KR20040055986A - A coil spring with improved high temperature deformation resistance for sliding gate - Google Patents
A coil spring with improved high temperature deformation resistance for sliding gate Download PDFInfo
- Publication number
- KR20040055986A KR20040055986A KR1020020082487A KR20020082487A KR20040055986A KR 20040055986 A KR20040055986 A KR 20040055986A KR 1020020082487 A KR1020020082487 A KR 1020020082487A KR 20020082487 A KR20020082487 A KR 20020082487A KR 20040055986 A KR20040055986 A KR 20040055986A
- Authority
- KR
- South Korea
- Prior art keywords
- coil spring
- less
- high temperature
- sliding gate
- deformation resistance
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/22—Ferrous alloys, e.g. steel alloys containing chromium with molybdenum or tungsten
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/24—Ferrous alloys, e.g. steel alloys containing chromium with vanadium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/26—Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/18—Ferrous alloys, e.g. steel alloys containing chromium
- C22C38/28—Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D9/00—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
- C21D9/02—Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for springs
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Springs (AREA)
Abstract
본 발명은 제강공장 등에서 사용되는 래들의 하부 용강 배출을 위해 사용되는 슬라이딩 게이트용 코일스프링에 관한 것이다.The present invention relates to a coil spring for a sliding gate used for discharging the lower molten steel of the ladle used in a steelmaking factory.
본 발명은 중량%로, C:0.8~1.2%, Mn:0.5% 미만, P:0.02% 이하, S:0.02% 이하, Si:0.5% 미만, Cr:3.5~6%, Mo:4~6%, W:5~8% 로 구성되고, 여기에 Nb:1~3%, V:1~3% 및 Ti:1~3%으로 이루어지는 그룹중에서 선택된 1종 이상이 추가로 첨가되며 잔부 Fe 및 불가피한 불순물로 구성되는 고온변형저항 특성이 우수한 슬라이딩게이트용 코일스프링을 제공함에 특징이 있다.In the present invention, by weight%, C: 0.8-1.2%, Mn: less than 0.5%, P: 0.02% or less, S: 0.02% or less, Si: less than 0.5%, Cr: 3.5-6%, Mo: 4-6 %, W: 5-8%, at least one selected from the group consisting of Nb: 1-3%, V: 1-3% and Ti: 1-3% is further added, and the balance Fe and It is characterized by providing a coil spring for a sliding gate having excellent high temperature deformation resistance characteristics composed of inevitable impurities.
본 발명에 따르면, 열피로균열 저항성은 기존과 같이 유지되면서 고온에서의 변형저항특성이 우수한 슬라이딩게이트용 코일스프링을 제공할 수 있고, 이로 인해 자재비 및 정비비 등을 절감할 수 있다.According to the present invention, the thermal fatigue crack resistance can be provided as the coil spring for the sliding gate excellent in deformation resistance characteristics at high temperature while maintaining the existing, thereby reducing the material cost and maintenance costs.
Description
본 발명은 제강공장 등에서 사용되는 래들의 하부 용강 배출을 위해 사용되는 슬라이딩 게이트용 코일스프링에 관한 것으로, 보다 상세하게는 탄소의 함량을 높게 하면서 텅스텐 등 각종 합금성분을 첨가하여 고온에서도 변형저항특성이 우수한 슬라이딩게이트용 코일스프링에 관한 것이다.The present invention relates to a coil spring for a sliding gate used for discharging the lower molten steel of the ladle used in a steel mill, etc. More specifically, by adding various alloy components such as tungsten while increasing the content of carbon has a high resistance to deformation at high temperatures The present invention relates to a coil spring for an excellent sliding gate.
제강공장 등에서 전로나 턴디쉬 등의 하부 용강출탕을 위해 사용되는 종래 슬라이딩게이트 혹은 노즐장치에는 면압제어를 위해 슬라이딩게이트 1대당 12개 정도의 코일스프링을 사용하며 일정한 면압에 의해 노즐의 개폐를 제어하고 있었다(일본 공개특허 1994-226430).Conventional sliding gates or nozzle devices used in steel mills, such as converters and tundishes, use about 12 coil springs per sliding gate for surface pressure control, and control the opening and closing of nozzles by a constant surface pressure. Japanese Patent Laid-Open No. 1994-226430.
이러한 코일스프링은 200-40O℃의 고온에서 반복적인 하중을 받게 되므로 길이방향의 변형이 발생할 뿐만 아니라 열피로 균열 등이 발생하게 되며, 변형 등에 의해 일정길이 이상의 길이수축(자유장변화)이 발생하거나 열피로로 인한 균열이 발생하면 교체하게 된다.Since the coil spring is subjected to repeated loads at a high temperature of 200-40O ° C., not only does deformation in the longitudinal direction occur, but also thermal fatigue cracks occur, and length contraction (free-field change) occurs over a certain length due to deformation. If a crack occurs due to thermal fatigue, it is replaced.
이러한 종래 슬라이딩게이트에 사용되는 코일스프링은 중량비로 탄소가0.01% 미만이고, 니켈이 약 18% 내외, 코발트가 약 9%내외, 몰리브덴이 약 5%내외, 티타늄이 약 1% 내외인 마르에징강 계열을 주로 사용하여 왔으나 장기간 사용에 의한 변형 및 균열이 문제가 되어 코일스프링의 교체비용이 증가하는 문제점이 있었다.The coil springs used in the conventional sliding gates have a carbon ratio of less than 0.01% by weight, about 18% nickel, about 9% cobalt, about 5% molybdenum, and about 1% titanium. The series has been mainly used, but there is a problem that the replacement cost of the coil spring is increased due to deformation and cracking caused by long-term use.
본 발명은 상술한 종래기술들의 문제점을 해결하기 위해 연구와 실험을 거듭하고 그 결과에 근거하여 창출된 것으로, 종래 대비 탄소함량을 대폭 증가시키고 탄화물형성 원소인 몰리브덴, 텅스텐, 바나듐 등을 첨가함으로서 고온에서도 안정적으로 탄화물을 형성케하여 열피로에 의한 균열 저항성은 기존과 대등하게 유지되면서 고온에서의 변형저항특성을 증가시킬 수 있는 고온변형저항 특성이 우수한 슬라이딩게이트용 코일스프링을 제공함에 그 목적이 있다.The present invention has been made based on the results of repeated research and experiments to solve the problems of the prior arts described above, and significantly increased the carbon content and added the carbide forming elements molybdenum, tungsten, vanadium and the like at a high temperature. The purpose of the present invention is to provide a coil spring for sliding gate that has excellent high temperature deformation resistance characteristics that can increase the deformation resistance characteristics at high temperature while maintaining stable carbide formation at the same time as crack resistance due to thermal fatigue. .
본 발명의 상기한 목적은, 중량%로 탄소(C):0.8~1.2%, 망간(Mn):0.5% 미만, 인(P):0.02% 이하, 황(S):0.02% 이하, 실리콘(Si):0.5% 미만, 크롬(Cr):3.5~6%, 몰리브덴(Mo):4~6%, 텅스텐(W):5~8%로 구성되고, 여기에 니오븀(Nb):1~3%, 바나듐(V):1~3% 및 티타늄(Ti):1~3%로 이루어지는 그룹중에서 선택된 1종 이상이 추가로 첨가되며 잔부 Fe 및 불가피한 불순물로 구성되는 고온변형저항특성이 우수한 슬라이딩게이트용 코일스프링을 제공함에 의해 달성된다.The above object of the present invention is, by weight%, carbon (C): 0.8-1.2%, manganese (Mn): less than 0.5%, phosphorus (P): 0.02% or less, sulfur (S): 0.02% or less, silicon ( Si): less than 0.5%, chromium (Cr): 3.5 to 6%, molybdenum (Mo): 4 to 6%, tungsten (W): 5 to 8%, and niobium (Nb): 1 to 3 %, Vanadium (V): 1 to 3%, and titanium (Ti): 1 to 3%, at least one selected from the group of additionally added, the sliding gate excellent in high temperature strain resistance consisting of the remaining Fe and unavoidable impurities By providing a coil spring for the device.
이하, 본 발명에 대해 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 열피로균열 저항성이 종래 대비 저하되지 않으면서도 고온에서의변형저항특성을 증가시킬 수 있는 슬라이딩게이트용 코일스프링을 연구 및 검토하던중 탄소함량을 높게 하고 특정 합금원소를 첨가하면 그러한 특성을 달성할 수 있다는 것을 발견하였다.The present invention achieves such characteristics by increasing the carbon content and adding specific alloying elements while researching and examining coil springs for sliding gates that can increase the deformation resistance at high temperatures without deteriorating thermal fatigue crack resistance. I found it possible.
즉, 크롬, 몰리브덴, 텅스텐, 바나듐, 니오븀, 티타늄 등의 합금원소들은 탄화물 형성원소이나 고온에서 안정하기 때문에 고온에서 사용되더라도 고온강도를 상승시켜 코일스프링의 변형저항특성을 향상시키는데 기여하게 된다.That is, alloying elements such as chromium, molybdenum, tungsten, vanadium, niobium, and titanium are stable at carbides or at high temperatures, thereby contributing to improving the deformation resistance characteristics of the coil springs by increasing the high temperature strength even when used at high temperatures.
이하, 각 성분의 수치한정이유에 대해 설명하기로 하며, 첨가량은 모두 중량비이다.Hereinafter, the reason for numerical limitation of each component is demonstrated, and all the addition amount is a weight ratio.
본 발명의 슬라이딩게이트용 코일스프링은 탄소(C)를 0.8~1.2% 함유하는 것이 바람직하다.The coil spring for the sliding gate of the present invention preferably contains 0.8 to 1.2% of carbon (C).
그 이유는 상기 탄소(C)의 함량이 0.8% 미만이면 탄화물형성이 적을 뿐만 아니라 고온강도가 저하되고, 1.2% 보다 많으면 강도는 증가하나 충격특성이 불리해지기 때문이다.The reason is that if the content of carbon (C) is less than 0.8%, not only the carbide formation is low but also the high temperature strength is lowered, and if the content of the carbon (C) is more than 1.2%, the strength is increased, but the impact characteristic is disadvantageous.
망간(Mn)은 0.5%미만 첨가하는 것이 바람직한데 그 이유는 망간이 0.5% 보다 많으면 충격성이 나쁘기 때문이다.Manganese (Mn) is preferably added less than 0.5% because the impact resistance is bad when more than 0.5% manganese.
인(P) 및 황(S)은 각각 그 함량이 0.02% 보다 많으면 재료내 결함이 많아지고 충격치가 감소하기 때문에 각각 0.02% 이하로 제한하는 것이 바람직하다.If the content of phosphorus (P) and sulfur (S) is more than 0.02%, the defects in the material increase and the impact value decreases.
실리콘(Si)은 0.5% 미만 첨가하는 것이 바람직한데 그 이유는 실리콘이 0.5% 보다 많으면 충격성이 나쁘기 때문이다.It is preferable to add less than 0.5% of silicon (Si) because the impact resistance is bad when more than 0.5% of silicon.
크롬(Cr)은 그 함량이 3.5% 미만이면 탄화물형성에 의한 강도향상 효과가 저하되어 강도가 좋지 않고, 6%를 초과하면 충격성이 저하되며 가격이 비싸지기 때문에 3.5~6%로 첨가하는 것이 바람직하다.If the content of chromium (Cr) is less than 3.5%, the strength improvement effect due to carbide formation is lowered, so that the strength is not good, and if it exceeds 6%, it is preferable to add it at 3.5 to 6% because the impact is lowered and the price is expensive. Do.
몰리브덴(Mo)은 그 함량이 4% 미만이면 충격치는 증가하나 강도가 저하되고, 6%를 초과하면 강도는 증가하나 충격치가 감소하기 때문에 4~6%로 첨가하는 것이 바람직하다.Molybdenum (Mo) is less than 4% of the impact value is increased, but the strength is lowered, if the content exceeds 6% strength is increased, but the impact value is reduced, it is preferred to add 4 ~ 6%.
텅스텐(W)은 그 함량이 5% 미만이면 탄화물형성에 의한 강도향상 효과가 저하되어 강도가 좋지 않고, 8%를 초과하면 충격성이 저하되며 가격이 비싸지기 때문에 5~8%로 첨가하는 것이 바람직하다.If the content of tungsten (W) is less than 5%, the strength improvement effect due to carbide formation is lowered, and the strength is not good. If the content is more than 8%, the tungsten (W) is preferably added at 5-8% because the impact resistance is low and the price is expensive. Do.
본 발명에서는 고온변형저항 특성을 향상을 위해 상기와 같이 조성된 코일스프링에 니오븀, 바나듐, 및 티타늄으로 이루어지는 그룹 중 1종을 첨가하는 것이 바람직하다.In the present invention, it is preferable to add one of the group consisting of niobium, vanadium, and titanium to the coil spring formed as described above to improve the high temperature strain resistance characteristics.
상기 니오븀(Nb), 바나듐(V), 및 티타늄(Ti)은 그 함량이 각각 1~3%인 것이 바람직하다.Niobium (Nb), vanadium (V), and titanium (Ti) is preferably in the amount of 1 to 3%, respectively.
이들 합금들이 각각 1% 미만으로 첨가되면 탄화물형성에 의한 강도향상 효과가 적고, 3% 보다 많이 첨가되면 함량증가에 따른 효과의 상승을 기대할 수 없기 때문에 바람직하지 않다.If these alloys are added less than 1%, respectively, the effect of improving strength due to carbide formation is small, and if more than 3% is added, the effect of increasing the content cannot be expected.
이하, 실시예를 통해 본 발명을 보다 상세히 설명한다.Hereinafter, the present invention will be described in more detail with reference to Examples.
[실시예]EXAMPLE
하기한 표 1에서와 같이 조성된 코일스프링을 제조하였다.Coil springs were prepared as shown in Table 1 below.
제조된 코일스프링의 길이(자유장)는 81.2mm 이고 제조된 시험편은 그 다음변형특성 및 열피로균열특성을 500℃ 가속 열피로시험을 통해 실시하였으며, 그 결과를 하기 표1에 나타내었다.The length (free length) of the manufactured coil spring was 81.2 mm, and the prepared specimens were then subjected to 500 ° C. accelerated thermal fatigue tests for deformation and thermal fatigue crack characteristics, and the results are shown in Table 1 below.
상기 결과는 실험실에서 피로시험기를 이용한 65만사이클 시험후 변형량 및 균열발생 유무를 나타낸 결과이다.The result is a result showing the deformation amount and the presence of crack after 650,000 cycle test using a fatigue tester in the laboratory.
상기 표 1에 나타난 바와 같이, 발명예1~3은 변형량이 1.35-1.41mm 내외로 종래예의 6mm, 비교예1,2의 4-4.6mm대비 매우 짧고 균열이 발생하지 않아 즉, 열피로균열 저항성이 종래 대비 저하되지 않으면서도 고온에서의 변형저항특성이 우수한 것을 알 수 있었다.As shown in Table 1, Inventive Examples 1 to 3 have a deformation amount of about 1.35 to 1.41 mm, which is very short compared to 6 mm of the conventional example and 4-4.6 mm of Comparative Examples 1 and 2, that is, no crack occurs. It was found that the deformation resistance characteristics at high temperature were excellent without being lowered as compared with the conventional one.
이상에서 상세히 설명한 바와 같이, 본 발명은 열피로균열 저항성은 기존과 같이 유지되면서 고온에서의 변형저항특성이 우수한 슬라이딩게이트용 코일스프링을 제공할 수 있고, 이로 인해 자재비 및 정비비 등을 절감할 수 있는 효과를 제공한다.As described above in detail, the present invention can provide a coil spring for a sliding gate having excellent strain resistance characteristics at high temperature while maintaining thermal fatigue crack resistance as it is, thereby reducing material costs and maintenance costs, etc. Provide effect.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020082487A KR100954788B1 (en) | 2002-12-23 | 2002-12-23 | Coil spring for sliding gate with excellent high temperature strain resistance |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020082487A KR100954788B1 (en) | 2002-12-23 | 2002-12-23 | Coil spring for sliding gate with excellent high temperature strain resistance |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20040055986A true KR20040055986A (en) | 2004-06-30 |
KR100954788B1 KR100954788B1 (en) | 2010-04-28 |
Family
ID=37348415
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020020082487A Expired - Fee Related KR100954788B1 (en) | 2002-12-23 | 2002-12-23 | Coil spring for sliding gate with excellent high temperature strain resistance |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100954788B1 (en) |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2511663B2 (en) | 1987-01-14 | 1996-07-03 | 本田技研工業株式会社 | Coil spring manufacturing method |
JP2613601B2 (en) * | 1987-09-25 | 1997-05-28 | 日産自動車株式会社 | High strength spring |
JPH05331597A (en) * | 1992-05-27 | 1993-12-14 | Sumitomo Electric Ind Ltd | High fatigue strength coil spring |
US7789974B2 (en) * | 2000-12-20 | 2010-09-07 | Nippon Steel Corporation | High-strength spring steel wire |
-
2002
- 2002-12-23 KR KR1020020082487A patent/KR100954788B1/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
KR100954788B1 (en) | 2010-04-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101048946B1 (en) | Spring steel, method for producing spring using same and spring produced therefrom | |
AU2013221988B2 (en) | Abrasion resistant steel plate with high strength and high toughness, and processing for preparing same | |
EP2885440B1 (en) | High-chromium heat-resistant steel | |
US8197614B2 (en) | Spring steel with improved hardenability and pitting resistance | |
KR100372482B1 (en) | Heat resistant Ni base alloy | |
US6685881B2 (en) | Stainless cast steel having good heat resistance and good machinability | |
EP1873270B1 (en) | Low alloy steel | |
US20040187972A1 (en) | Low alloy high speed tool steel having constant toughness | |
DE69824962T2 (en) | Use of a heat-resistant cast steel | |
US6322747B1 (en) | High-strength spring steel | |
MXPA05003228A (en) | Steel composition and parts forged by a forging die. | |
US6773662B2 (en) | Hot-working steel article | |
KR20200030566A (en) | Gas turbine disc material and heat treatment method | |
CN115478214B (en) | Mining chain steel and manufacturing method thereof | |
KR100954788B1 (en) | Coil spring for sliding gate with excellent high temperature strain resistance | |
EP1197571A1 (en) | Steel product for oil well having high strength and being excellent in resistance to sulfide stress cracking | |
US6106766A (en) | Material for gas turbine disk | |
KR20210052772A (en) | HIGH ENTROPY Ni-Fe-Cr-based ALLOY | |
Naoi et al. | Effects of aluminum content on the mechanical properties of a 9Cr-0.5 Mo-1.8 W steel | |
US20010024621A1 (en) | Steel composition and chain formed thereof | |
SE506550C2 (en) | Use of an non-magnetic stainless steel in superconducting low temperature applications | |
JPH0718378A (en) | Hot die steel | |
JPH1017987A (en) | Hot tool steel with excellent high temperature strength and fracture toughness | |
KR20220080382A (en) | Heat-resistant cast steel, roll for heating furnace with improved creep characteristics | |
CN116855822A (en) | A low temper brittleness carbon steel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PA0109 | Patent application |
Patent event code: PA01091R01D Comment text: Patent Application Patent event date: 20021223 |
|
PG1501 | Laying open of application | ||
A201 | Request for examination | ||
PA0201 | Request for examination |
Patent event code: PA02012R01D Patent event date: 20071207 Comment text: Request for Examination of Application Patent event code: PA02011R01I Patent event date: 20021223 Comment text: Patent Application |
|
E902 | Notification of reason for refusal | ||
PE0902 | Notice of grounds for rejection |
Comment text: Notification of reason for refusal Patent event date: 20090925 Patent event code: PE09021S01D |
|
E701 | Decision to grant or registration of patent right | ||
PE0701 | Decision of registration |
Patent event code: PE07011S01D Comment text: Decision to Grant Registration Patent event date: 20100325 |
|
GRNT | Written decision to grant | ||
PR0701 | Registration of establishment |
Comment text: Registration of Establishment Patent event date: 20100419 Patent event code: PR07011E01D |
|
PR1002 | Payment of registration fee |
Payment date: 20100419 End annual number: 3 Start annual number: 1 |
|
PG1601 | Publication of registration | ||
FPAY | Annual fee payment |
Payment date: 20130415 Year of fee payment: 4 |
|
PR1001 | Payment of annual fee |
Payment date: 20130415 Start annual number: 4 End annual number: 4 |
|
LAPS | Lapse due to unpaid annual fee | ||
PC1903 | Unpaid annual fee |
Termination category: Default of registration fee Termination date: 20150309 |