KR20030023153A - Method for preparing magnetite in aqueous solution at room temperature and Method for water-waste-treatment using the said magnetite - Google Patents
Method for preparing magnetite in aqueous solution at room temperature and Method for water-waste-treatment using the said magnetite Download PDFInfo
- Publication number
- KR20030023153A KR20030023153A KR1020010056173A KR20010056173A KR20030023153A KR 20030023153 A KR20030023153 A KR 20030023153A KR 1020010056173 A KR1020010056173 A KR 1020010056173A KR 20010056173 A KR20010056173 A KR 20010056173A KR 20030023153 A KR20030023153 A KR 20030023153A
- Authority
- KR
- South Korea
- Prior art keywords
- magnetite
- room temperature
- aqueous solution
- treatment
- mixture
- Prior art date
Links
- SZVJSHCCFOBDDC-UHFFFAOYSA-N iron(II,III) oxide Inorganic materials O=[Fe]O[Fe]O[Fe]=O SZVJSHCCFOBDDC-UHFFFAOYSA-N 0.000 title claims abstract description 87
- 238000000034 method Methods 0.000 title claims abstract description 24
- 239000007864 aqueous solution Substances 0.000 title claims abstract description 14
- 239000002699 waste material Substances 0.000 title 1
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims abstract description 31
- 239000002351 wastewater Substances 0.000 claims abstract description 14
- 239000002244 precipitate Substances 0.000 claims abstract description 13
- 239000000203 mixture Substances 0.000 claims abstract description 12
- 239000010842 industrial wastewater Substances 0.000 claims abstract description 11
- 238000007747 plating Methods 0.000 claims abstract description 11
- 238000004043 dyeing Methods 0.000 claims abstract description 8
- 238000003756 stirring Methods 0.000 claims abstract description 8
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 8
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000010985 leather Substances 0.000 claims abstract description 7
- 238000002156 mixing Methods 0.000 claims abstract description 7
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 claims abstract description 5
- WKPSFPXMYGFAQW-UHFFFAOYSA-N iron;hydrate Chemical compound O.[Fe] WKPSFPXMYGFAQW-UHFFFAOYSA-N 0.000 claims abstract description 5
- 239000013067 intermediate product Substances 0.000 claims description 4
- 239000012752 auxiliary agent Substances 0.000 claims description 2
- 239000000243 solution Substances 0.000 abstract description 5
- AEIXRCIKZIZYPM-UHFFFAOYSA-M hydroxy(oxo)iron Chemical compound [O][Fe]O AEIXRCIKZIZYPM-UHFFFAOYSA-M 0.000 abstract description 4
- 229910006299 γ-FeOOH Inorganic materials 0.000 abstract description 4
- CWYNVVGOOAEACU-UHFFFAOYSA-N Fe2+ Chemical compound [Fe+2] CWYNVVGOOAEACU-UHFFFAOYSA-N 0.000 abstract description 3
- 238000002360 preparation method Methods 0.000 abstract description 2
- 239000000543 intermediate Substances 0.000 abstract 2
- 239000008394 flocculating agent Substances 0.000 abstract 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 abstract 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 54
- 238000004519 manufacturing process Methods 0.000 description 17
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N Iron oxide Chemical compound [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 15
- 238000007254 oxidation reaction Methods 0.000 description 15
- 150000002500 ions Chemical class 0.000 description 13
- 230000003647 oxidation Effects 0.000 description 12
- 229910052742 iron Inorganic materials 0.000 description 10
- 229910000859 α-Fe Inorganic materials 0.000 description 10
- 230000015572 biosynthetic process Effects 0.000 description 9
- 239000011651 chromium Substances 0.000 description 9
- 238000004065 wastewater treatment Methods 0.000 description 9
- 238000006243 chemical reaction Methods 0.000 description 8
- 230000005291 magnetic effect Effects 0.000 description 8
- 239000011553 magnetic fluid Substances 0.000 description 8
- 239000002245 particle Substances 0.000 description 7
- 239000003513 alkali Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000000725 suspension Substances 0.000 description 6
- 229910052804 chromium Inorganic materials 0.000 description 5
- 229910001385 heavy metal Inorganic materials 0.000 description 5
- 235000013980 iron oxide Nutrition 0.000 description 5
- 239000000843 powder Substances 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000010802 sludge Substances 0.000 description 5
- 239000002689 soil Substances 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 4
- 238000007885 magnetic separation Methods 0.000 description 4
- 238000001556 precipitation Methods 0.000 description 4
- 239000012266 salt solution Substances 0.000 description 4
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 3
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 3
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 3
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 3
- 239000005642 Oleic acid Substances 0.000 description 3
- 238000002441 X-ray diffraction Methods 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 229910001566 austenite Inorganic materials 0.000 description 3
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 3
- 230000001590 oxidative effect Effects 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 239000004094 surface-active agent Substances 0.000 description 3
- 229910006540 α-FeOOH Inorganic materials 0.000 description 3
- 230000009471 action Effects 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 244000309464 bull Species 0.000 description 2
- 238000000975 co-precipitation Methods 0.000 description 2
- 238000005345 coagulation Methods 0.000 description 2
- 230000015271 coagulation Effects 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 230000005294 ferromagnetic effect Effects 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 230000004907 flux Effects 0.000 description 2
- VBMVTYDPPZVILR-UHFFFAOYSA-N iron(2+);oxygen(2-) Chemical class [O-2].[Fe+2] VBMVTYDPPZVILR-UHFFFAOYSA-N 0.000 description 2
- 230000007935 neutral effect Effects 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 229910052759 nickel Inorganic materials 0.000 description 2
- 230000037361 pathway Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000013049 sediment Substances 0.000 description 2
- 238000004062 sedimentation Methods 0.000 description 2
- 239000010865 sewage Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 238000006557 surface reaction Methods 0.000 description 2
- 238000003786 synthesis reaction Methods 0.000 description 2
- 230000005653 Brownian motion process Effects 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 238000004813 Moessbauer spectroscopy Methods 0.000 description 1
- BCKXLBQYZLBQEK-KVVVOXFISA-M Sodium oleate Chemical compound [Na+].CCCCCCCC\C=C/CCCCCCCC([O-])=O BCKXLBQYZLBQEK-KVVVOXFISA-M 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 238000005537 brownian motion Methods 0.000 description 1
- 229910052793 cadmium Inorganic materials 0.000 description 1
- BDOSMKKIYDKNTQ-UHFFFAOYSA-N cadmium atom Chemical compound [Cd] BDOSMKKIYDKNTQ-UHFFFAOYSA-N 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005260 corrosion Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 150000005690 diesters Chemical class 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000003302 ferromagnetic material Substances 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 229910052595 hematite Inorganic materials 0.000 description 1
- 239000011019 hematite Substances 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 150000002505 iron Chemical class 0.000 description 1
- 150000002506 iron compounds Chemical class 0.000 description 1
- LIKBJVNGSGBSGK-UHFFFAOYSA-N iron(3+);oxygen(2-) Chemical compound [O-2].[O-2].[O-2].[Fe+3].[Fe+3] LIKBJVNGSGBSGK-UHFFFAOYSA-N 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 229910021514 lead(II) hydroxide Inorganic materials 0.000 description 1
- 230000005389 magnetism Effects 0.000 description 1
- 230000005415 magnetization Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910000000 metal hydroxide Inorganic materials 0.000 description 1
- 150000004692 metal hydroxides Chemical class 0.000 description 1
- 229910021645 metal ion Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- -1 perhydroxyl Chemical group 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920013636 polyphenyl ether polymer Polymers 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000012958 reprocessing Methods 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229910052596 spinel Inorganic materials 0.000 description 1
- 239000011029 spinel Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000010301 surface-oxidation reaction Methods 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical class FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 239000002966 varnish Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G49/00—Compounds of iron
- C01G49/02—Oxides; Hydroxides
- C01G49/08—Ferroso-ferric oxide [Fe3O4]
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/48—Treatment of water, waste water, or sewage with magnetic or electric fields
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Inorganic Chemistry (AREA)
- Compounds Of Iron (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
Abstract
Description
본 발명은 수용액중 상온에서의 마그네타이트 제조 방법과 상기의 마그네타이트를 산업폐수의 처리에 이용하는 방법에 관한 것이다.The present invention relates to a method for producing magnetite at room temperature in an aqueous solution and a method of using the above magnetite for treatment of industrial wastewater.
종래 마그네타이트는 자성유체의 원료로 이용할 목적으로 연구되었다.Magnetite has been studied for the purpose of use as a raw material of magnetic fluid.
자성유체는 기름과 물 같은 유체 속에 철(마그네타이트)과 같은 강자성체의 가는 입자(0.01 ㎛ 미만)를 혼합시킨 콜로이드 용액이다. 자성유체의 생성방법으로는 마그네타이트에 올레인산을 함유한 유기산중에서 장시간 분쇄하는 분쇄법, 습식 마그네타이트 중에서 올레인산을 흡착시키고 수세, 탈수한 후에 분산 처리하는 응집법 그리고 철 2가 이온(Fe2+)과 철 3가 이온(Fe3+)의 공존액에 알칼리를 첨가한 후에 올레인산을 함유한 가운데 가열하여 등유(Kerosene) 중에 분산시키는 해교법 등이 있다(강남기, 오재현, 김 만, 1993: 자성유체, 전자연구, 2권 1호, P 31-37). 강자성을 갖고 있으면서도 콜로이드상태로 유지되는 자성유체를 제조하기 위하여, 습식법(Ferrite Process)에 의한 마그네타이트생성 및 용매(분산매체)와 계면활성제에 의한 분산율에 대한 많은 연구가 진행되고 있다. 분산매로서는 물, 탄화수소, 에스테르(ester), 디에스테르(diester), 폴리페닐이써(poly phenylether), 불화탄소 등이 있으며, 계면활성제로는 나트륨 유산염(Sodium Oleate)이 있다.Magnetic fluid is a colloidal solution in which fine particles (less than 0.01 μm) of a ferromagnetic material such as iron (magnetite) are mixed in a fluid such as oil and water. Magnetic fluids can be produced by grinding for a long time in an organic acid containing oleic acid in magnetite, agglomeration method by adsorbing oleic acid in wet magnetite, washing with water, dehydrating and dispersing it, and iron divalent ions (Fe 2+ ) and iron 3 There is a peptizing method in which the alkali is added to the covalent solution of ions (Fe 3+ ) and then heated in the presence of oleic acid and dispersed in kerosene (Kangnamgi, Oh Jae-hyun, Kim Man-man, 1993: magnetic fluid, electron Study, Vol. 2, No. 1, P 31-37). In order to produce a magnetic fluid that is ferromagnetic and remains in a colloidal state, many studies have been conducted on the formation of magnetite by a wet process and the dispersion rate by a solvent (dispersion medium) and a surfactant. Dispersing mediums include water, hydrocarbons, esters, diesters, polyphenylethers, carbon fluorides, and the like, and sodium oleate as a surfactant.
자성유체는 각종 작용이 종합된 결과로서, 기본적인 성질을 이해하기 위하여 분자들 사이의 힘, 표면에너지, 자기력, 열적 작용 등의 이론적인 연구가 필요하다. 강자성 미립자들이 브라운(Brown)운동에 의해 서로 접근하였을 경우에 상호 작용하는 힘으로는 반데르발스 인력(van der Waals attraction), 자력(magnetic attraction), 전기적 이중 레이어 척력(electrical double layer repulsion), 그리고 입체 척력(steric repulsion)등이 있다. 자성유체의 물리화학적 특성은 분산율, 계면활성제 부착량, 자성(자속밀도), 자기장 변화에 따른 점도 등으로 알 수 있다.Magnetic fluid is the result of the synthesis of various actions. To understand the basic properties, theoretical studies on forces, surface energy, magnetic force, and thermal action between molecules are necessary. The interaction forces when the ferromagnetic particles approach each other by Brownian motion include van der Waals attraction, magnetic attraction, electrical double layer repulsion, and Steric repulsion. The physicochemical properties of the magnetic fluid can be determined by the dispersion rate, the amount of surfactant deposited, the magnetic (magnetic flux density), and the viscosity according to the magnetic field change.
마그네타이트(magnetic iron oxide, Fe3O4)는 검은색 또는 검푸른색으로서 스파이넬(spinel)형 결정구조를 갖고 있으며, 철 2가 이온(Fe2+)과 철 3가 이온(Fe3+)을 공유하고 있는 철산화물이다. 마그네타이트는 공업적으로 FeO와 Fe2O3의 고체용융에 의해 생산되며, 전극물질, 촉매, 유리도색료, 광택제 그리고 부식방지용 피막등으로 사용된다(Kirk-Orthmer, 1967: Ferrite. Encyclopedia of Chem. Tech., 8, 881-901).Magnetite (magnetic iron oxide, Fe 3 O 4 ) is black or dark blue and has a spinel crystal structure, and iron divalent ions (Fe 2+ ) and iron trivalent ions (Fe 3+ ) It is a shared iron oxide. Magnetite is industrially produced by the solid melting of FeO and Fe 2 O 3 , and is used as an electrode material, catalyst, glass paint, varnish and anti-corrosion coating (Kirk-Orthmer, 1967: Ferrite. Encyclopedia of Chem. Tech., 8, 881-901).
마그네타이트는 또한 철 2가 이온의 산화와 가수분해에 의해 수용액으로부터 생성 가능하다(Feitknecht, W., 1959: Ueber die Oxidation von festen Hydroxyverbindun gen des Eisens in wae rigen L sungen. Z. Elektrochem. 63, 34-43; Kiyama, M., 1974: Conditions for the formation of Fe3O4 by the air oxidation of Fe(OH)2 suspensions. Bull. Chem. Soc. Jpn., 47 (7), 1646-1650). 레피도크로사이트(Lepidocrocite, γ-FeOOH)와 마그네타이트(Fe3O4)는 그린 용액(green solution) 또는 그린 러스트(greene rust)가 그린 용액 콤플렉스(green solution complex)를 형성하는 과정에서 느린 산화반응에 의해 생성된다. 이 때의 pH 범위는 중성 또는 약알칼리가 적합한 것으로 알려져 있으며, 산화반응이 완전히 종료되었을 때에는 pH가 3 내지 5 정도의 약산성으로 된다(도 1 참조). 만일 pH가 6 이상 유지될 경우에는 계속 산화하여 아주 느린 속도로 마그헤마이트(Maghemite, γ-Fe2O3)가 생성된다. 한편, 수용액에서의 마그네타이트 생성조건이나 메카니즘은,토양이나 수중침전물에 존재하는 여러가지 철화합물의 반응경로와 생성형태를 조사하기 위하여 (Schwertmann, U.; Taylor, R.M., 1989: Iron oxides. In: Minerals in soil enviroments, Soil Sci. Soc. Amer. Book Series 1, 379-438), 또는 폐수중의 중금속처리를 위하여도 연구되었다(Takada, T.; Kiyama, M., 1970: Preparation of ferrites by wet method. In: Ferrite: Proceedings of the International Conference, Japan, 69-71).Magnetite can also be produced from aqueous solutions by oxidation and hydrolysis of iron divalent ions (Feitknecht, W., 1959: Ueber die Oxidation von festen Hydroxyverbindun gen des Eisens in wae rigen L sungen. Z. Elektrochem. 63, 34- 43; Kiyama, M., 1974: Conditions for the formation of Fe 3 O 4 by the air oxidation of Fe (OH) 2 suspensions.Bull. Chem. Soc.Jpn., 47 (7), 1646-1650). Lepidocrocite (γ-FeOOH) and magnetite (Fe 3 O 4 ) are slow oxidation reactions in the form of green solution or green rust to form a green solution complex. Is generated by It is known that the pH range at this time is neutral or weak alkali, and when the oxidation reaction is completed, the pH becomes about 3 to 5 weakly acidic (see Fig. 1). If the pH is maintained above 6, it continues to oxidize to produce maghemite (γ-Fe 2 O 3 ) at a very slow rate. On the other hand, magnetite formation conditions and mechanisms in aqueous solutions are used to investigate the reaction pathways and formation patterns of various iron compounds in soils and underwater sediments (Schwertmann, U .; Taylor, RM, 1989: Iron oxides.In: Minerals in soil enviroments, Soil Sci. Soc.Amer.Book Series 1, 379-438), or for the treatment of heavy metals in wastewater (Takada, T .; Kiyama, M., 1970: Preparation of ferrites by wet method) In: Ferrite: Proceedings of the International Conference, Japan, 69-71).
Schwertmann(1991)은 제일철염 수용액과 알칼리용액을 90℃에서 혼합하였으며, 이를 자연상태에서 냉각하여 마그네타이트를 생성하였다(Schwertmann, U.; Cormell, R.M., 1991: Iron oxides in the laboratory. VCH-Verlag, Weinheim, New York, Basel, Cambridge). 이렇게 생성된 마그네타이트는 Fe2.08 3+Fe0.92 2+O4(화학분석) 또는 Fe2.03 3+Fe0.95 2+O4(Moessbauer-Spectroscopy)이었으며, 표면적이 4 m2/g 이하였다. 마그네타이트의 생성은 pH, 온도, 음이온의 종류 등에 의해 좌우된다. pH가 6 내지 7이면 괴타이트(α-FeOOH)와 레피도크로사이트(γ-FeOOH), pH가 8 이상이면 마그네타이트 그리고 pH가 14 이면 괴타이트가 생성된다. 순수한 마그네타이트를 얻기 위하여서는 계속적으로 알칼리를 첨가하여 pH를 일정하게 유지하는 것이 좋다. 또한 Bernal(1959)등은 마그네타이트와 레피도크로사이트가 Fe(OH)2- 서스펜젼(suspension)의 산화에 의해서도 생성된다고 보았다(Kiyama, M., 1974: Conditions for the formation of Fe3O4 by the air oxidation of Fe(OH)2suspensions. Bull. Chem. Soc. Jpn., 47 (7), 1646-1650).Schwertmann (1991) mixed an aqueous ferric salt solution with an alkaline solution at 90 ° C. and cooled it in its natural state to produce magnetite (Schwertmann, U .; Cormell, RM, 1991: Iron oxides in the laboratory. VCH-Verlag, Weinheim, New York, Basel, Cambridge). The magnetite thus produced was Fe 2.08 3+ Fe 0.92 2+ O 4 (chemical analysis) or Fe 2.03 3+ Fe 0.95 2+ O 4 (Moessbauer-Spectroscopy), and the surface area was 4 m 2 / g or less. The production of magnetite depends on pH, temperature, type of anion, and the like. If the pH is 6-7, gothite (α-FeOOH) and repidocrosite (γ-FeOOH), if the pH is 8 or more magnetite, and if the pH is 14 gothite is produced. In order to obtain pure magnetite, it is better to keep the pH constant by continuously adding alkali. Bernal (1959) and others also found that magnetite and repidocrosite were produced by oxidation of Fe (OH) 2 -suspension (Kiyama, M., 1974: Conditions for the formation of Fe 3 O 4 by the air). oxidation of Fe (OH) 2 suspensions.Bull.Chem.Soc.Jpn., 47 (7), 1646-1650).
Feitknecht(1959)에 의하면 레피도크로사이트(γ-FeO(OH)), δ-FeO(OH) 그리고 γ-Fe3O4는 그린 러스트, Fe(OH)2그리고Fe3O4입자의 표면반응으로부터 생성된다고 보고되었다. α-FeO(OH)는 철염 수용액으로부터 생성된다. Fe3O4는 그린 러스트 입자의 표면산화반응에 의해 생성된다.According to Feitknecht (1959), lepidocrocite (γ-FeO (OH)), δ-FeO (OH) and γ-Fe 3 O 4 are the surface reactions of green rust, Fe (OH) 2 and Fe 3 O 4 particles. It is reported to generate from. α-FeO (OH) is produced from aqueous iron salt solution. Fe 3 O 4 is produced by surface oxidation of green rust particles.
Kiyama(1974)는 FeSO4와 NaOH를 혼합하여 우선 Fe(OH)2-서스펜젼(Suspension)을 생성하였으며, 이를 40℃ 이상에서 공기산화시켜서 순수한 마그네타이트를 생성하였다. 이 때의 최적 반응조건은 2N-NaOH : FeSO4(R) 의 비율이 1:1, 온도는 40℃ 이상, 그리고 공기공급속도가 200 l/h이었다. 도 1에 순수한 마그네타이트가 생성될 수 있는 반응조건을 나타내었다.Kiyama (1974) first mixed FeSO 4 with NaOH to produce Fe (OH) 2 -suspension (suspension), which was air oxidized at 40 ° C. or higher to produce pure magnetite. The optimum reaction conditions at this time were 2N-NaOH: FeSO 4 (R) ratio of 1: 1, temperature of 40 ° C. or more, and air supply rate of 200 l / h. 1 shows the reaction conditions in which pure magnetite can be produced.
일반적으로 FeOH+은 중성 현탁액상태에서는 철 2가 이온(Fe2+)과, 알칼리범위에서는 HFeO2 -와 평형상태에 있다. 단지 Fe(OH)2로 포화되어 있는 경우에는 대부분의 철 2가 이온이 Fe(OH)+로 있게 되며, pH 9.3 내지 9.4 범위에서 순수한 마그네타이트가 생성된다. 생성 메카니즘을 보면, 마그네타이트 입자는 Fe(OH)+와 산화에 의해 생성된 페리하이드록소 콤플렉스(Ferrihydroxo complex)의 공침(Coprecipitation)으로부터 pH가 9 내지 10인 조건에서 Fe(OH)+층 사이에서 연속적으로 생성된다. 일부 마그네타이트 입자는 층의 외부에서 마그네타이트(γ-Fe2O3)로 천천히 산화되며, FeO(OH)는 페리하이드록소 콤플렉스층의 외부에서 생성된다. 순수 마그네타이트가 생성되기 위한 최적조건으로는 Fe(OH)+층이 큰 것이 좋으며, 이는 온도가 높아질수록 커진다.Generally, FeOH + is in equilibrium with iron divalent ions (Fe 2+ ) in the neutral suspension and HFeO 2 − in the alkaline range. When only saturated with Fe (OH) 2 , most of the iron divalent ions will be Fe (OH) + , and pure magnetite is produced in the pH range of 9.3 to 9.4. In the formation mechanism, the magnetite particles successively from between Fe (OH) + and the ferry hydroxy rokso complex co-precipitation (Coprecipitation) with a pH of 9 to 10 from the condition of (Ferrihydroxo complex) generated by oxidizing Fe (OH) + floor Is generated. Some magnetite particles are slowly oxidized to magnetite (γ-Fe 2 O 3 ) at the outside of the layer, and FeO (OH) is produced outside of the perhydroxyl complex layer. The optimum condition for the production of pure magnetite is that the Fe (OH) + layer is large, which increases with increasing temperature.
Taylor등은 는 토양에서의 철산화물 생성경로를 구체적으로 연구 발표하였으며(Taylor, R.M.; Maher, B.A.; Self, P.G., 1987: Magnetite in soils: Synthesis of superparamagnetic magnetite. CSIRO Div. Soils, South Australia), 가는 구형의 마그네타이트 입자가 pH와 온도조건에 따라 자연상태에서 쉽게 생성될 수 있다고 보았다. 그러나, Schoer(1984)가 실험실에서 철 2가 이온과 철 3가 이온으로부터 생성한 침전물의 X-선 회절분석기(X-Ray Diffractometry, XRD)의 결과로는 순수한 마그네타이트가 생성되지 않았다.Taylor et al. Have published a detailed study of iron oxide production pathways (Taylor, RM; Maher, BA; Self, PG, 1987: Magnetite in soils: Synthesis of superparamagnetic magnetite. CSIRO Div. Soils, South Australia). The thin spherical magnetite particles could be easily produced in nature according to pH and temperature conditions. However, Schoer (1984) did not produce pure magnetite as a result of X-Ray Diffractometry (XRD) of precipitates produced in the laboratory from iron and trivalent ions.
종래의 중금속 함유 폐수처리 기술로서 페라이트 프로세스(Ferrite Process)와 마그네타이트 분말을 이용한 고구배 자력분리(High Gradient Magnetic Seperation, HGMS)가 있다.Conventional heavy metal-containing wastewater treatment technologies include high gradient magnetic separation (HGMS) using a ferrite process and magnetite powder.
페라이트 프로세스의 페라이트 생성조건은 앞에서 기술한 마그네타이트의 생성조건과 같으며, 생성방법으로는 중화법(Neutralizations method)과 산화법(Oxidations method)이 있다. 중화법은 철 3가 이온과 다른 2가 이온의 금속을 알칼리와 혼합하는 것으로서 하기 화학식 1과 같이 반응한다:Ferrite production conditions of the ferrite process are the same as the above-described production conditions of magnetite, and the production methods include the neutralization method and the oxidation method. The neutralization method is a mixture of iron trivalent ions and metals of other divalent ions with an alkali and reacted as shown in Formula 1 below:
산화법은 철 2가 이온과 다른 2가 이온의 금속을 알칼리와 혼합한 후에 60℃이상에서 공기산화하여 페라이트(Ferrite)를 생성시키는 방법이다(화학식 2 참조).Oxidation is a method of mixing ferrous divalent ions and other divalent ions with an alkali and then air oxidizing at 60 ° C. or higher to produce ferrite (see Formula 2).
페라이트 프로세스를 이용한 폐수처리의 경우에 처리효율은 좋으나, 높은 반응온도와 공기산화등이 요구되어 장치가 대형화되고 시설비가 비싼 단점이 있다. 그렇기에 마그네타이트 분말을 직접 사용하여 중금속의 흡착효과 및 자성을 이용한 하수처리 방법이 연구되어지고 있다.In the case of wastewater treatment using a ferrite process, the treatment efficiency is good, but high reaction temperature and air oxidation are required, resulting in a large apparatus and expensive equipment cost. Therefore, sewage treatment method using magnetite adsorption effect and magnetism using magnetite powder is being studied.
고구배 자력분리는 마그네타이트의 자성을 이용하여 슬러지를 빠른 시간 내에 농축·분리하기 위한 방법으로서, 폐수를 침전제로 처리한 후에 마그네타이트 분말과 응집제(polymer)를 첨가하여 전자석으로 설치된 반응조에서 슬러지를 농축 분리하는 것이다.High Gradient Magnetic Separation is a method for concentrating and separating sludge in a fast time by using magnetite magnetization. After treating wastewater with a precipitant, it concentrates and separates sludge in a reaction tank installed with an electromagnet by adding magnetite powder and a polymer. It is.
그러나, 이 방법 또한 마그네타이트의 회수 및 재처리 그리고 자기분리 반응장치의 특수성 때문에 아직 널리 활용되고 있지는 않다. 한편, 마그네타이트 분말대신 제철공장의 폐수처리로부터 얻어지는 마그네타이트 슬러지(sludge)를 이용하는 방법과 간편한 자기분리 반응기의 개발 등에 대한 연구가 진행되고 있다.However, this method is not yet widely used due to the specificity of the recovery and reprocessing of magnetite and the magnetic separation reactor. On the other hand, studies on the use of magnetite sludge obtained from wastewater treatment in steel mills instead of magnetite powder and the development of a simple magnetic separation reactor are being conducted.
본 발명은 상기한 바와 같은 종래 기술의 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 상온에서 공기산화 없이 순수한 마그네타이트를 제조하는 방법을 제공하는 것이다. 본 발명의 또 다른 목적은 상기에서 제조된 마그네타이트를 도금, 염색, 또는 피혁폐수 등의 산업폐수에 첨가함으로써 중금속과 난분해성 물질의 응집, 처리 효과가 향상된 산업폐수 처리 방법을 제공하는 것이다.The present invention is to solve the problems of the prior art as described above, an object of the present invention is to provide a method for producing pure magnetite without air oxidation at room temperature. It is still another object of the present invention to provide an industrial wastewater treatment method in which agglomeration and treatment effect of heavy metals and hardly decomposable substances are improved by adding the magnetite prepared above to industrial wastewater such as plating, dyeing, or leather wastewater.
도 1은 본 발명의 이해를 돕기 위하여 온도, pH 그리고 수산화나트륨(NaOH )대 황산철(FeSO4)의 비율에 따른 마그네타이트의 생성범위를 도시한 것이다.Figure 1 shows the production range of magnetite according to the temperature, pH and the ratio of sodium hydroxide (NaOH) to iron sulfate (FeSO 4 ) in order to facilitate the understanding of the present invention.
도 2a는 본 발명에 따라 수용액중 상온에서 제조된 마그네타이트를 첨가하여 도금폐수를 처리하고 여과한 결과를 도시한 것이다.Figure 2a shows the results of treating and filtering the plating wastewater by adding the magnetite prepared at room temperature in the aqueous solution according to the present invention.
도 2b는 본 발명에 따라 수용액중 상온에서 제조된 마그네타이트를 첨가하여 도금폐수를 처리하고 비여과한 결과를 도시한 것이다.Figure 2b shows the result of treating and non-filtering the plating wastewater by adding the magnetite prepared at room temperature in the aqueous solution according to the present invention.
상기와 같은 목적을 달성하기 위하여 본 발명에 의한 수용액중 상온에서의 마그네타이트 제조 방법은, 제일철염 수용액에 수산화나트륨을 혼합하여 그린 러스트와 FeOH+층의 혼합물인 중간생성물을 생성시키는 단계(a); 상기 단계(a)의 중간생성물을 상온에서 10분 내지 5시간 동안 급속 교반하여 레피도크로사이트와 마그네타이트의 혼합물인 침전물을 얻는 단계(b); 및 상기 단계(b)의 침전물에 물을 가한 후 2차 교반을 하여 순수한 마그네타이트를 생성시키는 단계(c)를 포함하여 이루어지는 것을 특징으로 한다.In order to achieve the above object, the magnetite production method at room temperature in the aqueous solution according to the present invention comprises the steps of: (a) to produce an intermediate product of a mixture of green rust and FeOH + layer by mixing sodium hydroxide in an aqueous ferrous salt solution; Rapidly stirring the intermediate product of step (a) at room temperature for 10 minutes to 5 hours to obtain a precipitate which is a mixture of repidocrosite and magnetite; And (c) adding pure water to the precipitate of step (b) to generate pure magnetite by secondary stirring.
본 발명에 의한 산업폐수 처리 방법은 상기의 방법에 의해 제조된 마그네타이트를 도금, 염색, 또는 피혁폐수에 첨가하여 응집제, 침전제 또는 보조제로서 이용하는 것을 특징으로 한다.The industrial wastewater treatment method according to the present invention is characterized in that the magnetite produced by the above method is added to plating, dyeing or leather wastewater to be used as a flocculant, a precipitant or an auxiliary agent.
이하, 실시예 및 도면을 들어 본 발명의 구성 및 발명효과를 보다 상세하게 설명한다. 하기의 실시예는 본 발명의 내용을 설명하나, 본 발명의 내용이 여기에 한정되지는 않는다.Hereinafter, the configuration and the effects of the present invention will be described in more detail with reference to Examples and drawings. The following examples illustrate the content of the invention, but the content of the invention is not limited thereto.
마그네타이트의 생성방법을 설명하면 다음과 같다. 먼저 제일철염 수용액에 알카리(NaOH)를 2N-NaOH : FeSO4비율이 1:1이 되도록 혼합하여 생성되는 중간생성물(Green Rust와 FeOH+층의 혼합물)을 상온에서 30분 동안 급속 교반한다. 이렇게 하여 생성된 침전물은 레피도크로사이트(γ-FeOOH)와 마그네타이트(Fe3O4)의 혼합물이다. 이를 지속적으로 교반하면 pH가 3 내지 5 정도의 약산성으로 변하면서 α-FeOOH와 Fe2O3가 생성된다. 그러나, 1차 농축된 침전물(레피도크로사이트와 마그네타이트의 혼합물)에 물을 혼합하여 2차 교반을 하면 순수한 마그네타이트(Fe3O4)가 생성된다. 자기장 하에서 침전 및 교반을 하면 마그네타이트(Fe3O4)의 생성효율이 더 높아진다. 상기 방법에 따라 제조된 마그네타이트(Fe3O4) 침전물은 건조 후 X-선 회절분석기(XRD)로 확인하였다.The production method of magnetite is as follows. First, the intermediate product (mixture of Green Rust and FeOH + layer) produced by mixing alkali (NaOH) in an aqueous ferrous salt solution so that the ratio of 2N-NaOH: FeSO 4 is 1: 1 is rapidly stirred at room temperature for 30 minutes. The precipitate thus produced is a mixture of lepidocrocite (γ-FeOOH) and magnetite (Fe 3 O 4 ). If it is continuously stirred, the pH is changed to a weak acid of 3 to 5, and α-FeOOH and Fe 2 O 3 are produced. However, pure magnetite (Fe 3 O 4 ) is produced when the water is mixed with the first concentrated precipitate (mixture of repidocrosite and magnetite) and subjected to secondary stirring. Precipitation and stirring under a magnetic field results in higher production efficiency of magnetite (Fe 3 O 4 ). Magnetite (Fe 3 O 4 ) precipitate prepared according to the method was confirmed by X-ray diffractometer (XRD) after drying.
본 발명에 따른 마그네타이트 제조 방법은 기존의 생성 메카니즘(Mechanism) 과 다르게 이해된다. 기존의 마그네타이트 생성 반응 조건은, 높은 온도에서 공기산화하면서 pH를 9 내지 10의 알칼리 상태로 유지해야 한다. 이는 온도가 높으면 용존산소의 농도가 낮아지고, 공기산화할 경우에는 입자 또는 콤플렉스(Complex)이온의 급작스런 표면반응에 의해 헤마타이트(Hematite, α-Fe2O3) 또는 괴타이트(α-FeOOH)가 생성되기 쉽기 때문으로 판단된다. 이에 반하여, 본 발명에서는 1차 생성된 고농도의 레피도크로사이트와 마그네타이트의 혼합물이 안정화된 상태에서 물과 혼합하여 약산화 반응에 의해 순수한 마그네타이트가 생성된다.The magnetite production method according to the present invention is understood differently from the existing production mechanism. Existing magnetite production reaction conditions should maintain the pH in an alkaline state of 9 to 10 while air oxidizing at high temperature. The higher the temperature, the lower the concentration of dissolved oxygen. In case of air oxidation, hematite (α-Fe 2 O 3 ) or goatite (α-FeOOH) is caused by a sudden surface reaction of particles or complex ions. This is because it is easy to generate. On the contrary, in the present invention, pure magnetite is produced by a weak oxidation reaction by mixing with water in a state where the mixture of high concentrations of lepidocrosite and magnetite is stabilized.
본 발명에 따라 수용액중 상온에서 제조된 마그네타이트를 도금, 염색, 또는 피혁폐수등의 산업폐수에 첨가하여 처리하였다. 현재 본 발명에서와 같이 수용액중 생성된 마그네타이트를 첨가하여 폐수처리한 사례는 없다.The magnetite prepared at room temperature in aqueous solution according to the present invention was treated by adding to industrial wastewater such as plating, dyeing or leather wastewater. As in the present invention, there is no case of wastewater treatment by adding the magnetite produced in the aqueous solution.
<실시예 1><Example 1>
각각 100 mg/l의 크롬(Cr), 구리(Cu), 카드뮴(Cd) 그리고 납(Pb)을 함유한 수용액에 마그네타이트를 첨가하여 침전 처리한 결과 금속이온의 흡착뿐만 아니라 금속수산화물과의 플럭(floc) 형성 및 콜로이드(colloid) 상태의 납수산화물과의 응집력이 좋았다. 또한 침전물의 양은 pH가 9.5이고 침전시간이 20분일 때에 NaOH만으로 침전시켰을 경우에 350 ㎖/l인데 반해 마그네타이트를 첨가하였을 경우에는 190 ㎖/l로 줄어들었다.As a result of precipitation by adding magnetite to an aqueous solution containing 100 mg / l of chromium (Cr), copper (Cu), cadmium (Cd), and lead (Pb), respectively, not only the adsorption of metal ions but also the flux with metal hydroxide ( Floc) formation and cohesion with lead hydroxide in the colloidal state was good. In addition, the amount of precipitate was reduced to 190 ml / l when magnetite was added, whereas the amount of precipitate was 350 ml / l when precipitated with NaOH alone at pH 9.5 and precipitation time was 20 minutes.
<실시예 2><Example 2>
도금공장의 폐수에 마그네타이트 슬러지를 첨가하여 침전 처리한 결과 니켈(Ni)과 크롬(Cr)의 제거효율을 높일 수가 있었으며, 침전물의 양 또한 줄일 수 있었다(도 2 참조). 또한 침전조의 배출구에 전자석을 설치함으로서 체류시간 30분 이내에서 도금폐수의 연속식 침전처리 및 침전물의 농축분리가 가능하였으며, Ni과Cr의 처리효율이 좋았다.As a result of the precipitation treatment by adding magnetite sludge to the wastewater of the plating plant, the removal efficiency of nickel (Ni) and chromium (Cr) could be increased, and the amount of precipitate was also reduced (see FIG. 2). Also, by installing electromagnet at outlet of sedimentation tank, continuous sedimentation treatment of plating wastewater and concentration separation of sediment were possible within 30 minutes of residence time, and Ni and Cr treatment efficiency was good.
