the electrode is changed. In addition, in case of desulfurization facilities of power plants installed in Korea, manufacturers and methods are different from each other, and there are differences in the characteristics of desulfurization wastewater due to operating methods and used coal species, limestone, and the like. Differences in operating factors such as electrode materials
한편, 전극의 극간 거리는 좁을수록 소비전력이 낮아지고, 스케일의 형성이 촉진된다. 탈황폐수의 성상에 따라 약간 변화가 있을 수 있으나 대부분의 경우 극간 거리는 3∼15mm의 범위 내에서 되도록 좁은 거리를 선택하는 것이 바람직하다.On the other hand, the narrower the distance between the electrodes, the lower the power consumption and the formation of scale is facilitated. There may be a slight change depending on the characteristics of the desulfurized wastewater, but in most cases, the distance between the poles should be selected as narrow as possible within the range of 3 to 15 mm.
전해조(4,6)에서 전극의 폭과 수량은 폐수의 양에 맞추어 설계하며, 전해조(4,6)의 규격이 결정되면 COD의 농도를 처리할 수 있는 용량에 맞는 전해조(4,6)의 수를 계산하고, 시스템을 둘로 나누어 직렬 및 병렬로 연결할 수 있게 구성하는 것이 바람직하다. 여기서, 처리하고자 하는 폐수의 양이 많을 경우에는 상기 전해조(4,6)의 단위를 둘 또는 그 이상의 병렬로 구성하여 처리량에 대응할 수 있다.The width and quantity of the electrodes in the electrolyzer (4,6) are designed according to the amount of wastewater.When the standard of the electrolyzer (4,6) is determined, the size of the electrolyzer (4,6) that meets the capacity to handle the COD concentration is determined. It is desirable to calculate the number and configure the system so that it can be divided into two and connected in series and in parallel. In this case, when the amount of wastewater to be treated is large, the units of the electrolyzers 4 and 6 may be configured in parallel to correspond to the throughput.
또한, 탈황설비가 설치되어 있는 발전소는 대부분 폐수를 저장하는 충분한 용량의 저장조를 보유하고 있으므로 이 저장조를 이용할 수 있을 경우 직렬 및 병렬로 구성되어 있는 전기분해장치를 교대로 운전하지 않고, 펌프의 토출량을 제어함으로써 유속을 조정하여 운전을 계속할 수 있다.In addition, most power plants equipped with desulfurization facilities have a storage tank with sufficient capacity to store wastewater. Therefore, when the storage tank can be used, the discharge amount of the pump is not operated without alternating operation of the electrolysis apparatus configured in series and in parallel. By controlling the flow rate, the operation can be continued by adjusting the flow rate.
전기분해장치의 운전시 탈황폐수중의 COD 제거율은 탈황설비의 운전조건에 따라 어느 정도의 증감이 있게 된다. 이에 대해 전해조에 인가되는 전류량을 조정할 경우 원하는 COD의 처리효율을 얻을 수 있다. 즉, 탈황폐수의 처리에 적당한 전류량은 0.5 ∼ 1 kA/m2이며, 유입수의 COD 측정 및 전기분해장치의 후단에서 센서를 이용한 ORP(산화환원전위) 또는 산화제의 양을 측정하여 전기분해장치에 인가되는 전류의 양을 자동으로 조정함으로써 COD 제거율을 일정하게 유지할 수 있다.The COD removal rate in the desulfurized wastewater during the operation of the electrolysis device may be increased or decreased depending on the operating conditions of the desulfurization facility. On the other hand, if the amount of current applied to the electrolytic cell is adjusted, a desired COD treatment efficiency can be obtained. That is, the amount of current suitable for the treatment of the desulfurized wastewater is 0.5 to 1 kA / m 2 , and the amount of ORP (oxidation reduction potential) or oxidizing agent is measured at the rear end of the influent COD and the electrolysis device to measure the amount of oxidant. By automatically adjusting the amount of current applied, the COD removal rate can be kept constant.
전기분해장치를 거친 폐수에는 전기분해 과정에서 형성된 다량의 스케일 성분이 포함되어 있다. 스케일 성분은 CaCO3, Mg(OH)2가 주성분으로 Ca, Mg 등 무기성 이온이 침전으로 제거되며, 탈황폐수에 존재하는 중금속 및 불소이온 등이 공침 되어 제거된다. 이 스케일 성분은 전기분해장치 후단의 침전조(8)에서 슬러지 형태로 제거된다.The wastewater that has undergone the electrolysis device contains a large amount of scale components formed during the electrolysis process. In the scale component, CaCO 3 and Mg (OH) 2 are the main components, and inorganic ions such as Ca and Mg are removed by precipitation, and heavy metals and fluorine ions present in the desulfurized waste water are co-precipitated and removed. This scale component is removed in the form of sludge in the settling tank 8 at the rear of the electrolysis device.
모래여과기(10)에서는 침전조에서 제거되지 않은 나머지 부유물을 제거하게 되며, 이들을 최종적으로 방류하게 된다. 이때 모래여과기(10)는 현장여건에 따라역세 가능한 필터공정 등으로 대체할 수 있다.In the sand filter 10 to remove the remaining suspended matter not removed from the settling tank, they are finally discharged. At this time, the sand filter 10 may be replaced by a filter process capable of backwashing according to the site conditions.
대부분의 경우 중금속 및 불소이온의 농도는 전기분해 공정에서 방류허용기준치까지 떨어지나, 만약 탈황폐수중의 중금속 및 불소이온의 농도가 높아 방류허용기준치까지 처리가 되지 않을 경우에는 침전조에서 응집제 등을 추가로 투입하여 중금속 및 불소이온을 원하는 수치까지 제거할 수 있다. 이 경우에도 대부분의 중금속 및 불소이온은 전기분해과정에서 제거되므로 기존의 공정에 비하여 아주 적은 양의 약품만 사용하면 된다.In most cases, the concentrations of heavy metals and fluorine ions drop to the discharge limit in the electrolysis process.However, if the concentration of heavy metals and fluorine ions in the desulfurized wastewater is not high enough to treat the discharge limit, the flocculant may be added to the settling tank. By adding heavy metals and fluoride ions can be removed to the desired value. Even in this case, since most heavy metals and fluoride ions are removed during the electrolysis process, only a small amount of chemicals need to be used compared to the conventional process.
첨부도면 중 도 2는 종래의 탈황폐수 처리공정에 의해 각 공정별 COD 및 중금속 성분 등 오염물의 처리 결과를 그래프로 나타낸 것이다. 도 2에서 X축에서 부호 1은 부유고형물 침전조, 부호 2는 산화제 주입 및 혼합조, 부호 3은 무기성COD 산화조, 부호 4는 산화제 성분 환원조, 부호 5는 불소 및 중금속 제거조, 부호 6은 칼슘이온 제거조, 부호 7은 모래여과기, 부호 8은 활성탄탑, 부호 9는 불소흡착수지탑을 나타낸 것이다.Figure 2 of the accompanying drawings shows the results of the treatment of contaminants such as COD and heavy metal components for each process by the conventional desulfurization wastewater treatment process. In FIG. 2, in the X-axis, symbol 1 is a suspended solids precipitation tank, symbol 2 is an oxidant injection and mixing tank, symbol 3 is an inorganic COD oxidation tank, symbol 4 is an oxidant component reducing tank, symbol 5 is a fluorine and heavy metal removal tank, symbol 6 Silver calcium ion removal tank, 7 is a sand filter, 8 is an activated carbon tower, 9 is a fluorine adsorption resin tower.
첨부도면 중 도 3은 본 발명의 탈황폐수 처리공정에 의해 각 공정별 COD 및 중금속 성분 등의 처리 결과를 나타낸 그래프이다. 도 3에서 X축의 부호는 도 1의 공정 번호와 같다. 즉, 부호 2는 침전조, 부호 4,6은 전해조, 부호 8은 침전조, 부호 10은 모래여과기를 나타낸 것이다.In the accompanying drawings, Figure 3 is a graph showing the treatment results of COD and heavy metal components of each process by the desulfurization wastewater treatment process of the present invention. In FIG. 3, the sign of the X axis is the same as the process number of FIG. 1. That is, reference numeral 2 denotes a sedimentation tank, numerals 4 and 6 denote electrolyzers, numeral 8 denotes a precipitation tank, and numeral 10 denotes a sand filter.
다음 표 1은 본 발명의 전기분해에 의해 스케일 침전물의 원소분석결과를 나타낸 것이다.Table 1 shows the results of elemental analysis of scale precipitates by electrolysis of the present invention.
표 1에서와 같이 탈황폐수의 전기분해시 형성되는 침전물의 원소 분석결과로 부터 Ca, Mg 및 탈황폐수중의 각종 중금속이 침전의 형태로 효과적으로 제거됨을 알 수 있다.As can be seen from Table 1, elemental analysis results of precipitates formed during electrolysis of desulfurized wastewater show that Ca, Mg and various heavy metals in desulfurized wastewater are effectively removed in the form of precipitation.
본 발명의 전기분해를 이용한 탈황폐수 처리방법은 탈황폐수의 처리에 있어서, COD 및 중금속의 처리를 위하여 기존에 사용하던 약품처리방법을 전기분해 방법으로 변경하고, 전기분해방법 적용시 전극표면의 스케일 형성을 극대화한 후 형성된 스케일을 연속 제거함으로써 약품사용량을 줄이고, 아울러 기존의 공정에서 별도로 구성되었던 불소 및 중금속 제거공정, 칼슘 제거공정, 유기COD 제거공정을 전기분해공정 하나로 대체할 수 있는 효과가 있다.Desulfurization wastewater treatment method using the electrolysis of the present invention, in the treatment of desulfurization wastewater, to change the conventional chemical treatment method for the treatment of COD and heavy metals to the electrolysis method, the scale of the electrode surface when applying the electrolysis method By maximizing the formation, it is possible to reduce the chemical usage by continuously removing the scale, and it is possible to replace the fluorine and heavy metal removal process, calcium removal process and organic COD removal process that were separately formed in the existing process with one electrolysis process. .
본 발명은 전기분해를 포함한 폐수처리 방법을 탈황폐수의 처리에 적용함으로써, 상황에 따라 많게는 9개의 공정을 4개의 공정으로 줄일 수 있고, 이에 따라 경제적인 효과와 함께 운영 및 유지 효율을 극대화할 수 있는 장점이 있다.According to the present invention, by applying the wastewater treatment method including electrolysis to the treatment of desulfurized wastewater, it is possible to reduce as many as nine processes to four processes depending on the situation, thereby maximizing the efficiency of operation and maintenance with economical effects. There is an advantage.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2003-0032291A KR100461941B1 (en) | 2003-05-21 | 2003-05-21 | Process for removing COD and heavy metals from FGD wastewater using electrolysis |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2003-0032291A KR100461941B1 (en) | 2003-05-21 | 2003-05-21 | Process for removing COD and heavy metals from FGD wastewater using electrolysis |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040100082A true KR20040100082A (en) | 2004-12-02 |
KR100461941B1 KR100461941B1 (en) | 2004-12-18 |
Family
ID=37377515
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2003-0032291A KR100461941B1 (en) | 2003-05-21 | 2003-05-21 | Process for removing COD and heavy metals from FGD wastewater using electrolysis |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100461941B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100743373B1 (en) * | 2006-09-12 | 2007-07-30 | 유니슨 주식회사 | Bio gas assemble apparatus using anaerobic fermentation of livestock excretions |
KR101032620B1 (en) * | 2010-12-23 | 2011-05-06 | 엘아이지엔설팅주식회사 | Method for wastewater including fluorine treatment using electrochemistry |
CN117843199A (en) * | 2024-03-01 | 2024-04-09 | 海普欧环保集团有限公司 | Centrifugal adsorption treatment equipment for heavy metal sewage |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100626793B1 (en) * | 2004-09-20 | 2006-09-21 | 한국전력기술 주식회사 | Apparatus for Removing Total Nitrogenous Compound from Desulfurization Waste Water And Method Thereof |
KR102568017B1 (en) * | 2023-01-11 | 2023-08-18 | 주식회사 네오에코 | Wastewater treatment device with electrolysis structure |
-
2003
- 2003-05-21 KR KR10-2003-0032291A patent/KR100461941B1/en active IP Right Grant
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100743373B1 (en) * | 2006-09-12 | 2007-07-30 | 유니슨 주식회사 | Bio gas assemble apparatus using anaerobic fermentation of livestock excretions |
KR101032620B1 (en) * | 2010-12-23 | 2011-05-06 | 엘아이지엔설팅주식회사 | Method for wastewater including fluorine treatment using electrochemistry |
CN117843199A (en) * | 2024-03-01 | 2024-04-09 | 海普欧环保集团有限公司 | Centrifugal adsorption treatment equipment for heavy metal sewage |
CN117843199B (en) * | 2024-03-01 | 2024-05-21 | 海普欧环保集团有限公司 | Centrifugal adsorption treatment equipment for heavy metal sewage |
Also Published As
Publication number | Publication date |
---|---|
KR100461941B1 (en) | 2004-12-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6554977B2 (en) | Electrolytic wastewater treatment apparatus | |
EP2050723A1 (en) | Method and integral system for treating water for cooling towers and processess requiring removal of silica from the water | |
US20090008267A1 (en) | Process and method for the removal of arsenic from water | |
Bazrafshan et al. | Removal of zinc and copper from aqueous solutions by electrocoagulation technology using iron electrodes | |
US20130153509A1 (en) | Wastewater treatment comprising electrodissolution, flocculation and oxidation | |
CN108314149B (en) | Method for integrating desulfurization wastewater electrolysis and product denitration | |
KR101339303B1 (en) | Flocculation and electrolysis using electricity fluoride concentration of nitrogen-containing merge handling | |
KR100461941B1 (en) | Process for removing COD and heavy metals from FGD wastewater using electrolysis | |
Tran et al. | Electrochemical treatment for wastewater contained heavy metal the removing of the COD and heavy metal ions | |
CN217202372U (en) | Coking wastewater advanced treatment equipment | |
CN107216006B (en) | Leather wastewater treatment system and method | |
KR101778259B1 (en) | Effluent Treatment Apparatus Comprising Nanocatalytic Anode Plate and Cathode Plate for Phosphorus Removal by Electrolysis Floating and Flocculation Process and Treatment Method Using the Same | |
CN210855619U (en) | Contain salt organic waste water electrocatalytic oxidation coupling preprocessing device | |
KR100626793B1 (en) | Apparatus for Removing Total Nitrogenous Compound from Desulfurization Waste Water And Method Thereof | |
KR100545306B1 (en) | Electrochemical process for wastewater containing nitric acid | |
CN111825251B (en) | Drilling wastewater treatment device and method | |
JP4237582B2 (en) | Surplus sludge reduction device and method | |
KR100664683B1 (en) | Apparatus and method for treating reproduction wastewater of condensate polisher | |
JP4099369B2 (en) | Wastewater treatment equipment | |
CN113023972A (en) | High-salt organic wastewater treatment method based on electrochemical coupling hydrogen peroxide | |
CN110668619A (en) | Lead-zinc industrial mineral processing wastewater treatment device and treatment method | |
CN111573972A (en) | Grinding ultrasonic cleaning wastewater zero-discharge recycling or standard-reaching treatment system and process | |
KR100466280B1 (en) | Suspended solid removing method of wastewater by electrofloatation and sedimentation | |
KR100579605B1 (en) | Apparatus for purificating the mine water of abandoned mine and control method for purificating thereof by using oxidizer | |
CN212669432U (en) | Device for treating sulfur-containing wastewater of oil and gas field |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20121204 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20131203 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20141202 Year of fee payment: 11 |
|
FPAY | Annual fee payment |
Payment date: 20151202 Year of fee payment: 12 |
|
FPAY | Annual fee payment |
Payment date: 20171204 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20181130 Year of fee payment: 15 |
|
FPAY | Annual fee payment |
Payment date: 20191128 Year of fee payment: 16 |