KR20030065524A - Refrigerating or heat pump system with heat rejection at supercritical pressure - Google Patents
Refrigerating or heat pump system with heat rejection at supercritical pressure Download PDFInfo
- Publication number
- KR20030065524A KR20030065524A KR10-2003-7006982A KR20037006982A KR20030065524A KR 20030065524 A KR20030065524 A KR 20030065524A KR 20037006982 A KR20037006982 A KR 20037006982A KR 20030065524 A KR20030065524 A KR 20030065524A
- Authority
- KR
- South Korea
- Prior art keywords
- heat
- air flow
- cooling
- pump system
- air
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B1/00—Compression machines, plants or systems with non-reversible cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/0233—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with air flow channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B39/00—Evaporators; Condensers
- F25B39/04—Condensers
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B9/00—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
- F25B9/002—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
- F25B9/008—Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25D—REFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
- F25D23/00—General constructional features
- F25D23/003—General constructional features for cooling refrigerating machinery
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D1/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators
- F28D1/02—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid
- F28D1/04—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits
- F28D1/047—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag
- F28D1/0477—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, in which the other heat-exchange medium is a large body of fluid, e.g. domestic or motor car radiators with heat-exchange conduits immersed in the body of fluid with tubular conduits the conduits being bent, e.g. in a serpentine or zig-zag the conduits being bent in a serpentine or zig-zag
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/02—Tubular elements of cross-section which is non-circular
- F28F1/022—Tubular elements of cross-section which is non-circular with multiple channels
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F1/00—Tubular elements; Assemblies of tubular elements
- F28F1/10—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses
- F28F1/12—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element
- F28F1/14—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally
- F28F1/22—Tubular elements and assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with projections, with recesses the means being only outside the tubular element and extending longitudinally the means having portions engaging further tubular elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2309/00—Gas cycle refrigeration machines
- F25B2309/06—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
- F25B2309/061—Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Geometry (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
- Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
Abstract
본 발명의 냉각 또는 열펌프 시스템은 증발기(23), 압축기(20), 공냉식 열제거 열교환기(21) 및 팽창 장치(22)를 구비하며, 이들은 폐회로 내에서 연결되며 초임계 증기 압축 사이클에서 작동한다. 열제거 열교환기(21)는 공기의 자연 상방 순환/대류에 의해 냉각된다. 바람직한 실시예에서, 열제거 열교환기(21)는 굴뚝 효과를 얻음으로써 자연 공기 순환을 향상시키도록 공기 유동 도관 또는 셀(11) 내에 형성된다.The cooling or heat pump system of the present invention comprises an evaporator 23, a compressor 20, an air cooled heat removal heat exchanger 21 and an expansion device 22, which are connected in a closed circuit and operated in a supercritical steam compression cycle. do. The heat removal heat exchanger 21 is cooled by the natural upward circulation / convection of air. In a preferred embodiment, the heat removal heat exchanger 21 is formed in the air flow conduit or cell 11 to enhance the natural air circulation by obtaining the chimney effect.
Description
냉장 또는 냉동 캐비넷용 냉각 시스템은 일반적으로 증발 및 응축 과정을 포함하는 증기 압축 사이클에서 작동하는 냉매를 구비한다. 냉매는, 그 임계 온도가 요구되는 열제거(응축) 온도보다 훨씬 낮은 것으로 선택된다. 공냉 시스템에서 효과적인 응축을 달성하기 위해, 비교적 높은 공기 유량이 요구되며, 응축기와 공기 유동 시스템을 위한 넓은 공간이 요구된다. 대부분의 시스템에서는, 응축기를 지나도록 공기를 순환시키기 위해서 팬이 요구된다. 이와 관련한 문제점 중 하나는 팬에 비교적 큰 동력이 요구된다는 것과, 팬과 그 공기 유동 시스템을 위한 추가의 공간이 필요하다는 것이다. 강제 공기 유동 및 팬과 그 모터는 소음 문제를 야기할 수도 있고, 팬의 설치로 인해 시스템은 비용이 증가하고 복잡해진다.Cooling systems for refrigeration or refrigeration cabinets generally have a refrigerant operating in a vapor compression cycle that includes evaporation and condensation processes. The refrigerant is chosen such that its critical temperature is much lower than the required heat removal (condensation) temperature. In order to achieve effective condensation in air cooling systems, relatively high air flow rates are required and large space for condensers and air flow systems is required. In most systems, a fan is required to circulate the air past the condenser. One of the problems associated with this is that the fan requires relatively high power and additional space is needed for the fan and its air flow system. Forced air flow and fans and their motors can cause noise problems, and the installation of fans adds cost and complexity to the system.