<실시예 3><Example 3>
염색, 또는 피혁폐수에 마그네타이트를 첨가하여 처리한 결과, 초기농도 20,000ppm 이상이었던 크롬에 대한 화학적 산소 요구량(Chemical Oxygen Demand, CODCr)은 2,000ppm로 되어 80∼95%의 제거 효율을 보였으며, 초기농도 5,000ppm이하이었던 크롬에 대한 화학적 산소 요구량(Chemical Oxygen Demand, CODCr)은 800ppm로 되어 60∼85%의 제거 효율을 보였다. 즉, 본 발명에 의해 제조된 마그네타이트를 도금, 염색, 또는 피혁폐수 등의 산업폐수에 첨가하여 처리하면 중금속 물질의 응집, 처리 효과가 향상됨을 알 수 있다.As a result of dyeing or treating the wastewater by adding magnetite, the chemical oxygen demand (COD Cr ) for chromium, which had an initial concentration of 20,000 ppm or more, was 2,000 ppm, and the removal efficiency was 80-95%. Chemical Oxygen Demand (COD Cr ) for chromium, which was below the initial concentration of 5,000 ppm, was 800 ppm, resulting in 60 to 85% removal efficiency. That is, it can be seen that when the magnetite prepared according to the present invention is added to industrial wastewater such as plating, dyeing, or leather wastewater, the coagulation and treatment effect of heavy metal materials are improved.
이상에서 설명한 바와 같이, 기존에는 순수한 마그네타이트를 생성시키기 위하여 40℃ 이상에서 공기로 산화시켜야 했으나, 본 발명에서는 상온에서 별도의 공기산화 없이 순수한 마그네타이트 제조가 가능하므로, 본 발명에 따라 수용액중 상온에서 마그네타이트를 제조할 경우 반응장치가 단순화되고, 생산비용이 크게 낮아지게 된다. 또한 본 발명에 의해 제조된 마그네타이트는 자성유체로서 뿐만 아니라 다양한 용도로 활용이 가능하게된다.As described above, in the past, in order to produce pure magnetite, it had to be oxidized with air at 40 ° C. or higher. However, in the present invention, pure magnetite can be prepared without additional air oxidation at room temperature, and thus, magnetite at room temperature in aqueous solution according to the present invention. When manufacturing the reaction apparatus is simplified, the production cost is significantly lowered. In addition, the magnetite produced by the present invention can be utilized not only as a magnetic fluid but also for various uses.
본 발명에 의해 제조된 마그네타이트를 도금, 염색, 또는 피혁폐수 등의 산업폐수에 첨가하여 처리하면 중금속과 난분해성 물질의 응집, 처리 효과를 높일 수 있다. 이는 본 발명에 따른 마그네타이트가 산업폐수에 첨가되어 플럭을 형성시키기 때문이다. 따라서, 본 발명에 따라 마그네타이트를 이용한 산업폐수 처리 방법은, 기존의 폐수처리 기술로서 반응온도와 공기산화등의 조건을 요하는 페라이트 프로세스(Ferrite Process), 마그네타이트 분말을 이용한 하수처리 및 슬러지의 고구배 자력분리(HGMS: High Gradient Magnetic Seperation) 등과 비교할 때, 장치의 소형화, 시설비의 저렴화 및 마그네타이트의 회수, 재처리가 가능할 뿐만 아니라, 적은 비용으로 폐수처리 효과를 크게 향상시킨다.The magnetite produced by the present invention may be added to industrial wastewater such as plating, dyeing, or leather wastewater to treat coagulation and treatment effect of heavy metals and hardly decomposable substances. This is because the magnetite according to the invention is added to industrial wastewater to form flocs. Therefore, according to the present invention, the industrial wastewater treatment method using magnetite is a conventional wastewater treatment technology, a ferrite process requiring conditions such as reaction temperature and air oxidation, sewage treatment using magnetite powder and high gradient of sludge. Compared with High Gradient Magnetic Seperation (HGMS), it is possible not only to reduce the size of the device, to reduce the cost of the facility, to recover and reprocess the magnetite, but also to greatly improve the wastewater treatment effect at a low cost.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0056173A KR100442541B1 (en) | 2001-09-12 | 2001-09-12 | Method for preparing magnetite in aqueous solution at room temperature and Method for water-waste-treatment using the said magnetite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2001-0056173A KR100442541B1 (en) | 2001-09-12 | 2001-09-12 | Method for preparing magnetite in aqueous solution at room temperature and Method for water-waste-treatment using the said magnetite |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20030023153A true KR20030023153A (en) | 2003-03-19 |
KR100442541B1 KR100442541B1 (en) | 2004-07-30 |
Family
ID=27723705
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2001-0056173A KR100442541B1 (en) | 2001-09-12 | 2001-09-12 | Method for preparing magnetite in aqueous solution at room temperature and Method for water-waste-treatment using the said magnetite |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100442541B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100853970B1 (en) * | 2004-04-26 | 2008-08-25 | 미쓰비시 마테리알 가부시키가이샤 | Reducing water purification material, method for producing reducing water purification material, method for treating wastewater, and wastewater treatment apparatus |
WO2012165695A1 (en) * | 2011-05-27 | 2012-12-06 | 한국지질자원연구원 | Magnetite and birnessite aggregate-form mixture, synthesis method therefor, and water-treatment method using mixture |
US8337805B1 (en) | 2011-11-08 | 2012-12-25 | Korea Institute Of Geoscience And Mineral Resources | Method for preparing magnetite nanoparticles from low-grade iron ore and magnetite nanoparticles prepared by the same |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR101275096B1 (en) | 2012-11-05 | 2013-06-17 | 한국지질자원연구원 | Method for preparing magnetite nanoparticle from low-grade iron ore using solvent extraction and magnetite nanoparticle prepared by the same |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1008297B (en) * | 1974-02-25 | 1976-11-10 | Montedison Spa | PROCEDURE FOR OBTAINING MAGNETITE FROM FERROUS SULPHATE SOLUTIONS |
IT1008298B (en) * | 1974-02-25 | 1976-11-10 | Montedison Spa | METHOD FOR OBTAINING CONTROLLED GRANULOMETRY MAGNETITE STARTING FROM FERROUS SULPHATE SOLUTIONS |
JPH03290325A (en) * | 1990-04-06 | 1991-12-20 | Astecirie Corp Ltd | Production of magnetite |
KR930002963B1 (en) * | 1990-12-27 | 1993-04-16 | 포항종합제철 주식회사 | Process for making gamma-ferrite powder contained cobalt |
KR930006634A (en) * | 1991-09-17 | 1993-04-21 | 이헌조 | Ultra fine magnetic body and magnetic fluid manufacturing method |
KR100479646B1 (en) * | 2000-09-01 | 2005-03-30 | 유수홍 | Apparatus and Method for Environment-friendly Treatment of Industrial Wastewater Using the Combined Electrocoagulation and Magnetic Fluid Separation |
KR20030015599A (en) * | 2001-08-16 | 2003-02-25 | 이윤나 | Ultra-high speed water treatment powder containing surface-modified magnetite powder and adsorbent and preparation method |
-
2001
- 2001-09-12 KR KR10-2001-0056173A patent/KR100442541B1/en not_active IP Right Cessation
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100853970B1 (en) * | 2004-04-26 | 2008-08-25 | 미쓰비시 마테리알 가부시키가이샤 | Reducing water purification material, method for producing reducing water purification material, method for treating wastewater, and wastewater treatment apparatus |
KR100893512B1 (en) * | 2004-04-26 | 2009-04-16 | 미쓰비시 마테리알 가부시키가이샤 | Method for treating wastewater and wastewater treatment apparatus |
KR100926915B1 (en) * | 2004-04-26 | 2009-11-17 | 미쓰비시 마테리알 가부시키가이샤 | Method for treating wastewater and wastewater treatment apparatus |
US7754099B2 (en) | 2004-04-26 | 2010-07-13 | Mitsubishi Materials Corporation | Reducing water purification material, method for producing reducing water purification material, method for treating wastewater, and wastewater treatment apparatus |
US7799232B2 (en) | 2004-04-26 | 2010-09-21 | Mitsubishi Materials Corporation | Method of treating wastewater with reducing water purification material |
US7892426B2 (en) | 2004-04-26 | 2011-02-22 | Mitsubishi Materials Corporation | Wastewater treatment apparatus |
WO2012165695A1 (en) * | 2011-05-27 | 2012-12-06 | 한국지질자원연구원 | Magnetite and birnessite aggregate-form mixture, synthesis method therefor, and water-treatment method using mixture |
AU2011369593B2 (en) * | 2011-05-27 | 2014-09-25 | Korea Institute Of Geoscience And Mineral Resources (Kigam) | Magnetite and birnessite aggregate-form mixture, synthesis method therefor, and water-treatment method using mixture |
US9174196B2 (en) | 2011-05-27 | 2015-11-03 | Korea Institute Of Geoscience And Mineral Resources (Kigam) | Synthesis method for magnetite and birnessite aggregate-form mixture |
US8337805B1 (en) | 2011-11-08 | 2012-12-25 | Korea Institute Of Geoscience And Mineral Resources | Method for preparing magnetite nanoparticles from low-grade iron ore and magnetite nanoparticles prepared by the same |
Also Published As
Publication number | Publication date |
---|---|
KR100442541B1 (en) | 2004-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Faheem et al. | Synthesis of Cu 2 O–CuFe 2 O 4 microparticles from Fenton sludge and its application in the Fenton process: the key role of Cu 2 O in the catalytic degradation of phenol | |
US7754099B2 (en) | Reducing water purification material, method for producing reducing water purification material, method for treating wastewater, and wastewater treatment apparatus | |
Parga et al. | Characterization of electrocoagulation for removal of chromium and arsenic | |
US3931007A (en) | Method of extracting heavy metals from industrial waste waters | |
Liu et al. | Ozone catalytic oxidation of biologically pretreated semi-coking wastewater (BPSCW) by spinel-type MnFe2O4 magnetic nanoparticles | |
KR101330997B1 (en) | Mixed aggregate of magnetic iron oxide and layer structured manganese oxide, Synthesis method for the same and water treatment method using the same | |
KR101109682B1 (en) | Method for preparing magnetite nanoparticle from low-grade iron ore and magnetite nanoparticle prepared by the same | |
KR101275096B1 (en) | Method for preparing magnetite nanoparticle from low-grade iron ore using solvent extraction and magnetite nanoparticle prepared by the same | |
KR101238879B1 (en) | Treatment Method for Cokes Waste Water Using Electrolysis and HGMS | |
Yang et al. | Removal and recycling of hexavalent chromium from alkaline wastewater via a new ferrite process to produce the valuable chromium ferrite | |
KR100442541B1 (en) | Method for preparing magnetite in aqueous solution at room temperature and Method for water-waste-treatment using the said magnetite | |
Tamaura et al. | The Fe3O4-formation by the ‘Ferrite Process’: Oxidation of the reactive Fe (OH) 2 suspension induced by sucrose | |
WO2019214065A1 (en) | Method for removing heavy metal pollutants in water with divalent manganese strengthened ferrate | |
de Latour et al. | High‐Gradient Magnetic Separation A Water‐Treatment Alternative | |
Moreno et al. | Electrochemical generation of green rust using electrocoagulation | |
JP2001259657A (en) | Treatment method or water containing phosphorus, heavy metals or the like | |
Liu et al. | Degradation of FBL dye wastewater by magnetic photocatalysts from scraps | |
RU2297391C2 (en) | Method of the galvanochemical purification of the industrial waste waters | |
Lv et al. | Effect of zinc ion on synthesis of chromium-containing spinel from wastewater and insight into the synthesis mechanism | |
Huang et al. | Treatment of Simulated Steel Pickling Waste Liquor by Electrochemical Synthesis of Fe 3 O 4 | |
CN113299475B (en) | Water-based magnetofluid and in-situ growth preparation method and application thereof | |
JP2007117816A (en) | Water purification method and apparatus | |
JP2007117984A (en) | Apparatus for treating heavy metals-containing water | |
CN107720903B (en) | Water environment restoration material and preparation method and application thereof | |
Hencl et al. | The Application of High–Gradient Magnetic Separation to Water Treatment by Means of Chemically Precipitated Magnetite |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
N231 | Notification of change of applicant | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20070720 Year of fee payment: 4 |
|
LAPS | Lapse due to unpaid annual fee |