[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20020096279A - an aluminum alloy - Google Patents

an aluminum alloy Download PDF

Info

Publication number
KR20020096279A
KR20020096279A KR1020010034636A KR20010034636A KR20020096279A KR 20020096279 A KR20020096279 A KR 20020096279A KR 1020010034636 A KR1020010034636 A KR 1020010034636A KR 20010034636 A KR20010034636 A KR 20010034636A KR 20020096279 A KR20020096279 A KR 20020096279A
Authority
KR
South Korea
Prior art keywords
aluminum alloy
silicon
magnesium
copper
nickel
Prior art date
Application number
KR1020010034636A
Other languages
Korean (ko)
Inventor
한도석
Original Assignee
현대자동차주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대자동차주식회사 filed Critical 현대자동차주식회사
Priority to KR1020010034636A priority Critical patent/KR20020096279A/en
Publication of KR20020096279A publication Critical patent/KR20020096279A/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C21/00Alloys based on aluminium
    • C22C21/06Alloys based on aluminium with magnesium as the next major constituent
    • C22C21/08Alloys based on aluminium with magnesium as the next major constituent with silicon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Conductive Materials (AREA)

Abstract

본 발명은 알루미늄 합금에 관한 것으로, 실리콘(Si), 구리(Cu), 망간(Mn), 마그네슘(Mg), 아연(Zn), 철(Fe), 크롬(Cr), 티타늄(Ti), 니켈(Ni) 등의 조성물이 첨가된 알루미늄 합금에 있어서, 상기 실리콘, 구리, 망간의 양을 현저히 줄이고, 대신 마그네슘, 철 및 니켈의 함량을 증가시켜 반응고 상태에서 수지상정(dendrite)이 구상화되고 내부에 용융금속이 포집되지 않으며, 입계에 유효 용융액의 양이 증가토록 함으로써 틱소포밍(thixoforming)과 같은 반응고 가공시 성형성이 향상되도록 된 것이다.The present invention relates to an aluminum alloy, silicon (Si), copper (Cu), manganese (Mn), magnesium (Mg), zinc (Zn), iron (Fe), chromium (Cr), titanium (Ti), nickel In an aluminum alloy to which a composition such as (Ni) is added, the amount of silicon, copper, and manganese is significantly reduced, and instead, the content of magnesium, iron, and nickel is increased, so that dendrite is spheroidized in the reaction state and internally. In the molten metal is not collected, and the amount of the effective melt at the grain boundary is increased to improve the formability during reaction solidification such as thixoforming.

Description

알루미늄 합금{an aluminum alloy}Aluminum alloy

본 발명은 알루미늄 합금에 관한 것으로, 특히 반응고 가공시 성형성이 향상되도록 된 알루미늄 합금에 관한 것이다.The present invention relates to an aluminum alloy, and more particularly to an aluminum alloy to improve formability during reaction hardening.

주지된 바와 같이 알루미늄은 지각 중에 약 8% 존재하며 실리콘 다음으로 많은 원소로서, 가볍고 내식성·가공성과 전기 및 열의 전도도가 우수하여 철강을 제외하고는 가장 많이 사용되는 금속이다.As is well known, aluminum is about 8% in the earth's crust and is the second most abundant element after silicon.

또한, 알루미늄에 구리, 마그네슘, 실리콘, 아연, 망간, 니켈 등의 원소를 첨가하면 기계적 성질이 우수해지므로 합금으로 제조하여 각 방면에 널리 쓰이고 있다.In addition, the addition of elements such as copper, magnesium, silicon, zinc, manganese, nickel to aluminum is excellent in mechanical properties and is widely used in each aspect by making an alloy.

한편, 알루미늄 합금 주물은 철강 주물에 비하여 월등히 가벼우므로 자동차를 비롯하여 산업기계, 전기기기, 통신기기, 일용품, 정밀기기 등에 널리 사용되며, 보통 사형, 쉘모울드, 금형주물로서 사용되고 있다.On the other hand, aluminum alloy castings are much lighter than steel castings, so they are widely used in automobiles, industrial machinery, electrical equipment, communication equipment, daily necessities, precision instruments, etc., and are commonly used as sand molds, shell molds, and mold castings.

한편, 주조 이외에도 반응고 성형, 예를 들어 틱소포밍(thixoforming ; 금형 속에 반용융 상태의 금속을 넣고 고압을 가하여 응고시켜 구하고자 하는 형상을 얻는 가압응고성형법)의 재료로서도 많이 사용되는데, 종래 틱소포밍에 사용되는 알루미늄 합금의 조성예는 다음과 같다.On the other hand, in addition to casting, it is also widely used as a material for reaction solidification, for example, thixoforming (pressure solidification molding method in which a semi-molten metal is put into a mold and solidified by applying a high pressure). The compositional example of the aluminum alloy used for is as follows.

조성물Composition 함량(%)content(%) 실리콘(Si)Silicon (Si) 0.5 ∼ 1.20.5 to 1.2 구리(Cu)Copper (Cu) 3.9 ∼ 5.03.9 to 5.0 망간(Mn)Manganese (Mn) 0.4 ∼ 1.20.4 to 1.2 마그네슘(Mg)Magnesium (Mg) 0.2 ∼ 0.80.2 to 0.8 아연(Zn)Zinc (Zn) 0.0 ∼ 0.250.0 to 0.25 철(Fe)Fe 0.0 ∼ 0.70.0 to 0.7 크롬(Cr)Chrome (Cr) 0.0 ∼ 0.10.0 to 0.1 티타늄(Ti)Titanium (Ti) 0.0 ∼ 0.150.0-0.15 기타Etc 0.0 ∼ 0.150.0-0.15 알루미늄(Al)Aluminum (Al) 나머지Remainder

한편, 상기 알루미늄 합금은 도 1에 나타난 바와 같이, 수지상정(樹枝狀晶)의 가지가 차지하는 공간의 크기(dendrite arm spacing)가 32㎛ 이고, 입계크기(grain size)는 114㎛이며, 수지상정의 사이에 공정조직(eutectic structure)이 없는 조직을 갖는다.Meanwhile, as shown in FIG. 1, the aluminum alloy has a dendrite arm spacing of 32 μm, a grain size of 114 μm, and a dendrite arm spacing. It has a tissue with no eutectic structure in between.

그런데, 상기 알루미늄 합금은 압축 변형시험을 실시할 때 도 2(사진은 610℃에서 20분간 가열, 고상율 0.70인 상태)에 나타난 바와 같이, 수지상정들이 여전히 서로 맞물려 있는 정도가 심하고(mechanical interlocking state), 다량의 용융금속이 고체상태의 결정립 안에 포함되어 있음으로써 입계의 유효 용융액 양이 감소하여 도 3에 도시된 바와 같이 진변형률(true strain)이 매우 낮아 성형성이 떨어지는 문제점이 있었다.However, when the aluminum alloy is subjected to a compressive deformation test, as shown in FIG. ), Since a large amount of molten metal is included in the grains of the solid state, the amount of effective melt at the grain boundary decreases, and as shown in FIG. 3, the true strain is very low, resulting in poor moldability.

이에 본 발명은 상기와 같은 문제점을 해결하기 위하여 안출된 것으로, 틱소포밍과 같은 반응고가공(semi-solid forming)시 성형성이 향상된 알루미늄 합금을 제공함에 그 목적이 있다.Accordingly, the present invention has been made to solve the above problems, an object of the present invention is to provide an aluminum alloy with improved formability during semi-solid forming, such as thixoforming.

도 1은 종래 알루미늄 합금의 광학 현미경 사진,1 is an optical micrograph of a conventional aluminum alloy,

도 2는 종래 알루미늄 합금을 재가열 했을 때의 광학 현미경 사진,2 is an optical micrograph when reheating a conventional aluminum alloy,

도 3은 종래 알루미늄 합금의 압축 변형시 진변형률-시간 선도,3 is a true strain-time diagram in the compression deformation of the conventional aluminum alloy,

도 4는 본 발명에 따른 알루미늄 합금의 광학 현미경 사진,4 is an optical micrograph of an aluminum alloy according to the present invention,

도 5는 본 발명에 따른 알루미늄 합금을 재가열 했을 때의 광학 현미경 사진,5 is an optical micrograph when reheating the aluminum alloy according to the present invention,

도 6은 본 발명에 따른 알루미늄 합금의 압축 변형시 진변형률-시간 선도이다.6 is a true strain-time plot of the compressive deformation of an aluminum alloy according to the present invention.

상기와 같은 목적을 달성하기 위한 본 발명은, 종래의 알루미늄 합금에서 실리콘, 구리, 망간의 양을 현저히 줄이고, 대신 마그네슘과 철의 함량을 늘리고 니켈을 추가 함유시키는 조성으로 이루어진다.The present invention for achieving the above object, in the conventional aluminum alloy significantly reduces the amount of silicon, copper, manganese, instead of increasing the content of magnesium and iron and made of a composition that further contains nickel.

따라서, 반응고 상태에서 수지상정의 구상화가 이루어지고, 입계의 유효용융액의 양이 증가하여 성형성이 향상된다.Therefore, spheroidization of the dendrite is achieved in the reaction solid state, and the amount of the effective melt at the grain boundary is increased to improve the moldability.

이하, 본 발명을 첨부된 예시도면을 참조하여 상세히 설명한다.Hereinafter, with reference to the accompanying drawings, the present invention will be described in detail.

본 발명에 따른 알루미늄 합금은 종래의 성분에서 실리콘, 구리, 망간의 함량을 대폭 줄이고, 대신 마그네슘, 철, 니켈의 함량을 증가시킨 조성으로 이루어진다.The aluminum alloy according to the present invention has a composition which greatly reduces the content of silicon, copper, and manganese in the conventional components, and instead increases the content of magnesium, iron, and nickel.

조성물의 자세한 함량은 아래의 표와 같다.Detailed contents of the composition are shown in the table below.

조성물Composition 함량(%)content(%) 실리콘(Si)Silicon (Si) 0.1 ∼ 0.40.1 to 0.4 구리(Cu)Copper (Cu) 1.5 ∼ 3.01.5 to 3.0 망간(Mn)Manganese (Mn) -- 마그네슘(Mg)Magnesium (Mg) 1.0 ∼ 3.81.0 to 3.8 아연(Zn)Zinc (Zn) 0.0 ∼ 0.10.0 to 0.1 철(Fe)Fe 0.8 ∼ 2.30.8 to 2.3 티타늄(Ti)Titanium (Ti) 0.0 ∼ 0.040.0-0.04 니켈(Ni)Nickel (Ni) 0.8 ∼ 3.20.8 to 3.2 기타Etc 0.0 ∼ 0.150.0-0.15 알루미늄(Al)Aluminum (Al) 나머지Remainder

상기와 같은 조성을 갖는 본 발명 알루미늄 합금은 도 4에 나타난 바와 같이, 수지상정(樹枝狀晶)의 가지가 차지하는 공간의 크기(dendrite arm spacing)가 21㎛ 이고, 입계크기(grain size)는 85㎛이며, 수지상정의 사이에 공정조직(eutectic structure)이 약 20 % 존재하는 조직을 갖는다.As shown in FIG. 4, the aluminum alloy of the present invention having the composition as described above has a dendrite arm spacing of 21 μm and a grain size of 85 μm. It has a structure in which about 20% of the eutectic structure is present between dendrites.

이 알루미늄 합금은 압축 변형시험을 실시할 때 도 5(사진은 590℃에서 20분간 가열, 고상율 0.95인 상태)에 나타난 바와 같이, 수지상정들이 구상화되어 있고, 고체상태의 결정립 내에 용융금속이 포집되어 있지 않음으로써 입계의 유효 용융액 양이 증가하여 압력을 가했을 때 주형의 형상대로 변형되어 원하는 형상으로 가공되기 좋은 상태가 된다.When the aluminum alloy is subjected to a compression deformation test, as shown in Fig. 5 (photo is heated at 590 ° C. for 20 minutes and has a solid phase rate of 0.95), the dendritic crystals are spherical, and molten metal is collected in the solid crystal grains. If it is not, the amount of effective melt at the grain boundary increases, and when it is pressurized, it is deformed into the shape of the mold and is in a good state of being processed into a desired shape.

즉, 도 6에 나타난 바와 같이 진변형률(true strain)이 향상되어 성형성이 우수해진다.That is, as shown in Figure 6 true strain (true strain) is improved to be excellent in moldability.

이상 설명한 바와 같이 본 발명 알루미늄 합금은 반응고 가공시 성형성이 향상되어 재료를 원하는 형상으로 가공해내기가 용이하고, 또한 재료를 상대적으로 낮은 온도에서 가공할 수 있으므로 에너지가 절약되는 효과가 있다.As described above, the aluminum alloy of the present invention has the effect of saving energy because the moldability of the present invention is improved, so that the material can be easily processed into a desired shape, and the material can be processed at a relatively low temperature.

또한, 재가열시 수지상정의 구상화율이 높고 유효용융액을 입계에 많이 증가시키므로 주형에 충진시 충진저항이 작으므로 품질안정화에 도움이 되는 장점이 있다.In addition, since the spheroidization rate of the dendrite is high when reheating and the effective melt is increased at the grain boundary, the filling resistance is small when the mold is filled, which is helpful in stabilizing the quality.

Claims (1)

실리콘 0.1∼0.4 %, 구리 1.5∼3.0 %, 마그네슘 1.0∼3.8 %, 아연 0.1 % 이하, 철 0.8∼2.3 %, 티타늄 0.04 % 이하, 니켈 0.8∼3.2 %, 기타 0.15 % 이하, 나머지는 알루미늄으로 조성되어 반응고상태에서 수지상정이 구상화되고 결정립 내에 용융금속이 포집되지 않으며, 입계의 유효 용융액이 증가하도록 된 알루미늄 합금.0.1-0.4% silicon, 1.5-3.0% copper, 1.0-3.8% magnesium, 0.1% or less zinc, 0.8-2.3% iron, 0.04% or less titanium, 0.8-3.2% nickel, other 0.15% or less The spherical crystals are formed in the reaction solid state so that molten metal is not collected in the crystal grains, and the effective melt of grain boundaries is increased.
KR1020010034636A 2001-06-19 2001-06-19 an aluminum alloy KR20020096279A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020010034636A KR20020096279A (en) 2001-06-19 2001-06-19 an aluminum alloy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020010034636A KR20020096279A (en) 2001-06-19 2001-06-19 an aluminum alloy

Publications (1)

Publication Number Publication Date
KR20020096279A true KR20020096279A (en) 2002-12-31

Family

ID=27709854

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020010034636A KR20020096279A (en) 2001-06-19 2001-06-19 an aluminum alloy

Country Status (1)

Country Link
KR (1) KR20020096279A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013165069A1 (en) * 2012-05-03 2013-11-07 (주)레오포즈 Aluminum alloy for semi-solid forging

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5846350A (en) * 1995-04-14 1998-12-08 Northwest Aluminum Company Casting thermal transforming and semi-solid forming aluminum alloys
US5879478A (en) * 1996-03-20 1999-03-09 Aluminium Pechiney Process for semi-solid forming of thixotropic aluminum-silicon-copper alloy
US5911843A (en) * 1995-04-14 1999-06-15 Northwest Aluminum Company Casting, thermal transforming and semi-solid forming aluminum alloys
US5968292A (en) * 1995-04-14 1999-10-19 Northwest Aluminum Casting thermal transforming and semi-solid forming aluminum alloys

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5846350A (en) * 1995-04-14 1998-12-08 Northwest Aluminum Company Casting thermal transforming and semi-solid forming aluminum alloys
US5911843A (en) * 1995-04-14 1999-06-15 Northwest Aluminum Company Casting, thermal transforming and semi-solid forming aluminum alloys
US5968292A (en) * 1995-04-14 1999-10-19 Northwest Aluminum Casting thermal transforming and semi-solid forming aluminum alloys
US5879478A (en) * 1996-03-20 1999-03-09 Aluminium Pechiney Process for semi-solid forming of thixotropic aluminum-silicon-copper alloy

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013165069A1 (en) * 2012-05-03 2013-11-07 (주)레오포즈 Aluminum alloy for semi-solid forging

Similar Documents

Publication Publication Date Title
EP3121302B1 (en) Aluminum alloy for die casting, and die-cast aluminum alloy using same
CN102676887B (en) Aluminum alloy for pressure casting and casting of the aluminum alloy
US11359264B2 (en) Aluminum alloy and die casting method
US4140555A (en) Nickel-base casting superalloys
CN105525158A (en) Semi-solid die-casting aluminum alloy material and die-casting molding method using same
KR101756016B1 (en) Aluminum alloy for die casting and Method for heat treatment of manufacturing aluminum alloy using thereof
CN109295351A (en) A kind of pack alloy and its preparation method and application
CN112981190A (en) Aluminum alloy for die casting and method for manufacturing cast aluminum alloy using the same
CN111809083A (en) Aluminum alloy composition for simplifying semi-solid casting process and semi-solid casting method
JP2005272966A (en) Aluminum alloy for semisolid casting and method for manufacturing casting
EP3342889B1 (en) Aluminium casting alloy
CN103509979B (en) A kind of excavator lubrication box and preparation method thereof
WO1998038347A1 (en) Foundry alloy
KR20100049722A (en) High strength casting of aluminium alloy
US5023051A (en) Hypoeutectic aluminum silicon magnesium nickel and phosphorus alloy
KR20020096279A (en) an aluminum alloy
JP3696844B2 (en) Aluminum alloy with excellent semi-melt formability
JP3876099B2 (en) Fe-based alloy material for thixocasting
US4284429A (en) Aluminum base casting alloy
EP0476699B1 (en) Magnesium alloy for casting and having a narrower solidification range
JPH03126834A (en) High strength aluminum alloy having excellent elastic modulus and low thermal expansibility
KR102217940B1 (en) Aluminum alloy for die casting having an excellent heat releasing property and manufacturing method thereof
JP2634707B2 (en) Manufacturing method of spheroidal graphite cast iron
JPH08165529A (en) Production of aluminum alloy die casting excellent in airtightness
CN107208197A (en) The method for obtaining the part being made up of low silicon aluminum

Legal Events

Date Code Title Description
A201 Request for examination
PA0109 Patent application

Patent event code: PA01091R01D

Comment text: Patent Application

Patent event date: 20010619

PA0201 Request for examination
PG1501 Laying open of application
E902 Notification of reason for refusal
PE0902 Notice of grounds for rejection

Comment text: Notification of reason for refusal

Patent event date: 20030501

Patent event code: PE09021S01D

E601 Decision to refuse application
PE0601 Decision on rejection of patent

Patent event date: 20030901

Comment text: Decision to Refuse Application

Patent event code: PE06012S01D

Patent event date: 20030501

Comment text: Notification of reason for refusal

Patent event code: PE06011S01I