실내 공기에 열을 공급하는 가정용 및 경량의 상용 열펌프는 일반적으로, 응축기를 지나도록 공기를 강제 순환시키기 위한 실내 유닛을 가진다. 또, 공기 순환팬 또는 송풍기가 요구되어, 추가의 동력 소비 및 소음이 야기된다. 또한, 실온보다 약간 높을 뿐인 온도를 가지며, 공기 유량이 크고 및/또는 속도가 큰 공기의 흐름으로 인해 열적 편안감이 저해될 수 있다. 높은 유량이 요구되므로, 실내 유닛 설계에는 큰 체적이 요구되어, 매력적인 제품 디자인을 위한 선택의 여지가 감소된다.Household and lightweight commercial heat pumps that supply heat to indoor air generally have an indoor unit for forced circulation of air past the condenser. In addition, air circulation fans or blowers are required, resulting in additional power consumption and noise. In addition, the thermal comfort may be impaired due to the flow of air having a temperature that is only slightly higher than room temperature and with high air flow rates and / or high speeds. Since high flow rates are required, large volume is required for indoor unit designs, reducing the choice for attractive product designs.
현재 냉각 또는 열펌프 시스템에서 사용되는 냉매는, 오존 파괴 특성 및/또는 인류에 의한 기후 변화 야기로 인해 바람직하지 않은 플루오르화탄소계 화학물 중 하나이거나, 안전성이 의심되는 인화성 탄화수소계 유체이다.Refrigerants currently used in cooling or heat pump systems are one of the undesirable fluorocarbon-based chemicals due to ozone depleting properties and / or causing climate change by humans, or flammable hydrocarbon-based fluids whose safety is suspected.
초임계 시스템에서, 열은 초임계적으로 가압된 냉매의 온도를 저감시킴으로써 제거되며, 종래의 시스템에서와 같이 일정 온도에서의 응축에 의해 제거되는 것이 아니다. 초임계 압력 냉매가 열교환기를 통해 흐를 때, 냉매는 열을 방출하고 그 온도가 저감된다(온도 하강). 이상적으로는, 냉매와 공기 유동이 상호 역류 관계에 있을 때, 냉매 온도는 공기 유입 온도에 근접할 것이다.In supercritical systems, heat is removed by reducing the temperature of the supercritical pressurized refrigerant, and not by condensation at a constant temperature as in conventional systems. When the supercritical pressure refrigerant flows through the heat exchanger, the refrigerant releases heat and the temperature is reduced (temperature drop). Ideally, when the refrigerant and the air flow are in countercurrent relationship, the refrigerant temperature will be close to the air inlet temperature.
냉매로부터 열을 제거하여 온도를 하강시키는 상황에서, 공기 유량은 저감될 수 있고, 공기 유출 온도는 응축기에서의 상황에 비해서 상승된다. 응축기에서는, 공기 유출 온도는 반드시 응축 온도 미만이어야 한다. 초임계 시스템에서는, 높은 공기 온도 및 저감된 공기 유량은 열교환기를 지나 공기가 자연 대류 유동하는 데에 유익할 것이고, 이에 의해 소음이 감소될 것이고, 열펌프에 적용될 때 열적 편안감에 대하여 유리한 작용을 할 것이다.In a situation where the temperature is lowered by removing heat from the refrigerant, the air flow rate can be reduced, and the air outlet temperature is raised as compared with the situation in the condenser. In the condenser, the air outlet temperature must be below the condensation temperature. In supercritical systems, high air temperatures and reduced air flow rates will be beneficial for natural convective flow of air past the heat exchanger, thereby reducing noise and having an advantageous effect on thermal comfort when applied to heat pumps. something to do.
