KR20030062972A - Wind power generator rotor with lightweight metal honeycomb - Google Patents
Wind power generator rotor with lightweight metal honeycomb Download PDFInfo
- Publication number
- KR20030062972A KR20030062972A KR1020020003457A KR20020003457A KR20030062972A KR 20030062972 A KR20030062972 A KR 20030062972A KR 1020020003457 A KR1020020003457 A KR 1020020003457A KR 20020003457 A KR20020003457 A KR 20020003457A KR 20030062972 A KR20030062972 A KR 20030062972A
- Authority
- KR
- South Korea
- Prior art keywords
- honeycomb
- honey comb
- freezing
- metal
- blade
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 title claims description 27
- 239000002184 metal Substances 0.000 title claims description 27
- 230000008014 freezing Effects 0.000 claims abstract description 13
- 238000007710 freezing Methods 0.000 claims abstract description 13
- 238000000034 method Methods 0.000 claims abstract description 9
- 238000005520 cutting process Methods 0.000 claims description 6
- 230000000694 effects Effects 0.000 claims description 5
- 238000003672 processing method Methods 0.000 claims description 2
- 230000001681 protective effect Effects 0.000 claims 2
- 238000005555 metalworking Methods 0.000 claims 1
- 241000264877 Hippospongia communis Species 0.000 abstract 10
- 230000015572 biosynthetic process Effects 0.000 abstract 1
- 238000004519 manufacturing process Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 238000003801 milling Methods 0.000 description 7
- 239000000835 fiber Substances 0.000 description 4
- 238000003860 storage Methods 0.000 description 4
- 239000000853 adhesive Substances 0.000 description 3
- 230000001070 adhesive effect Effects 0.000 description 3
- 238000003754 machining Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000004593 Epoxy Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000010730 cutting oil Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 238000005096 rolling process Methods 0.000 description 1
- 238000007493 shaping process Methods 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 229920001187 thermosetting polymer Polymers 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000013585 weight reducing agent Substances 0.000 description 1
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D3/00—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor
- F03D3/06—Rotors
- F03D3/062—Rotors characterised by their construction elements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D3/00—Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor
- F03D3/06—Rotors
- F03D3/061—Rotors characterised by their aerodynamic shape, e.g. aerofoil profiles
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F03—MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
- F03D—WIND MOTORS
- F03D9/00—Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
- F03D9/20—Wind motors characterised by the driven apparatus
- F03D9/25—Wind motors characterised by the driven apparatus the apparatus being an electrical generator
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05B—INDEXING SCHEME RELATING TO WIND, SPRING, WEIGHT, INERTIA OR LIKE MOTORS, TO MACHINES OR ENGINES FOR LIQUIDS COVERED BY SUBCLASSES F03B, F03D AND F03G
- F05B2240/00—Components
- F05B2240/20—Rotors
- F05B2240/21—Rotors for wind turbines
- F05B2240/221—Rotors for wind turbines with horizontal axis
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/72—Wind turbines with rotation axis in wind direction
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/70—Wind energy
- Y02E10/74—Wind turbines with rotation axis perpendicular to the wind direction
Landscapes
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Wind Motors (AREA)
Abstract
Description
본 발명은 풍력 발전기의 주터빈을 풍력으로 롤려주는 날개에 관한 것으로서, 날개의 경량화와 축전의 효율을 증대시키기 위한 것으로 상세하게는 초경량 3차원 형상의 윤곽을 창성시킨 하니컴을 응용한 회전익에 관한 것이다.The present invention relates to a blade for rolling a main turbine of a wind generator to wind power, and to reduce the weight of the blade and increase the efficiency of power storage. More particularly, the present invention relates to a rotor blade using a honeycomb in which an ultra-light three-dimensional shape is created. .
일반적으로 익형(blades)은 익형길이(L)와 익폭(b)과 익형두께(h)로 표기되며 익형두께에 휨(camber)을 주어 회전력을 증가시킨다. 이러한 익형은 3차원형상으로 정확성과 고강도, 자중의 감량이 요구되고 있으나, 제조 공정상 골격과 표면재의 중량이 유리,카본강하섬유,여타금속이 과다하게 소요되어 자중이 높아 그 효율이 저하 되는 현실이다.In general, the blade (blades) is represented by the airfoil length (L), the blade width (b) and the airfoil thickness (h) and increases the rotational force by giving a camber to the airfoil thickness. These airfoils are required to be accurate, high-strength, and loss of self-weight due to the three-dimensional shape, but in the manufacturing process, the weight of the skeleton and the surface material is excessively high in glass, carbon-lowering fiber, and other metals, so that the self-weight is high and the efficiency decreases. to be.
또한 풍력이 날개에 미치는 힘의 반력을 유지하기 위해 날개는 보다 견고하고 표준 풍력대비 과다하여야만 시효변형과 파손을 방지할 수 있는 것이며, 이러한 과다 중량 및 크기는 그 회전력을 감소시켜 축전효율을 감소시키는 현상을 보이며, 보다 진보한 유리강화 섬유의 표면과, 골조를 유지시키기 위한 대 골조의 금속등이 또한 상대적으로 중량을 증가시키는 것이며, 날개를 확장하는데 비효율의 원인이 된다.In addition, in order to maintain the reaction force of the wind force on the wing, the wing must be more rigid and excessive than the standard wind to prevent aging deformation and breakage. Such excess weight and size reduces the rotational force and reduces the power storage efficiency. The more advanced glass-reinforced fiber surface, the large framework metal to maintain the framework, and the like, are also relatively weight-increasing and cause inefficiencies in expanding the wings.
본 발명의 목적과 과제는 풍력의 공기역학적 에너지를 풍력발전기 날개의 회전력으로 전기를 얻는데 있으므로 날개의 경량성과 강성은 매우 중요한 과제이다. 이러한 경량화 과제를 금속 하니컴을 활용하여 경량화 함으로서 축전의 효율을 높일 수 있으며, 요구강도 이상의 하니컴 강성은 익히 알려져 있는 사실이다. 본 초경량 금속제 하니컴을 적용한 풍력발전기 회전익의 주요과제는 하니컴의 형상 창성에 있는데, 그 창성의 가공은 육각중공연속기둥의 하니컴을 손상하지 않고 원하는 3차원 윤곽의 가공기법에 있다. 이러한 3차원 윤곽을 가공하기 위하여, 가공기계의 하나인 CNC기계(주로 밀링머신)에서 어떻게 하니컴을 고정하고 가공하느냐에 주로 문제가 된다. 본 발명은 얇은 박판금속의 하니컴을 전혀 손상시키지 않으며, 가공공구에도 절삭저항을 극소화시킬 수 있는 기술로 기계 베이스 또는 테이블에 고정(setting)하여 일반적인 가공기법에 의해 가공할 수 있는 기술적 과제를 제공하기 위한 것이다.The object and object of the present invention is to obtain electricity by the rotational force of the wind turbine blades aerodynamic energy of the wind power, so the light weight and rigidity of the blade is a very important problem. The weight reduction problem can be increased by using metal honeycomb to increase the efficiency of power storage, and the honeycomb stiffness higher than the required strength is well known. The main challenge of the rotor blades of the wind power generator using the ultra-light metal honeycomb is the shape creation of the honeycomb, and the creation is the processing technique of the desired three-dimensional contour without damaging the honeycomb of the hexagonal hollow continuous column. In order to process such a three-dimensional contour, the main problem is how to fix and process the honeycomb in a CNC machine (mainly a milling machine) which is one of the processing machines. The present invention does not damage the honeycomb of thin sheet metal at all, and provides a technical problem that can be processed by a general processing technique by setting on the machine base or table with a technology that can minimize the cutting resistance to the processing tool. It is for.
도 1은 풍력발전기의 회전익을 도시한 사시도1 is a perspective view showing a rotor blade of the wind turbine
도 2는 본 발명에 따른 공정별 사시도2 is a perspective view according to the process according to the present invention
도 3은 본 발명에 따른 가공방법의 작업중인 단면도3 is a working cross-sectional view of the processing method according to the present invention.
〈도면의 주요부분에 대한 각 부호의 설명〉<Description of each code for the main part of the drawing>
1 : 금속제 하니컴1: honeycomb made of metal
2 : 결빙시킨 금속제 하니컴2: frozen honeycomb made of metal
3 : 절삭 가공한 하니컴3: honeycomb cut
4 : 비절삭 부위의 하니컴4: honeycomb of non-cutting part
5 : 금속제 하니컴을 결빙시키켜서 보호할 수 있는 틀5: frame to protect the metal honeycomb by freezing
6 : 밀링기계에 고정하기 위한 클램프 조(jaw)6: Clamp jaw for fixing to milling machine
7 : 계단형 블럭7: stepped block
8 : 밀링기계의 엔드밀(Ball end mill)8: Ball end mill of milling machine
9 : 밀링기계의 테이블 베이스9: table base of milling machine
본 발명에 의해 구성된 기술적 설명과 작용에 대하여 도면의 부호에 의해 상세 기술하면 다음과 같다.DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS The technical description and operation made by the present invention will be described in detail with reference to the drawings.
도 1은 본 발명의 경량 금속제 하니컴을 적용한 풍력발전기의 회전익에 의해 완성된 날개의 사시도 이며, 도 2는 본 발명의 초경량 금속제 하니컴을 적용한 풍력발전기의 회전익에 의하여 제작할 수 있도록 가공기계에 고정시키기 위한 준비공정과 기구이며, 도 1의 금속제 하니컴(1)은 하니컴의 사시도 이다. 이러한 하니컴은 본 발명의 날개 1개에 기준 하여 날개의 두께에서 표면재료의 두께와 접착제의 두께를 감한 하니컴의 두께가 되어야 하며, 하니컴의 가로폭은 날개의 길이에서 최적의 길이를 선정한 길이가 되고, 세로폭은 날개의 폭에서 최적의 폭을 선정한 길이가 되는 것이다. 본 발명에서는 날개 내부에 합침 할 하니컴의 3차원 형상을 완성하는데 있으므로, 이러한 3차원 형상의 외각 치수인 두께와 가로폭, 세로폭을 완전하게 준비하여야 하는데, 절삭 가공한 하니컴(3)의 내부에 넣은 하니컴은 냉동기에서 결빙을 시켜 고체화 하였다. 결빙시킨 금속제하니컴(2), 절삭가공한 하니컴(3)은 바로 어름으로 육각중공내부에 가득차 있으므로 미세하고, 박판의 하니컴을 가공하는데 휘거나 변형되는 난제를 해결하고자 하였으며, 기계 베이스(테이블)에 장착하여 고정시킬 수 있는 비절삭 부위의 하니컴(4), 금속제 하니컴을 결빙시키기 위한 틀, 결빙하니컴 보호틀(5)의 틀로 더욱 견고히 고정할 수 있다. 절삭 가공한 하니컴(3)의 틀은 비절삭 부위의 하니컴(4)의 힘에 의해 지탱할 수 있는 안내(guide)금속블럭, 이와 동시에 보온의 효과를 증대 시킬수 있는 열전달이 가장 낮은 금속으로 선정한다.1 is a perspective view of a blade completed by the rotor blades of the wind turbine to which the lightweight metal honeycomb of the present invention is applied, and FIG. 2 is fixed to a processing machine to be manufactured by the rotor blades of the wind turbine to which the ultralight metal honeycomb of the present invention is applied. It is a preparation process and a mechanism, The metal honeycomb 1 of FIG. 1 is a perspective view of a honeycomb. The honeycomb should be the thickness of the honeycomb subtracted from the thickness of the surface material and the thickness of the adhesive from the thickness of the wing based on one wing of the present invention, the width of the honeycomb becomes the length selected from the optimum length of the wing The vertical width is the length of the wing selected by the optimum width. In the present invention, since the three-dimensional shape of the honeycomb to be joined to the inside of the wing is completed, the outer dimensions of the three-dimensional shape, the width and the width of the vertical width should be prepared completely, the inside of the cut honeycomb (3) The honeycomb was solidified by freezing in the freezer. The frozen honeycomb made of metal (2) and the cut honeycomb (3) are frozen and filled inside the hexagonal hollow, so they try to solve the difficulty of bending or deforming the honeycomb of thin plate. The honeycomb 4 of the non-cutting part which can be fixed and mounted, the frame for freezing the metal honeycomb, and the frame of the freezing honeycomb protection frame 5 can be fixed more firmly. The frame of the cut honeycomb 3 is selected as a guide metal block which can be supported by the force of the honeycomb 4 of the non-cutting part, and at the same time, the metal having the lowest heat transfer that can increase the effect of heat insulation.
가공시간에 의한 해빙의 우려는 초고속 가공(Rapid Milling)으로 냉동된 하니컴을 고속 가공할 수 있고, 절삭됨에 따른 내부의 결빙유지에 의해 해결될 수 있고, 가공 공구(일명 ball end mill)의 절삭저항이 박판과, 어름으로 그경도가 매우 낮아 불과 몇 분 이내에 가공이 완성될 수 있으며, 분위기 온도에 따라 녹을 수 있는 문제는 표면부터 녹기 때문에 표면에서부터 급속 가공되는 본 발명에 대하여 그해결이 용이하며, 산화방지용 절삭유의 저온유지로도 실현된다.Concerns of thawing due to processing time can be achieved by high-speed processing of frozen honeycomb by rapid milling, and can be solved by retaining internal freezing as it is cut, and cutting resistance of machining tool (aka ball end mill) This thin plate and, as a freezing, its hardness is very low, the processing can be completed within only a few minutes, the problem that can be melted according to the ambient temperature is easy to solve the present invention that is rapidly processed from the surface because it melts from the surface, It is also realized by maintaining the low temperature of the cutting oil for preventing oxidation.
도 3은 밀링기계에 고정하기 위한 클램프 조(6), 형상가공을 하는 볼엔드밀로 결빙시킨 금속제 하니컴(2)의 확고한 지탱을하여 절삭 가공한 하니컴(3)의 형상이고, 절삭가공할 하니컴(3)의 지탱은 계단형 블록(7)의 면에 밀착시켜 밀링기계에 고정하기 위한 클램프 조(6), 계단형 블록(7)의 툴로 완벽히 고정시켜 3차원의 가공을 하게 되는 것이다. 3차원 형상의 가공은 상면의 윤곽과 하면의 윤곽으로 구분하여 가공하게 되는데, 처음에는 상면의 윤곽을 도 3과 같이 가공하고 상면 가공을완성하고 다시 결빙시켜 도 3에서 하면의 가공이 않된 면을 위로 고정시켜 다시 가공할 수 있다. 이때 아래의 먼저 가공한 상면의 윤곽공간은 다시결빙된 어름으로 채워져 바닥면에서 지탱시키므로 하면의 2차 가공은 안정되게 가공할 수 있는 것이다. 이렇게 상하 윤곽면의 가공을 완성하면 하니컴(4)의 날개 끝 부위의 미세 부분까지 완벽하게 가공될 수 있다.Fig. 3 shows the shape of the honeycomb 3 which has been cut by firmly supporting and clamping the clamp jaw 6 for fixing to a milling machine and the metal honeycomb 2 frozen with a ball end mill for shaping. The support of 3) is to be in close contact with the surface of the stepped block 7 to be completely fixed with the tool of the clamp jaw 6 and the stepped block 7 to be fixed to the milling machine to perform three-dimensional machining. The three-dimensional shape is processed by dividing the contour of the upper surface and the contour of the lower surface. At first, the contour of the upper surface is processed as shown in FIG. 3, and the upper surface is finished and frozen again. It can be fixed up and reprocessed. At this time, since the contour space of the upper surface processed below is filled with frozen ice and supported by the bottom surface, secondary processing of the lower surface can be stably processed. When the machining of the upper and lower contour surface is completed, the fine part of the wing tip portion of the honeycomb 4 can be perfectly processed.
도 3의 절삭 가공한 하니컴(3)은 완성된 날개의 3차원 형상으로서 가공완성이 종료되면 승온시켜 결빙 하니컴을 해빙하고 세척공정으로 습기까지 제거시키고 보관할 수 있으며 미세한 습기도 이후에 표면재와 합침 할 때, 하니컴과 표면재 사이의 접착제 일명 에폭시 접착으로 60℃∼120℃ 정도에서 열경화성 접착이 이루어지므로 습기가 자연 증발되어 그 문제는 해결할 수 있다.The cut honeycomb 3 of FIG. 3 is a three-dimensional shape of the finished wing, and when finished, the temperature is raised to thaw the frozen honeycomb, and the moisture is removed and stored by the washing process, and the fine moisture may be later merged with the surface material. At this time, since the thermosetting adhesive is carried out at about 60 to 120 ℃ by the adhesive so-called epoxy bonding between the honeycomb and the surface material, the moisture is naturally evaporated to solve the problem.
이상과 같이 본 발명의 초경량 금속제 하니컴을 적용한 풍력발전기의 회전익에 의하여 완성된 날개 내부에 합침 할 하니컴의 3차원 형상은 그 강도가 매우 높은데, 예컨대 두께 2mm의 표면재와 하니컴 공간의 거리 6.35mm(1/4인치의 cell size)의 하니컴 두께 8mm를 합침시 그 강도(stiffness)가 순수 알루미늄 두께 2mm의 2장을 그대로 합침시 보다 무게는 6%증가 하지만 강도는 3,900%에 상당하는 강도를 유지할 수 있다. 즉 표면재 2장 그대로 합침시 1,822kgㆍ㎠/cm인데 8mm두께(6각중공기둥의 높이)의 하니컴 합침시 71,004kgㆍ㎠/㎝의 39배 강도 증대효과가 있는 것이다. 이와 같이 일반적인 풍력발전기의 날개를 본 고안에 의해 완성하였을 때 그 강도가 현저히 증가 되며, 자중량 자체도 감량되어 축전의 효율을 올릴 수있는 것이다. 또한 유리강화섬유의 제조상 유해 환경을 억제할 수 있으며, 초대형의 날개제작에도 용이, 자중의 감량으로 운반의 효율과 안전에도 부합될 수 있다. 이러한 효과와 동시에 정밀한 3차원 형상의 윤곽을 얻을 수 있으므로 역학적인 3차원 형상의 최적 치수를 확보할 수 있으며, 유리강화섬유의 날개 가공, 제조시의 부정확성과 금속골격으로 프레임(frame)을 구성한 날개 접합 가공 제조보다 더욱 정밀한 윤곽을 얻을 수 있는 것이며, 본 발명의 초경량 금속제 하니컴을 적용한 풍력발전기의 회전익은 3차원 형상 하니컴에 합침 할 표면재 또한 박판(1∼2mm)두께의 산화가 낮은 경금속을 금형 등으로 성형(forming)하여 완성할 수 있으므로 보다 정확하고 정밀한 형상의 날개를 제조할 수 있고, 제조 공정과정에서 환경에 무해한 효과를 얻을 수 있다.As described above, the three-dimensional shape of the honeycomb to be joined to the inside of the wing completed by the rotor blades of the wind turbine to which the ultra-light metal honeycomb of the present invention is applied is very high, for example, the distance between the surface material having a thickness of 2 mm and the honeycomb space is 6.35 mm (1). The honeycomb thickness of 8mm of 4 inch cell size) is increased by 6% more than the 2mm of pure aluminum 2mm, but the strength is equivalent to 3,900%. . In other words, it is 1,822kg · cm 2 / cm when it is combined with two pieces of surface material, but it has a 39 times strength increase effect of 71,004kg · cm 2 / cm when honeycomb with 8mm thickness (hexagonal hollow column height) is combined. Thus, when the wing of the general wind power generator is completed by the present invention, the strength is significantly increased, and the self-weight itself is also reduced, thereby increasing the efficiency of power storage. In addition, it is possible to suppress the harmful environment in the production of glass-reinforced fiber, it is easy to manufacture a large wing, it can meet the efficiency and safety of transportation by reducing the weight of self. Simultaneously with this effect, the contour of the precise three-dimensional shape can be obtained to secure the optimal dimensions of the dynamic three-dimensional shape, and the wings are formed by the frame of the glass reinforcement fiber with inaccuracy and metal skeleton during manufacturing. It is possible to obtain a more precise contour than the joining manufacturing, and the rotor blade of the wind power generator using the ultra-light metal honeycomb of the present invention is a surface material to be joined to a three-dimensional honeycomb, and a thin metal (1-2 mm) of low-oxidation light metal with a low thickness. Since it can be completed by forming (form), it is possible to manufacture a wing of a more accurate and precise shape, it is possible to obtain a harmless effect to the environment in the manufacturing process.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020003457A KR20030062972A (en) | 2002-01-21 | 2002-01-21 | Wind power generator rotor with lightweight metal honeycomb |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020020003457A KR20030062972A (en) | 2002-01-21 | 2002-01-21 | Wind power generator rotor with lightweight metal honeycomb |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20030062972A true KR20030062972A (en) | 2003-07-28 |
Family
ID=32218786
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020020003457A KR20030062972A (en) | 2002-01-21 | 2002-01-21 | Wind power generator rotor with lightweight metal honeycomb |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20030062972A (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013013361A1 (en) * | 2011-07-22 | 2013-01-31 | 上海庆华蜂巢建材有限公司 | Wind turbine blade fully made of honeycomb board |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04316845A (en) * | 1991-04-16 | 1992-11-09 | Mitsubishi Heavy Ind Ltd | Method for molding composite material blade shape |
KR20010083274A (en) * | 2000-02-10 | 2001-09-01 | 김종원 | Rapid Prototyping Method Performing both Deposition and Machining |
-
2002
- 2002-01-21 KR KR1020020003457A patent/KR20030062972A/en not_active Application Discontinuation
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04316845A (en) * | 1991-04-16 | 1992-11-09 | Mitsubishi Heavy Ind Ltd | Method for molding composite material blade shape |
KR20010083274A (en) * | 2000-02-10 | 2001-09-01 | 김종원 | Rapid Prototyping Method Performing both Deposition and Machining |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2013013361A1 (en) * | 2011-07-22 | 2013-01-31 | 上海庆华蜂巢建材有限公司 | Wind turbine blade fully made of honeycomb board |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107717224B (en) | Processing method of titanium alloy hollow lightweight airfoil | |
US4364160A (en) | Method of fabricating a hollow article | |
GB2306353A (en) | A method of manufacturing a blade | |
US9321100B2 (en) | Method for producing a metal reinforcement for a turbomachine blade | |
CN103008741A (en) | Machining process of middle-long thin-wall blades | |
CN106984913A (en) | A kind of full laser preparation method of diamond cutter | |
EP4101579A1 (en) | Method of welding a battery cover plate using two different laser beam conditions | |
CN105269284A (en) | Ultra-precise efficient preparing technology method of inward-concave PCD cutter with complex outline | |
KR20030062972A (en) | Wind power generator rotor with lightweight metal honeycomb | |
KR20160002683A (en) | Silicon wafer for solar cells and method for producing same | |
KR101905355B1 (en) | Steam turbine vane manufacturing method | |
CN202639371U (en) | Polycrystalline cubic boron nitride (PCBN) cutter for machining cylinder body | |
CN100412356C (en) | Blades of wind energy generator and manufacturing method | |
CN106573350A (en) | Method for building a gas turbine engine component | |
CN101428355B (en) | Milling method for honeycomb parts | |
JP2005313321A (en) | Method of forming article, and forged component | |
CN203265669U (en) | Superhard blade with chip breaker grooves | |
CN211465120U (en) | Aluminum-based honeycomb fixing seat | |
CN211462031U (en) | Skate and skate support thereof | |
CN201120525Y (en) | Large table-board numerical control laser beam cutting machine | |
CN201915171U (en) | Silicon rod bonding device facilitating synchronous falling of silicon slices | |
CN113751775A (en) | Ceramic carbon composite material cutting milling cutter with sawteeth | |
CN87204204U (en) | Lathe tool with tip sticked | |
CN209867477U (en) | Device for sinking and forming curved hollow section | |
CN220591760U (en) | Clamping device for aluminum product processing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
N231 | Notification of change of applicant | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |