KR20040022984A - Nanocomposite-type flame retardant comprising non-halogen nitrogenous compounds and Method for manufacturing the same - Google Patents
Nanocomposite-type flame retardant comprising non-halogen nitrogenous compounds and Method for manufacturing the same Download PDFInfo
- Publication number
- KR20040022984A KR20040022984A KR1020020054594A KR20020054594A KR20040022984A KR 20040022984 A KR20040022984 A KR 20040022984A KR 1020020054594 A KR1020020054594 A KR 1020020054594A KR 20020054594 A KR20020054594 A KR 20020054594A KR 20040022984 A KR20040022984 A KR 20040022984A
- Authority
- KR
- South Korea
- Prior art keywords
- halogen
- flame retardant
- nitrogen
- layered silicate
- melamine
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K21/00—Fireproofing materials
- C09K21/06—Organic materials
- C09K21/10—Organic materials containing nitrogen
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/0008—Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
- C08K5/0066—Flame-proofing or flame-retarding additives
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/21—Urea; Derivatives thereof, e.g. biuret
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3467—Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
- C08K5/3477—Six-membered rings
- C08K5/3492—Triazines
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K5/00—Use of organic ingredients
- C08K5/16—Nitrogen-containing compounds
- C08K5/34—Heterocyclic compounds having nitrogen in the ring
- C08K5/3467—Heterocyclic compounds having nitrogen in the ring having more than two nitrogen atoms in the ring
- C08K5/3477—Six-membered rings
- C08K5/3492—Triazines
- C08K5/34922—Melamine; Derivatives thereof
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
Description
본 발명은 난연제 조성물에 관한 것으로, 더욱 상세하게는, 충진제로서 사용되는 나노 크기의 층상 실리케이트에 멜라민, 시아누레이트 등의 아민계 질소계 화합물을 분산시킴으로써, 기존의 일반 유기난연제 사용시 보다 난연성 및 기계적 물성이 향상된 비할로겐 질소계 화합물 함유 나노복합체형 난연제 조성물 및 그 제조 방법에 관한 것이다.The present invention relates to a flame retardant composition, and more particularly, by dispersing an amine-based nitrogen compound such as melamine and cyanurate in nano-sized layered silicate used as a filler, more flame retardant and mechanical than conventional conventional organic flame retardant The present invention relates to a non-halogen nitrogen compound-containing nanocomposite flame retardant composition having improved physical properties and a method of manufacturing the same.
종래의 난연제 기술은 염소나 브롬 같은 할로겐 화합물을 이용하여 발전해 왔으나, 화재시 이러한 할로겐 화합물에서 비롯되는 각종 환경오염 물질 및 인체에 유해한 다이옥신, 퓨란 등의 생성으로 인하여 기존 할로겐 난연제에 대한 각종 규제가 강화되고 있으며, 최근에는 유럽을 중심으로 환경 친화적인 비할로겐 계열의 난연제에 대한 요구가 확대되고 있다.Conventional flame retardant technology has been developed using halogen compounds such as chlorine and bromine, but various regulations on existing halogen flame retardants are strengthened due to the generation of various environmental pollutants derived from such halogen compounds and dioxin and furan, which are harmful to human body in case of fire. Recently, the demand for environmentally friendly non-halogen-based flame retardants is expanding, especially in Europe.
현재 비할로겐 난연제의 주종은 인계 화합물, 특히 포스페이트 계열인데, 할로겐 화합물에 비해서 상대적으로 난연성이 낮으며, 고분자의 종류에 따라 연소시분해 메카니즘이 다르기 때문에 난연도에 차이를 보이고 있다. 플라스틱에 인계 난연제를 첨가하여 난연제품을 성형할 때 나타나는 문제점은 성형물 표면불량 및 내열성 저하이다. 또한, 고온에서 장시간 방치되면 분해된 인산에스테르 화합물이 인산 등으로 환원되어 성형물의 물성이 급격히 저하되는 문제점도 있으며, 이러한 변화는 특히 올리고머 형태의 인산에스테르에서 심하게 발생한다. 따라서, 플라스틱에 인계 난연제를 첨가하는 방법은 최종수지의 난연성과 내열성 향상에 효과적이지 못하다.Currently, the main types of non-halogen flame retardants are phosphorus compounds, especially phosphate-based compounds, which are relatively low in flame retardancy compared to halogen compounds, and show a difference in flame retardancy due to different decomposition mechanisms upon combustion according to polymer type. Problems in forming a flame retardant product by adding a phosphorus-based flame retardant to plastic are poor molding surface and heat resistance. In addition, when left at a high temperature for a long time, there is a problem in that the decomposed phosphate ester compound is reduced to phosphoric acid and the like, and the physical properties of the molded article are drastically lowered. Such a change is particularly severe in oligomeric phosphate esters. Therefore, the method of adding the phosphorus-based flame retardant to the plastic is not effective in improving the flame resistance and heat resistance of the final resin.
상기 문제점을 해결하기 위하여, 최근 폴리올레핀 수지 등의 난연제품에 질소계 난연제를 첨가하거나, 인계 난연제 및 질소계 난연제를 혼합 사용함으로써 난연성을 향상시키고자 하는 방법이 시도되었다. 예컨대, 미국 특허 제5,326,805호에서는 인계 난연제인 암모늄 포스페이트와 질소화합물인 이소시아누레이트 에스테르를 혼합하여 난연성을 부여하는 기술을 개시하였다.In order to solve the above problems, a method has been recently attempted to improve the flame retardancy by adding a nitrogen flame retardant to a flame retardant product such as polyolefin resin or by using a mixture of a phosphorus flame retardant and a nitrogen flame retardant. For example, U. S. Patent No. 5,326, 805 discloses a technique of mixing flame retardant ammonium phosphate and nitrogen compound isocyanurate ester to impart flame retardancy.
그러나, 상기의 기술들은 유기난연제의 단독 사용으로 인하여 플라스틱의 내열성 저하를 유발하고, 뿐만 아니라 마이크로 단위의 분산성에 그쳐 성형품에 충분한 기계적 강도를 줄 수 없는 한계가 있다.However, the above-described techniques cause a decrease in the heat resistance of plastics due to the use of an organic flame retardant alone, as well as a dispersibility of micro units, and thus there is a limit in that the molded article cannot be provided with sufficient mechanical strength.
본 발명은 상기와 같은 종래의 문제점을 해결하기 위한 것으로서, 본 발명의 목적은, 비할로겐 질소계 난연제를 유기화된 층상 실리케이트에 분산시킴으로써 나노미터 크기로 각 성분이 분산된 나노 복합 난연제를 제조하여 기존의 유기난연제 보다 고분자의 내열성 및 난연성을 증대시키고, 유리섬유와 같은 마이크로 단위의무기물 충진제로는 얻을 수 없는 기계적 강도를 부여하는 비할로겐 질소계 화합물 함유 나노복합체형 난연제 조성물 및 그 제조 방법을 제공하는 것이다.The present invention is to solve the conventional problems as described above, an object of the present invention, by dispersing a non-halogen nitrogen-based flame retardant in an organic layered silicate to prepare a nano-composite flame retardant dispersed in each component in nanometer size It provides a non-halogen nitrogen-based compound-containing nanocomposite flame retardant composition and a method for producing the same, which increase the heat resistance and flame retardancy of the polymer than the organic flame retardant, and impart mechanical strength that cannot be obtained with inorganic fillers such as microfibers. will be.
상기한 목적을 달성하기 위하여 본 발명에 의한 비할로겐 질소계 화합물 함유 나노복합체형 난연제 조성물은, 할로겐을 함유하지 않는 질소계 화합물 80 내지 99wt% 및 유기화제로 처리하여 유기화함으로써 극성이 감소된 층상 실리케이트 1 내지 20wt%를 포함하여 구성되는 난연제 조성물로서, 상기 층상 실리케이트가 나노미터 단위의 크기를 갖는 것을 특징으로 한다. 여기서, 나노크기는 물질의 고유 물성을 잃지 않는 최소 단위인 분자의 크기이다.In order to achieve the above object, the non-halogen nitrogen compound-containing nanocomposite flame retardant composition according to the present invention is a layered silicate having reduced polarity by treating with 80 to 99 wt% of a nitrogen-free compound containing no halogen and an organic agent. Flame retardant composition comprising 1 to 20wt%, characterized in that the layered silicate has a size in nanometers. Here, the nano-size is the size of the molecule that is the minimum unit does not lose the intrinsic properties of the material.
본 발명에 의한 비할로겐 질소계 화합물 함유 나노복합체형 난연제 조성물에 있어서, 상기 층상 실리케이트는 몬트모릴로나이트, 헥토라이트, 버미큘라이트 및 사포나이트로 구성되는 군으로부터 선택되는 것을 특징으로 한다.In the non-halogen nitrogen compound-containing nanocomposite flame retardant composition according to the present invention, the layered silicate is selected from the group consisting of montmorillonite, hectorite, vermiculite and saponite.
본 발명에 의한 비할로겐 질소계 화합물 함유 나노복합체형 난연제 조성물에 있어서, 상기 유기화제는 탄소 사슬수가 10 내지 18인 알킬 암모늄인 것을 특징으로 한다.In the non-halogen nitrogen-based compound-containing nanocomposite flame retardant composition according to the present invention, the organic agent is characterized in that the alkyl ammonium having 10 to 18 carbon chains.
본 발명에 의한 비할로겐 질소계 화합물 함유 나노복합체형 난연제 조성물에 있어서, 상기 질소계 화합물은 멜라민, 멜라민 포스페이트, 멜라민 시아누레이트를 포함하는 멜라민계 유도체, 우레아, 우레아 유도체, 트리스(2-하이드록시에틸)이소시아누레이트(tris(2-hydroxyethyl) isocyanurate; THEIC)를 포함하는 이소시아누레이트 유도체, 및 트리아진 계열의 유도체로 구성되는 군으로부터 하나 이상 선택되어 사용되는 것을 특징으로 한다.In the non-halogen nitrogen compound-containing nanocomposite flame retardant composition according to the present invention, the nitrogen-based compound is melamine derivatives, urea, urea derivatives, tris (2-hydroxy) including melamine, melamine phosphate, melamine cyanurate Isocyanurate derivatives comprising ethyl) isocyanurate (tris (2-hydroxyethyl) isocyanurate; THEIC), and triazine-based derivatives, characterized in that one or more selected from the group consisting of.
또한, 본 발명에 의한 비할로겐 질소계 화합물 함유 나노복합체형 난연제 조성물의 제조 방법은, 유기화제로 처리함으로써 층상 실리케이트의 극성을 감소시키는 유기화 단계(a); 할로겐을 함유하지 않는 질소계 화합물 80 내지 99wt% 및 상기 단계(a)의 유기화처리를 거쳐 극성이 감소된 층상 실리케이트 1 내지 20wt%를 혼합하는 단계(b); 및 상기 단계(b)의 혼합물을 100 내지 180℃의 상압 또는 진공에서 인터컬레이션 또는 디라미네이션 반응시키는 단계(c)를 포함하여 구성되는 제조 방법으로서, 상기 단계(a)의 층상 실리케이트가 나노미터 단위의 크기를 갖는 것을 특징으로 한다.In addition, the method for producing a non-halogen nitrogen compound-containing nanocomposite flame retardant composition according to the present invention comprises: an organicization step of reducing the polarity of the layered silicate by treating with an organicizing agent; Mixing (b) 80 to 99 wt% of a halogen-free nitrogen-based compound and 1 to 20 wt% of the layered silicate having reduced polarity through the organic treatment of step (a); And (c) subjecting the mixture of step (b) to an intercalation or delamination reaction at atmospheric pressure or vacuum at 100 to 180 ° C., wherein the layered silicate of step (a) is in nanometers. It is characterized by having the size of the unit.