본 발명은 냉각 또는 열펌프 시스템에 관한 것으로서, 특히 이산화탄소를 냉매로서 사용하는, 소매용 냉각 시스템 및/또는 음식이나 야채를 냉장 또는 냉동시키는 저장 캐비넷, 또는 건물 난방을 위한 열펌프에 관한 것이다.FIELD OF THE INVENTION The present invention relates to cooling or heat pump systems, and more particularly to retail cooling systems and / or storage cabinets for refrigeration or freezing of food or vegetables, or heat pumps for building heating.
첨부한 도면을 참조하여, 본 발명을 예시적으로 보다 상세하게 설명하도록 한다.With reference to the accompanying drawings, it will be described in more detail by way of example.
도 1은 폐회로 내에서 연결된, 압축기와, 자연 공기 순환식 공냉식 열제거 유닛과, 팽창 장치와, 증발기을 구비하는 초임계 증기 압축 시스템을 도시하는 도면.1 illustrates a supercritical vapor compression system having a compressor, a natural air circulating air-cooled heat removal unit, an expansion device, and an evaporator connected in a closed circuit.
도 2는 본 발명에 따른, 인-라인형 구조로 된 둥근형 튜브에 기초한 열제거 열교환기 및 공기 유동 도관을 구비하는 자연 공기 순환형 열제거 유닛의 단면도.2 is a cross-sectional view of a natural air circulating heat removal unit having an air flow conduit and a heat removal heat exchanger based on a round tube of in-line construction, according to the present invention.
도 3은 본 발명의 제2 실시예에 따른, 지그재그형 구조로 된 둥근형 튜브에 기초한 열제거 열교환기 및 공기 유동 도관을 구비하는 자연 공기 순환형 열제거 유닛의 단면도.3 is a cross-sectional view of a natural air circulation heat removal unit having a heat removal heat exchanger based on a round tube of zigzag structure and an air flow conduit according to a second embodiment of the present invention.
도 4는 본 발명의 제3 실시예에 따른, 폴드형 튜브에 기초한 열제거 열교환기 및 공기 유동 도관을 구비하는 자연 공기 순환형 열제거 유닛의 측면도.4 is a side view of a natural air circulating heat removal unit having an air flow conduit and a heat removal heat exchanger based on a foldable tube according to a third embodiment of the present invention.
도 5는 본 발명의 제4 실시예에 따른, 나선형 구조로 형성된 열제거 열교환기 및 공기 유동 도관을 구비하는 열제거 유닛의 단면도.5 is a cross-sectional view of a heat removal unit having a heat removal heat exchanger and an air flow conduit formed in a spiral structure according to a fourth embodiment of the present invention.
도 6은 본 발명의 제5 실시예에 따른, 공기측 열전달면을 증대시키기 위해 플레이트에 튜브가 부착되어 있는 열제거 유닛을 도시하는 도면.FIG. 6 shows a heat removal unit having a tube attached to a plate for increasing the air side heat transfer surface according to the fifth embodiment of the present invention. FIG.
도 7은 상기 열교환기의 어느 한 쪽 또는 양쪽에 표면적을 넓힌 플레이트 핀을 구비한 멀티포트 압출(MPE) 열교환기를 사용하는 자연 공기 순환형 완전 역류식 열제거 유닛을 도시한 도면.FIG. 7 illustrates a natural air circulation fully countercurrent heat removal unit using a multiport extruded (MPE) heat exchanger having plate fins with increased surface area on either or both sides of the heat exchanger.
도 8은 냉각기 또는 이와 유사한 장치에 사용되는 청구항 제5항에 따른 실시예의 한 예를 도시하는 도면.8 shows an example of an embodiment according to claim 5 for use in a cooler or similar device.
따라서, 상기 문제점 및 단점을 고려하여, 본 발명의 목적은 팬 동력이 요구되지 않고 높은 부하 상황에서만 약간의 팬 동력이 요구될 뿐인, 소형의 자연 공기 순환형 열제거 시스템을 갖는 시스템에 안전하고 환경 친화적인 냉매를 사용하는 냉각 시스템을 제공하는 것이다.Therefore, in view of the above problems and disadvantages, the object of the present invention is to be safe and environmental in a system having a small natural air circulation type heat removal system, in which fan power is not required and only a small fan power is required only in a high load situation. It is to provide a cooling system using a friendly refrigerant.
이러한 목적을 달성하기 위해, 본 발명은 비인화성 비유독성 환경 친화적 유체인 이산화탄소(CO2)를 냉매로서 사용하는 시스템을 제공한다.To achieve this object, the present invention provides a system using carbon dioxide (CO 2 ), which is a non-flammable, non-toxic environmentally friendly fluid, as a refrigerant.
본 발명은, 독립항인 제1항에 정의된 바와 같이, 냉매가 공기의 자연 상방 순환/대류에 의해 냉각되는 열제거 열교환기를 통과하면서 초임계 압력에서 열을 방출하여 온도가 하강하는 것을 특징으로 한다.The invention is characterized in that the temperature is lowered by dissipating heat at supercritical pressure as the refrigerant passes through a heat removal heat exchanger cooled by the natural upward circulation / convection of air as defined in the independent claim 1. .
본 발명의 바람직한 실시예는 종속항인 제2항 내지 제8항에 보다 구체적으로 정의되어 있다.Preferred embodiments of the invention are more specifically defined in claims 2 to 8 which are dependent claims.
CO2의 특별한 열역학적 특성의 장점을 취하고, 시스템을 적절하게 설계함으로써, 상기 언급한 바와 같이, 열제거는 공기의 자연 대류 유동 및 현저히 저감된 공기 유량에서, 특별한 공기 순환 팬의 필요 없이 이루어질 수 있다.By taking advantage of the special thermodynamic properties of CO 2 and properly designing the system, as mentioned above, heat removal can be achieved without the need for a special air circulation fan, at natural convective flow of air and at significantly reduced air flow rates. .
도 1 내지 도 6을 참조하여, 본 발명의 실시예들을 상세히 설명하도록 한다.1 to 6, the embodiments of the present invention will be described in detail.
도 1은 압축기(20), 공냉식 열제거 유닛(21), 팽창 장치(22) 및 증발기(23)를 구비하는 증기 압축 시스템의 예를 도시한다. 이들 구성요소들은 초임계 증기 압축 사이클에서, 즉 초임계 고압으로 작동하는 폐회로 내에서 연결된다. 열제거 열교환기(21)는 공기의 자연 상방 순환/대류에 의해 냉각된다.1 shows an example of a vapor compression system having a compressor 20, an air cooled heat removal unit 21, an expansion device 22 and an evaporator 23. These components are connected in a supercritical steam compression cycle, ie in a closed circuit operating at supercritical high pressure. The heat removal heat exchanger 21 is cooled by the natural upward circulation / convection of air.
도 2는 공기 유동 도관 또는 외측 공기 유동 셀(shell) 또는 재킷(11)과 열교환기 튜브(10)를 구비하는 열제거 유닛의 단면도이다. 튜브들은 셀(11) 내에서 서로에 대해 상하 줄맞춰 배열되어 있다. 공기는 시스템의 하단의 유입구(i)에서 유입되고, 상단의 배출구(o)에서 배출된다. 공기가 열교환기 튜브에 의해 가열될 때, 자연 대류에 의해 공기 순환이 이루어진다. 압축기로부터의 고온 냉매는 열교환기 냉매 유입구(12)를 통해 유입되어 공기에 열을 방출하면서 열교환기를 통하여 흐르고, 이에 의해 유효한 굴뚝 효과가 얻어진다. 냉각된 냉매는 배출구(13)를 통해 열교환기로부터 배출된다. 공기 유량을 더욱 증가시키기 위해, 굴뚝 효과를 증대시키도록, 열교환기 상방에 추가의 수직 길이 도관(11a)이 추가될 수 있다. 공기 유동을 향상시키기 위해, 수렴 및 발산하는 노즐 단면을 갖는 "굴뚝" 또는 연통이 설치될 수도 있다.2 is a cross-sectional view of a heat removal unit having an air flow conduit or an outer air flow shell or jacket 11 and a heat exchanger tube 10. The tubes are arranged up and down in line with one another in the cell 11. Air enters at the inlet (i) at the bottom of the system and exits at the outlet (o) at the top. When air is heated by a heat exchanger tube, air circulation takes place by natural convection. The high temperature refrigerant from the compressor flows through the heat exchanger refrigerant inlet 12 and flows through the heat exchanger while releasing heat into the air, whereby an effective chimney effect is obtained. The cooled refrigerant is discharged from the heat exchanger through the outlet 13. In order to further increase the air flow rate, an additional vertical length conduit 11a may be added above the heat exchanger to increase the chimney effect. In order to improve air flow, a "chimney" or communication with a nozzle cross section that converges and diverges may be installed.
도 3의 단면도에 도시한 바와 같이, 열전달 튜브(10)는 표면적을 증대시켜 열전달을 향상시키기 위해 유동 도관 내에 지그재그형으로 배열될 수도 있다.As shown in the cross-sectional view of FIG. 3, the heat transfer tubes 10 may be arranged zigzag in the flow conduit to increase the surface area to improve heat transfer.
도 4는 폴드형 튜브(10)에 기초한 열교환기 및 공기 유동 도관(11)을 구비한 자연 공기 순환형 열제거 유닛의 측면도이다. 공기 순환과 열교환기 효율을 최대화하기 위해, 냉매는 공기에 대해 대체로 역류 방향으로 흘러야 한다. 도면에 도시한 바와 같이, 상단에 냉매 유입구(12)가 있고, 하단에 배출구(13)가 있는 상태로, 공기와 냉매의 상이한 두 유동 사이에는 바람직한 관계가 얻어진다.4 is a side view of a natural air circulation type heat removal unit with a heat exchanger based on a foldable tube 10 and an air flow conduit 11. In order to maximize air circulation and heat exchanger efficiency, the refrigerant must flow in a generally counterflow direction with respect to air. As shown in the figure, with the refrigerant inlet 12 at the top and the outlet 13 at the bottom, a desirable relationship is obtained between two different flows of air and refrigerant.
도 5에는, 공기 유동 도관(11)이 원형의 단면을 가지고, 열전달 튜브(10)가 공기 유동 도관(11) 내부에 나선형으로 형성되어 있는 다른 가능한 실시예가 도시되어 있다. 공기 유동에 관련한 공기 도관(11)의 단면을 최적화하기 위해, 도관에 내측 원형 튜브를 삽입하고 삽입된 튜브의 단부를 폐쇄함으로써, 열전달 튜브를 수납하는 환형부가 구성될 수 있다.In FIG. 5, another possible embodiment is shown in which the air flow conduit 11 has a circular cross section and the heat transfer tube 10 is spirally formed inside the air flow conduit 11. In order to optimize the cross section of the air conduit 11 in relation to the air flow, by inserting an inner circular tube in the conduit and closing the end of the inserted tube, an annular portion for receiving the heat transfer tube can be constructed.
도 6에 도시한 바와 같이, 열전달 튜브는 공기 유동에 대면하는 열전달 면적을 증대시키기 위해, 플레이트 또는 도관(11) 내에서 셀의 일체적 일부를 구성할 수 있으며, 즉 도관 또는 셀 내에 형성될 수 있다. 필요에 따라, 플레이트에 슬롯, 스플릿 또는 미늘창(14)을 형성함으로써, 도관의 높이 방향 열전도가 감소되거나 없어질 수 있다. 셀 플레이트 또는 도관은 편평한 표면을 가질 수도 있고, 표면은 자연 대류 공기 유동을 향상시키는 수직 핀 또는 개방/폐쇄 덕트형 구조로 이루어질 수도 있다.As shown in FIG. 6, the heat transfer tube may constitute an integral part of the cell in the plate or conduit 11, ie, may be formed in the conduit or cell, to increase the heat transfer area facing the air flow. have. If desired, by forming slots, splits or louvers 14 in the plate, the height direction thermal conduction of the conduits can be reduced or eliminated. The cell plate or conduit may have a flat surface, and the surface may consist of a vertical fin or open / closed duct-like structure that enhances natural convective air flow.
청구범위에 규정된 본 발명은 도면에 도시된 예 또는 위에서 설명한 예에 한정되지 않으므로, 상기 모든 실시예에서, 열전달 표면으로서 도관 또는 셀의 하나 또는 수개의 벽이 사용될 수도 있다. 또, 열전달 튜브는 개략도에서 원형의 단면을 갖는 것으로 도시되어 있지만, 편평한 튜브, 타원형 튜브, 멀티포트 튜브 및 보다 복잡한 기하학적 형상을 포함하여 임의의 튜브 형상이 사용될 수도 있다. 또, 냉매 튜브는 공기 유동 도관 재료에 일체화될 수도 있으며, 이 경우 복사에 의한 열전달을 향상시킬 수 있는 일체형 열제거 및 공기 도관 유닛이 얻어진다. 와이어, 핀,스터드 등을 포함하여, 열전달 튜브에 여러가지 개조 및 외표면 연장을 행할 수도 있다. 상단에서 고온의 냉매가 유입되어, 이러한 경우에 이상적인 완전 역류식 열교환 과정으로 공기의 자연 상방 순환/대류에 의해 냉각된 후 하단에서 배출되는, 표면적이 증대된 플레이트 핀을 구비하는 멀티포트 압출(MPE) 열교환기를 사용하는 예가 도 7에 도시되어 있다.The invention as defined in the claims is not limited to the examples shown in the figures or the examples described above, so in all of the above embodiments, one or several walls of conduits or cells may be used as the heat transfer surface. In addition, although the heat transfer tubes are shown as having a circular cross section in schematic diagram, any tube shape may be used, including flat tubes, elliptical tubes, multiport tubes, and more complex geometries. In addition, the refrigerant tube may be integrated into the air flow conduit material, in which case an integral heat removal and air conduit unit is obtained that can improve heat transfer by radiation. Various modifications and external surface extensions may be made to the heat transfer tubes, including wires, fins, studs, and the like. Multiport extrusion (MPE) with plate fins with an increased surface area where hot refrigerant is introduced at the top and, in this case, is cooled by the natural upward circulation / convection of air in an ideal fully countercurrent heat exchange process and then discharged at the bottom. An example of using a heat exchanger is shown in FIG. 7.
도 8은 냉각기 또는 이와 유사한 장치에 사용되는 청구항 제5항에 따른 실시예의 한 예를 도시한다. 열교환기(10)는 바닥부에 배치되어 있고, 공기 유동 도관(11a)이 냉각기 후방에 배치되어 자연 공기 유동/순환을 향상시키도록 공기 유동 셀 또는 재킷(11)을 연장시킨다.8 shows an example of an embodiment according to claim 5 for use in a cooler or similar device. The heat exchanger 10 is arranged at the bottom and an air flow conduit 11a is arranged behind the cooler to extend the air flow cell or jacket 11 to improve natural air flow / circulation.
Claims (9)
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
NO20005974 | 2000-11-24 | ||
NO20005974A NO20005974D0 (en) | 2000-11-24 | 2000-11-24 | Cooling or heat pump system with heat release when temperature changes |
PCT/NO2001/000454 WO2002042695A1 (en) | 2000-11-24 | 2001-11-16 | Refrigerating or heat pump system with heat rejection at supercritical pressure |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20030065524A true KR20030065524A (en) | 2003-08-06 |
Family
ID=19911836
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2003-7006982A KR20030065524A (en) | 2000-11-24 | 2001-11-16 | Refrigerating or heat pump system with heat rejection at supercritical pressure |
Country Status (10)
Country | Link |
---|---|
US (1) | US20040069013A1 (en) |
EP (1) | EP1340027A1 (en) |
JP (1) | JP2004514868A (en) |
KR (1) | KR20030065524A (en) |
CN (1) | CN1250927C (en) |
AU (1) | AU2002215268A1 (en) |
CA (1) | CA2429857A1 (en) |
NO (1) | NO20005974D0 (en) |
TW (1) | TW528843B (en) |
WO (1) | WO2002042695A1 (en) |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005106404A (en) | 2003-09-30 | 2005-04-21 | Sanyo Electric Co Ltd | Heating/cooling system |
JP2005156093A (en) * | 2003-11-28 | 2005-06-16 | Daikin Ind Ltd | Air conditioner |
AU2005327835A1 (en) * | 2005-02-18 | 2006-08-24 | Carrier Corporation | CO2-refrigeration device with heat reclaim |
EP2158434A1 (en) * | 2007-05-22 | 2010-03-03 | INSTITUT FÜR LUFT- UND KÄLTETECHNIK GEMEINNÜTZIGE GESELLSCHAFT mbH | Rear wall condenser for domestic refrigerators and freezers |
US8925336B2 (en) * | 2008-04-19 | 2015-01-06 | Carrier Corporation | Refrigerant system performance enhancement by subcooling at intermediate temperatures |
DE102010043243A1 (en) * | 2010-11-03 | 2012-05-03 | BSH Bosch und Siemens Hausgeräte GmbH | heat exchangers |
JP5349655B1 (en) * | 2012-06-25 | 2013-11-20 | 株式会社 エコファクトリー | Air conditioner room unit |
CN105737458A (en) * | 2016-03-14 | 2016-07-06 | 深圳智焓热传科技有限公司 | Natural cooling heat exchanger and heat exchange units thereof |
EP3686535B1 (en) * | 2019-01-22 | 2024-03-06 | Hitachi Energy Ltd | Condenser |
Family Cites Families (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1769119A (en) * | 1928-01-06 | 1930-07-01 | Chicago Pneumatic Tool Co | Condensing system |
US2189494A (en) * | 1932-11-26 | 1940-02-06 | Gen Motors Corp | Refrigerating apparatus |
US2105751A (en) * | 1936-05-28 | 1938-01-18 | Crosley Radio Corp | Condenser device for refrigerators |
GB540937A (en) * | 1939-08-03 | 1941-11-06 | Nils Erland Af Kleen | Improvements in or relating to air cooled condensing systems for refrigerators |
US2292033A (en) * | 1941-08-01 | 1942-08-04 | Gen Electric | Refrigerant condenser and method of forming same |
US2344145A (en) * | 1943-04-29 | 1944-03-14 | Gen Motors Corp | Refrigerating apparatus |
US2478617A (en) * | 1948-03-18 | 1949-08-09 | Pierce John B Foundation | Air conditioning system |
US2865182A (en) * | 1956-09-21 | 1958-12-23 | Temprite Products Corp | Self-contained water cooler of the bubbler type |
US3595029A (en) * | 1969-09-08 | 1971-07-27 | Heatransfer Corp | Air conditioning for volkswagen-type automobiles |
US4972683A (en) * | 1989-09-01 | 1990-11-27 | Blackstone Corporation | Condenser with receiver/subcooler |
DE59105093D1 (en) * | 1990-08-16 | 1995-05-11 | Bosch Siemens Hausgeraete | Cooling device. |
FR2704939B1 (en) * | 1993-05-06 | 1995-06-23 | Valeo Thermique Habitacle | Refrigerant circuit with improved efficiency. |
JP3312067B2 (en) * | 1993-09-21 | 2002-08-05 | ホシザキ電機株式会社 | Cooling system |
IT1284421B1 (en) * | 1995-11-13 | 1998-05-21 | Bundy S P A | COIL HEAT EXCHANGER, IN PARTICULAR CONDENSER FOR REFRIGERATING CIRCUITS. |
JPH11211250A (en) * | 1998-01-21 | 1999-08-06 | Denso Corp | Supercritical freezing cycle |
JP4075129B2 (en) * | 1998-04-16 | 2008-04-16 | 株式会社豊田自動織機 | Control method of cooling device |
DE19830757A1 (en) * | 1998-07-09 | 2000-01-13 | Behr Gmbh & Co | Air conditioning system especially for a motor vehicle |
JP2000055488A (en) * | 1998-08-05 | 2000-02-25 | Sanden Corp | Refrigerating device |
DE19918617C2 (en) * | 1999-04-23 | 2002-01-17 | Valeo Klimatechnik Gmbh | Gas cooler for a supercritical CO¶2¶ high pressure refrigerant circuit of an automotive air conditioning system |
JP4016544B2 (en) * | 1999-09-29 | 2007-12-05 | 株式会社デンソー | Radiator for supercritical vapor compression refrigeration cycle |
US6591618B1 (en) * | 2002-08-12 | 2003-07-15 | Praxair Technology, Inc. | Supercritical refrigeration system |
-
2000
- 2000-11-24 NO NO20005974A patent/NO20005974D0/en unknown
-
2001
- 2001-11-16 JP JP2002544591A patent/JP2004514868A/en active Pending
- 2001-11-16 CA CA002429857A patent/CA2429857A1/en not_active Abandoned
- 2001-11-16 US US10/432,228 patent/US20040069013A1/en not_active Abandoned
- 2001-11-16 CN CNB018194869A patent/CN1250927C/en not_active Expired - Fee Related
- 2001-11-16 AU AU2002215268A patent/AU2002215268A1/en not_active Abandoned
- 2001-11-16 KR KR10-2003-7006982A patent/KR20030065524A/en not_active Application Discontinuation
- 2001-11-16 EP EP01983872A patent/EP1340027A1/en not_active Withdrawn
- 2001-11-16 WO PCT/NO2001/000454 patent/WO2002042695A1/en not_active Application Discontinuation
- 2001-11-20 TW TW090128680A patent/TW528843B/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
EP1340027A1 (en) | 2003-09-03 |
TW528843B (en) | 2003-04-21 |
CN1250927C (en) | 2006-04-12 |
US20040069013A1 (en) | 2004-04-15 |
AU2002215268A1 (en) | 2002-06-03 |
JP2004514868A (en) | 2004-05-20 |
CA2429857A1 (en) | 2002-05-30 |
NO20005974D0 (en) | 2000-11-24 |
CN1476524A (en) | 2004-02-18 |
WO2002042695A1 (en) | 2002-05-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN109892029B (en) | Active/passive cooling system | |
JP6888102B2 (en) | Heat exchanger unit and refrigeration cycle equipment | |
JP2023156295A (en) | Cooling system and method using single-phase fluid and flat tube heat exchanger with counter-flow circuiting | |
KR20030004899A (en) | Refrigerator with condenser and backcover in one | |
CN101652610A (en) | Refrigeration device comprising coolant conduits that are connected in parallel in the heat exchanger | |
KR20030065524A (en) | Refrigerating or heat pump system with heat rejection at supercritical pressure | |
JP4130636B2 (en) | Refrigerator built-in showcase | |
JP4423321B2 (en) | Refrigerator built-in showcase | |
JP3333500B2 (en) | Condenser structure of heat exchange device | |
KR102402382B1 (en) | Air-cooled gas cooler for refrigeration compressor | |
US9243650B2 (en) | Fin array for use in a centrifugal fan | |
KR100228411B1 (en) | Condenser of a heat exchanger | |
KR100625751B1 (en) | Air-conditioner for cooling and heating | |
KR102342956B1 (en) | High efficiency evaporative condenser | |
CN216716398U (en) | Air conditioner | |
KR200147876Y1 (en) | Condenser structure of heat exchange apparatus | |
KR19990034215U (en) | Condenser of heat exchanger | |
JP2009270787A (en) | Heat exchanger, refrigerator and air conditioner | |
KR100581565B1 (en) | A refrigerants distributing apparatus of an evaporator | |
KR100244320B1 (en) | Refrigerant pass line structure of indoor unit for aircoditioner | |
KR19990074074A (en) | Air conditioner indoor unit | |
KR200274097Y1 (en) | Condenser for refrigerator | |
KR100244323B1 (en) | Refrigerant passline structure of indoor unit fir airconditioner | |
CN113531894A (en) | Heat pump air-conditioning type water heater | |
KR20020027075A (en) | A condenser for an air conditioning unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |