KR20040043890A - Electrical connection method for nano-meter scale electronic device using conducting DNA - Google Patents
Electrical connection method for nano-meter scale electronic device using conducting DNA Download PDFInfo
- Publication number
- KR20040043890A KR20040043890A KR1020020072329A KR20020072329A KR20040043890A KR 20040043890 A KR20040043890 A KR 20040043890A KR 1020020072329 A KR1020020072329 A KR 1020020072329A KR 20020072329 A KR20020072329 A KR 20020072329A KR 20040043890 A KR20040043890 A KR 20040043890A
- Authority
- KR
- South Korea
- Prior art keywords
- nano
- conductive
- dna
- electronic device
- electrical
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6869—Methods for sequencing
- C12Q1/6874—Methods for sequencing involving nucleic acid arrays, e.g. sequencing by hybridisation
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2563/00—Nucleic acid detection characterized by the use of physical, structural and functional properties
- C12Q2563/116—Nucleic acid detection characterized by the use of physical, structural and functional properties electrical properties of nucleic acids, e.g. impedance, conductivity or resistance
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q2563/00—Nucleic acid detection characterized by the use of physical, structural and functional properties
- C12Q2563/155—Particles of a defined size, e.g. nanoparticles
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Immunology (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Biophysics (AREA)
- Analytical Chemistry (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
Description
본 발명은 나노 크기를 가지는 전자 소자로 구성되어 있는 회로에서 전도성 DNA를 이용하여 단위 소자들 간의 전기적 연결을 완성하는 방법에 관한 것이다. 기존의 실리콘 기판을 이용하는 DRAM이나 CPU등에서 금속 배선의 선폭의 크기는 집적도의 향상에 따라서 지속적으로 작아지고 있으며, 1 gigabyte의 집적도를 가지는 메모리 소자의 경우에 선폭의 크기는 0.13 m이다.The present invention relates to a method for completing electrical connection between unit devices using conductive DNA in a circuit composed of electronic devices having nano-sized. In DRAMs and CPUs that use a conventional silicon substrate, the line width of metal wirings continues to decrease as the density increases. In the case of a memory device having an integrated density of 1 gigabyte, the line width is 0.13 m.
이와 같이 미세한 금속 배선을 제작하기 위한 방법으로는 기체 레이저에서 발생하는 극 자외선을 이용하는 전통적인 리소그래피 방법이 사용되고 있으나, 이러한 방법에는 고출력의 안정적인 광원, 평탄도가 우수한 반사경, 마스크와 레지스터 재료 등의 기술적, 경제적인 문제점이 포함되어 있는 실정이며, 초고집적 소자에 대한 요구가 증대함에 따라서 금속 배선의 선폭은 0.1 m 이하로 줄어들어야만 하는데, 여기에 적용되는 기술은 여전히 짧은 파장의 빛을 이용하는 리소그래피 방법을 사용하려는 시도가 진행되고 있지만, 이와 같은 집적도를 이루어지기 위해서는 지금까지 확립되어 있는 기술로는 거의 불가능한 실정이고, 개발이 이루어지는 경우에도 경제적 비용 문제와 수율의 측면에서 커다란 어려움을 격을 것으로 예견되고 있다.Conventional lithography using ultra-ultraviolet rays generated by gas lasers is used as a method for manufacturing fine metal wires. However, such methods include high power stable light sources, reflectors with excellent flatness, mask and resistor materials, and the like. Economic problems are involved, and as the demand for ultra-high-density devices increases, the line width of metal wiring must be reduced to 0.1 m or less, and the technology applied here still uses lithographic methods using short wavelength light. Attempts are being made to achieve this density, but the technology established so far is almost impossible, and even if development occurs, it is expected to face great difficulties in terms of economic cost and yield.
본 발명은 상기 문제점을 해결하기 위하여 창출한 것으로서, 한 개의 길이가 0.34 nm인 basepair가 길이 방향으로 연결되어 있어서 길이의 조절이 0.34 nm 단위의 배수로 가능한 전도성 DNA를 이용하여, 나노 크기로 배열되어 있는 나노 소자의 접합 부분을 전도성 DNA가 결합이 가능하도록 화학적 내지는 기계적 처리를 한 뒤에, 상기 기술한 전도성 DNA가 접합 부분에 연결되도록 함으로써 각각의 나노 소자의 크기가 수십 나노미터에서 최대 1마이크론 이하인 소자들의 전기적 연결 방법을 제공하여 기존의 리소그래피 공정의 제약을 극복하는데 그 목적이 있다.The present invention was created in order to solve the above problems, one base length of 0.34 nm is connected in the longitudinal direction, the length of the length is controlled by using nano-conductive DNA, which can be controlled in multiples of 0.34 nm units, After the chemical or mechanical treatment of the conjugated portion of the nanodevices to allow the conductive DNA to bind, the conductive DNA described above is connected to the conjugated portion, so that each nanodevice has a size of several tens of nanometers up to 1 micron or less. The purpose is to overcome the limitations of existing lithography processes by providing an electrical connection method.
도 1 내지 3은 본 발명에 따른 전도성 DNA를 이용한 나노 크기 전자 소자의 전기적 배선 형성 공정 단면도.1 to 3 is a cross-sectional view of the electrical wiring formation process of the nano-size electronic device using the conductive DNA according to the present invention.
(도면의 주요부분에 대한 부호의 설명)(Explanation of symbols for the main parts of the drawing)
10: 전도성 DNA 20: 나노 크기를 가지는 전자 소자10: conductive DNA 20: electronic device having nano size
30: 전극 40: 반도체 기판30 electrode 40 semiconductor substrate
41: 부도체 박막41: insulator thin film
상기와 같은 목적을 달성하기 위하여 본 발명에 따른 전도성 DNA를 이용한 나노 크기를 가지는 전자 소자간의 전기적인 배선은, 나노미터 크기의 간격으로 배열되어 있는 나노 소자(20); 상기 나노 소자(20)들간의 전기적 연결을 위한 전도성 DNA(10)들; 나노 소자(20)에서 전도성 DNA(10)와 전기적 접합을 완성하기 위한 전극(30)들;을 구비하는 것을 특징으로 한다.In order to achieve the above object, the electrical wiring between the electronic device having a nano size using the conductive DNA according to the present invention includes: a nano device 20 arranged at intervals of a nanometer size; Conductive DNAs 10 for electrical connection between the nanodevices 20; And a plurality of electrodes 30 for completing the electrical bonding with the conductive DNA 10 in the nano device 20.
본 발명에 있어서, 상기 나노 소자(20)들이 반도체 기판(40)을 통하여 전기적으로 연결되는 것을 방지하기 위해서는 알루미늄 산화물 등으로 구성되는 부도체 박막(41)을 형성하는 것이 바람직하다.In the present invention, in order to prevent the nano device 20 from being electrically connected through the semiconductor substrate 40, it is preferable to form a non-conductive thin film 41 made of aluminum oxide or the like.
또한, 상기와 같은 목적을 달성하기 위하여 본 발명에 따른 전도성 DNA(10)를 이용한 나노 크기 전자 소자(20)의 전기적 배선 방법은, 나노 소자(20)의 연결에 적절한 길이로 전도성 DNA(10)를 제작하는 제 1단계; 상기 전도성 DNA(10)를 나노 소자(20)의 접합 부분에 위치시키는 제 2단계; 및 상기 전도성 DNA(10)의 양단과 연결을 목적으로 하는 나노 소자(20)의 전극(30)부와의 접합을 형성하는 제 3단계를 포함하는 것을 특징으로 한다. 본 발명에 있어서 상기 1 단계에서 전도성 DNA(10)의 길이를 나노미터 이내의 크기로 제어하기 위한 방법으로는 화학적 합성으로 이루어지는 것이 바람직하다.In addition, the electrical wiring method of the nano-size electronic device 20 using the conductive DNA 10 according to the present invention in order to achieve the above object, the conductive DNA (10) to a length suitable for the connection of the nano-device 20 A first step of producing; Placing the conductive DNA (10) at the junction of the nano device (20); And a third step of forming a junction with the electrode 30 of the nano device 20 for connection with both ends of the conductive DNA 10. In the present invention, the method for controlling the length of the conductive DNA 10 to within a nanometer in the first step is preferably made of chemical synthesis.
이하, 첨부된 도면1 내지 도면3을 참조하면서 본 발명에 따른 전도성 DNA(10)를 이용한 나노 크기 전자 소자(20)의 전기적 배선 방법을 공정 단계별로 상세하게 설명한다. 먼저 도면1에 도시한 바와 같이 반도체 기판(40) 위에 전기적 절연을 위하여 부도체 박막(41)을 형성하고 상기 부도체 박막(41) 위에 나노 크기를 가지는 전자 소자(20)를 배열시킨다. 다음에, 도면2에 도시한 바와 같이 전자 소자(20)의 전극(30)을 형성하게 되는데 전극(30)의 형성 방법으로는 Au 박막을 진공 증착 또는 이와 유사한 방법이 사용될 수 있다. 한 예로, 전도성 DNA(10)를 고체 소자와 결합하기 위해서는 화학적인 방법이 사용될 수도 있는데, 전자 소자(20)의 전극(30) 부분을 화학적으로 활성화 처리하거나, 산소 또는 수소 결합기를 연결하여 완성하는 방법도 가능하다. 다음에, 도면3에 도시한 바와 같이 전기적 연결을 위한 전극(30)간의 거리와 일치하는 전도성 DNA(10)를 전자 소자(20)의 전극(30)에 결합함으로서, 전기적 배선을 완성하게 된다.Hereinafter, an electrical wiring method of the nano-size electronic device 20 using the conductive DNA 10 according to the present invention will be described in detail with reference to the accompanying drawings 1 to 3. First, as shown in FIG. 1, the insulator thin film 41 is formed on the semiconductor substrate 40 for electrical insulation, and the electronic device 20 having a nano size is arranged on the insulator thin film 41. Next, as shown in FIG. 2, the electrode 30 of the electronic device 20 is formed. As a method of forming the electrode 30, an Au thin film may be vacuum deposited or a similar method. For example, a chemical method may be used to combine the conductive DNA 10 with the solid element. The electrode 30 of the electronic element 20 may be chemically activated or completed by connecting oxygen or hydrogen bonders. Method is also possible. Next, as shown in FIG. 3, the conductive DNA 10 corresponding to the distance between the electrodes 30 for electrical connection is coupled to the electrode 30 of the electronic device 20, thereby completing the electrical wiring.
전도성 DNA(10)와 전자 소자(20)의 전극(30)과의 결합 방법은 화학적 또는 기계적 방법에 의하여 자기 정렬 방식으로 결합할 수 있도록 처리하는 방법을 포함한다. 상기 전도성 DNA(10)의 크기는 직경이 1 내지 2 nm 이고, 길이는 DNA 염기의 개수에 따라서 조절이 가능한데, 하나의 DNA 염기의 길이가 0.34 nm이므로 0.34 nm의 배수로서 0.34 nm부터 수백 nm 이상으로 길이의 조절이 가능하게 된다. 따라서 이와 같은 구성을 갖는 전도성 DNA(10)를 이용한 나노 크기 전자 소자(20)의 전기적 배선 방법은 기존의 리소그래피가 만들어 낼 수 없는 나노미터 길이의 배선을 가능하므로 고집적 반도체 배선 구조를 신뢰성 있게 달성할 수 있다.The method of coupling the conductive DNA 10 and the electrode 30 of the electronic device 20 includes a method of treating the conductive DNA 10 in a self-aligned manner by chemical or mechanical methods. The size of the conductive DNA (10) is 1 to 2 nm in diameter, the length can be adjusted according to the number of DNA bases, since the length of one DNA base is 0.34 nm multiplied by 0.34 nm from 0.34 nm to several hundred nm or more The length can be adjusted. Therefore, the electrical wiring method of the nano-sized electronic device 20 using the conductive DNA 10 having such a configuration enables the nanometer length wiring that cannot be produced by conventional lithography, so that a highly integrated semiconductor wiring structure can be reliably achieved. Can be.
이상 설명한 바와 같이, 본 발명에 따른 전도성 DNA를 이용한 나노 크기 전자 소자의 전기적 배선 방법은 부도체 박막 위에 나노미터에서 수십 나노미터 크기의 일정한 간격을 가지고 형성되어 있는 나노 소자간의 전기적 배선을 형성할 수 있다. 따라서, 본 발명은 테라비트급 이상의 초고집적도가 요구되는 전자 소자의 제작에 응용이 가능하며, 기존의 리소그래피 방법들이 가지고 있는 기술적인 제한을 극복할 수 있을 뿐만 아니라 공정이 간단하여 비용 및 시간을 크게 절감시킬 수 있으며, 전기 배선의 선폭을 훨씬 감소시킬 수 있으므로 테라비트급 이상의 고집적 회로 제작에 크게 기여할 수 있으며, 전기적 특성에 의한 DNA 염기 배열의 결정이 가능하다.As described above, the method for electrically wiring nanoscale electronic devices using conductive DNA according to the present invention may form electrical wiring between nanodevices formed at regular intervals of nanometers to tens of nanometers on the insulator thin film. . Therefore, the present invention can be applied to the fabrication of electronic devices requiring ultra-high density of terabit or more, and can overcome the technical limitations of existing lithography methods as well as simplify the process and greatly reduce the cost and time. In addition, since the line width of the electrical wiring can be significantly reduced, it can greatly contribute to the fabrication of high-integration circuits of terabit or more, and the DNA base sequence can be determined by the electrical characteristics.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020072329A KR20040043890A (en) | 2002-11-20 | 2002-11-20 | Electrical connection method for nano-meter scale electronic device using conducting DNA |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020072329A KR20040043890A (en) | 2002-11-20 | 2002-11-20 | Electrical connection method for nano-meter scale electronic device using conducting DNA |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20040043890A true KR20040043890A (en) | 2004-05-27 |
Family
ID=37340295
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020020072329A KR20040043890A (en) | 2002-11-20 | 2002-11-20 | Electrical connection method for nano-meter scale electronic device using conducting DNA |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20040043890A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100796280B1 (en) * | 2005-12-22 | 2008-01-21 | 서울시립대학교 산학협력단 | Fabrication Method of Qubit using DNA |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990058890A (en) * | 1997-12-30 | 1999-07-26 | 구자홍 | Interface sensing film of bioelectronic device and manufacturing method thereof |
US20020090649A1 (en) * | 1999-12-15 | 2002-07-11 | Tony Chan | High density column and row addressable electrode arrays |
US6448064B1 (en) * | 1997-11-26 | 2002-09-10 | Ut-Battelle, Llc | Integrated circuit biochip microsystem |
-
2002
- 2002-11-20 KR KR1020020072329A patent/KR20040043890A/en active Search and Examination
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6448064B1 (en) * | 1997-11-26 | 2002-09-10 | Ut-Battelle, Llc | Integrated circuit biochip microsystem |
KR19990058890A (en) * | 1997-12-30 | 1999-07-26 | 구자홍 | Interface sensing film of bioelectronic device and manufacturing method thereof |
US20020090649A1 (en) * | 1999-12-15 | 2002-07-11 | Tony Chan | High density column and row addressable electrode arrays |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100796280B1 (en) * | 2005-12-22 | 2008-01-21 | 서울시립대학교 산학협력단 | Fabrication Method of Qubit using DNA |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4674366B2 (en) | Structure in which template with nanoscale features is formed and method for producing the same | |
JP4499418B2 (en) | Method for manufacturing a molecular electronic device | |
US7413973B2 (en) | Method for manufacturing nano-gap electrode device | |
US20010023986A1 (en) | System and method for fabricating logic devices comprising carbon nanotube transistors | |
US7642541B2 (en) | Functional device and method of manufacturing it | |
TWI298709B (en) | Conductive article, conductive trace, and assembly including substrate and conductive trace disposed on the substrate | |
US7948082B2 (en) | Method of fabricating a patterned nanoscopic article | |
KR100847467B1 (en) | Method of sorting carbon nanotubes | |
US20080179590A1 (en) | Logic devices comprising carbon nanotube patterns | |
US8630091B2 (en) | Carbon nanotubes for the selective transfer of heat from electronics | |
US7256435B1 (en) | Multilevel imprint lithography | |
US7633080B2 (en) | Method to assemble structures from nano-materials | |
US6982174B2 (en) | Directed assembly of nanometer-scale molecular devices | |
US20060186451A1 (en) | Memory device for storing electric charge, and method for fabricating it | |
US20070252131A1 (en) | Method of interconnect formation using focused beams | |
CA2372707A1 (en) | Nanoscopic wire-based devices, arrays, and method of their manufacture | |
KR20060130154A (en) | Method of fabricating vertical carbon nanotube field effect transistors for arrangement in arrays and field effect transistros and arrays formed thereby | |
US6946336B2 (en) | Method of making a nanoscale electronic device | |
US20110268884A1 (en) | Formation of nanoscale carbon nanotube electrodes using a self-aligned nanogap mask | |
US8362618B2 (en) | Three dimensional nanoscale circuit interconnect and method of assembly by dielectrophoresis | |
KR20040043890A (en) | Electrical connection method for nano-meter scale electronic device using conducting DNA | |
JP4755827B2 (en) | Circuits and self-organized structures | |
KR100434271B1 (en) | Fabrication Method for Carbon Nanotube | |
US20060267214A1 (en) | Micro electronic component | |
KR100495866B1 (en) | Array-type molecular electronic device and method of fabricating the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
AMND | Amendment | ||
N231 | Notification of change of applicant | ||
E90F | Notification of reason for final refusal | ||
AMND | Amendment | ||
E801 | Decision on dismissal of amendment | ||
E601 | Decision to refuse application | ||
AMND | Amendment | ||
J201 | Request for trial against refusal decision | ||
E801 | Decision on dismissal of amendment | ||
B601 | Maintenance of original decision after re-examination before a trial | ||
J301 | Trial decision |
Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20060721 Effective date: 20070727 Free format text: TRIAL NUMBER: 2006101006265; TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20060721 Effective date: 20070727 |