본 발명에 의한 비할로겐 질소계 화합물 함유 나노복합체형 난연제 조성물의 제조 방법에 있어서, 상기 단계(a)의 층상 실리케이트는 몬트모릴로나이트, 헥토라이트, 버미큘라이트 및 사포나이트로 구성되는 군으로부터 선택되는 것을 특징으로 한다.In the method for producing a non-halogen nitrogen compound-containing nanocomposite flame retardant composition according to the present invention, the layered silicate of step (a) is selected from the group consisting of montmorillonite, hectorite, vermiculite and saponite It features.
본 발명에 의한 비할로겐 질소계 화합물 함유 나노복합체형 난연제 조성물의 제조 방법에 있어서, 상기 단계(a)의 유기화제는 탄소 사슬수가 10 내지 18인 알킬 암모늄인 것을 특징으로 한다.In the method for producing a non-halogen nitrogen-based compound-containing nanocomposite flame retardant composition according to the present invention, the organic agent of step (a) is characterized in that the alkyl ammonium having 10 to 18 carbon chains.
본 발명에 의한 비할로겐 질소계 화합물 함유 나노복합체형 난연제 조성물의 제조 방법에 있어서, 상기 단계(b)의 질소계 화합물은 멜라민, 멜라민 포스페이트, 멜라민 시아누레이트를 포함하는 멜라민계 유도체, 우레아, 우레아 유도체, 트리스(2-하이드록시에틸)이소시아누레이트를 포함하는 이소시아누레이트 유도체,및 트리아진 계열의 유도체로 구성되는 군으로부터 하나 이상 선택되어 사용되는 것을 특징으로 한다.In the method for producing a non-halogen nitrogen compound-containing nanocomposite flame retardant composition according to the present invention, the nitrogen-based compound of step (b) is melamine derivatives, urea, urea, including melamine, melamine phosphate, melamine cyanurate At least one selected from the group consisting of derivatives, isocyanurate derivatives including tris (2-hydroxyethyl) isocyanurate, and triazine derivatives is used.
단위 유기물이나 고분자/ 층상 실리케이트 나노복합체에 주로 사용되는 대표적인 층상 실리케이트는 스멕타이트 계열중의 몬트몰리로나이트이다. 몬트몰리로나이트의 기본 구조를 살펴보면, 바깥쪽의 실리카 테트라헤드랄 시트(silica tetrahedral sheet)가 안쪽의 알루미늄이나 마그네슘의 옥타헤드랄 시트(octahedral sheet)를 감싸고 있는 2:1 구조로 이루어져 있다. 옥타헤드랄 시트에서는 알루미늄이온 대신 마그네슘이나 철이온으로 부분적으로 치환되어 있고, 테트라헤드랄 시트의 실리콘이온은 알루미늄이온으로 부분적으로 치환되어 있어 전체적으로 음전하를 띠고 있다. 따라서, 층내의 전체 전하의 균형을 맞추기 위해 층간에는 Na+, Li+등의 이온으로 채워져 있다. 특히, 시트의 말단에 매우 극성인 OH기가 존재하는 친수성 구조이므로, 대부분 친유성인 수지가 인터칼레이션되거나 층상 실리케이트가 디라미네이션되어 수지 안으로 분산될 수 없다.Representative layered silicates mainly used in unit organics or polymer / layered silicate nanocomposites are montmolylonite in the smectite family. Looking at the basic structure of montmolylonite, the outer silica tetrahedral sheet (silica tetrahedral sheet) is composed of a 2: 1 structure surrounding the octahedral sheet of aluminum or magnesium inside. In the octahedral sheet, it is partially substituted with magnesium or iron ions instead of aluminum ions, and the silicon ions of the tetrahedral sheet are partially substituted with aluminum ions, and are thus negatively charged. Therefore, in order to balance the total charge in the layer, the layers are filled with ions such as Na + and Li + . In particular, because of the hydrophilic structure in which very polar OH groups exist at the ends of the sheet, most lipophilic resins cannot be intercalated or layered silicates can be dispersed and dispersed into the resin.
따라서, 유기화합물 인터칼레이션 또는 층상 실리케이트의 분산을 위해서는 극성을 감소시킨 층상 실리케이트를 사용하여야 하는데, 이를 위해서 본 발명에서는 유기화제로 처리함으로써 유기화된 층상 실리케이트(OSL: Organically modified Layered Silicate)를 사용한다. 본 발명에서는 층간 거리를 넓히기 위해 분자 크기가 큰 알킬 암모늄으로 유기화된 층상 실리케이트를 사용하였다. 이와 같이 용어 '유기화'는 무기물인 층상 실리케이트의 극성을 감소시키기 위해 유기화제인 알킬암모늄 등으로 처리하는 것을 말한다.Therefore, in order to disperse organic compound intercalation or layered silicate, it is necessary to use layered silicates with reduced polarity. For this purpose, in the present invention, organically modified layered silicate (OSL) is used by treatment with an organic agent. . In the present invention, a layered silicate organicated with alkylammonium having a large molecular size was used to increase the interlayer distance. As such, the term 'organization' refers to treatment with an alkylating agent, such as alkylammonium, to reduce the polarity of the inorganic layered silicates.
본 발명의 목적을 달성하기 위해서 가장 바람직한 알킬 암모늄은 탄소수 10 내지 18인 알킬 암모늄이다. 층상 실리케이트의 유기화는 양이온 몬트모릴로나이트, 헥토라이트, 버미큘라이트 또는 사포나이트에 상응하는 양성자화된 1차 아민간의 양이온 교환 반응에 의해 일어난다.Most preferred alkyl ammonium for achieving the object of the present invention is alkyl ammonium having 10 to 18 carbon atoms. The organicization of the layered silicates occurs by cation exchange reactions between the protonated primary amines corresponding to cationic montmorillonite, hectorite, vermiculite or saponite.
상기 유기화된 층상 실리케이트의 사용량은 전체 난연제 조성물 대비 1-20 wt%가 바람직하다. 1wt% 이하에서는 질소계 화합물이 분산될 수 있을 만큼 충분한 표면적을 제공하지 못하며, 20wt% 이상에서는 층상 실리케이트의 응집이 심해 물리적인 혼합공정이 힘들고 질소계 화합물의 난연효과가 감소한다.The amount of the organic layered silicate used is preferably 1-20 wt% relative to the total flame retardant composition. If it is less than 1wt%, it does not provide enough surface area to disperse the nitrogen-based compound. If it is more than 20wt%, the layered silicate is agglomerated so that the physical mixing process is difficult and the flame-retardant effect of the nitrogen-based compound is reduced.
본 발명의 난연제 조성물은 상기 질소계 화합물이 상기 층상 실리케이트의 층간에 인터칼레이션됨으로써 나노컴포지트화 되거나 상기 층상 실리케이트의 층이 디라미네이션되어 상기 질소계 화합물 사이로 분산된 것임을 특징으로 한다. 여기서, 용어 '나노컴포지트'는 매트릭스 화합물에 나노크기의 충진제가 복합된 화합물을 말하며, 1㎚는 원자 3∼4개를 붙여놓은 정도의 크기이다.The flame retardant composition of the present invention is characterized in that the nitrogen-based compound is nanocomposited by intercalation between the layers of the layered silicate, or the layered layered silicate is de-laminated and dispersed between the nitrogen-based compounds. Here, the term 'nano composite' refers to a compound in which a nano-sized filler is combined with a matrix compound, and 1 nm is about the size of 3-4 atoms pasted.
이하 실시예를 통하여 본 발명을 상세하게 설명한다. 그러나, 하기의 실시예는 예시적인 목적일 뿐, 본 발명이 이에 한정되는 것은 아니다.The present invention will be described in detail through the following examples. However, the following examples are for illustrative purposes only, and the present invention is not limited thereto.
<실시예 1 : 질소계 화합물/층상 실리케이트 난연제 조성물 제조>Example 1 Preparation of Nitrogen Compound / Layered Silicate Flame Retardant Composition
[제조공정][Manufacture process]
1) 몬트모릴로나이트 10g을 삼차증류수 1000ml에 하루동안 충분히 분산시킨다.1) Disperse 10 g of montmorillonite in 1000 ml of tertiary distilled water for a day.
2) 알킬 암모늄과 염산이 녹아있는 수용액 100ml를 몬트모릴로나이트 분산액에 첨가한 후 85℃에서 1시간동안 양이온 교환반응을 실시한다.2) Add 100 ml of an aqueous solution of alkyl ammonium and hydrochloric acid to the montmorillonite dispersion and conduct a cation exchange reaction at 85 ° C for 1 hour.
3) 증류수로 3번 이상 세척한 후 진공건조기에서 2-3일 건조하여 유기화된 층상 실리케이트 분말을 제조한다.3) After washing three times or more with distilled water and dried for 2-3 days in a vacuum dryer to prepare an organic layered silicate powder.
4) 환류반응기 내에 트리스(2-하이드록시에틸)이소시아누레이트 95g을 투입한 후 150℃까지 승온하여 충분히 녹인다.4) 95 g of tris (2-hydroxyethyl) isocyanurate was added to the reflux reactor, and the temperature was raised to 150 ° C to dissolve sufficiently.
5) 상기 용융물에 유기화된 층상 실리케이트 5g을 투입한 후 2시간동안 인터컬레이션 또는 디라미네이션 반응을 실시한다.5) After 5 g of the organic layered silicate was added to the melt, an intercalation or delamination reaction was performed for 2 hours.
6) 상기 반응물을 냉각하여 원하는 입도로 분쇄한다.6) The reaction is cooled and ground to the desired particle size.
본 발명에서는 상기 유기화된 층상 실리케이트와 질소계 화합물이 인터칼레이션 또는 디라미네이션을 통해 나노컴포지트 구조가 형성되었음을 X-레이 회절 분석에 의한 거리변화 및 투과전자현미경을 통한 모폴로지 변화를 통해 확인하였다. X-레이 회절 분석은 층상 실리케이트의 층간 거리의 변화를 측정하여 확인하는 것으로 나노컴포지트가 형성되면 층간 거리가 변화하지만 나노컴포지트가 형성되지 않은 경우에는 층간 거리가 변화하지 않는다.In the present invention, it was confirmed that the nanocomposite structure of the organic layered silicate and the nitrogen-based compound was formed through intercalation or delamination through distance change by X-ray diffraction analysis and morphology change through transmission electron microscope. X-ray diffraction analysis confirms by measuring a change in the interlayer distance of the layered silicate. When the nanocomposite is formed, the interlayer distance changes, but when the nanocomposite is not formed, the interlayer distance does not change.
본 발명에 의한 난연제 조성물의 제조 방법에 따라 얻어진 나노컴포지트의 특성 및 폴리프로필렌 성형물에 적용한 후의 물성 결과를 하기 표 1에 나타내었다.The properties of the nanocomposite obtained according to the method for producing a flame retardant composition according to the present invention and the physical properties after application to the polypropylene molded product are shown in Table 1 below.
(PP 성형품: PP/APP/본 발명의 난연제 조성물/금속 산화물 = 75/9/15/1)(PP molded article: PP / APP / flame retardant composition / metal oxide of the present invention = 75/9/15/1)
상기 표 1에 나타난 바와 같이, 본 발명에 의한 난연제 조성물은 원소 측정 결과 할로겐을 전혀 함유하지 않으며, 나노컴포지트 구조는 상기와 같이 X-레이 회절에 의하여 층상 실리케이트의 층간 거리가 변화하였음을 확인하였다.As shown in Table 1, the flame retardant composition according to the present invention did not contain any halogen as a result of element measurement, the nanocomposite structure was confirmed that the interlayer distance of the layered silicate was changed by X-ray diffraction as described above.
또한, PP에 적용시, 기존보다 인장 강도 및 열적 안정성을 포함하는 기계적 물성이 우수한 난연성 V-0 등급의 성형품을 얻을 수 있음을 확인하였다.In addition, when applied to PP, it was confirmed that a molded article of flame retardant V-0 grade having excellent mechanical properties including tensile strength and thermal stability than the conventional one can be obtained.
본 발명에 따라 비할로겐 질소계 화합물 및 층상 실리케이트로 이루어지는 나노복합체형 난연제 조성물은, 유해한 할로겐을 사용하지 않으면서도 기존의 인계 및/또는 질소계 난연제를 단독 사용하는 것보다 안정된 기계적 물성을 유지하면서, 수지에 우수한 난연성을 부여할 수 있어 전기전자, 산업소재 등 난연성이 필요한 다양한 고분자 응용분야에 적용할 수 있다.According to the present invention, a nanocomposite flame retardant composition composed of a non-halogen nitrogen compound and a layered silicate, while maintaining a stable mechanical property than using a conventional phosphorus- and / or nitrogen-based flame retardant alone without using harmful halogens, Excellent flame retardancy can be imparted to the resin, which can be applied to various polymer applications requiring flame retardancy such as electric and electronic materials and industrial materials.
또한, 본 발명에 따른 난연제 조성물은 수분이나 가스의 투과능을 억제하는 장벽역할을 할 수 있으므로 수지의 물성을 유지시켜 줄 수 있으며, 단독 사용뿐만 아니라, 폴리올레핀 수지계에 적용시 인계 난연제와 혼용하여 사용하면 상승작용에 의한 우수한 난연성을 확보할 수 있다.In addition, the flame retardant composition according to the present invention can act as a barrier to inhibit the permeability of water or gas can maintain the physical properties of the resin, as well as used alone and mixed with a phosphorous flame retardant when applied to a polyolefin resin system Lower flame retardancy due to synergy can be ensured.
또한, 본 발명에 따른 비할로겐 질소계 화합물 함유 나노복합체형 난연제 조성물의 제조 방법을 이용하면, 상기와 같은 역할을 하는 우수한 난연제 조성물을 효과적으로 제조할 수가 있다.In addition, by using the method for producing a non-halogen nitrogen-based compound-containing nanocomposite flame retardant composition according to the present invention, it is possible to effectively produce excellent flame retardant compositions having the same role as described above.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020054594A KR20040022984A (en) | 2002-09-10 | 2002-09-10 | Nanocomposite-type flame retardant comprising non-halogen nitrogenous compounds and Method for manufacturing the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020054594A KR20040022984A (en) | 2002-09-10 | 2002-09-10 | Nanocomposite-type flame retardant comprising non-halogen nitrogenous compounds and Method for manufacturing the same |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20040022984A true KR20040022984A (en) | 2004-03-18 |
Family
ID=37326688
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020020054594A KR20040022984A (en) | 2002-09-10 | 2002-09-10 | Nanocomposite-type flame retardant comprising non-halogen nitrogenous compounds and Method for manufacturing the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20040022984A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108822400A (en) * | 2018-06-02 | 2018-11-16 | 山东兄弟科技股份有限公司 | A kind of dedicated resistance to preparation method that halogen-free flame retardants is precipitated of polypropylene |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990029643A (en) * | 1997-09-11 | 1999-04-26 | 귀틀라인 | Stable foaming paint under high temperature and humidity conditions |
KR20010101734A (en) * | 1999-01-28 | 2001-11-14 | 베르너 훽스트, 지크프리트 포트호프 | Melaminemodified phyllosillicates |
KR20010108300A (en) * | 1999-03-04 | 2001-12-07 | 카흐홀즈 트라우델, 귀틀라인 파울 | Fire protection coating |
KR20020027701A (en) * | 2000-10-04 | 2002-04-15 | 이종두 | Fire retardant composition containing nanoclay and method for producing the fire retardant composition |
-
2002
- 2002-09-10 KR KR1020020054594A patent/KR20040022984A/en not_active Application Discontinuation
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR19990029643A (en) * | 1997-09-11 | 1999-04-26 | 귀틀라인 | Stable foaming paint under high temperature and humidity conditions |
KR20010101734A (en) * | 1999-01-28 | 2001-11-14 | 베르너 훽스트, 지크프리트 포트호프 | Melaminemodified phyllosillicates |
KR20010108300A (en) * | 1999-03-04 | 2001-12-07 | 카흐홀즈 트라우델, 귀틀라인 파울 | Fire protection coating |
KR20020027701A (en) * | 2000-10-04 | 2002-04-15 | 이종두 | Fire retardant composition containing nanoclay and method for producing the fire retardant composition |
Non-Patent Citations (1)
Title |
---|
(Polymer Degradation and Stability 54:205~215 참조) * |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108822400A (en) * | 2018-06-02 | 2018-11-16 | 山东兄弟科技股份有限公司 | A kind of dedicated resistance to preparation method that halogen-free flame retardants is precipitated of polypropylene |
CN108822400B (en) * | 2018-06-02 | 2021-04-06 | 山东兄弟科技股份有限公司 | Preparation method of precipitation-resistant halogen-free flame retardant special for polypropylene |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
He et al. | Flame retardant polymeric nanocomposites through the combination of nanomaterials and conventional flame retardants | |
Yue et al. | Flame retardant nanocomposites based on 2D layered nanomaterials: a review | |
Hou et al. | A review on metal-organic hybrids as flame retardants for enhancing fire safety of polymer composites | |
Schartel et al. | Phosphonium‐modified layered silicate epoxy resins nanocomposites and their combinations with ATH and organo‐phosphorus fire retardants | |
KR101036220B1 (en) | Fire resistant material | |
Utracki et al. | Synthetic, layered nanoparticles for polymeric nanocomposites (PNCs) | |
KR101840206B1 (en) | Organic nanoclay-polymer composite and preparing method of the same | |
Teles et al. | Fire retardancy in nanocomposites by using nanomaterial additives | |
Batistella et al. | Interactions between kaolinite and phosphinate-based flame retardant in Polyamide 6 | |
Lu et al. | Nanoreinforcements of Two‐Dimensional Nanomaterials for Flame Retardant Polymeric Composites: An Overview | |
KR100977689B1 (en) | Flame-retardant and flame-retardant resin composition | |
JP2006504815A5 (en) | ||
Pan et al. | An overview of the flame retardants for poly (vinyl chloride): recent states and perspective | |
CN114085421B (en) | Additive composition, preparation method and application thereof | |
Lv et al. | Novel nanocomposites based on epoxy resin and modified magnesium hydroxide: Focus on flame retardancy and mechanical properties | |
Baochai et al. | An overview of the recent advances in flame retarded poly (lactic acid) | |
Liu et al. | Fire‐retardant and high‐strength polymeric materials enabled by supramolecular aggregates: Special Collection: Distinguished Australian Researchers | |
Yue et al. | Using colloidal lignin intercalated montmorillonite nanosheets as synergistic and reinforced agent for flame‐retardant poly (butylene succinate) composites | |
KR101915595B1 (en) | Nanoclays containing flame retardant chemicals for fire retardant applications | |
Huo et al. | Two-Dimensional Nanomaterials for Flame Retardant Polymer Composites: A Mini Review | |
de Souza et al. | Recent development on flame retardants for polyurethanes | |
Hajibeygi et al. | Plasticized polyvinyl chloride/melamine‐cyanurate modified Mg (OH) 2@ bentonite nanocomposites; mechanical, thermal, and flame retardant properties | |
KR20040022984A (en) | Nanocomposite-type flame retardant comprising non-halogen nitrogenous compounds and Method for manufacturing the same | |
KR100374258B1 (en) | Fire retardant composition containing nanoclay and method for producing the fire retardant composition | |
Bartoli et al. | Overview on Classification of Flame-Retardant Additives for Polymeric Matrix |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |