KR20030005655A - Rotary engine - Google Patents
Rotary engine Download PDFInfo
- Publication number
- KR20030005655A KR20030005655A KR1020010041028A KR20010041028A KR20030005655A KR 20030005655 A KR20030005655 A KR 20030005655A KR 1020010041028 A KR1020010041028 A KR 1020010041028A KR 20010041028 A KR20010041028 A KR 20010041028A KR 20030005655 A KR20030005655 A KR 20030005655A
- Authority
- KR
- South Korea
- Prior art keywords
- combustion chamber
- rotor
- wall
- main shaft
- inner rotor
- Prior art date
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B53/00—Internal-combustion aspects of rotary-piston or oscillating-piston engines
- F02B53/02—Methods of operating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Supercharger (AREA)
Abstract
Description
본 발명은 동력기계기구 중 로터리엔진에 관한 것으로, 종래의 피스톤 왕복 동식 엔진은 왕복관성에 의하여 동력손실이 크고, 진동이 크다.The present invention relates to a rotary engine of a power machine mechanism, the conventional piston reciprocating engine has a large power loss due to the reciprocal inertia, the vibration is large.
기존의 로터리엔진의 경우, 샤프트에 축 편심륜부가 있고, 삼각형 로우터가 편심회전을 하고, 연소가스의 팽창압력이 역회전방향 토오크로 작용하는 구간이 삼각형 로우터에 존재하기 때문에 팽창력이 모두 한 방향 토오크로 전환될 수 없는 구조로 이루어져 있으며, 로우터의 3정점의 기밀유지 및 내마모성 문제가 있어 고도의 기술 및 경제성 문제가 있다.Conventional rotary engines have axial eccentric wheels on the shaft, triangular rotors for eccentric rotation, and the expansion torque is one-way torque because there is a section in which the expansion pressure of the combustion gas acts as the reverse direction torque. Consists of a structure that can not be converted to, there is a problem of high confidentiality and wear resistance of the three peaks of the rotor has a high technical and economic problems.
가스터빈의 경우, 효율이 낮고, 부하변동에 대한 추종성이 나쁘며, 고가의내열소재를 사용해야 하는 문제가 있다In case of gas turbine, there is a problem of low efficiency, poor tracking of load fluctuations, and use of expensive heat-resistant materials.
본 발명은 상기와 같은 왕복관성에 의한 동력손실, 진동, 연소가스 팽창압력의 분산을 해소하기 위해, 래치를 적용하여 로우터들의 진행방향이 역전되지 않게 하고, 진동이 없도록 구성요소들이 축 대칭을 이루게 하며, 연소가스의 팽창압력이 분산되지 않고 모두 한 방향 토오크로 작용하도록 한 것에 특징이 있다.The present invention applies a latch so as to avoid the reverse of the direction of travel of the rotor, in order to solve the dispersion of the power loss, vibration, combustion gas expansion pressure due to the reciprocal inertia as described above, and make the components axially symmetric such that there is no vibration And, it is characterized in that the expansion pressure of the combustion gas is not dispersed and all act as one-way torque.
도 1은 본 발명에 따른 엔진의 중간단면을 보이고 있는 정단면도.1 is a front sectional view showing an intermediate section of the engine according to the present invention.
도 2는 도 1의 선 A-A를 따라 자른 측면단면을 보이고 있는 측단면도.Figure 2 is a side cross-sectional view taken along the line A-A of Figure 1;
도 3은 분사량 조절 메카니즘을 보이고 있는 파단면도.3 is a sectional view showing the injection amount adjustment mechanism.
도 4는 도 3의 SEC.B의 단면도 및 SEC.C의 부분확대도.4 is a cross-sectional view of the SEC. B of FIG. 3 and a partially enlarged view of the SEC.
도 5의 a-e는 본 발명 엔진의 한 싸이클을 도식적으로 설명하는 설명도.5A is an explanatory diagram schematically illustrating one cycle of the engine of the present invention.
이하 첨부된 도면에 의해 상세히 설명하면 다음과 같다.Hereinafter, described in detail by the accompanying drawings as follows.
도 1과 도 2의 엔진은 외측연소실형성벽(1a)와 연소실외벽(1b) 그리고 흡기밸브가이드홈(1c)과 배기구(1d)를 가진 외측로우터바디(1)와 외측로우터캡(1e)를 결합하여 외측로우터가 형성되고, 내측연소실형성벽(2a)와 그 중심부에 고정되는 분사노즐(9a,9b,9c,9d) 그리고, 플런저(8a,8b,8c,8d)와 연소실내벽(2b), 닫힘스프링이 장치된 흡기밸브(5a,5b,5c,5d)와 연료공급홈(2d)를 가진 내측로우터바디(2)와 내측로우터캡(2e)를 결합한 내측로우터가 중심부에 1차압축기(10)에 의해 압축된 1차압축공기를 저장하도록 장설된다. 두 로우터의 관성질량은 동일하며, 외측로우터의 외측연소실형성벽(1a), 연소실외벽(1b), 배기구(1d)와 내측로우터의 내측연소실형성벽(2a), 연소실내벽(2b), 슬라이딩면(2c), 흡기밸브(5a,5b,5c,5d)의 위치 및 형상은 1차압축공기의 압축비와 두 로우터의 교축비의 조합에 의해 디젤 공기압축비를 얻을 수 있도록 형성된다.The engine of FIGS. 1 and 2 includes an outer rotor body 1 and an outer rotor cap 1e having an outer combustion chamber forming wall 1a, a combustion chamber outer wall 1b, an intake valve guide groove 1c, and an exhaust port 1d. In combination with the outer rotor is formed, the inner combustion chamber forming wall (2a) and the injection nozzles (9a, 9b, 9c, 9d) fixed to the central portion, the plunger (8a, 8b, 8c, 8d) and the combustion chamber inner wall (2b) The inner compressor, which combines the inner rotor body 2 and the inner rotor cap 2e with the inlet valves 5a, 5b, 5c, 5d and the fuel supply grooves 2d with the closing springs, has a primary compressor ( It is installed to store the primary compressed air compressed by 10). The inertia mass of the two rotors is the same, and the outer combustion chamber forming wall 1a of the outer rotor, the combustion chamber outer wall 1b, the exhaust port 1d and the inner combustion chamber forming wall 2a of the inner rotor, the combustion chamber inner wall 2b, the sliding surface (2c), the positions and shapes of the intake valves 5a, 5b, 5c, and 5d are formed to obtain a diesel air compression ratio by a combination of the compression ratio of the primary compressed air and the throttle ratio of the two rotors.
상기의 두 로우터는 하우징기반부(11c)를 기반으로 하여 시계방향(이후 정방향이라 표기)으로만 회전이 가능하도록 하며, 일정한 화전속도 이상에서 원심력에 의해 래치가 풀리고, 시동 시에 솔레노이드(6a,6b)가 켜지면 반시계방항(이후 역방향이라 표기)으로만 회전이 가능한 하우징원심래치(3a,3b)와 주축(12)에 정방향 토오크를 전달하며, 시동 시에 솔레노이드(6c,6d)가 켜지면 역방향 래치가 되는 주축래치(4a,4b)가 각각 하나씩 구비되어 있다. 정,역회전 래치 기구는 래치렌치의 작동원리를 응용하여 가능하다.The above two rotors can be rotated only in a clockwise direction (hereinafter referred to as a forward direction) based on the housing base portion 11c, and the latch is released by centrifugal force above a predetermined fire speed, and the solenoid 6a, When 6b) is turned on, forward torque is transmitted to the housing centrifugal latches 3a and 3b and the main shaft 12, which can only rotate counterclockwise (hereinafter referred to as reverse direction), and the solenoids 6c and 6d are turned on at start-up. One main shaft latch 4a, 4b serving as a surface reverse latch is provided. Forward and reverse latch mechanism is possible by applying the operation principle of the latch wrench.
시동을 걸 때, 래치(3a,3b,4a,4b)의 측면에는 외측로우터와 내측로우터의 교축에 의해 연료분사가 이루어질 때마다 전기신호를 받아 래치의 회전방향을 역전시키도록 링과 같은 형상의 솔레노이드(6a,6b,6c,6d)가 구비되어 있다.When starting, the sides of the latches 3a, 3b, 4a, 4b have a ring-like shape to receive an electrical signal and reverse the rotational direction of the latch each time fuel injection is caused by the throttling of the outer rotor and the inner rotor. Solenoids 6a, 6b, 6c, 6d are provided.
흡기밸브(5a,5b,5c,5d)와 연소실내벽(2b)의 높이는 외측로우터바디(1)과 외측로운터캡(1e)의 가이드홈(1c)에 의해 안내되도록 높이가 결정된다.The heights of the intake valves 5a, 5b, 5c, and 5d and the combustion chamber inner wall 2b are determined so as to be guided by the guide grooves 1c of the outer rotor body 1 and the outer rotor cap 1e.
도 3과 도 4의 분사조절캠(7)은 분사조절슬라이더(16)과 링크(17)에 의해 연결되어 있고, 분사조절슬라이더(16)은 분사조절기(15)와 외측로우터캡(1e)를 미끄러지면서 작동하도록 되어 있다.The injection control cam 7 of FIGS. 3 and 4 is connected by an injection control slider 16 and a link 17, and the injection control slider 16 uses the injection controller 15 and the outer rotor cap 1e. It is supposed to work while sliding.
분사노즐(9a,9b,9c,9d)에서 연료를 분사할 수 있도록 분사압력을 얻기 위해 외측로우터와 내측로우터의 교축에 의한 디젤공기압축비가 이루어지는 위상에서 플런저(8a,8b,8c,8d)가 분사조절캠(7)에 의해 압축이 시작 되도록 내측로우터에 고정된다.The plungers 8a, 8b, 8c, and 8d are operated in a phase in which the diesel air compression ratio is achieved by the throttling of the outer rotor and the inner rotor to obtain the injection pressure to inject fuel from the injection nozzles 9a, 9b, 9c, and 9d. It is fixed to the inner rotor to start compression by the injection control cam (7).
본 엔진의 출력은 분사량에 의하며, 분사량은 분사조절캠의 각도 및 형상의 조절에 의해 이루어진다.(분사조절슬라이더의 추가 및 분사조절캠의 형상을 변경하여 진각 및 분사량의 미세조절이 가능할 것이다.)The output of the engine is based on the amount of injection, and the amount of injection is made by adjusting the angle and shape of the injection control cam. (Addition of injection control sliders and changing the shape of the injection control cam will allow fine adjustment of the advance and injection amount.)
1차압축기(10)은 루츠,나사,축류다단 압축기 가운데 압력 및 풍량이 적당한 것으로 선정되며, 주축에 의해 구동되어 출력에 대응하여 작동된다.The primary compressor 10 is selected from the roots, screws, and axial multistage compressors by appropriate pressure and air volume, and is driven by the main shaft to operate in response to the output.
전면하우징(11a)에는 베어링 고정용 블레이드(11e)가 구비되고, 전,후면하우징(11a,11b)에는 배기가스를 배출하는 배기관(11d)이 갖추어져 있다.The front housing 11a is provided with a bearing fixing blade 11e, and the front and rear housings 11a and 11b are provided with an exhaust pipe 11d for exhausting exhaust gas.
주축(12)는 전,후면하우징(11a,11b)의 중앙부와 두 주축래치(4a,4b) 사이의 베어링에 의해 지지되며, 주축래치(4a,4b)와 고정되고, 양 끝단에는 1차압축기(10)과 플라이휠(18)이 각각 연결된다.The main shaft 12 is supported by a bearing between the central portion of the front and rear housings 11a and 11b and the two main shaft latches 4a and 4b, and is fixed to the main shaft latches 4a and 4b, and has a primary compressor at both ends. 10 and flywheel 18 are respectively connected.
링 형상을 가진 2개의 솔레노이드(6b,6c)는 솔레노이프고정대(14a)와 블레이드(14b)에 의해 연결 되어 있으며, 연료주입구(14c)는 솔레노이드(6c)를 관통해 내측로우터의 연료공급홈(2d)에 연결되어 있다. (솔레노이드(6c)와 연료공급홈(2d) 간의 씰링은 도시하지 않았음.)The two solenoids 6b and 6c having a ring shape are connected by the solenoid fixing rod 14a and the blade 14b, and the fuel inlet 14c penetrates the solenoid 6c to supply fuel to the inner rotor. Is connected to (2d). (The sealing between solenoid 6c and fuel supply groove 2d is not shown.)
본 엔진의 작동은 도 5의 a-e의 설명도에 나타냈고, 하기에서 상세히 설명될 것이다.The operation of the engine is shown in the explanatory diagram of a-e of FIG. 5 and will be described in detail below.
도 5의 a는 외측연소실형성벽(1a)와 분사노즐(9a,9d)가 고정된 내측연소실 형성벽(2a)가 1차압축공기를 교축하여 2차압축이 완료되고, 분사조절캠(7)과 플런저(8)에 의해 분사노즐(9a,9d)에서 연료분사가 완료되어 연소팽창이 시작되는 상태를 보이고 있다.FIG. 5A shows that the outer combustion chamber forming wall 1a and the inner combustion chamber forming wall 2a on which the injection nozzles 9a and 9d are fixed throttle the primary compressed air to complete the secondary compression, and the injection control cam 7 And the plunger 8, the fuel injection is completed in the injection nozzles 9a and 9d, and combustion expansion is started.
연료가 연소하여 팽창력이 발생되면 외측로우터는 하우징원심래치(3a)에 의해 역회전할 수 없으므로 내측로우터가 정회전하게 되어 도 5의 b를 거쳐서 연소팽창이 완료되어 도 5의 c의 도면과 같이 회전하게 되고, 이 순간 1차 압축기(10)에 의해 압축된 공기는 블레이드(14b) 사이를 흘러 스프링에 의해 닫혀 있는 흡기밸브를 압력과 원심력으로 박차고 연소실로 흘러 들어가 배기구(1d)를 통해 연소가스를 밀어내며, 연소가스의 원심력도 역시 압축공기와 연소가스의 흡기와 배기를 돕는다.When the fuel is burned and the expansion force is generated, the outer rotor cannot be reversely rotated by the housing centrifugal latch 3a, so that the inner rotor is rotated forward, and combustion expansion is completed through b of FIG. At this moment, the air compressed by the primary compressor 10 flows between the blades 14b and flows through the intake valve closed by the spring with pressure and centrifugal force and flows into the combustion chamber through the exhaust port 1d. The centrifugal force of the combustion gas also helps the intake and exhaust of compressed air and combustion gas.
주축중심에 대해 대칭연소로 연소충격을 감쇠하도록 되어 있으며, 내측로우터의 정회전 토오크는 주축래치(4a)에 의해 주축(12)으로 전달되어 주축(12)가 정회전한다.The combustion shock is attenuated by symmetrical combustion with respect to the center of the main shaft, and the forward rotation torque of the inner rotor is transmitted to the main shaft 12 by the main shaft latch 4a so that the main shaft 12 rotates forward.
도 5의 c의 위상에서 분사노즐(9b,9c)의 연료분사가 완료되어 팽창력이 발생되면, 이번에는 내측로우터가 하우징원심래치(3b)에 의해 역회전할 수 없으므로 외측로우터가 정회전하게 되어 도 5의 d를 거쳐서 도 5의 e까지 회전하게 되고, 상기와 마찬가지로 압축공기와 배기가스의 흡기와 배기를 완료한다.When the fuel injection of the injection nozzles 9b and 9c is completed in the phase of FIG. 5c and the expansion force is generated, the inner rotor cannot be reversely rotated by the housing centrifugal latch 3b this time. It rotates to e of FIG. 5 via d of 5, and completes intake and exhaust of compressed air and exhaust gas as mentioned above.
외측로우터의 정회전 토오크는 주축래치(4b)에 의해 주축(12)로 전달되어 주축이 정회전한다.The forward rotation torque of the outer rotor is transmitted to the main shaft 12 by the main shaft latch 4b so that the main shaft rotates forward.
상기의 설명으로 1싸이클이 완성되며, 주축의 회전각도는 두 로우터의 회전각도의 합으로 구해질 수 있다.One cycle is completed by the above description, and the rotation angle of the main shaft can be obtained by the sum of the rotation angles of the two rotors.
한 로우터의 회전관성은 다른 로우터의 토오크 발생을 위한 2차공기압축을 하면서 회전관성을 전달하게 되어 동력손실을 없앨 수 있다.Rotational inertia of one rotor delivers rotational inertia while the second air is compressed to generate torque of the other rotor, eliminating power loss.
하우징원심래침(3a,3b)는 회전속도가 일정한 수치에 이르면 원심력에 의해 래치가 풀리고, 두 로우터의 회전에 마찰을 일으키지 않게 되며, 과부하로 두 로우터의 회전속도가 감소하면, 스프링에 의해 래치가 자동으로 복원되어 두 로우터가 역회전하는 것을 방지하게 된다.The housing centrifugal needles 3a and 3b are released by the centrifugal force when the rotational speed reaches a certain value and do not cause friction in the rotation of the two rotors.When the rotational speeds of the two rotors decrease due to overload, the latches are engaged by the spring. Automatic recovery will prevent the two rotors from reversing.
시동메카니즘은 래치가 장착된 스타터모터(19)가 플라이휠을 정회전 시키고 솔레노이드(6a,6c)가 켜져서 하우징원심래치(3a)와 주축래치(4a)를 역회전래치로 전환하면 외측로우터가 고정되고 내측로우터가 정회전하여 2차압축하고, 분사되는 시점에서 솔레노이드(6a,6c)는 꺼지고 하우징원심래치(3a)와 주축래치(4a)는 정회전 래치로 복원되고, 솔레노이드(6b,6d)가 켜져서 하우징원심래치(3b)와 주축래치(4b)를 역회전 래치로 전환하면 내측로우터가 고정되고 외측로우터가 회전하여 다음 분사시점까지 압축하게되며 디젤압축점화가 일어날 때까지 상기의 동작을 반복하게 된다.The starting mechanism is fixed when the starter motor 19 equipped with the latch rotates the flywheel forward and the solenoids 6a and 6c are turned on to switch the housing centrifugal latch 3a and the main shaft latch 4a to reverse rotation latches. And the inner rotor is forward rotated to secondary compression, and at the time of injection, the solenoids 6a and 6c are turned off, the housing centrifugal latch 3a and the main shaft latch 4a are restored to the forward rotation latch, and the solenoids 6b and 6d are When turned on, the housing centrifugal latch (3b) and the main shaft latch (4b) is switched to the reverse rotation latch, the inner rotor is fixed, the outer rotor is rotated to compress until the next injection point, the above operation is repeated until the diesel compression ignition occurs Done.
점화가 완료되면 래치스타터모터는 플라이휠에서 탈락하게 된다.When the ignition is complete, the latch starter motor will drop off the flywheel.
이상에서 상술한 작동원리(래치의 작동에 의해 한 로우터의 회전관성은 다른 로우터의 토오크 발생을 위한 2차공기압축을 하면서 전달되는 원리 및 축대칭 원리)에 의하여 피스톤 왕복동식 엔진의 왕복관성에 의한 동력손실 및 진동을 제거하고, 기존 로터리엔진에 비해 연소가스의 팽창력을 모두 한 방향 토오크로 전환하여 에너지효율이 높고, 가스터빈과 같이 출력에 대응해 1차압축기를 돌려주어 작동에 유리한 조건을 자동으로 맞추어 주는 장점을 갖는다. 또한, 디젤연소이므로 다종 연료의 사용이 가능하다는 것에 특징이 있다.According to the above-described operation principle (the rotational inertia of one rotor by the operation of the latch and the principle of axis symmetry transmitted while performing secondary air compression for torque generation of the other rotor) by the reciprocating inertia of the piston reciprocating engine Eliminates power loss and vibration, and converts the expansion force of combustion gas into one-way torque compared to existing rotary engines, resulting in high energy efficiency, and responds to outputs like gas turbines by returning the primary compressor to automatically operate conditions favorable for operation. It has the advantage of matching with. In addition, the diesel combustion is characterized in that it is possible to use a variety of fuels.
Claims (1)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020010041028A KR20030005655A (en) | 2001-07-09 | 2001-07-09 | Rotary engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020010041028A KR20030005655A (en) | 2001-07-09 | 2001-07-09 | Rotary engine |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20030005655A true KR20030005655A (en) | 2003-01-23 |
Family
ID=27714126
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1020010041028A KR20030005655A (en) | 2001-07-09 | 2001-07-09 | Rotary engine |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20030005655A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100727805B1 (en) * | 2006-09-11 | 2007-06-14 | 임승수 | Process for flavor enhancement of goat milk and its products |
US7478619B2 (en) * | 2003-04-08 | 2009-01-20 | Vittorio Patrono | Rotary engine for motor vehicles with very low consumption and pollution rate |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3136303A (en) * | 1961-08-21 | 1964-06-09 | Aleksanders E Ievins | Rotary engine |
US3938480A (en) * | 1974-02-04 | 1976-02-17 | Yanda Leon M | Internal combustion engine |
US4279577A (en) * | 1979-08-06 | 1981-07-21 | Appleton John M | Alternating piston rotary engine with latching control mechanism and lost motion connection |
US5199391A (en) * | 1991-11-08 | 1993-04-06 | Kovalenko Gerald E | Toroidal internal combustion engine |
KR930013437A (en) * | 1991-12-27 | 1993-07-21 | 박기영 | Rotary engine |
US6036461A (en) * | 1997-07-03 | 2000-03-14 | Bahniuk, Inc. | Expansible chamber device having rotating piston braking and rotating piston synchronizing systems |
KR100382573B1 (en) * | 2000-10-26 | 2003-05-01 | 손세권 | A high efficient engine |
-
2001
- 2001-07-09 KR KR1020010041028A patent/KR20030005655A/en not_active Application Discontinuation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3136303A (en) * | 1961-08-21 | 1964-06-09 | Aleksanders E Ievins | Rotary engine |
US3938480A (en) * | 1974-02-04 | 1976-02-17 | Yanda Leon M | Internal combustion engine |
US4279577A (en) * | 1979-08-06 | 1981-07-21 | Appleton John M | Alternating piston rotary engine with latching control mechanism and lost motion connection |
US5199391A (en) * | 1991-11-08 | 1993-04-06 | Kovalenko Gerald E | Toroidal internal combustion engine |
KR930013437A (en) * | 1991-12-27 | 1993-07-21 | 박기영 | Rotary engine |
US6036461A (en) * | 1997-07-03 | 2000-03-14 | Bahniuk, Inc. | Expansible chamber device having rotating piston braking and rotating piston synchronizing systems |
KR100382573B1 (en) * | 2000-10-26 | 2003-05-01 | 손세권 | A high efficient engine |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7478619B2 (en) * | 2003-04-08 | 2009-01-20 | Vittorio Patrono | Rotary engine for motor vehicles with very low consumption and pollution rate |
KR100727805B1 (en) * | 2006-09-11 | 2007-06-14 | 임승수 | Process for flavor enhancement of goat milk and its products |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6886527B2 (en) | Rotary vane motor | |
JP2006513346A (en) | Variable compression engine | |
US6070565A (en) | Rotary internal combustion engine | |
EA006116B1 (en) | Rotary machine and thermal cycle | |
US7314035B2 (en) | Rotary vane engine and thermodynamic cycle | |
US3702746A (en) | Rotary free piston gas generator | |
US3908608A (en) | Rotary piston engine having a turbo-supercharger | |
WO2002088529A1 (en) | Engine | |
US9279366B1 (en) | Steam powered engine | |
US4566411A (en) | Split cycle engine | |
KR20030005655A (en) | Rotary engine | |
US5138993A (en) | Rotary wavy motion type engine | |
CN101858248A (en) | Internal combustion engine capable of rotating through seizure of rotors | |
CN201318212Y (en) | Load response engine of arc-shaped cylinder | |
CN101555827A (en) | Arc cylinder load response engine | |
CN110159431B (en) | Multi-cylinder turbine rotary engine | |
KR20040074573A (en) | Rotary engine | |
CN219953497U (en) | Gemini engine | |
US11614030B2 (en) | Rotary blade engine | |
US5579733A (en) | Rotary engine with abutments | |
US20070137609A1 (en) | True rotary internal combustion engine | |
JPS5849692B2 (en) | ninenkikan | |
KR101760362B1 (en) | Direct circular rotary internal combustion engines with toroidal expansion chamber and rotor without moving parts | |
KR200318394Y1 (en) | a rotary engine | |
CN117780493A (en) | Gemini engine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |