[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20030090905A - Preparation Method of Polyanilines - Google Patents

Preparation Method of Polyanilines Download PDF

Info

Publication number
KR20030090905A
KR20030090905A KR1020020028764A KR20020028764A KR20030090905A KR 20030090905 A KR20030090905 A KR 20030090905A KR 1020020028764 A KR1020020028764 A KR 1020020028764A KR 20020028764 A KR20020028764 A KR 20020028764A KR 20030090905 A KR20030090905 A KR 20030090905A
Authority
KR
South Korea
Prior art keywords
polyaniline
dopant
acid
group
poly
Prior art date
Application number
KR1020020028764A
Other languages
Korean (ko)
Other versions
KR100514643B1 (en
Inventor
하진욱
하진헌
뉴파네코시프라사드
Original Assignee
주식회사 유진텍 이십일
하진욱
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 유진텍 이십일, 하진욱 filed Critical 주식회사 유진텍 이십일
Priority to KR10-2002-0028764A priority Critical patent/KR100514643B1/en
Publication of KR20030090905A publication Critical patent/KR20030090905A/en
Application granted granted Critical
Publication of KR100514643B1 publication Critical patent/KR100514643B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0206Polyalkylene(poly)amines
    • C08G73/0213Preparatory process
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/026Wholly aromatic polyamines
    • C08G73/0266Polyanilines or derivatives thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/0008Organic ingredients according to more than one of the "one dot" groups of C08K5/01 - C08K5/59
    • C08K5/005Stabilisers against oxidation, heat, light, ozone
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/22Compounds containing nitrogen bound to another nitrogen atom
    • C08K5/23Azo-compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3442Heterocyclic compounds having nitrogen in the ring having two nitrogen atoms in the ring
    • C08K5/3445Five-membered rings

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

PURPOSE: A method for preparing polyaniline is provided, to obtain a nanometer-sized polyaniline having a low surface resistance and a high solubility. CONSTITUTION: The method comprises the step of reacting an aniline monomer represented by the formula 1, a dopant, an azo group-containing initiator, ammonium sulfate and optionally a steric stabilizer. Preferably the azo group-containing initiator is 2,2'-azobis{2-(2-imidazolin-2-yl)propane}dihydrochloride represented by the formula 2; the dopant is selected from the group consisting of HBr, toluenesulfonic acid, dodecyl benzenesulfonic acid, halogen, a Lewis acid, a protonic acid, a transition metal, an organic electron receptor, an organic electron donator and their mixtures; and the steric stabilizer is selected from the group consisting of poly(vinyl alcohol-co-vinyl acetate), polyethylene oxide, methyl cellulose, poly(vinyl pyridine), copolymer of poly(vinyl pyridine), poly(vinyl pyrrolidone) and their mixtures.

Description

폴리아닐린의 제조방법{Preparation Method of Polyanilines}Preparation method of polyaniline {Preparation Method of Polyanilines}

본 발명은 전도성 고분자인 폴리아닐린의 제조방법에 관한 것으로서, 더욱 상세하게는 아닐린 단량체에 도판트, 스테릭 안정제, 암모니움퍼설페이트 및 개시제를 첨가하여 낮은 표면 저항성 및 높은 용해성을 갖는 폴리아닐린을 제조하는 방법에 관한 것이다.The present invention relates to a method for producing polyaniline, which is a conductive polymer, and more particularly, to a method for producing polyaniline having low surface resistance and high solubility by adding a dopant, a steric stabilizer, an ammonium persulfate and an initiator to an aniline monomer. It is about.

전도성 고분자는 금속의 전기적· 자기적· 광학적 성질과 종래 고분자의 기계적 특성 및 가공성을 동시에 가지는 물질로서 가볍고 유연하며, 전기전도도 및 전자상태가 자유롭게 조절되는 특징 때문에 기존의 금속, 반도체 재료가 적용되는 분야뿐만 아니라 기존에는 실현 불가능했던 특수한 응용분야에 대해 다양한 형태로 적용이 가능하므로 이를 현실화하기 위한 기초 및 응용에 관한 연구가 수행되고 있다.A conductive polymer is a material having both the electrical, magnetic and optical properties of a metal and the mechanical properties and processability of a conventional polymer. It is light and flexible, and its electric conductivity and electronic state are freely controlled. In addition, since the present invention can be applied in various forms to special applications that were not feasible in the past, researches on the basics and applications for realizing them are being conducted.

이에 따라 현재까지 폴리아세틸렌, 폴리피롤, 폴리티오펜, 폴리아닐린 등 수많은 전도성 고분자가 발표되었으며, 이러한 전도성 고분자 중 특히 폴리아닐린은 합성이 쉽고 유도체를 만들기가 용이하며, 전기전도성과 열적 대기안정성이 높고 가격이 저렴하다는 장점으로 인하여 전세계적으로 연구가 진행되고 있다.As a result, many conductive polymers such as polyacetylene, polypyrrole, polythiophene, polyaniline, and the like have been released. Among these conductive polymers, polyaniline is easy to synthesize, easy to make derivatives, has high electrical conductivity, thermal atmospheric stability, and low cost. Due to the merits of research, research is being conducted worldwide.

전술한 전도성 고분자는 주쇄를 따라 발단된 n-공액성을 나타내는 구조로서, 이들 화합물들은 그 자체로서는 전도성을 나타내지 않으며, 도판트(dopant)로 도핑 시켰을 때 전도성을 나타낸다. 이러한 전도성 고분자는 전기화학적 중합방법에 의해 필름 형태, 화학적 산화 중합방법에 의해 분말 형태의 전기전도성 고분자가 수득되며, 전기화학 중합법으로는 비교적 간단하게 전도성 고분자를 합성할 수 있으나, 필름 형성면이 전극 표면에 한정되어, 큰 면적의 필름을 얻기가 곤란하고, 제조 비용이 높은 문제점이 있다. 또한, 화학산화 중합법으로 수득되는 전도성 고분자는 유기 용매에 대하여 난용성이므로 캐스팅법으로 필름을 형성하는 것이 곤란하며, 유기 용매에 용해되기 쉬운 고분자의 경우에는 낮은 전도성을 나타내는 등의 문제점이 있다.The above-mentioned conductive polymer is a structure exhibiting n-conjugation developed along the main chain, and these compounds do not show conductivity by themselves, and show conductivity when doped with a dopant. The conductive polymer is obtained in the form of a film by the electrochemical polymerization method, the powder of the electroconductive polymer by the chemical oxidation polymerization method, the electrochemical polymerization method can be synthesized relatively simply conductive polymer, but the film forming surface It is limited to the electrode surface, and it is difficult to obtain a large area film, and there is a problem that manufacturing cost is high. In addition, since the conductive polymer obtained by the chemical oxidation polymerization method is poorly soluble in an organic solvent, it is difficult to form a film by a casting method, and in the case of a polymer that is easily dissolved in an organic solvent, there is a problem such as low conductivity.

한편, 상기 전도성 고분자들 중 폴리아닐린은 화학적 산화에 의하여 비교적 간단히 중합되어지고 높은 전도성을 띈 상태에서 공기중에서도 안정한 특성이 있다. 특히, 산화-환원, 도핑-탈도핑된 상태에서 서로 다른 화학적 구조를 나타내는데, 이러한 구조변화는 가역적으로 발생하며, 안정하고 다양한 전기 화학적 특성을 나타내기 때문에 이들의 합성, 구조 연구 및 응용 등에 관한 많은 연구가 진행되고 있다. 그러나, 다른 전도성 고분자와 같이 폴리아닐린도 π-공액계가 발달된 구조로, 벤젠 고리가 평면 구조로 결합되어 있어 분자쇄가 유연하지 않고, 분자간의 강한 인력이 작용하고, 도판트로 사용되는 음이온의 영향 등으로 인하여 유기 용매에 불용이며, 가열하여도 용해되지 않는 불융 성질을 나타내기 때문에 가공성이 떨어지고, 필름 형성이 되지 않는 등의 문제점이 있다.Meanwhile, polyaniline among the conductive polymers is polymerized relatively simply by chemical oxidation and has a stable property in the air under high conductivity. In particular, they exhibit different chemical structures in the redox, doped, and undoped states. These structural changes occur reversibly, and because they exhibit stable and diverse electrochemical properties, Research is ongoing. However, like other conductive polymers, polyaniline has a π-conjugated structure, and since the benzene ring is bonded in a planar structure, the molecular chain is not flexible, strong attraction between molecules, and the influence of anions used as dopants. Therefore, it is insoluble in organic solvents and exhibits insoluble properties that do not dissolve even when heated, resulting in poor workability and film formation.

이와 같은 문제점을 해결하기 위하여 다양한 개선방법들이 연구되고 있으며, 특히 최근에는 전도성 고분자의 구조를 유지하면서 도판트를 바꾸어 주거나 기존의 수지와 복합화하거나 가지를 도입하는 방법 등이 많이 발표되고 있다.In order to solve such a problem, various improvement methods have been studied. In particular, recently, many methods such as changing dopants, complexing with existing resins or introducing branches while maintaining the structure of a conductive polymer have been published.

일예로서, 도판트를 바꾸어 주는 방법으로 전기화학적 중합시 전해질로 파라 톨루엔 술포네이트를 사용하면 전도도의 큰 변화없이 향상된 전도성 고분자를 제조할 수 있다(IBM J. Res. Rev., 1983.27.342). 그러나 이 경우에는 전기화학적 산화-환원을 반복하면 사용된 도판트가 서서히 용출되는 문제점이 있다.For example, by using paratoluene sulfonate as an electrolyte during electrochemical polymerization by changing dopants, an improved conductive polymer can be prepared without significant change in conductivity (IBM J. Res. Rev., 1983.27.342). However, in this case, there is a problem in that the dopant used is slowly eluted when the electrochemical redox is repeated.

또한, 피롤, 티오펜, 아닐린 등의 헤테로 원자를 포함하는 복소환 또는 방향족 화합물을 중합시켜 얻어지는 중합체는 대기중에서 안정하고 높은 전기전도성을 나타내기 때문에 전도성 재료로서 적합하며, 일반적으로 도핑량의 변화에 따라 전기전도도 조절이 가능하다.In addition, polymers obtained by polymerizing heterocycles or aromatic compounds containing heteroatoms such as pyrrole, thiophene, and aniline are suitable as conductive materials because they are stable in the air and exhibit high electrical conductivity. Therefore, the conductivity can be adjusted.

최근에는 클로로포름, m-크레졸 또는 n-메틸피롤리돈과 같은 유기용매에 용해되는 폴리아닐린의 합성법이 개발되었다. 또한, 폴리아닐린을 일반 고분자와 블렌딩하여 일반 고분자에 전기전도성을 부여하는 공정도 개발되었다. 이와 같은 폴리아닐린에 가공성을 부여하는 기술은 합성된 폴리아닐린을 탈도핑한 후 다시 도데실벤젠술폰산이나 켐포술폰산(camphor sulfonic acid, CSA)과 같은 유기산으로 재도핑하여 용해성을 부여하는 여러 단계의 공정을 거치므로 공정이 복잡해지는 문제점이 있다.Recently, a method of synthesizing polyaniline dissolved in an organic solvent such as chloroform, m-cresol or n-methylpyrrolidone has been developed. In addition, a process of blending polyaniline with a general polymer to impart electrical conductivity to the general polymer has also been developed. The technology for imparting processability to polyaniline is a multi-step process of dedoping the synthesized polyaniline and then re-doping with an organic acid such as dodecylbenzenesulfonic acid or camphor sulfonic acid (CSA). Therefore, there is a problem that the process is complicated.

특히, 대한민국특허공개 특1998-0009325호는 아닐린 단량체와 도판트로서 도데실벤젠설폰산 및 산화제로서 암모니움퍼설페이트를 반응시켜 폴리아닐린을 제조하는 방법이 기술되어 있으며, 아닐린 유도체와 아민 단량체에 산화제로서 암모늄퍼설페이트 및 염화 제3철을 혼합하여 중합시키는 방법으로 전도성 고분자를 제조하는 방법이 대한민국특허공개 특1999-0010050호에 기술되어 있고, 대한민국특허공개 특1999-0018821호는 아닐린 단량체와 피롤 단량체를 도데실벤젠술폰산 또는 파라톨루엔술폰산과 암모늄퍼설페이트를 반응시켜 전도성 고분자를 제조하는 방법이 기술되어 있다.In particular, Korean Patent Publication No. 1998-0009325 discloses a method for preparing polyaniline by reacting aniline monomer with dodecylbenzenesulfonic acid as a dopant and ammonium persulfate as an oxidant, and an ammonium derivative as an oxidant to an aniline derivative and an amine monomer. A method of preparing a conductive polymer by mixing persulfate and ferric chloride is described in Korean Patent Laid-Open Publication No. 1999-0010050, and Korean Patent Laid-Open Publication No. 1999-0018821 discloses an aniline monomer and a pyrrole monomer. A method for preparing a conductive polymer by reacting silbenzenesulfonic acid or paratoluenesulfonic acid with ammonium persulfate is described.

그런데, 전술한 방법은 제조되는 폴리아닐린이 결정성 입자로 제조되어 유기용매에 쉽게 용해되지 않으므로 고분자 제품에 사용하기 위해서 후처리 가공을 필요로 하는 문제점이 있다.However, the above-described method has a problem that post-treatment is required for use in a polymer product because the polyaniline to be prepared is made of crystalline particles and is not easily dissolved in an organic solvent.

본 발명은 전술한 문제점을 해결하기 위한 것으로서, 아닐린 단량체, 도판트, 아조기를 갖는 개시제, 암모니움퍼설페이트 및 스테릭 안정제를 반응시켜 전도성 폴리아닐린을 제조함으로써, 낮은 표면 저항성을 갖고 유기용매에 쉽게 용해되며, 나노미터 크기의 입자로 제조되기 때문에 후처리 가공 공정을 필요로 하지 않는 폴리아닐린을 제조하는 것에 그 기술적 과제가 있다.The present invention is to solve the above problems, by reacting the aniline monomer, dopant, initiator with azo groups, ammonium persulfate and steric stabilizer to produce a conductive polyaniline, has a low surface resistance and is easily dissolved in an organic solvent However, there is a technical problem in producing polyaniline, which is manufactured from nanometer-sized particles, which does not require a post-treatment process.

또한, 본 발명은 화학적 안정성과 가역성이 뛰어나며, 높은 전도성을 나타내고, 일반 고분자와 용액 블렌딩을 통하여 전도성 복합체의 형성이 가능한 가용 전도성 폴리아닐린의 제조방법을 제공하는데 있다.In addition, the present invention is to provide a method for producing a soluble conductive polyaniline excellent in chemical stability and reversibility, exhibiting high conductivity, and capable of forming a conductive composite through a blending solution with a general polymer.

도 1은 본 발명에 따른 폴리아닐린의 IR 스펙트라(IR spectra)를 나타내는 도이다.1 is a diagram showing an IR spectra of polyaniline according to the present invention.

본 발명은 아닐린 단량체, 아조기를 포함하는 개시제 그리고 도판트 및 암모니움퍼설페이트(APS)를 반응시켜 폴리아닐린을 수득함을 특징으로 한다.The present invention is characterized in that polyaniline is obtained by reacting aniline monomers, initiators containing azo groups and dopants and ammonium persulfate (APS).

본 발명에 따른 아닐린 단량체는 하기 화학식 1로 표현되는 방향족 아민 화합물로서, 일반적인 폴리아닐린 제조방법에 사용되는 물질이다.The aniline monomer according to the present invention is an aromatic amine compound represented by the following Chemical Formula 1, and is a material used in a general polyaniline production method.

본 발명에 따른 개시제는 산화중합 반응시 발생하는 라디칼과 반응하여 폴리아닐린이 결정성 입자로 형성되는 것을 억제하기 위하여 첨가하는 것으로, 사용 가능한 개시제로는 아조기를 포함하는 개시제라면 어느 것을 사용하여도 무방하며, 바람직하게는 하기 화학식 2로 표현되는 2,2'-아조비스{2-(2-이미다졸린-2-릴)프로판}디하이드로클로라이드(2,2'-azobis{2-(2-imidazolin-2-yl)propane}dihydrochloride)가 좋다.The initiator according to the present invention is added to suppress the formation of polyaniline into crystalline particles by reacting with radicals generated during the oxidative polymerization reaction, and any initiator may be used as long as it includes an azo group. , Preferably 2,2'-azobis {2- (2-imidazoline-2-yl) propane} dihydrochloride (2,2'-azobis {2- (2-imidazolin) -2-yl) propane} dihydrochloride) is good.

본 발명에 따른 도판트(dopant)는 공액계 고분자에 도전성을 주기 위해 공액계의 결합성 π괘도의 일부에 전자를 보내거나 제거하는 도핑에 쓰이는 물질로서, 사용 가능한 도판트로는 브롬화 수소(HBr), 톨루엔 설폰산, 도데실벤젠설폰산, 할로겐(Br2, I2, IBr 등), 루이스산(AsF5, SO3, FeCl3등), 프로톤산(H2SO4, HClO4등), 전이금속(AgClO4등), 유기전자 수용체[테트라시아노에틸렌(tetracyanoethylene), 테트라시아노퀴노디메탄(tetracyanoquinodimethane), 2,3-디클로로-5,6-디시아노-p-벤조퀴논(2,3-dichloro-5,6-dicyano-p-benzoquinone) 및 알칼리 금속 등] 및 유기전자 공여체(아민 등) 등이 단독 또는 둘이상 혼합하여 사용할 수 있으며, 추천하기로는 브롬화 수소 및/또는 톨루엔 설폰산이 좋다.The dopant according to the present invention is a material used for doping that sends or removes electrons to a part of the bond? Of the conjugated system in order to give conductivity to the conjugated polymer. Hydrogen bromide (HBr) may be used. , Toluene sulfonic acid, dodecylbenzenesulfonic acid, halogen (Br 2 , I 2 , IBr, etc.), Lewis acid (AsF 5 , SO 3 , FeCl 3, etc.), protonic acid (H 2 SO 4 , HClO 4, etc.), Transition metals (eg, AgClO 4 ), organic electron acceptors (tetracyanoethylene, tetratracynoquinodimethane, 2,3-dichloro-5,6-dicyano-p-benzoquinone (2, 3-dichloro-5,6-dicyano-p-benzoquinone), alkali metals, etc.] and organic electron donors (amines, etc.) may be used alone or in combination of two or more thereof. Preferably, hydrogen bromide and / or toluene sulfonic acid are used. good.

한편, 상기 암모니움퍼설페이트는 산화제로서 본 발명에 따른 산화중합 반응을 발생시키기 위한 물질로서, 상기 암모니움퍼설페이트의 양을 증가시키면 전도성 고분자의 중합도가 커지면서 분자량이 증가하여 합성된 폴리아닐린의 전기전도도가 증가하게 된다. 하지만 투입된 산화제의 양이 아닐린 단량체에 대하여 일정 몰비이상이 되면 제조되는 폴리아닐린의 전기전도도는 더 이상 증가하지 않는다. 반면에 상기 암모니움퍼설페이트의 양이 아닐린 단량체에 대하여 일정 몰비 이하가 되면 중합도 및 분자량이 낮은 올리고머를 형성하여 매우 낮은 전기전도도를 보인다. 따라서, 본 발명에서는 상기 암모니움퍼설페이트의 농도가 아닐린 단량체에 대한 몰비로 0.6 내지 1.5배가 되도록 한다.On the other hand, the ammonium persulfate is a material for generating an oxidative polymerization reaction according to the present invention as an oxidizing agent, the increase in the amount of the ammonium persulfate increases the polymerization degree of the conductive polymer, the molecular weight increases to increase the electrical conductivity of the synthesized polyaniline Done. However, if the amount of the oxidizing agent is not more than a certain molar ratio with respect to the aniline monomer, the electrical conductivity of the polyaniline produced no longer increases. On the other hand, when the amount of ammonium persulfate is less than a certain molar ratio with respect to the aniline monomer, the polymerization degree and the molecular weight of the oligomer are formed to have very low electrical conductivity. Therefore, in the present invention, the concentration of ammonium persulfate is 0.6 to 1.5 times in molar ratio with respect to the aniline monomer.

한편, 본 발명에 따른 폴리아닐린을 제조하기 위한 또 다른 방법으로 상기 화학식 1로 표시되는 아닐린 단량체, 도판트, 상기 화학식 2로 표시되는 개시제, 암모니움퍼설페이트 및 스테릭 안정제를 반응시켜 폴리아닐린을 수득할 수 있다.Meanwhile, as another method for preparing polyaniline according to the present invention, polyaniline may be obtained by reacting an aniline monomer represented by Formula 1, a dopant, an initiator represented by Formula 2, ammonium persulfate, and a steric stabilizer. have.

여기서, 상기 스테릭 안정제(steric stabilizer)는 중합반응에 의하여 생성되는 콜로이드의 응고작용을 억제하기 위해 사용되는데, 사용 가능한 스테릭 안정제로는 폴리비닐 알코올-코-비닐아세테이트, 폴리에틸렌 옥사이드, 메틸 셀룰로오즈, 폴리비닐 피리딘, 폴리비닐 피리딘의 코폴리머 및 폴리비닐 피롤리돈 등을 단독 또는 둘이상 혼합하여 사용할 수 있으며, 바람직하게는 폴리비닐 피롤리돈이 좋다.Here, the steric stabilizer is used to inhibit the coagulation of the colloid produced by the polymerization reaction, and the usable steric stabilizer may be polyvinyl alcohol-co-vinylacetate, polyethylene oxide, methyl cellulose, Polyvinyl pyridine, copolymer of polyvinyl pyridine, polyvinyl pyrrolidone and the like can be used alone or in combination of two or more, preferably polyvinyl pyrrolidone.

본 발명에 따른 폴리아닐린은 상기 화학식 1로 표현되는 방향족 아민 화합물인 아닐린 단량체, 개시제로서 상기 화학식 2로 표현되는 아조기를 갖는 2,2'-아조비스{2-(2-이미다졸린-2-릴)프로판}디하이드로클로라이드, 도판트로 브롬화 수소 및/또는 톨루엔 설폰산 및 암모니움퍼설페이트를 산화중합 반응시킴으로서 도핑된 상태에서 유기 용매에 용해되는 특성을 갖는 하기 화학식 3으로 표현되는 반복단위를 갖는 형태로 제조된다.The polyaniline according to the present invention is an aniline monomer which is an aromatic amine compound represented by Chemical Formula 1, and 2,2'-azobis {2- (2-imidazoline-2-yl) having an azo group represented by Chemical Formula 2 as an initiator. In the form having a repeating unit represented by the following Chemical Formula 3, which has a property of dissolving in an organic solvent in a doped state by oxidative polymerization of propane} dihydrochloride, hydrogen bromide with dopant, and / or toluene sulfonic acid and ammonium persulfate. Are manufactured.

여기서, 상기 화학식 3의 X 이온은 반응조내에서 도판트 예를 들면, 브롬화 수소 및/또는 톨루엔 설포닉산으로부터 해리되어 생성된 음이온으로서 고분자내에 도핑되어 전도성을 띄게 하는 도판트로 작용하게 되며, 상기 n의 범위는 4 내지 12이고, 평균분자량은 2,000 내지 4,000Da이다.Here, the X ion of Formula 3 is an anion generated by dissociation from a dopant, for example, hydrogen bromide and / or toluene sulfonic acid in a reaction vessel, and acts as a dopant to be conductive by being doped in a polymer. The range is 4 to 12, and the average molecular weight is 2,000 to 4,000 Da.

본 발명에 따른 폴리아닐린을 제조하기 위한 방법을 설명하면 다음과 같다.Referring to the method for producing a polyaniline according to the present invention.

먼저 40 내지 50℃로 유지되는 반응기에 톨루엔 설포닉산 및/또는 브롬화수소 등의 도판트를 첨가하고, 단량체로서 방향족 아민 화합물인 아닐린과 산화제인 암모니움퍼설페이트를 상기 반응기에 첨가한 뒤 상기 혼합물을 서서히 교반하면서 필요에 따라서 스테릭 안정제를 첨가한 후 약 24시간 동안 산화중합 반응을 진행시킨다. 그 다음, 메탄올을 상기 반응기에 첨가하여 반응을 종료시킴으로써 합성된 중합체를 수득하고, 상기 합성된 중합체를 여과한 뒤 증류수, 메탄올, 아세톤 등으로 여러 번에 걸쳐 세척한다. 세척이 종료된 중합체를 여과한 후 건조시켜 전도성을 갖는 폴리아닐린을 수득한다.A dopant such as toluene sulfonic acid and / or hydrogen bromide is first added to the reactor maintained at 40 to 50 ° C., and an aromatic amine compound aniline and an oxidizing agent ammonium persulfate are added to the reactor, and then the mixture is slowly added. While stirring, the steric stabilizer is added as necessary, and then the oxidation polymerization reaction is performed for about 24 hours. Then, methanol is added to the reactor to terminate the reaction to obtain a synthesized polymer, which is filtered and washed several times with distilled water, methanol, acetone and the like. The washed polymer is filtered and then dried to obtain a conductive polyaniline.

전술한 중합반응의 반응 메카니즘을 하기 반응식 1 및 반응식 2로 나타냈다.The reaction mechanism of the above-described polymerization reaction is represented by the following schemes 1 and 2.

여기서, 상기 중합반응 중에 발생하는 질소분자는 상기 중합반응에 비활성환경(inert environment)을 제공하고, 자유라디칼은 아닐륨(anilinium) 이온을 공격하면서 중합반응이 진행된다. 그리고 상기 자유라디칼은 중합반응하는 아닐륨 이온의 말단을 블록킹(blocking)하여 고분자량의 폴리아닐린의 생성을 억제하고 질소원자의 가지를 형성하고 있는 수소원자가 물이나 알코올의 산소원자와 수소결합을 형성하는 것을 억제하는 역할을 한다. 이러한 이유로 인하여, 본 발명에 따른 폴리아닐린은 4,000Da 이하의 분자량을 갖는 폴리아닐린으로 제조되며 유기용매에 쉽게 용해되는 특징을 지니게 되어 후처리 가공을 필요로 하지 않으며, 필름 및 고분자 제품 등에 다양하게 적용할 수 있다.Here, the nitrogen molecules generated during the polymerization reaction provide an inert environment to the polymerization reaction, and the free radicals attack the anilium ions while the polymerization reaction proceeds. In addition, the free radicals block the ends of the anion ions to be polymerized to inhibit the production of high molecular weight polyaniline, and the hydrogen atoms forming the branches of nitrogen atoms form hydrogen bonds with oxygen atoms of water or alcohol. It acts to suppress things. For this reason, the polyaniline according to the present invention is made of polyaniline having a molecular weight of 4,000 Da or less, and is easily dissolved in an organic solvent, and does not require post-treatment, and can be applied to various films and polymer products. have.

특히, 전도성 구조를 가진 상태에서 용매에 대해 폴리아닐린이 용해성을 가지므로 전기전도도를 가진 필름형성이 가능하게 되고, 결정성 입자로 제조되지 않고 나노미터 크기의 초미립자나 액상으로 제조할 수 있기 때문에 접착성이나 강도를 향상시키기 위해 다른 고분자 물질과 용액 블렌딩을 하여 유리판이나 고분자 필름에 코팅시킴으로써 전극재료를 쉽게 제조할 수 있다.Particularly, since polyaniline has solubility in a solvent in the state of having a conductive structure, it is possible to form a film having electrical conductivity, and because it can be manufactured in nanometer sized ultrafine particles or liquid phase without being made of crystalline particles, However, the electrode material can be easily prepared by coating a glass plate or a polymer film by solution blending with another polymer material to improve strength.

이하에서 실시예를 통하여 본 발명을 구체적으로 설명하기로 한다. 그러나 하기의 실시예는 오로지 본 발명을 구체적으로 설명하기 위한 것으로 이들 실시예에 의해 본 발명의 범위를 한정하는 것은 아니다.Hereinafter, the present invention will be described in detail through examples. However, the following examples are only for illustrating the present invention in detail and are not intended to limit the scope of the present invention by these examples.

<실시예 1><Example 1>

1M의 톨루엔 설포닉산[98.5%, ACS 시약, Aldrich Chemical사] 15㎖와 1M의 브롬화 수소[Aldrich Chemical사] 15㎖를 혼합한 뒤 마그네틱 스터러를 사용하여 상기 혼합용액을 균질화시켰다. 그 다음, 상기 혼합용액에 0.93g의 아닐린[JunseiChemical Co. Ltd, 일본], 2.28g의 암모니움퍼설페이트[Junsei Chemical Co. Ltd, 일본], 개시제인 2,2'-아조비스{2-(2-이미다졸린-2-릴)프로판}디하이드로클로라이드[VA-044, Wako Pure Chemical Industries Ltd, 일본] 0.5g을 첨가한 후 상기 혼합용액의 온도를 50℃로 유지시키고 교반하면서 약 24시간 동안 반응시켰다. 그 다음, 상기 반응물에 메탄올을 첨가하여 반응을 종료시키고 분말상의 중합체를 수득하였다. 수득된 분말상의 중합체를 세척한 후 여과하고 건조시켜 전도성 폴리아닐린 0.63g을 수득하였다.15 ml of 1 M toluene sulfonic acid [98.5%, ACS reagent, Aldrich Chemical Co., Ltd.] and 15 ml of 1 M hydrogen bromide [Aldrich Chemical Co., Ltd.] were mixed, and the mixed solution was homogenized using a magnetic stirrer. Then, 0.93 g of aniline [Junsei Chemical Co. Ltd, Japan], 2.28 g of ammonium persulfate [Junsei Chemical Co. Ltd, Japan], 0.5 g of 2,2'-azobis {2- (2-imidazoline-2-yl) propane} dihydrochloride [VA-044, Wako Pure Chemical Industries Ltd, Japan] as an initiator is added. After maintaining the temperature of the mixed solution at 50 ℃ and reacted for about 24 hours while stirring. Then, methanol was added to the reaction to terminate the reaction to obtain a powdery polymer. The powdery polymer obtained was washed, filtered and dried to yield 0.63 g of conductive polyaniline.

반응물의 조성비 및 반응조건을 표 1로 나타냈다.The composition ratio and reaction conditions of the reactants are shown in Table 1.

<실시예 2><Example 2>

1M의 톨루엔 설포닉산[98.5%, ACS 시약, Aldrich Chemical사] 15㎖와 1M의 브롬화 수소[Aldrich Chemical사] 15㎖를 혼합한 뒤 마그네틱 스터러를 사용하여 상기 혼합용액을 균질화시켰다. 그 다음, 상기 혼합용액에 0.93g의 아닐린[Junsei Chemical Co. Ltd, 일본] 2.28g의 암모니움퍼설페이트[Junsei Chemical Co. Ltd, 일본], 개시제인 2,2'-아조비스{2-(2-이미다졸린-2-릴)프로판}디하이드로클로라이드[VA-044, Wako Pure Chemical Industries Ltd, 일본] 0.5g 및 스테릭 안정제로서 폴리비닐 피롤리돈(PVP)[Junsei Chemical Co. Ltd, 일본] 1.0g을 첨가한 뒤 상기 혼합용액의 온도를 44℃로 유지시키고 교반하면서 약 24시간 동안 반응시켰다.15 ml of 1 M toluene sulfonic acid [98.5%, ACS reagent, Aldrich Chemical Co., Ltd.] and 15 ml of 1 M hydrogen bromide [Aldrich Chemical Co., Ltd.] were mixed, and the mixed solution was homogenized using a magnetic stirrer. Then, 0.93 g of aniline [Junsei Chemical Co. Ltd, Japan] 2.28 g of ammonium persulfate [Junsei Chemical Co. Ltd, Japan], 0.5g and 2,2'-azobis {2- (2-imidazoline-2-yl) propane} dihydrochloride [VA-044, Wako Pure Chemical Industries Ltd, Japan] Polyvinyl pyrrolidone (PVP) as a Rick stabilizer [Junsei Chemical Co. Ltd, Japan] after the addition of 1.0 g, the temperature of the mixed solution was maintained at 44 ° C. and reacted for about 24 hours with stirring.

그 다음, 상기 반응물에 메탄올을 첨가하여 반응을 종료시키고 분말상의 중합체를 수득하였다. 수득된 분말상의 중합체를 세척한 후 여과하고 건조시켜 전도성 폴리아닐린 0.68g을 수득하였다.Then, methanol was added to the reaction to terminate the reaction to obtain a powdery polymer. The powdery polymer obtained was washed, filtered and dried to yield 0.68 g of conductive polyaniline.

반응물의 조성비는 표 1로 나타냈다.The composition ratio of the reactants is shown in Table 1.

<비교실시예 1>Comparative Example 1

1M의 톨루엔 설포닉산[98.5%, ACS 시약, Aldrich Chemical사] 15㎖와 1M의 브롬화 수소[Aldrich Chemical사] 15㎖를 혼합한 뒤 마그네틱 스터러를 사용하여 상기 혼합용액을 균질화시켰다. 그 다음, 상기 혼합용액에 0.93g의 아닐린[Junsei Chemical Co. Ltd, 일본], 2.28g의 암모니움퍼설페이트를 첨가한 뒤 상기 혼합용액의 온도를 50℃로 유지시키고 교반하면서 약 24시간 동안 반응시켰다.15 ml of 1 M toluene sulfonic acid [98.5%, ACS reagent, Aldrich Chemical Co., Ltd.] and 15 ml of 1 M hydrogen bromide [Aldrich Chemical Co., Ltd.] were mixed, and the mixed solution was homogenized using a magnetic stirrer. Then, 0.93 g of aniline [Junsei Chemical Co. Ltd, Japan], after adding 2.28 g of ammonium persulfate, the temperature of the mixed solution was maintained at 50 ° C. and reacted for about 24 hours with stirring.

그 다음, 상기 반응물에 메탄올을 첨가하여 반응을 종료시키고 분말상의 중합체를 수득하였다. 수득된 분말상의 중합체를 세척한 후 여과하고 건조시켜 전도성 폴리아닐린 0.59g을 수득하였다.Then, methanol was added to the reaction to terminate the reaction to obtain a powdery polymer. The powdery polymer obtained was washed, filtered and dried to yield 0.59 g of conductive polyaniline.

반응물의 조성비는 표 1로 나타냈다.The composition ratio of the reactants is shown in Table 1.

<비교실시예 2>Comparative Example 2

비교실시예 1과 동일한 방법으로 실시하되 상기 혼합용액에 피롤리돈(PVP) 1.0g을 더 첨가하여 반응시켰다.The reaction was carried out in the same manner as in Comparative Example 1, but further added 1.0 g of pyrrolidone (PVP) to the mixed solution.

그 결과 폴리아닐린 0.6g을 수득하였다.As a result, 0.6 g of polyaniline was obtained.

반응물의 조성비는 표 1로 나타냈다.The composition ratio of the reactants is shown in Table 1.

아닐린(g)Aniline (g) TSA(㎖)TSA (ml) HBr(㎖)HBr (ml) VA-044(g)VA-044 (g) PVP(g)PVP (g) APS(g)APS (g) 온도(℃)Temperature (℃) 반응 전 색상Color before reaction 실시예 1Example 1 0.930.93 1515 1515 0.50.5 -- 2.282.28 4444 갈색Brown 실시예 2Example 2 0.930.93 1515 1515 0.50.5 1.01.0 2.282.28 4444 갈색Brown 비교실시예 1Comparative Example 1 0.930.93 1515 1515 -- -- 2.282.28 5050 무색Colorless 비교실시예 2Comparative Example 2 0.930.93 1515 1515 -- 1.01.0 2.282.28 5050 무색Colorless

<실험><Experiment>

색상변화 실험Color change experiment

상기 실시예 1, 실시예 2, 비교실시예 1 및 비교실시예 2에 의하여 수득된 전도성 폴리아닐린의 색상 변화를 측정하기 위하여 수득된 폴리아닐린(PANi)을 얇은 천형태로 제조한 뒤 유리병 속에서 3 내지 4일간 방치한 후 색깔 변화를 관찰하였다.Polyaniline (PANi) obtained in order to measure the color change of the conductive polyaniline obtained by Examples 1, 2, Comparative Example 1 and Comparative Example 2 was prepared in a thin cloth form and then After leaving for 4 days to observe the color change.

그 결과를 표 2로 나타냈다.The results are shown in Table 2.

표면 저항성 실험Surface resistivity experiment

상기 실시예 1, 실시예 2, 비교실시예 1 및 비교실시예 2에 의하여 수득된 전도성 폴리아닐린의 표면 저항성을 측정하기 위하여 상기 각 실시예에 의하여 수득된 폴리아닐린을 PMMA 박막에 코팅한 후 오븐에서 1시간 동안 건조시킨 뒤 표면 저항성 측정기[SM-8220, DKK · TOA Co., Japan]로 표면 저항성을 측정하였다.In order to measure the surface resistance of the conductive polyaniline obtained by Examples 1, 2, Comparative Example 1 and Comparative Example 2, the polyaniline obtained by the above Examples was coated on a PMMA thin film and then After drying for a time, the surface resistance was measured by a surface resistance measuring instrument [SM-8220, DKK, TOA Co., Japan].

그 결과를 표 2로 나타냈다.The results are shown in Table 2.

입도측정 실험Particle size measurement

상기 실시예 1, 실시예 2, 비교실시예 1 및 비교실시예 2에 의하여 수득된 전도성 폴리아닐린의 입도를 측정하기 위하여 주사전자 현미경(SEM)[JSM 5410LV, Jeol, 일본]을 측정하였다.Scanning electron microscope (SEM) [JSM 5410LV, Jeol, Japan] was measured to measure the particle size of the conductive polyaniline obtained by Examples 1, 2, Comparative Example 1 and Comparative Example 2.

그 결과를 표2로 나타냈다.The results are shown in Table 2.

산화 후 PANi의 색Color of PANi after oxidation 표면 저항성(Ω/cm2)Surface Resistivity (Ω / cm 2 ) 입도(㎛)Particle size (㎛) 실시예 1Example 1 녹색(Forest)Green 6.5∼76.5-7 5∼305-30 실시예 2Example 2 녹색(Grass)Green 4.5∼54.5 to 5 < 1<1 비교실시예 1Comparative Example 1 녹색(Dark)Green 8∼8.58 to 8.5 > 100> 100 비교실시예 2Comparative Example 2 녹색(Blackish)Blackish 88 20∼10020-100

상기 표 2에서 알 수 있듯이 개시제 및 스테릭 안정제를 첨가하여 제조된 폴리아닐린(실시예 2)의 표면 저항성 및 입도가 가장 낮았다. 그러므로, 실시예 2에 의하여 수득된 폴리아닐린은 실시예 1 및 비교실시예 1 및 비교실시예 2에 의에 수득된 폴리아닐린에 비하여 물, 알코올류 및 유기용매 등에 용이하게 용해될 수 있다.As can be seen in Table 2, the surface resistivity and particle size of the polyaniline (Example 2) prepared by adding the initiator and the steric stabilizer was the lowest. Therefore, the polyaniline obtained in Example 2 can be easily dissolved in water, alcohols, organic solvents, and the like, compared to the polyaniline obtained in Example 1, Comparative Example 1, and Comparative Example 2.

IR 스펙트로스코피(IR Spectroscopy) 실험IR Spectroscopy Experiment

실시예 2의 폴리아닐린 현탁액을 건조오븐에서 약 1시간동안 건조시킨 후 10g의 물, 에탄올, 메탄올, DMSO, MEK, n-헥산, 크실렌 등의 용매에 1mg 첨가한 뒤 스펙트라 측정장비[V-550, Jasco, 일본]를 이용하여 IR 스펙트라를 측정하였다.The polyaniline suspension of Example 2 was dried in a drying oven for about 1 hour, and then 1 mg of 10 g of water, ethanol, methanol, DMSO, MEK, n-hexane, xylene, etc. was added to a spectra measuring instrument [V-550, Jasco, Japan] was used to measure the IR spectra.

여기서, 상기 실시예 1, 비교실시예 1 및 비교실시예 2에 의하여 제조된 폴리아닐린의 경우 용해도가 낮아 스펙트라 측정실험을 수행할 수 없었으며, 실시예 2의 스펙트라 측정결과를 도 1로 나타냈다.Here, in the case of the polyaniline prepared by Example 1, Comparative Example 1 and Comparative Example 2 solubility was not able to perform a spectra measurement experiment, the spectra measurement results of Example 2 is shown in FIG.

도 1은 본 발명에 따른 폴리아닐린의 IR 스펙트라(IR spectra)를 나타내는 도이다.1 is a diagram showing an IR spectra of polyaniline according to the present invention.

도 1에 도시된 바와 같이, 물에서의 폴리아닐리의 IR 스펙트라이다. 상기 폴리아닐린의 IR 스펙트라는 300nm로부터 900nm의 파장에서 여러 개의 흡수대(absorption band)가 관찰되었으며, 특히 파장 350nm로부터 420nm 사이의 밴드(band)에서는 π가 π*로 전환하는 벤조이드 고리(benzoid ring)의 전자 전환(electronic transition)에 의한 흡수이고, 파장 800nm의 피크는 퀴노이드 고리(quinoid ring)에 의한 빛의 흡수에 의한 것으로 사료된다.As shown in FIG. 1, the IR spectra of polyanili in water. In the IR spectra of the polyaniline, a plurality of absorption bands were observed at wavelengths of 300 nm to 900 nm. In particular, in the band between 350 nm and 420 nm, the benzoid ring converts π to π * . Absorption by electronic transition, the peak of wavelength 800nm is believed to be due to the absorption of light by the quinoid ring (quinoid ring).

용해성 실험Solubility Experiment

상기 실시예 1, 실시예 2, 비교실시예 1 및 비교실시예 2에서 수득된 폴리아닐린을 물, 메탄올, 에탄올, 디메틸설폭사이드(DMSO), 메틸에틸케톤(MEK), n-헥산 및 크실렌 등의 유기용매에 녹여 용해도를 조사하였다.Polyaniline obtained in Example 1, Example 2, Comparative Example 1 and Comparative Example 2 was water, methanol, ethanol, dimethyl sulfoxide (DMSO), methyl ethyl ketone (MEK), n-hexane and xylene It was dissolved in an organic solvent and examined for solubility.

그 결과를 표 3에 나타냈다.The results are shown in Table 3.

용매menstruum water 메탄올Methanol 에탄올ethanol DMSODMSO MEKMEK n-헥산n-hexane 크실렌xylene 실시예 1Example 1 실시예 2Example 2 비교실시예 1Comparative Example 1 비교실시예 2Comparative Example 2

여기서, ◎ : 완전용해◎: completely dissolved

○ : 부분적 용해○: partially dissolved

● : 용해되지 않음●: Insoluble

을 나타낸다.Indicates.

이상에서 설명한 바와 같이, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 일실시예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허청구범위의 의미 및 범위 그리고 그 등가개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.As described above, those skilled in the art will understand that the present invention can be implemented in other specific forms without changing the technical spirit or essential features. Therefore, the exemplary embodiments described above are to be understood as illustrative in all respects and not as restrictive. The scope of the present invention should be construed that all changes or modifications derived from the meaning and scope of the appended claims and their equivalents, rather than the detailed description, are included in the scope of the present invention.

본 발명은 아닐린 단량체, 도판트, 아조기를 갖는 개시제, 암모니움퍼설페이트 및 필요에 따라서 스테릭 안정제를 반응시켜 폴리아닐린을 제조함으로써, 표면 저항성이 낮고, 높은 용해성을 갖는 나노미터 크기의 초미립자 폴리아닐린을 수득할 수 있다.The present invention provides polyaniline by reacting an aniline monomer, a dopant, an initiator with an azo group, an ammonium persulfate and, if necessary, a steric stabilizer to obtain a nanometer-sized ultrafine polyaniline having low surface resistance and high solubility. Can be.

Claims (5)

화학식 1로 표시되는 아닐린 단량체, 도판트, 아조기를 포함하는 개시제 및 암모니움퍼설페이트를 반응시켜 폴리아닐린을 수득함을 특징으로 하는 폴리아닐린의 제조방법.A method for producing polyaniline, characterized in that polyaniline is obtained by reacting an aniline monomer represented by the formula (1), a dopant, an initiator containing an azo group, and ammonium persulfate. 제 1항에 있어서,The method of claim 1, 상기 아조기를 포함하는 개시제가 화학식 2로 표시되는 2,2'-아조비스{2-(2-이미다졸린-2-릴)프로판}디하이드로클로라이드인 것을 특징으로 하는 폴리아닐린의 제조방법.The initiator comprising the azo group is 2,2'-azobis {2- (2-imidazoline-2-yl) propane} dihydrochloride represented by the formula (2). 제 1항에 있어서,The method of claim 1, 상기 도판트가 브롬화 수소, 톨루엔 설폰산, 도데실벤젠설폰산, 할로겐, 루이스산, 프로톤산, 전이금속, 유기전자 수용체, 유기전자 공여체 및 이들의 둘 이상의 혼합물로 이루어진 그룹 중에서 선택되는 것을 특징으로 하는 폴리아닐린의 제조방법.The dopant is selected from the group consisting of hydrogen bromide, toluene sulfonic acid, dodecylbenzenesulfonic acid, halogen, Lewis acid, protonic acid, transition metal, organic electron acceptor, organic electron donor and mixtures of two or more thereof Method for producing polyaniline. 제 1항 또는 제 3항의 어느 한 항에 있어서, 스테릭 안정제가 추가로 혼합됨을 특징으로 하는 폴리아닐린의 제조방법.The process for producing polyaniline according to any one of claims 1 to 3, wherein the steric stabilizer is further mixed. 제 4항에 있어서,The method of claim 4, wherein 상기 스테릭 안정제가 폴리비닐 알코올-코-비닐아세테이트, 폴리에틸렌 옥사이드, 메틸 셀룰로오즈, 폴리비닐 피리딘, 폴리비닐 피리딘의 코폴리머, 폴리비닐 피롤리돈 및 이들의 둘 이상의 혼합물로 이루어진 그룹 중에서 선택되는 것을 특징으로 하는 폴리아닐린의 제조방법.The steric stabilizer is selected from the group consisting of polyvinyl alcohol-co-vinylacetate, polyethylene oxide, methyl cellulose, polyvinyl pyridine, copolymers of polyvinyl pyridine, polyvinyl pyrrolidone and mixtures of two or more thereof Process for producing polyaniline
KR10-2002-0028764A 2002-05-23 2002-05-23 Preparation Method of Polyanilines KR100514643B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2002-0028764A KR100514643B1 (en) 2002-05-23 2002-05-23 Preparation Method of Polyanilines

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2002-0028764A KR100514643B1 (en) 2002-05-23 2002-05-23 Preparation Method of Polyanilines

Publications (2)

Publication Number Publication Date
KR20030090905A true KR20030090905A (en) 2003-12-01
KR100514643B1 KR100514643B1 (en) 2005-09-13

Family

ID=32384176

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2002-0028764A KR100514643B1 (en) 2002-05-23 2002-05-23 Preparation Method of Polyanilines

Country Status (1)

Country Link
KR (1) KR100514643B1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100417676C (en) * 2004-12-15 2008-09-10 同济大学 Preparation method of high content polyaniline microemulsion
KR100921197B1 (en) * 2007-08-29 2009-10-13 한국생산기술연구원 Electrochromic PANi films and process thereof
KR20160054312A (en) * 2014-11-06 2016-05-16 롯데케미칼 주식회사 Preparation method of conductive polymer nano-marterial
CN114335558A (en) * 2021-12-07 2022-04-12 西安交通大学 Preparation method of conjugate microporous polyaniline modified battery current collector and application of conjugate microporous polyaniline modified battery current collector in lithium-sulfur battery

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100648894B1 (en) 2005-04-19 2006-11-27 이석현 Synthesis method of polyaniline by self dispersion polymerization method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH062779B2 (en) * 1985-02-04 1994-01-12 日東紡績株式会社 Process for producing polymer of inorganic acid salt of monoallylamine or N-substituted monoallylamine
TW202429B (en) * 1991-02-27 1993-03-21 Hoechst Ag
US5567356A (en) * 1994-11-07 1996-10-22 Monsanto Company Emulsion-polymerization process and electrically-conductive polyaniline salts
KR0149830B1 (en) * 1995-05-24 1998-10-15 강박광 Method for preparing water-soluble conductive polymer compound and composites thereof
KR100319188B1 (en) * 1995-08-16 2002-04-22 김희용 Manufacturing method for decorative coloring of metal products
KR100205912B1 (en) * 1996-07-16 1999-07-01 이종학 Method for preparing soluble electrically conductive polyaniline
KR100475413B1 (en) * 2001-11-22 2005-03-10 김진열 Soluble polyaniline in organic solvents, process for synthesizing it and its applications

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100417676C (en) * 2004-12-15 2008-09-10 同济大学 Preparation method of high content polyaniline microemulsion
KR100921197B1 (en) * 2007-08-29 2009-10-13 한국생산기술연구원 Electrochromic PANi films and process thereof
KR20160054312A (en) * 2014-11-06 2016-05-16 롯데케미칼 주식회사 Preparation method of conductive polymer nano-marterial
CN114335558A (en) * 2021-12-07 2022-04-12 西安交通大学 Preparation method of conjugate microporous polyaniline modified battery current collector and application of conjugate microporous polyaniline modified battery current collector in lithium-sulfur battery

Also Published As

Publication number Publication date
KR100514643B1 (en) 2005-09-13

Similar Documents

Publication Publication Date Title
TWI300419B (en) Process for the preparation of neutral polyethylenedioxythiophene, and corresponding polyethlenedioxythiophenes
Ruiz et al. Repeat unit symmetry effects on the physical and electronic properties of processable, electrically conducting, substituted poly [1, 4-bis (2-thienyl) phenylenes]
Jang et al. Synthesis and characterization of water soluble polypyrrole doped with functional dopants
Pud et al. Some aspects of preparation methods and properties of polyaniline blends and composites with organic polymers
KR100221383B1 (en) Crosslinked electroconductive polymer and method for producing the precursor thereof
Lee et al. A novel conducting soluble polypyrrole composite with a polymeric co-dopant
US5795953A (en) Soluble, electroconductive polypyrrole and method for preparing the same
Chao et al. New method of synthesis of electroactive polyamide with amine‐capped aniline pentamer in the main chain
KR100283544B1 (en) Control of polymerization kinetics and rate of polymer precipitation as a means of controlling the aggregation and morphology in conductive polymers and precursors thereof
US20050269555A1 (en) Conductive polymers having highly enhanced solubility in organic solvent and electrical conductivity and synthesizing process thereof
Wang et al. Processable colloidal dispersions of polyaniline-based copolymers for transparent electrodes
JP5190424B2 (en) Conductive polyaniline and synthesis method thereof
KR100534288B1 (en) A Novel Polyaniline Graft Copolymer
Murugesan et al. Multi-faceted role of blended poly (vinyl pyrrolidone) leading to remarkable improvement in characteristics of polyaniline emeraldine salt
JP6154784B2 (en) Catalyst-free polymerization of 3,4-alkylenedioxypyrrole and 3,4-alkylenedioxyfuran
US3862094A (en) Electroconductive high polymer composition
Falcou et al. A new chemical polymerization process for substituted anilines: application to the synthesis of poly (N-alkylanilines) and poly (o-alkylanilines) and comparison of their respective properties
JP2005008732A (en) Electroconductive composition, electroconductive coating material and electroconductive resin
JPH0632845A (en) Production of electrically conductive high molecular complex material
KR100514643B1 (en) Preparation Method of Polyanilines
KR100205912B1 (en) Method for preparing soluble electrically conductive polyaniline
CN108530621B (en) Soluble conductive polymer and preparation method thereof
JP2000204158A (en) Aromatic amine derivative and soluble conductive compounds
KR100248641B1 (en) Cross-linked electrically conductive polymers, precursors thereof and applications thereof
KR20050108107A (en) Conductive polymers highly electrical conductivity and solubility in organic solvents and process of preparing thereof

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20020523

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20050131

Patent event code: PE09021S01D

E701 Decision to grant or registration of patent right
PE0701 Decision of registration

Patent event code: PE07011S01D

Comment text: Decision to Grant Registration

Patent event date: 20050722

GRNT Written decision to grant
PR0701 Registration of establishment

Comment text: Registration of Establishment

Patent event date: 20050906

Patent event code: PR07011E01D

PR1002 Payment of registration fee

Payment date: 20050907

End annual number: 3

Start annual number: 1

PG1601 Publication of registration
PR1001 Payment of annual fee

Payment date: 20080905

Start annual number: 4

End annual number: 4

PR1001 Payment of annual fee

Payment date: 20090904

Start annual number: 5

End annual number: 5

PR1001 Payment of annual fee

Payment date: 20100906

Start annual number: 6

End annual number: 6

FPAY Annual fee payment

Payment date: 20110906

Year of fee payment: 7

PR1001 Payment of annual fee

Payment date: 20110906

Start annual number: 7

End annual number: 7

LAPS Lapse due to unpaid annual fee
PC1903 Unpaid annual fee