KR20040058635A - Negative active material for lithium secondary battery and method of preparing same - Google Patents
Negative active material for lithium secondary battery and method of preparing same Download PDFInfo
- Publication number
- KR20040058635A KR20040058635A KR1020020084988A KR20020084988A KR20040058635A KR 20040058635 A KR20040058635 A KR 20040058635A KR 1020020084988 A KR1020020084988 A KR 1020020084988A KR 20020084988 A KR20020084988 A KR 20020084988A KR 20040058635 A KR20040058635 A KR 20040058635A
- Authority
- KR
- South Korea
- Prior art keywords
- active material
- metal
- negative electrode
- carbon
- electrode active
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/0605—Carbon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/06—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
- C23C14/14—Metallic material, boron or silicon
- C23C14/18—Metallic material, boron or silicon on other inorganic substrates
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/24—Vacuum evaporation
- C23C14/32—Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
- C23C14/325—Electric arc evaporation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M2004/026—Electrodes composed of, or comprising, active material characterised by the polarity
- H01M2004/027—Negative electrodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Metallurgy (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Composite Materials (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
[산업상 이용 분야][Industrial use]
본 발명은 리튬 이차 전지용 음극 활물질 및 그의 제조 방법에 관한 것으로서, 보다 상세하게는 금속이 나노 사이즈를 갖고 비정질 상태로 존재하는 리튬 이차 전지용 음극 활물질 및 그의 제조 방법에 관한 것이다.The present invention relates to a negative electrode active material for a lithium secondary battery and a method for manufacturing the same, and more particularly, to a negative electrode active material for a lithium secondary battery in which a metal has a nano size and is present in an amorphous state, and a method for manufacturing the same.
[종래 기술][Prior art]
현재, 리튬 이차 전지의 음극 활물질로 주로 사용되고 있는 흑연의 이론 충방전 용량은 372 mAh/g에 불과하여 차세대 이동통신 기기, 노트북, 전기자동차 등에 적합하지 않다. 따라서, 이러한 분야에 리튬 이차 전지를 응용하기 위해서는 높은 용량을 가지는 새로운 음극 활물질이 필요하다. 이러한 물질로 알려진 것이 바로 리튬과 합금이 가능한 금속 분말(직경이 약 1㎛ 정도)과 탄소 재료의 복합체이며, 이 재료를 음극 활물질로 사용하면 음극의 방전 용량을 흑연의 이론 방전 용량이상으로 증가시킬 수 있다.At present, the theoretical charge and discharge capacity of graphite, which is mainly used as a negative electrode active material of a lithium secondary battery, is only 372 mAh / g, which is not suitable for next generation mobile communication devices, notebook computers, and electric vehicles. Therefore, in order to apply a lithium secondary battery in this field, a new negative electrode active material having a high capacity is required. Known as such a material is a composite of lithium and alloyable metal powder (about 1 μm in diameter) and a carbon material. When the material is used as a negative electrode active material, the discharge capacity of the negative electrode can be increased beyond the theoretical discharge capacity of graphite. Can be.
그러나, 충방전시 이러한 금속이 Li과 합금을 이루는 과정에서 과다한 부피의 팽창과 축소가 반복되어 결국 금속이 깨지는 문제점이 발생하고, 이로 인해 충방전 횟수가 증가할수록 특성의 열화가 심해지고, 전지의 수명이 단축된다.However, during charging and discharging, in the process of forming an alloy with Li, an excessive volume expansion and contraction is repeated, resulting in a problem that the metal is broken. As a result, the deterioration of characteristics becomes worse as the number of charge and discharge cycles increases. Life is shortened.
이러한 문제를 억제하기 위해서는 첫째, 금속 입자의 크기가 나노 사이즈 정도로 매우 작아야 하며, 둘째, 금속이 비정질 상태로 존재하여야 한다. 따라서, 이를 위한 방법으로 금속 분말과 탄소 재료를 볼 밀링 방법으로 혼합하여 금속 분말의 입자크기를 작게 하려는 연구가 많이 행해졌으나, 이러한 방법으로는 100nm 이하의 크기를 가지는 나노 금속 입자를 얻을 수 없을 뿐만 아니라, 비정질 상태로 존재하기가 매우 어려운 문제점이 있었다.In order to suppress this problem, first, the size of the metal particles should be very small, such as nano size, and second, the metal should be in an amorphous state. Therefore, many studies have been conducted to reduce the particle size of the metal powder by mixing the metal powder and the carbon material by a ball milling method, but it is not possible to obtain nano metal particles having a size of 100 nm or less. Rather, it was very difficult to exist in an amorphous state.
본 발명은 상술한 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 금속 입자를 나노 사이즈의 비정질 상태로 탄소 재료와 효과적으로 용이하게 혼합할 수 있는 리튬 이차 전지용 음극 활물질의 제조 방법을 제공하는 것이다.SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and an object of the present invention is to provide a method for producing a negative electrode active material for a lithium secondary battery, which can effectively and easily mix metal particles in a nano-sized amorphous state with a carbon material.
본 발명의 다른 목적은 상기 제조 방법으로 제조된 리튬 이차 전지용 음극 활물질을 제공하는 것이다.Another object of the present invention to provide a negative electrode active material for a lithium secondary battery prepared by the above manufacturing method.
도 1은 본 발명의 아크 방전에서 사용되는 금속 충진 탄소봉 구조를 개략적으로 나타낸 도면.1 is a view schematically showing a metal-filled carbon rod structure used in the arc discharge of the present invention.
도 2는 도 1에 나타낸 탄소봉의 좌측면도.FIG. 2 is a left side view of the carbon rod shown in FIG. 1. FIG.
도 3은 본 발명의 실시예에 따라 제조된 리튬 이차 전지용 음극 활물질의 SEM 사진.Figure 3 is a SEM photograph of the negative electrode active material for a lithium secondary battery prepared according to an embodiment of the present invention.
도 4는 본 발명의 실시예에 따라 제조된 리튬 이차 전지용 음극 활물질의 EDS 맵핑 사진.Figure 4 is an EDS mapping picture of the negative electrode active material for a lithium secondary battery prepared according to an embodiment of the present invention.
도 5는 본 발명의 리튬 이차 전지용 음극 활물질의 라만 스펙트럼 강도를 나타낸 그래프.5 is a graph showing the Raman spectral intensity of the negative active material for a lithium secondary battery of the present invention.
도 6은 본 발명의 리튬 이차 전지용 음극 활물질의 X-선 회절 피크를 나타낸 그래프.6 is a graph showing X-ray diffraction peaks of the negative active material for a lithium secondary battery of the present invention.
도 7은 본 발명의 실시예 1의 음극 활물질을 이용하여 제조된 리튬 반쪽 전지 및 비교예의 음극 활물질을 이용하여 제조된 리튬 반쪽 전지의 초기 충방전 용량을 나타낸 그래프.7 is a graph showing the initial charge and discharge capacity of the lithium half battery prepared using the negative electrode active material of Example 1 of the present invention and the lithium half battery prepared using the negative electrode active material of Comparative Example.
상기 목적을 달성하기 위하여, 본 발명은 가운데 구멍이 있는 탄소봉에 금속 분말을 충진하여 아크 방전용 양극을 제조하고; 상기 아크 방전용 양극과 탄소봉 음극을 사용하여 아크 방전시켜 상기 양극에서 나노 사이즈의 비정질 금속 및 나노 사이즈의 흑연 입자가 상기 음극으로 이동되어 음극 표면에 쌓이고; 상기 음극 표면으로부터 금속 및 흑연 입자를 얻는 공정을 포함하는 리튬 이차 전지용 음극 활물질을 제조한다.In order to achieve the above object, the present invention is to fill the carbon powder with a central hole of the metal powder to prepare an anode for arc discharge; Arc-discharging using the arc discharge anode and the carbon rod cathode to move the nano-sized amorphous metal and the nano-sized graphite particles from the anode to the cathode to be stacked on the cathode surface; The negative electrode active material for lithium secondary batteries including the process of obtaining a metal and graphite particle from the said negative electrode surface is manufactured.
본 발명은 또한 상기 방법으로 제조된 비정질 금속 나노 입자; 및 탄소를 포함하는 리튬 이차 전지용 음극 활물질을 제공한다.The invention also provides amorphous metal nanoparticles prepared by the above method; And it provides a negative electrode active material for a lithium secondary battery containing carbon.
이하 본 발명을 보다 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명은 종래 리튬 이차 전지의 음극 활물질로 일반적으로 사용되던 흑연의 이론 충방전 용량이 너무 작아 이를 증가시키기 위하여, 금속을 첨가한 음극 활물질에 관한 것이다. 음극 활물질에서 금속은 입자 크기가 나노 사이즈로 매우 작고 비정질 상태여야 금속이 리튬과 합금을 이루는 과정에서 과다한 부피 팽창 및 축소로 인해 금속이 깨져 발생되는 문제점을 발생할 수 있어 바람직하다. 본 발명에서는 이를 위하여, 아크 방전(arc discharge) 공정을 도입하였다.The present invention relates to a negative electrode active material to which a metal is added in order to increase the theoretical charge / discharge capacity of graphite which is generally used as a negative electrode active material of a lithium secondary battery. In the negative electrode active material, the metal has a particle size of nano size and is in an amorphous state, so that the metal may be broken due to excessive volume expansion and contraction in the process of forming an alloy with lithium. In the present invention, for this purpose, an arc discharge process has been introduced.
본 발명의 음극 활물질의 제조 방법은 먼저, 도 1에 나타낸 것과 같이 아크 방전용 탄소봉(2)에 구멍을 판 후, 이 구멍에 금속 분말(1)을 충진하여 아크 방전용 양극을 제조한다. 도 1에 나타낸 아크 방전용 탄소봉의 좌측면도를 도 2에 나타냈으며, 도 2를 보면 알 수 있듯이 제조된 아크 방전용 양극은 탄소봉(2) 가운데에 금속 분말(1)이 충진되어 있다.In the method for producing the negative electrode active material of the present invention, first, as shown in Fig. 1, a hole is formed in the carbon rod 2 for arc discharge, and then the metal powder 1 is filled in the hole to manufacture an anode for arc discharge. The left side view of the arc discharge carbon rod shown in FIG. 1 is shown in FIG. 2, and as can be seen from FIG. 2, the manufactured arc discharge anode is filled with metal powder 1 in the center of the carbon rod 2.
상기 금속으로는 리튬과 합금이 가능한 금속이면 어떠한 것도 사용가능하며, 대표적인 예로 Al, Mg, Sn, Si, Sb, Ge, Pb, Ag, Au, Zn, In, Cd, Bi, Pt, Pd, Ca, B, Te, P, S, Se 또는 As 중 하나 이상을 사용할 수 있다.As the metal, any metal capable of alloying with lithium may be used, and representative examples include Al, Mg, Sn, Si, Sb, Ge, Pb, Ag, Au, Zn, In, Cd, Bi, Pt, Pd, Ca At least one of, B, Te, P, S, Se or As can be used.
다른 탄소봉을 준비하여 아크 방전용 음극으로 사용한다. 상기 양극과 음극으로 사용하는 탄소봉은 서로 직경이 다른 탄소봉을 이용하며, 양극으로 사용되는 탄소봉은 직경이 약 6 내지 8mm 정도의 것을 사용하고, 음극으로 사용되는 탄소봉은 직경이 약 10 내지 12mm 정도의 것을 사용한다. 상기 양극에 형성된 구멍은 직경이 3 내지 4mm 정도가 바람직하다.Another carbon rod is prepared and used as the cathode for arc discharge. The carbon rods used as the positive electrode and the negative electrode use carbon rods having different diameters, and the carbon rods used as the positive electrode have a diameter of about 6 to 8 mm, and the carbon rods used as the negative electrode have a diameter of about 10 to 12 mm. Use it. The hole formed in the anode is preferably about 3 to 4mm in diameter.
상기 탄소봉은 전도성이 우수한 흑연봉을 사용하는 것이 바람직하다.As the carbon rods, it is preferable to use graphite rods having excellent conductivity.
상기 아크 방전용 양극 및 음극을 일정한 거리를 유지하면서, 직류 20 내지30 V의 전압을 100 내지 500 torr 압력 하에서 인가하여 아크 방전을 실시한다. 아크 방전이 시작되면 두 전극간의 거리를 일정하게 유지시키는데, 이는 아크를 일정하게 유지시키기 위해서이다. 보통 전극간의 거리는 1 mm 이내로 유지시키며, 이 때의 전류값은 50 내지 100 A 이다. 이러한 아크 방전에 따라, 금속 입자들이 매우 고온(∼5000K)의 아크 플라즈마에 의해 상기 양극으로부터 방출되어 냉각수에 의해 저온을 유지하고 있는 음극 표면에 쌓이게 되는 과정에서 용융 및 급랭(quenching)과정을 거치면서 비정질 나노 입자로 변형된다. 이때, 탄소봉으로부터 탄소 입자도 함께 방출되어 나노 사이즈의 탄소 입자도 음극 표면에 쌓이게 된다. 상기 양극으로부터 방출된 금속 입자는 비정질 형태이며, 그 사이즈가 30 내지 50nm의 나노 사이즈를 갖으며, 탄소 입자도 나노 사이즈를 갖게 된다.The arc discharge is performed by applying a voltage of DC 20 to 30 V under a pressure of 100 to 500 torr while maintaining a constant distance between the anode and the cathode for arc discharge. When the arc discharge starts, the distance between the two electrodes is kept constant, in order to keep the arc constant. Usually, the distance between the electrodes is kept within 1 mm, the current value at this time is 50 to 100 A. In response to such arc discharge, metal particles are melted and quenched in the process of being discharged from the anode by a very high temperature (~ 5000K) arc plasma and accumulating on the surface of the cathode maintained by the cooling water. It is transformed into amorphous nanoparticles. At this time, carbon particles are also released from the carbon rods, and nano-size carbon particles are also accumulated on the negative electrode surface. The metal particles emitted from the anode are in an amorphous form, the size of which has a nano size of 30 to 50 nm, and the carbon particles also have a nano size.
상기 음극 표면에 쌓인 금속 및 탄소 입자를 수집하여 리튬 이차 전지용 음극 활물질로 사용한다.Metal and carbon particles accumulated on the surface of the negative electrode are collected and used as a negative electrode active material for a lithium secondary battery.
상술한 본 발명의 제조 방법은 두 종류 이상의 나노입자를 동시에 제조할 수 있으며, 탄소 재료와 친화성이 낮은 금속과의 복합체 제조에 큰 효과가 있다. 특히, 종래 난점으로 여겨지는 금속의 미립자화 및 비정질화를 단한번의 공정으로 해결할 수 있다. 또한, 이 방법은 리튬 이차전지의 음극재료와 같이 탄소 및 금속 입자의 복합체 합성 분야에 그 응용가치가 크며, 또한 금속입자의 함량을 조절함으로써 원하는 용량을 설계할 수 있는 장점이 있다.The above-described manufacturing method of the present invention can produce two or more kinds of nanoparticles at the same time, and has a great effect in the production of a composite of a carbon material and a low affinity metal. In particular, it is possible to solve the micronization and amorphousization of metals, which are considered to be a conventional difficulty, in a single process. In addition, this method has a high application value in the field of composite synthesis of carbon and metal particles, such as a negative electrode material of a lithium secondary battery, and has the advantage of designing a desired capacity by controlling the content of metal particles.
상술한 방법으로 제조된 리튬 이차 전지용 음극 활물질은 크기가 50 nm 이하인 나노 금속입자가 탄소재료 내에 균일하게 분포되어 있는 탄소-금속 복합체이다.또한, 아크 방전시의 온도가 약 5,000 K 이상이며, 대부분의 금속의 녹는점보다 높은 온도이므로, 이들이 냉각수에 의해서 저온 상태를 유지하고 있는 음극에 쌓일 때, 급격히 온도가 감소되는 급랭 효과가 있으므로 금속 나노입자들은 비정질 상태로 형성된다.The negative electrode active material for a lithium secondary battery manufactured by the above-described method is a carbon-metal composite in which nano metal particles having a size of 50 nm or less are uniformly distributed in a carbon material. Since the temperature is higher than the melting point of the metal, the metal nanoparticles are formed in the amorphous state because they have a quenching effect of rapidly decreasing the temperature when they are accumulated in the cathode which is kept at a low temperature state by the cooling water.
이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기한 실시예는 본 발명의 바람직한 일 실시예일 뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples and comparative examples of the present invention are described. However, the following examples are only one preferred embodiment of the present invention and the present invention is not limited to the following examples.
(실시예 1)(Example 1)
직경이 약 6mm의 흑연봉에 직경이 3mm 정도 되게 구멍을 뚫고, 이 구멍에 Si 분말을 충진하여 아크 방전용 양극을 제조하였다. 직경이 10mm 정도의 흑연봉을 준비하여 아크 방전용 음극으로 사용하였다. 상기 양극과 음극을 약 1mm 정도 간격을 두고 배치한 후, 30V의 직류 전압을 300 torr 압력 하에서 인가하여 아크 방전을 실시하였다. 아크 방전을 실시한 결과, 상기 음극 표면에 쌓인 Si 및 흑연 분말을 모아 리튬 이차 전지용 음극 활물질로 하였다.A graphite rod having a diameter of about 6 mm was drilled to have a diameter of about 3 mm, and a Si powder was filled in the hole to prepare an anode for arc discharge. A graphite rod having a diameter of about 10 mm was prepared and used as an anode for arc discharge. After arranging the positive electrode and the negative electrode at intervals of about 1 mm, arc discharge was performed by applying a DC voltage of 30 V under 300 torr pressure. As a result of arc discharge, Si and graphite powder accumulated on the said negative electrode surface were collected, and it was set as the negative electrode active material for lithium secondary batteries.
상기 실시예 1의 방법으로 제조된 음극 활물질의 SEM 사진을 도 3에 나타내었다. 도 3에 나타낸 것과 같이, 실시예 1의 음극 활물질은 직경 50nm 정도의 나노 입자들로 구성되어 있음을 알 수 있다.A SEM photograph of the negative electrode active material prepared by the method of Example 1 is shown in FIG. 3. As shown in FIG. 3, it can be seen that the negative active material of Example 1 is composed of nanoparticles having a diameter of about 50 nm.
또한, 상기 음극 활물질의 EDS(electron dispersion spectroscope) 맵핑(mapping)을 도 4에 나타내었다. 도 4에서, 밝게 보이는 부분이 Si이 존재하는 부분이므로 도 4로부터 제조된 음극 활물질 중에 Si 나노 입자가 균일하게 분포하고 있음을 알 수 있다. 이 EDS 결과로부터 성분비를 알아냈으며, 그 결과 얻어진 음극 활물질에는 C, Si, O가 각각 75%, 20%, 5%가 존재하고 있으며, 이 중에서 O는 실험 후 EDS 측정 전에 공기에 노출되어서 함유된 것으로 생각된다.In addition, EDS (electron dispersion spectroscope) mapping of the negative electrode active material is shown in FIG. 4. In FIG. 4, since the bright visible part is a part in which Si is present, it can be seen that the Si nanoparticles are uniformly distributed in the negative electrode active material prepared from FIG. 4. The component ratio was determined from the EDS results, and the resulting negative active material contained 75%, 20%, and 5% of C, Si, and O, respectively. Among them, O was exposed to air before the EDS measurement after the experiment. It is thought to be.
상기 실시예 1의 음극 활물질의 라만 스펙트럼 강도 그래프를 도 5에 그리고 X선 회절 피크 강도 그래프를 도 6에 각각 나타내었다. 도 5의 라만 스펙트럼 강도 그래프를 보면, 탄소에 의해 나타나는 G-피크(∼1600cm-1), D-피크(∼1300cm-1) 외에 강한 Si 피크(∼500cm-1)와 약한 SiC 피크가 관찰되었다. 또한, 도 6의 X선 회절 피크 강도 그래프에서는 Si 피크가 나타나지 않았다. 결정질 및 비정질 Si의 라만 피크는 각각 490cm-1와 520cm-1에서 나타나는데, 본 실시예 에서는 500 cm-1에서 피크가 관측이 되었으므로, 제조된 Si은 비정질에 가까운 형태임을 알 수 있다. 따라서, 도 5 및 도 6의 결과로부터, 제조된 음극 활물질에는 Si이 존재하며, 또한 그 Si은 비정질 형태임을 알 수 있다.Raman spectral intensity graph of the negative electrode active material of Example 1 is shown in Figure 5 and X-ray diffraction peak intensity graph in Figure 6, respectively. Referring to FIG. Raman spectral intensity graph of Figure 5, the peak G- (~1600cm -1), D- peak (~1300cm -1) in addition to a strong Si peak (~500cm -1) indicated by the carbon-SiC weak peaks were observed . In addition, the Si peak did not appear in the X-ray diffraction peak intensity graph of FIG. 6. Raman peaks of the crystalline and the amorphous Si are each appear at 490cm -1 and 520cm -1, in the present embodiment, because a peak is observed at 500 cm -1, the produced Si can be seen that near to the amorphous form. Accordingly, it can be seen from the results of FIGS. 5 and 6 that Si is present in the prepared anode active material, and that Si is in an amorphous form.
또한, 상기 실시예 1의 음극 활물질을 사용하여 통상의 방법으로 리튬 반쪽 전지를 제조하고, 제조된 전지를 0.2C로 충방전하여, 초기 충방전 용량을 도 7에 나타내었다. 비교예로 Si과 흑연 분말을 볼밀링하여 제조된 음극 활물질을 이용하여 제조된 전지의 충방전 용량도 도 7에 나타내었다. 도 7에 나타낸 것과 같이, 실시예 1 및 비교예의 초기 충방전 용량은 각각 676/527mAh/g 및 594/455mAh/g으로 나타났으며, 따라서, 실시예 1의 음극 활물질이 높은 충방전 용량을 나타내는 전지를 제공할 수 있음을 알 수 있다.In addition, a lithium half battery was manufactured by a conventional method using the negative electrode active material of Example 1, and the produced battery was charged and discharged at 0.2C, and the initial charge and discharge capacity is shown in FIG. 7. 7 shows a charge and discharge capacity of a battery manufactured using a negative electrode active material prepared by ball milling Si and graphite powder as a comparative example. As shown in FIG. 7, the initial charge and discharge capacities of Example 1 and Comparative Examples were 676/527 mAh / g and 594/455 mAh / g, respectively. Thus, the negative electrode active material of Example 1 exhibited a high charge and discharge capacity. It can be seen that a battery can be provided.
본 발명의 제조 방법은 비정질 금속 입자가 나노 사이즈로 존재하는 음극 활물질을 효과적으로 용이하게 제조할 수 있다.The production method of the present invention can effectively produce an anode active material in which amorphous metal particles are present in nano size.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0084988A KR100497244B1 (en) | 2002-12-27 | 2002-12-27 | Negative active material for lithium secondary battery and method of preparing same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2002-0084988A KR100497244B1 (en) | 2002-12-27 | 2002-12-27 | Negative active material for lithium secondary battery and method of preparing same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040058635A true KR20040058635A (en) | 2004-07-05 |
KR100497244B1 KR100497244B1 (en) | 2005-06-28 |
Family
ID=37350714
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2002-0084988A KR100497244B1 (en) | 2002-12-27 | 2002-12-27 | Negative active material for lithium secondary battery and method of preparing same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100497244B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9048486B2 (en) | 2011-11-08 | 2015-06-02 | Samsung Sdi Co., Ltd. | Negative active material, method of preparing the negative active material, electrode including the negative active material, and lithium battery including the electrode |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101036288B1 (en) * | 2010-09-13 | 2011-05-23 | 주식회사 예일전자 | Sio-c composite powder for lithium secondary battery and method for manufacturing the same |
CN104134785B (en) * | 2014-08-11 | 2016-03-02 | 南京邮电大学 | A kind of preparation method of binder free lithium ion battery negative material |
CN110828926B (en) * | 2019-09-26 | 2022-05-17 | 矿冶科技集团有限公司 | Method for cooperatively recovering metal and graphite from anode and cathode materials of waste lithium ion battery |
-
2002
- 2002-12-27 KR KR10-2002-0084988A patent/KR100497244B1/en not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9048486B2 (en) | 2011-11-08 | 2015-06-02 | Samsung Sdi Co., Ltd. | Negative active material, method of preparing the negative active material, electrode including the negative active material, and lithium battery including the electrode |
Also Published As
Publication number | Publication date |
---|---|
KR100497244B1 (en) | 2005-06-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR100595896B1 (en) | A negative active material for lithium secondary battery and a method for preparing same | |
Zhang et al. | Dual-buffered SnSe@ CNFs as negative electrode with outstanding lithium storage performance | |
KR101120692B1 (en) | Multi-phase, silicon-containing electrode for a lithium-ion battery | |
KR100582343B1 (en) | Electrode material for lithium secondary battery, electrode structure comprising the electrode material and secondary battery comprising the electrode structure | |
KR100788487B1 (en) | Method for preparing black phosphorus and black phosphorus-carbon composites, the prepared black phosphorus and black phosphorus-carbon composites and lithium rechargeable battery comprising the same and method for using the rechargeable battery | |
JP6003996B2 (en) | Electrode active material, method for producing electrode active material, electrode, battery, and method of using clathrate compound | |
KR101142534B1 (en) | Process for producing si-based nanocomposite anode material for lithium secondary battery and lithium secondary battery including the same | |
KR20190066596A (en) | Negative active material for non-aqueous electrolyte secondary battery and manufacturing method of the same | |
KR20110008157A (en) | Silicon based composite material | |
JP2004055505A (en) | Lithium secondary battery and negative electrode material therefor | |
Chen et al. | The dealloying–lithiation/delithiation–realloying mechanism of a breithauptite (NiSb) nanocrystal embedded nanofabric anode for flexible Li-ion batteries | |
EP3966883A1 (en) | Silicon carbon nanocomposite (scn) material, fabrication process therefor, and use thereof in an anode electrode of a lithium ion battery | |
JPH1131509A (en) | Lithium ion secondary battery negative electrode material and its electrode | |
KR20230011984A (en) | Graphene-Containing Metalized Silicon Oxide Composite Materials | |
KR20030028241A (en) | Negative active material for lithium secondary battery and method of preparing same | |
JP2002334697A (en) | Non-aqueous secondary battery | |
KR100497244B1 (en) | Negative active material for lithium secondary battery and method of preparing same | |
CN114792795A (en) | Negative electrode for fluoride ion secondary battery and fluoride ion secondary battery provided with same | |
Liang et al. | Morphological and structural evolution of Si-Cu nanocomposites by an instantaneous vapor-liquid-solid growth and the electrochemical lithiation/delithiation performances | |
JP2016066418A (en) | Electrode active material, electrode, battery, manufacturing method of electrode active material | |
KR101942922B1 (en) | Anode active material for lithium secondary battery comprising silicon nanoparticles and method for manufacturing the same | |
JP7132781B2 (en) | Anode materials for storage devices | |
Farooq et al. | Electrically exploded silicon/carbon nanocomposite as anode material for lithium-ion batteries | |
JP2015179589A (en) | Electrode active material, electrode, battery, and manufacturing method of electrode active material | |
JP2021140973A (en) | Solid battery and method for manufacturing the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E90F | Notification of reason for final refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130522 Year of fee payment: 9 |
|
FPAY | Annual fee payment |
Payment date: 20140526 Year of fee payment: 10 |
|
FPAY | Annual fee payment |
Payment date: 20150519 Year of fee payment: 11 |
|
LAPS | Lapse due to unpaid annual fee |