KR20040013598A - Clockwise/counterclockwise compressor refrigerant mount enactment method for refrigerator - Google Patents
Clockwise/counterclockwise compressor refrigerant mount enactment method for refrigerator Download PDFInfo
- Publication number
- KR20040013598A KR20040013598A KR1020020046596A KR20020046596A KR20040013598A KR 20040013598 A KR20040013598 A KR 20040013598A KR 1020020046596 A KR1020020046596 A KR 1020020046596A KR 20020046596 A KR20020046596 A KR 20020046596A KR 20040013598 A KR20040013598 A KR 20040013598A
- Authority
- KR
- South Korea
- Prior art keywords
- compressor
- refrigerant
- amount
- evaporator
- temperature
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D29/00—Arrangement or mounting of control or safety devices
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2600/00—Control issues
- F25D2600/06—Controlling according to a predetermined profile
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D2700/00—Means for sensing or measuring; Sensors therefor
- F25D2700/10—Sensors measuring the temperature of the evaporator
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Devices That Are Associated With Refrigeration Equipment (AREA)
Abstract
Description
본 발명은 정/역회전이 가능한 압축기를 채용한 냉장고에 관한 것으로, 특히작은 냉력을 내는 역방향으로 압축기가 회전할 때의 냉매 봉입량을 압축기의 냉매 봉입량으로 설정하도록 한 냉장고의 정/역회전 압축기 냉매 봉입량 설정방법에 관한 것이다.The present invention relates to a refrigerator employing a compressor capable of forward / reverse rotation, and in particular, a forward / reverse rotation of a refrigerator configured to set the amount of refrigerant charge when the compressor rotates in a reverse direction of small cooling force to the amount of refrigerant charge of the compressor. The present invention relates to a method for setting a compressor refrigerant filling amount.
일반적으로, 냉장고에 적용되는 냉동 싸이클의 경우, 냉동실의 냉기 공급을 위한 고냉력 싸이클과 냉장실의 냉기 공급을 위한 저냉력 싸이클로 구분된다.In general, in the case of a refrigeration cycle applied to the refrigerator, it is divided into a high cold cycle for supplying cold air in the freezer compartment and a low cold cycle for supplying cold air in the refrigerating compartment.
이때, 상기 고냉력 냉동 싸이클이나 저냉력 냉동싸이클은, 팽창수단의 길이가 동일하여 운전모드에 따른 최적의 냉동싸이클을 구현하지 못하는데, 이와같은 종래 기술을 첨부한 도면을 참조하여 설명한다.In this case, the high-cooling refrigeration cycle or low-cold-freezing cycle, the length of the expansion means does not implement the optimal refrigeration cycle according to the operation mode, will be described with reference to the accompanying drawings.
도1은 일반적인 냉장고의 냉동싸이클을 보인 보인 개략도로서, 이에 도시된 바와같이 증발기에서 토출되는 저온, 저압의 냉매증기를 흡입하여 이를 압축함으로써 고온, 고압의 증기로 만드는 압축기(1)와; 상기 압축기(1)에서 토출된 고온, 고압의 냉매증기의 열을 물 또는 공기 중에 방출시키고, 고압의 포화액으로 변화시키는 응축기(2)와; 상기 응축기(2)에서 토출된 고압의 포화액을, 모세관(3)을 통해 통해 저온, 저압의 냉매로 흡입하여 이를 증발시켜, 냉동실로 열교환하여 차가워진 공기를 배출하는 제1 증발기(F-EVA)와; 상기 응축기(2)에서 토출된 고압의 포화액을, 모세관(3)을 통해 저온,저압의 냉매로 흡입하여 이를 증발시켜, 냉장실로 열교환하여 차가워진 공기를 배출하는 제2 증발기(R-EVA)를 구비하며, 이와같은 냉동싸이클을 설명한다.1 is a schematic view showing a refrigerating cycle of a typical refrigerator, as shown in FIG. 1, a compressor (1) which makes high-temperature, high-pressure steam by sucking and compressing a low-temperature, low-pressure refrigerant vapor discharged from an evaporator; A condenser (2) for dissipating the heat of the high-temperature, high-pressure refrigerant vapor discharged from the compressor (1) into water or air, and converting it into a high-pressure saturated liquid; The first evaporator (F-EVA) which sucks the high pressure saturated liquid discharged from the condenser 2 into the refrigerant of low temperature and low pressure through the capillary tube 3, evaporates it, and heats it into a freezing chamber to discharge cold air. )Wow; A second evaporator (R-EVA) which sucks the high pressure saturated liquid discharged from the condenser 2 into the refrigerant having low temperature and low pressure through the capillary tube 3 and evaporates it, and heats it into a refrigerating chamber to discharge cold air. It will be described, such a freezing cycle will be described.
먼저, 냉동 운전시(고냉력 운전시), 압축기(1)에서 압축된 고온고압의 냉매는, 응축기(2)로 유입되어 응축된후, 모세관(3)을 지나면서 저온저압의 냉매로 된다.First, in the freezing operation (high cooling operation), the high temperature and high pressure refrigerant compressed by the compressor 1 flows into the condenser 2, condenses, and passes through the capillary tube 3 to become a low temperature low pressure refrigerant.
이후, 제1 증발기(F-EVA)는 상기 저온저압 냉매를 흡입하여 이를 증발시켜, 냉동실로 액분이 없는 포화증기를 배출한다.Thereafter, the first evaporator (F-EVA) sucks the low-temperature low-pressure refrigerant and evaporates it, and discharges saturated steam without liquid to the freezer compartment.
냉장 운전시(저냉력 운전시), 압축기(1)에서 압축된 고온고압의 냉매는, 응축기(2)로 유입되어 응축된후, 모세관(3)을 지나면서 저온저압의 냉매로 된다.In the cold storage operation (low cooling power operation), the high temperature and high pressure refrigerant compressed by the compressor 1 flows into the condenser 2, condenses, and passes through the capillary tube 3 to become a low temperature low pressure refrigerant.
이후, 제2 증발기(R-EVA)는 상기 저온저압 냉매를 흡입하여 이를 증발시켜, 냉동실로 열교환하여 차가워진 공기를 배출한다.Thereafter, the second evaporator (R-EVA) inhales and evaporates the low temperature and low pressure refrigerant, and heats it into a freezer compartment to discharge cold air.
여기서, 상술한 냉장고의 냉동 싸이클에 채용되는 압축기는 정방향으로만 회전하여 항상 고출력을 발생하게 되고, 이에 따라 냉장고내의 온도가 안정된 상태를 유지하여 큰 냉력이 필요하지 않은 경우에도, 압축기를 정회전으로 회전시키므로 전력 소모가 증가되는 문제점이 있다.Here, the compressor employed in the above-mentioned refrigeration cycle of the refrigerator rotates only in the forward direction and always generates a high output. Accordingly, even when the temperature in the refrigerator is kept stable and a large cooling force is not required, the compressor is rotated forward. There is a problem that the power consumption is increased because it rotates.
이를 해결하기 위하여, 냉장고에, 냉력에 따라 정방향 또는 역방향으로 회전시키는 압축기를 채용하여, 냉력을 발생함으로써, 전력 소모를 감소시키는 기술이 사용되고 있다.In order to solve this problem, a technique is adopted in a refrigerator to reduce power consumption by employing a compressor that rotates in a forward or reverse direction in accordance with a cold force and generates a cold force.
이러한, 정/역회전이 가능한 압축기를 채용한 냉장고에 있어서, 압축기는 정회전의 고출력으로 회전하는 방향에 대하여 냉매봉입량을 산출한다.In a refrigerator employing such a compressor capable of forward / reverse rotation, the compressor calculates the amount of refrigerant charged in the direction of rotation at a high output of forward rotation.
즉, 도 2와 같이, 압축기가 정회전될때의 증발기온도와 증발기 입구온도가 일치되는 시점에서의 냉매 봉입량으로 압축기의 냉매 봉입량을 설정하므로, 냉력을 작게 내는 방향으로 압축기가 운전되는 경우에 냉매 부족 현상이 발생하게 되고, 이로 인해 냉동 효율이 저하되는 문제점이 있다.That is, as shown in FIG. 2, since the refrigerant charge amount of the compressor is set to the refrigerant charge amount when the evaporator temperature when the compressor is rotated forward and the evaporator inlet temperature coincides, the compressor is operated in a direction of reducing the cooling force. There is a problem that the shortage of the refrigerant occurs, thereby lowering the refrigeration efficiency.
본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로, 작은 냉력을 내는 역방향으로 압축기가 회전할 때의 냉매 봉입량을 압축기의 냉매 봉입량으로 설정함으로써, 압축기의 정회전 또는 역회전 운전 수행시 냉매 부족현상을 방지하도록 한 냉장고의 정/역회전 압축기 냉매 봉입량 설정방법을 제공함에 그 목적이 있다.The present invention has been made to solve the above problems, by setting the refrigerant charge amount of the compressor when the compressor rotates in the reverse direction of the small cooling force to the refrigerant charge amount of the compressor, when performing the forward or reverse rotation operation of the compressor It is an object of the present invention to provide a method for setting a refrigerant loading amount of a forward / reverse compressor of a refrigerator to prevent a refrigerant shortage.
도1은 일반적인 냉장고의 냉동싸이클을 보인 보인 개략도.1 is a schematic view showing a refrigeration cycle of a typical refrigerator.
도2는 도1에 있어서, 정회전시의 냉매 봉입량과 증발기 온도와의 관계를 보인도.FIG. 2 is a diagram showing the relationship between the refrigerant charge amount and the evaporator temperature at the time of forward rotation in FIG.
도3은 본 발명 냉장고의 정/역회전 압축기 냉매 봉입량 설정방법에 대한 동작흐름도.3 is a flow chart illustrating a method for setting a forward / reverse compressor refrigerant charge amount in a refrigerator according to the present invention.
도4는 도3에 있어서, 냉매 봉입량과 증발기 온도와의 관계를 보인도.FIG. 4 is a diagram showing a relationship between a refrigerant charge amount and an evaporator temperature in FIG.
상기와 같은 목적을 달성하기 위한 본 발명은, 정/역회전이 가능한 압축기를 채용한 냉장고에 있어서, 사용자에 의해, 압축기를 역방향으로 운전시키는 제1 과정과; 상기 압축기의 역방향 운전시, 증발기의 온도와 증발기 입구온도를 검출하는 제2 과정과; 상기 증발기의 온도와 증발기 입구온도가 일치하는 지점에서의 냉매 봉입량을 산출하여 압축기의 냉매 봉입량으로 설정하는 제3 과정으로 수행함을 특징으로 한다.According to an aspect of the present invention, there is provided a refrigerator including a compressor capable of forward / reverse rotation, comprising: a first process of operating a compressor in a reverse direction by a user; A second process of detecting a temperature of an evaporator and an evaporator inlet temperature during reverse operation of the compressor; It is characterized in that the third step of calculating the refrigerant charge amount at the point where the temperature of the evaporator and the evaporator inlet temperature coincides, and set the refrigerant charge amount of the compressor.
이하, 본 발명에 의한 냉장고의 정/역회전 압축기 냉매 봉입량 설정방법에 대한 작용 및 효과를 첨부한 도면을 참조하여 상세히 설명한다.Hereinafter, with reference to the accompanying drawings, the operation and effects of the method for setting the forward / reverse compressor refrigerant charge amount of the refrigerator according to the present invention will be described in detail.
도3은 본 발명 냉장고의 정/역회전 압축기 냉매 봉입량 설정방법에 대한 동작 흐름도로서, 이에 도시한 바와같이 사용자에 의해, 압축기를 역방향으로 운전시키는 제1 과정(SP1)과; 상기 압축기의 역방향 운전시, 증발기의 온도와 증발기 입구온도를 검출하는 제2 과정(SP2)과; 상기 증발기의 온도와 증발기 입구온도가 일치하는 지점에서의 냉매 봉입량을 산출하여 압축기의 냉매 봉입량으로 설정하는 제3 과정(SP3~SP5)으로 이루어지며, 이와같은 본 발명의 동작을 설명한다.FIG. 3 is a flowchart illustrating a method for setting a forward / reverse compressor refrigerant charge amount of a refrigerator according to the present invention. As shown in FIG. 3, a first process (SP1) of operating a compressor in a reverse direction by a user; A second process (SP2) of detecting the temperature of the evaporator and the evaporator inlet temperature during the reverse operation of the compressor; Comprising a third step (SP3 ~ SP5) of calculating the refrigerant charge amount at the point where the temperature of the evaporator and the evaporator inlet temperature coincides to set the refrigerant charge amount of the compressor, the operation of the present invention will be described.
먼저, 사용자에 의해, 냉장고의 압축기를 역방향으로 운전시키기 위한 운전모드를 선택하여 압축기를 역방향으로 회전시킨다(SP1).First, the user selects an operation mode for operating the compressor of the refrigerator in the reverse direction and rotates the compressor in the reverse direction (SP1).
이러한, 압축기의 역방향 운전상태에서, 증발기 온도와 증발기 입구온도를 검출한다(SP2).In the reverse operation state of the compressor, the evaporator temperature and the evaporator inlet temperature are detected (SP2).
그 다음, 상기 증발기 온도와 증발기 입구온도를 비교하여, 그 비교 결과 증발기 온도와 증발기 입구온도가 일치되면 그 일치시점에서의 냉매량을 산출한후 (SP3,SP4), 그 냉매량을 압축기의 냉매봉입량으로 설정한다(SP5).Then, the evaporator temperature is compared with the evaporator inlet temperature, and when the result of the comparison coincides with the evaporator inlet temperature, the amount of refrigerant at the coincidence point is calculated (SP3, SP4), and the amount of refrigerant is stored in the amount of refrigerant in the compressor. (SP5).
즉, 도4와 같이, 역방향시의 냉매량이 정방향시의 냉매보다 크므로, 역방향시의 냉매량을 냉매 봉입량으로 설정하면, 정방향 및 역방향 운전시에 발생할 수 있는 냉매 부족을 해소하게 되어, 냉장고의 냉동효율을 향상시킨다..That is, as shown in FIG. 4, since the amount of refrigerant in the reverse direction is larger than that in the forward direction, when the amount of refrigerant in the reverse direction is set to the amount of refrigerant charge, the refrigerant shortage that may occur in the forward and reverse operations is eliminated. Improve the refrigeration efficiency.
다시 말해서,본 발명은, 냉매량이 많은, 역방향에서의 냉매량을 냉매 봉입량으로 설정함으로써, 압축기 구동시에 냉매부족으로 인해 냉동효율 저하를 미연에 방지한다.In other words, the present invention sets the amount of refrigerant in the reverse direction, which has a large amount of refrigerant, to the amount of refrigerant filling, thereby preventing a decrease in refrigeration efficiency due to the lack of refrigerant during driving of the compressor.
이상에서 상세히 설명한 바와같이 본 발명은, 작은 냉력을 내는 방향, 즉 역방향으로 압축기가 회전할 때의 냉매 봉입량을 압축기의 냉매 봉입량으로 설정함으로써, 압축기의 정회전 또는 역회전 운전 수행시 냉매 부족현상을 방지하여, 냉장고의 냉동 효율을 향상시키는 효과가 있다.As described in detail above, the present invention sets the amount of refrigerant charge when the compressor rotates in a direction of exerting a small cooling force, that is, in the reverse direction, to the amount of refrigerant charge of the compressor, so that the refrigerant is insufficient during forward or reverse rotation operation of the compressor. By preventing the phenomenon, there is an effect of improving the freezing efficiency of the refrigerator.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020046596A KR20040013598A (en) | 2002-08-07 | 2002-08-07 | Clockwise/counterclockwise compressor refrigerant mount enactment method for refrigerator |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020046596A KR20040013598A (en) | 2002-08-07 | 2002-08-07 | Clockwise/counterclockwise compressor refrigerant mount enactment method for refrigerator |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20040013598A true KR20040013598A (en) | 2004-02-14 |
Family
ID=37320905
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020020046596A KR20040013598A (en) | 2002-08-07 | 2002-08-07 | Clockwise/counterclockwise compressor refrigerant mount enactment method for refrigerator |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20040013598A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101526340B1 (en) * | 2009-05-15 | 2015-06-05 | 엘지전자 주식회사 | Coolant charging device and Coolant charging method for air conditioner |
-
2002
- 2002-08-07 KR KR1020020046596A patent/KR20040013598A/en not_active Application Discontinuation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101526340B1 (en) * | 2009-05-15 | 2015-06-05 | 엘지전자 주식회사 | Coolant charging device and Coolant charging method for air conditioner |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000337717A (en) | Starting algorithm of inverter heat pump | |
KR20040013598A (en) | Clockwise/counterclockwise compressor refrigerant mount enactment method for refrigerator | |
KR100828331B1 (en) | Clockwise/counterclockwise compressor driving control method for refrigerator | |
KR200270430Y1 (en) | Heat pump system | |
KR100828328B1 (en) | Clockwise/counterclockwise compressor driving control method for refrigerator | |
KR100828329B1 (en) | Clockwise/counterclockwise compressor driving control apparatus and method for refrigerator | |
JP2003336929A (en) | Absorbing and compression type refrigerator and method of operating the refrigerator | |
KR100828333B1 (en) | Clockwise/counterclockwise compressor driving control apparatus and method for refrigerator | |
KR100828332B1 (en) | Clockwise/counterclockwise compressor driving control apparatus and method for refrigerator | |
KR20040018707A (en) | Clockwise/counterclockwise compressor driving control apparatus and method for refrigerator | |
KR100429995B1 (en) | Driving control method for parrllel refrigerator | |
KR100370091B1 (en) | Methode for controlling working of refrigerator | |
KR100498395B1 (en) | Forward/reverse rotation compressor driving apparatus and method for refrigerator equiped with pole change motor | |
KR100492602B1 (en) | Forward/reverse rotation compressor driving apparatus and method for refrigerator equiped with pole change motor | |
KR100828330B1 (en) | Clockwise/counterclockwise compressor driving control method for refrigerator | |
US20060048528A1 (en) | Refrigerating system for refrigerator | |
KR20040018702A (en) | Clockwise/counterclockwise compressor driving control apparatus and method for refrigerator | |
KR100498394B1 (en) | Forward/reverse rotation compressor driving apparatus and method for refrigerator equiped with pole change motor | |
KR20040018703A (en) | Clockwise/counterclockwise compressor driving control apparatus and method for refrigerator | |
KR20040013592A (en) | Clockwise/counterclockwise compressor driving control apparatus and method for refrigerator | |
KR100492603B1 (en) | Forward/reverse rotation compressor driving apparatus and method for refrigerator equiped with pole change motor | |
JPH07234025A (en) | Vapor compression type heat pump | |
KR100565340B1 (en) | Forward/reverse rotation compressor driving method for refrigerator equiped with pole change motor | |
KR100530000B1 (en) | Refrigeration cycle system | |
KR20030033358A (en) | Freezing cycle for refrigerator using variable cooling compressor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WITN | Withdrawal due to no request for examination |