[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20020092056A - Electrolyte Compositions for Thin Film Lithium Secondary Batteries and Method for Preparing Electrolyte Using the Same - Google Patents

Electrolyte Compositions for Thin Film Lithium Secondary Batteries and Method for Preparing Electrolyte Using the Same Download PDF

Info

Publication number
KR20020092056A
KR20020092056A KR1020010030911A KR20010030911A KR20020092056A KR 20020092056 A KR20020092056 A KR 20020092056A KR 1020010030911 A KR1020010030911 A KR 1020010030911A KR 20010030911 A KR20010030911 A KR 20010030911A KR 20020092056 A KR20020092056 A KR 20020092056A
Authority
KR
South Korea
Prior art keywords
electrolyte
thin film
ratio
composition
lithium
Prior art date
Application number
KR1020010030911A
Other languages
Korean (ko)
Other versions
KR100393636B1 (en
Inventor
존브리안트베이츠
Original Assignee
퓨처 사이언스 리서치 인스티튜트 리미티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 퓨처 사이언스 리서치 인스티튜트 리미티드 filed Critical 퓨처 사이언스 리서치 인스티튜트 리미티드
Priority to KR10-2001-0030911A priority Critical patent/KR100393636B1/en
Publication of KR20020092056A publication Critical patent/KR20020092056A/en
Application granted granted Critical
Publication of KR100393636B1 publication Critical patent/KR100393636B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Conductive Materials (AREA)

Abstract

PURPOSE: An electrolyte composition for a thin film secondary battery and its preparation method are provided, to improve the ion conductivity with maintaining an excellent electrochemical stability by adding an S¬2- anion to lithium phosphorus oxynitride. CONSTITUTION: The electrolyte composition is represented by LiwPOxNySz, wherein 2x + 3y + 2z = 5 + w, w is about 3, and 0 < the S/P ratio <= 0.2. Preferably 0.12 < the S/P ratio <= 0.16. The method comprises the steps of mixing the Li3PO4 powder with the Li2SO4 powder or the Li2S powder to prepare a sputtering target; and sputtering the target under the N2 atmosphere to obtain an electrolyte film having the composition of LiwPOxNySz.

Description

박막리튬 이차전지의 전해질 조성물 및 이를 이용한 전해질의 제조방법{Electrolyte Compositions for Thin Film Lithium Secondary Batteries and Method for Preparing Electrolyte Using the Same}Electrolyte Compositions for Thin Film Lithium Secondary Batteries and Method for Preparing Electrolyte Using the Same}

본 발명은 박막리튬 이차전지의 전해질 조성물 및 이를 이용한 전해질의 제조방법에 관한 것으로, 특히 리튬 포스포러스 옥시나이트라이드에 S2-음이온을 부가하여 우수한 전기화학적 안정성을 유지하면서 더 높은 이온 전도도를 갖는 박막리튬 이차전지의 전해질 조성물 및 이를 이용한 전해질의 제조방법에 관한 것이다.The present invention relates to an electrolyte composition of a thin film lithium secondary battery and a method for preparing an electrolyte using the same, in particular, a thin film having higher ion conductivity while maintaining excellent electrochemical stability by adding S 2- anion to lithium phosphorus oxynitride. It relates to an electrolyte composition of a lithium secondary battery and a method for producing an electrolyte using the same.

재충전이 가능한 박막전지는 단말기나 스마트 카드 등의 정보통신 단말기, 마이크로 로봇 및 인공심장과 같이 소형화, 포터블화 및 신체이식 등이 요구되는 각종 전자장치에 필수적인 전원공급장치로서 이용된다.Rechargeable thin film batteries are used as power supply devices essential for various electronic devices requiring miniaturization, portableization and transplantation, such as information communication terminals such as terminals and smart cards, micro robots and artificial heart.

이러한 박막이차전지에 대한 가능성은 오래 전부터 예상되어 왔으나, 1983년에서야 Kanehori 등에 의해 Li을 음극, TiS2를 양극, 비정질 리튬 포스포실리케이트(lithium phosphosilicate)(Li3.6Si0.6P0.4O4)를 전해질로 하는 박막전지를 처음으로 구현하였으며, 완전한 충전상태에서 2.5V의 OCV(open circuit voltage)을 얻었다. 또한, 이 박막전지는 16 ㎂/㎠의 전류밀도에서 2000번의 충방전이 가능한 것으로 보고된 바 있다.The possibility of such a thin film secondary battery has been expected for a long time, but it was only 1983 that Kanehori et al. Used Li as a negative electrode, TiS 2 as a positive electrode, and an amorphous lithium phosphosilicate (Li 3.6 Si 0.6 P 0.4 O 4 ). A thin film battery was implemented for the first time, and an OCV (open circuit voltage) of 2.5V was obtained in a fully charged state. In addition, this thin film battery has been reported to be capable of charging and discharging 2000 times at a current density of 16 mA / cm 2.

이러한 초기의 박막이차전지는 음극 및 양극소재의 개발은 물론 전해질 소재의 개발에 따라 고성능의 전지로 발전되어왔다.These early thin film secondary batteries have been developed into high performance batteries according to the development of anode and cathode materials as well as electrolyte materials.

특히, 박막 Li 및 Li-이온 전지로 달성되는 고성능은 리튬 포스포러스 옥시나이트라이드(Lithium Phosphorous Oxynitride ; LiPON)이라고 하는 유리상 전해질에 우선적으로 기인하고 있다. 이 물질은 질소(N2) 분위기에서 Li3PO4타겟을 rf 마그네트론 스퍼터링에 의해 박막으로 형성되며, 전형적으로는 Li3.3P3.6O0.4의 조성을 이룬다. 실온에서 LiPON은 2×10-6S/cm (2μS/cm)의 Li+이온 전도도와 단일의 운송번호(Transport No.)를 갖는다. 전자적인 전도도(Electronic conductivity)는 1013Ω-cm 이상으로 측정되므로 무시할 수 있다.In particular, the high performance achieved with thin film Li and Li-ion batteries is primarily due to the glassy electrolyte called Lithium Phosphorous Oxynitride (LiPON). This material is formed into a thin film by rf magnetron sputtering of a Li 3 PO 4 target in a nitrogen (N 2 ) atmosphere, and typically forms a composition of Li 3.3 P 3.6 O 0.4 . At room temperature LiPON has a Li + ion conductivity of 2 × 10 −6 S / cm (2 μS / cm) and a single Transport No. Electronic conductivity is measured at 10 13 Ω-cm or more and can be ignored.

가장 중요한 것은 LiPON이 0V에서 5.5V 사이의 전위에서 금속 Li과 접촉시에 안정하다(stable)는 것이다. 긴 저장(shelf) 및 사이클 수명을 갖는 박막전지의 개발을 가능하게 하는 것은 이러한 뛰어난 전기화학적 안정성 때문이다.Most importantly, LiPON is stable upon contact with metal Li at a potential between 0V and 5.5V. It is this excellent electrochemical stability that makes it possible to develop thin film cells with long shelf life and cycle life.

LiPON에 대한 종래의 연구는 본 발명자 등이 발표한 3논문(J.B.Bates,G.R.Gruzalski, N.J.Dudney, and C.F.Luck, "New Amorphous Thin-Film Lithium Electrolyte and Rechargeable Microbattery," p.337 in Proceedings of 35th International Power Sources Symposium, Institute of Electrical and Electronics Engineers, Piscataway, New Jersey, 1993; J.B.Bates, G.R.Gruzalski, N.J.Dudney, C.F.Luck and X.Yu, "Rechargeable Thin-Film Lithium Batteries," Solid State Ionics 70/71, 619 (1994); 및 X.Xu, J.B.Bates, G.E.Jellison, Jr., and F.X.Hart, "A Stable Thin-Film Lithium Electrolyte: Lithium Phosphorous Oxynitride," J. Electrochem. Soc. 144, 524 (1997))과, 본 발명자 등에게 허여된 2개의 미합중국특허 제5,512,147호 및 제5,597,660호에 개시되어 있다. 종래 기술에서는 LiPON의 독특한 전기화학적 안정성이 글래스 구조의 Li3PO4에 N원자의 부가에 의해 이루어지는 것으로 입증되었다.Previous studies on LiPON have been published in three papers published by the inventors (JBBates, GRGruzalski, NJDudney, and CFLuck, "New Amorphous Thin-Film Lithium Electrolyte and Rechargeable Microbattery," p.337 in Proceedings of 35th International Power Sources Symposium, Institute of Electrical and Electronics Engineers, Piscataway, New Jersey, 1993; JBBates, GRGruzalski, NJ Dudney, CFLuck and X.Yu, "Rechargeable Thin-Film Lithium Batteries," Solid State Ionics 70/71, 619 (1994); and X. Xu, JBBates, GEJellison, Jr., and FXHart, "A Stable Thin-Film Lithium Electrolyte: Lithium Phosphorous Oxynitride," J. Electrochem. Soc. 144, 524 (1997)), and two United States of America issued to the inventors and the like. Patents 5,512,147 and 5,597,660 are disclosed. The prior art has demonstrated that the unique electrochemical stability of LiPON is achieved by the addition of N atoms to Li 3 PO 4 of the glass structure.

LiPON에서의 전도도는 LiMn2O4, V2O5및 x-선 비정질 LiCoO2음극을 갖는 전지에 만족스럽다. 그러나, 결정질 LiCoO2음극막을 통한 Li 확산은 충분히 높아 음극의 두께가 약 3.5㎛에 도달할 때까지 전해질이 셀 저항에 대한 지배적인 공헌자(dominant contributor) 역할을 한다(J.B.Bates, N.J.Dudney, B.J.Neudecker, F.X.Hart, H.P.Jun, and S.A.Hackney, "Preferred Orientation of Polycrystalline LiCoO2Films," J. Electrochem. Soc., 147, 59 (2000) 참조).The conductivity in LiPON is satisfactory for cells with LiMn 2 O 4 , V 2 O 5 and x-ray amorphous LiCoO 2 cathodes. However, Li diffusion through the crystalline LiCoO 2 cathode film is sufficiently high that the electrolyte acts as a dominant contributor to cell resistance until the cathode thickness reaches about 3.5 μm (JBBates, NJDudney, BJNeudecker, FXHart, HP Jun, and SA Hackney, "Preferred Orientation of Polycrystalline LiCoO 2 Films," J. Electrochem. Soc., 147, 59 (2000).

따라서, 전해질의 전도도를 증가시키면 결정질의 LiCoO2음극을 갖는 박막전지의 방전성능이 향상될 것으로 판단되어 이러한 전지를 대부분의 박막전지에 응용한다면 보다 효율적인 결과를 가져올 것이다.Therefore, increasing the conductivity of the electrolyte is expected to improve the discharge performance of a thin film battery having a crystalline LiCoO 2 negative electrode will be more efficient if such a battery applied to most thin film cells.

유리질의 이온 전도성 솔리드의 구조에 S2-와 같은 고분극성 음이온(anion)이 부가되면 전도도를 크게 향상시킬 수 있다는 다수의 논문이 발표되어 있다(V.K.Deshpande, A.Pradel, and M.Ribes, "The Mixed Glass Former Effect in the Li2S:SiS2:GeS2System", Mat. Res. Bull. 23, 379 (1988) 및 R.Creus, J.Sarradin, R.Astier, and M.Ribes, "The Use of Ionic And Mixed Conductive Glasses in Microbatteries", Mater. Sci. and Eng. B3, 109 (1989) 참조).A number of papers have been published that the addition of highly polarized anions such as S 2 to the structure of glassy ion-conducting solids can significantly improve conductivity (VKDeshpande, A. Pradel, and M. Ribe, "The Mixed Glass Former Effect in the Li 2 S: SiS 2 : GeS 2 System ", Mat. Res. Bull. 23, 379 (1988) and R. Creus, J. Sarradin, R. Astier, and M. Ribe," The Use of Ionic And Mixed Conductive Glasses in Microbatteries ", Mater. Sci. And Eng. B3, 109 (1989)).

상기 Creus 등은 xLi2S : (1-x)SiS2조성물을 사용하여 글래스막을 형성하고 50μS/cm이상의 전도도를 관찰하였다. 그러나, 이 막은 금속 Li과 접촉시 불안정상태에 있다는 것을 발견하였다. 예상과는 달리 글래스 조성물에 P2S5를 첨가하는 경우 전기화학적 안정성을 개선하지 못하였고, 그래서 작동가능한 박막 리튬전지를 제조하기 위하여 전해질막의 상부에 LiI 층을 형성하여 전해질 막이 Li 양극과 직접 접촉하는 것을 방지하였다.Creus et al. Formed a glass film using xLi 2 S: (1-x) SiS 2 composition and observed a conductivity of 50 μS / cm or more. However, the film was found to be in an unstable state upon contact with the metal Li. Unexpectedly, the addition of P 2 S 5 to the glass composition did not improve the electrochemical stability, so that the LiI layer was formed on top of the electrolyte membrane to make operable thin film lithium battery, so that the electrolyte membrane was in direct contact with the Li anode. To prevent it.

Jones 및 Akridge는 작동가능한 Li-TiS2박막셀을 얻기 위하여는 6LiI:4Li3PO4:P2S5조성을 갖는 박막 전해질을 보호하기 위해 상기와 동일한 기술을 사용하는 것이 필요하다는 것을 발견하였다(S.D.Jones and J.R.Akridge, "A Thin-Film Solid-State Microbattery", J. Power Sources 43-44, 505 (1993) 참조).Jones and Akridge found that in order to obtain a viable Li-TiS 2 thin film cell, it is necessary to use the same technique as above to protect a thin film electrolyte having a 6LiI: 4Li 3 PO 4 : P 2 S 5 composition (SDJones). and JRAkridge, "A Thin-Film Solid-State Microbattery", J. Power Sources 43-44, 505 (1993).

상기 두 전해질층의 전체 이온 전도도는 여전히 비교적 높은 약 20μS/cm이었으나, 약 3V 이상의 전위에서 금속 Li과 접촉할 때 불안정하였다. 따라서, 이러한 전해질은 3.8V 이상의 전위에서 동작하는 LiCoO2또는 LiMn2O4와 같은 산화물-베이스 음극을 갖는 박막 Li 전지에는 사용이 불가능하다.The total ion conductivity of the two electrolyte layers was still about 20 μS / cm, which was relatively high, but was unstable when contacted with metal Li at a potential of about 3 V or more. Therefore, such electrolytes cannot be used in thin film Li batteries having an oxide-based negative electrode such as LiCoO 2 or LiMn 2 O 4 operating at a potential of 3.8V or higher.

Kondo 등은 보고에 의하면 Li에 대하여 -1~4V의 전위에서 안정한 벌크상 Li3PO4-Li2S-SiS2글래스에서 103μS/cm의 높은 전도도를 달성하였다(K.Iwamoto, N.Aotani, K.Takada, and S.Kondo, "Rechargeable Solid State Battery with Lithium Conductive Glass, Li3PO4-Li2S-SiS2", Solid State Ionics 70/71, 658 (1994) 참조). 그러나, 전해질이 셀내에서 금속 Li 및 산화물-베이스 음극과 접촉된 상태에서 전기화학적 테스트가 수행되었는지에 대하여는 어떤 보고도 없었다.Kondo et al. Reportedly achieved a high conductivity of 10 3 μS / cm in bulk Li 3 PO 4 -Li 2 S-SiS 2 glasses stable at a potential of -1 to 4 V relative to Li (K. Iwamoto, N. Aotani, K. Takada, and S.Kondo, "Rechargeable Solid State Battery with Lithium Conductive Glass, Li 3 PO 4 -Li 2 S-SiS 2 ", Solid State Ionics 70/71, 658 (1994)). However, there was no report on whether the electrochemical test was performed while the electrolyte was in contact with the metal Li and the oxide-based negative electrode in the cell.

따라서, 본 발명의 목적은 리튬 포스포러스 옥시나이트라이드(LiPON)에 S2-음이온을 부가하여 우수한 전기화학적 안정성을 유지하면서 한층 더 높은 전도도를 갖는 박막 리튬 이차전지용 전해질 조성물 및 이를 이용한 전해질의 제조방법을 제공하는 데 있다.Accordingly, an object of the present invention is to add an S 2- anion to lithium phosphorus oxynitride (LiPON) to maintain an excellent electrochemical stability while having a higher conductivity electrolyte composition for a thin film lithium secondary battery and a method for producing an electrolyte using the same To provide.

즉, 본 발명은 글래스 구조에 S2-음이온의 존재로 인하여 종래의 LiPON 보다 더 높은 전도도를 갖는 일반식 LiwPOxNySz로 표현되는 조성을 갖는 새로운 박막 전해질의 합성에 관한 것으로, 간략화를 위하여 추후에 본 발명에 따른 전해질인 리튬포스포러스 옥시나이트라이드설파이드(Lithium Phosphorous Oxynitridesulfide) 는 "LIPONS"로 표시한다.That is, the present invention relates to the synthesis of a new thin film electrolyte having a composition represented by the general formula Li w PO x N y S z having a higher conductivity than conventional LiPON due to the presence of S 2- anion in the glass structure. Lithium Phosphorous Oxynitridesulfide, which is an electrolyte according to the present invention, is later referred to as "LIPONS".

도 1은 본 발명의 박막 전해질 조성물에 대하여 S/P 비에 따른 전해질막의 이온 전도도를 나타낸 그래프이다.1 is a graph showing the ion conductivity of an electrolyte membrane according to the S / P ratio for the thin film electrolyte composition of the present invention.

상기한 목적을 달성하기 위하여, 본 발명은 일반식 LiwPOxNySz로 표현되며, 2x+3y+2z = 5+w이고, w3이며, 0〈S/P 비≤0.2의 값을 갖는 것을 특징으로 하는 박막 리튬 전해질 조성물을 제공한다.In order to achieve the above object, the present invention is represented by the general formula Li w PO x N y S z , 2x + 3y + 2z = 5 + w, w 3, which has a value of 0 &lt; S / P ratio ≤ 0.2, provides a thin film lithium electrolyte composition.

상기 S/P 비는 더욱더 바람직하게는 0.12〈S/P 비≤0.16 범위로 설정된다The S / P ratio is even more preferably set in the range 0.12 &lt; S / P ratio ≤ 0.16.

상기한 새로운 조성의 LIPONS 전해질의 제조방법은 Li3PO4파우더를 Li2SO4또는 Li2S 파우더와 혼합하여 스퍼터링 타겟을 형성하는 단계와, 상기 타겟을 N2분위기에서 스퍼터링하여 일반식 LiwPOxNySz(여기서, 2x+3y+2z = 5+w이며, w??3인)로 표현되는 조성물로서 전해질막을 생성하는 단계로 형성되는 것을 특징으로 한다.The method for preparing a LIPONS electrolyte having the new composition includes mixing Li 3 PO 4 powder with Li 2 SO 4 or Li 2 S powder to form a sputtering target, and sputtering the target in an N 2 atmosphere to form a general formula Li w A composition represented by PO x N y S z (where 2x + 3y + 2z = 5 + w and w ?? 3) is formed by producing an electrolyte membrane.

본 발명의 전해질 조성물 LiwPOxNySz에서 원자들 사이의 조성비에 대한 수식(2x+3y+2z = 5+w 이며, 여기서 w3인)은 조성물을 이루는 양이온 및 음이온 원자들의 통상적인 원자가(valence)의 합이 서로 동일하게 되도록 설정된다.Formula (2x + 3y + 2z = 5 + w) for the composition ratio between atoms in the electrolyte composition Li w PO x N y S z of the present invention, wherein w 3) is set such that the sum of the usual valences of the cation and anion atoms constituting the composition are equal to each other.

또한, 상기 조성물에서 S/P 비를 0〈S/P 비≤0.2로 설정한 이유는 S가 0 이상부터 약 0.15의 S/P 비에 대응한 양으로 부가될 때까지는 리튬 포스포러스 옥시나이트라이드의 이온 전도도는 종래에 비하여 월등하게 증가하고, S/P 비가 0.15 이상이 되도록 S를 부가하면 오히려 이온 전도도는 감소한다. 그런데, S/P 비가0.15에서 0.2 범위에서는 0에서 0.15 범위와 동일한 이온 전도도를 가지나 S/P 비가 0.2를 초과하는 경우에는 0에서 0.15 범위보다 더 낮은 이온 전도도를 갖게 되므로, 최적의 S/P 비는 상기와 같은 조건으로 설정한다.In addition, the reason why the S / P ratio is set to 0 <S / P ratio ≤ 0.2 in the composition is that the lithium phosphorus oxynitride until S is added in an amount corresponding to the S / P ratio of 0 or more to about 0.15 The ionic conductivity of is significantly increased compared with the prior art, and when S is added so that the S / P ratio is 0.15 or more, the ionic conductivity decreases. However, when the S / P ratio is in the range of 0.15 to 0.2, it has the same ion conductivity as the range of 0 to 0.15, but when the S / P ratio exceeds 0.2, it has a lower ion conductivity than the range of 0 to 0.15. Is set under the same conditions as described above.

상기한 본 발명에 따른 전해질 조성물 LiwPOxNySz은 고체 전해질로서 LiCoO2또는 LiMn2O4음극을 갖는 박막 리튬 또는 리튬-이온 전지에 사용하는 경우 종래의 LiPON-베이스 전지보다 높은 이온 전도도를 갖기 때문에 더 많은 파워와 에너지를 전달할 수 있다.The electrolyte composition Li w PO x N y S z according to the present invention is a higher ion than a conventional LiPON-based cell when used in a thin film lithium or lithium-ion cell having a LiCoO 2 or LiMn 2 O 4 negative electrode as a solid electrolyte. Because of its conductivity, it can deliver more power and energy.

(실시예)(Example)

이하에서는 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. 그러나 이들은 본 발명을 상세히 설명하기 위해 제공되는 것일 뿐 본 발명이 이들에 의해 한정되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, these are provided only to explain the present invention in detail, and the present invention is not limited thereto.

본 발명에 따른 박막전지용 새로운 전해질의 박막은 레이스 트랙(race track) 주위에 Li2SO4또는 Li2S 파우더가 분포되어 있는 Li3PO4타겟을 스퍼터링하여 형성한다. 이러한 기술을 사용하면 Li3PO4타겟의 레이스 트랙 위의 Li2SO4또는 Li2S의 함량을 변화시킴에 의해 넓은 범위의 조성물을 갖는 리튬 포스포러스 옥시나이트라이드설파이드(lithium phosphorus oxynitridesulfide: LIPONS)를 제조할 수 있게 된다.The thin film of the novel electrolyte for thin film battery according to the present invention is formed by sputtering a Li 3 PO 4 target in which Li 2 SO 4 or Li 2 S powder is distributed around a race track. Using this technique, lithium phosphorus oxynitridesulfide (LIPONS) having a wide range of compositions by varying the content of Li 2 SO 4 or Li 2 S on the race track of a Li 3 PO 4 target. It can be prepared.

이 막은 순수 N2분위기에서 화합물 타겟의 rf 마그네트론 스퍼터링(rfmagnetron sputtering)에 의해 형성되었다.This film was formed by rf magnetron sputtering of a compound target in pure N 2 atmosphere.

전해질막의 전도도는 보로실리케이트 글래스 기판(borosilicate glass substrates) 위에 형성된 Au/LIPONS/Au 샌드위치 구조에 대하여 AC 임피던스 측정에 의해 결정되었다. Au 접점 사이의 전해질막의 유효 단면영역은 약 0.04cm2이었고, 표면 프로파일 측정에 의해 결정된 전해질막의 두께는 0.8 내지 1.2μm 범위에 있었다. P, O, N 및 S의 정성적인 원자비의 값은 주사전자현미경(SEM)에 부착된 에너지 분산 x-선(EDX) 분석기로 측정된 이들 원소의 Kα 및 Lβ x-선 형광라인의 상대적인 강도에 따라 얻어졌다. 이들 측정은 전도도 측정용 시료(sample)를 증착한 것과 동일한 런(run) 동안 Cu 포일 위에 증착된 전해질막에 대하여 시행되었다.The conductivity of the electrolyte membrane was determined by AC impedance measurement for the Au / LIPONS / Au sandwich structure formed on borosilicate glass substrates. The effective cross-sectional area of the electrolyte membrane between the Au contacts was about 0.04 cm 2, and the thickness of the electrolyte membrane determined by surface profile measurement was in the range of 0.8 to 1.2 μm. The qualitative atomic ratios of P, O, N and S were determined by the relative intensity of the Kα and Lβ x-ray fluorescent lines of these elements, measured by an energy dispersive x-ray (EDX) analyzer attached to a scanning electron microscope Was obtained according to. These measurements were performed on electrolyte membranes deposited on Cu foil during the same run as the samples for conductivity measurement were deposited.

실험결과는 도 1에 표시되었다. 여기서 S/P 비는 막 조성이 Li3PO4-xSx로 표현된다고 가정할 때 표준으로서 Li2SO4파우더에 대한 EDX 측정으로부터 O/S 비를 사용하여 계산되었다. 질소(N2)의 함량은 종래 LiPON의 경우와 같이 소량으로 하였다.The experimental results are shown in FIG. The S / P ratio here was calculated using the O / S ratio from EDX measurements on Li 2 SO 4 powder as standard, assuming that the film composition is expressed as Li 3 PO 4-x S x . The content of nitrogen (N 2 ) was as small as in the case of the conventional LiPON.

도 1의 결과는 S/P 비가 0〈S/P 비≤0.15 및 0.15≤S/P 비≤0.2인 구간일 때 , 리튬 포스포러스 옥시나이트라이드의 이온 전도도(Conductivity)는 약 2.9 내지 4.0μS/cm의 값으로 종래에 비하여 40% 정도 증가된 수치를 나타내고 있고, S/P 비가 0.2 이하로 되는 경우 이온 전도도는 전해질로서 실용성을 만족하지 못하는 값으로 계속 낮게 나타났다.1 shows that when the S / P ratio is 0 <S / P ratio ≤0.15 and 0.15≤S / P ratio ≤0.2, the ionic conductivity of lithium phosphorus oxynitride is about 2.9 to 4.0μS / The value of cm indicates a 40% increase over the prior art, and when the S / P ratio is 0.2 or less, the ion conductivity continues to be low as a value that does not satisfy practicality as an electrolyte.

특히 도 1에서 S/P 비는 0.12〈S/P 비≤0.16 범위에 있을 때 최상의 이온 전도도를 나타내고 있다.In particular, the S / P ratio in FIG. 1 shows the best ion conductivity when in the range of 0.12 &lt; S / P ratio ≤ 0.16.

상기한 바와 같이 본 발명 조성물의 이온 전도도는 작은 S/P 비를 갖는 조성물을 선택함에 의해 LiPON의 이온 전도도보다 10 이상 더 크게 증가될 수 있는 것으로 예상된다.As described above, it is expected that the ionic conductivity of the composition of the present invention can be increased by at least 10 greater than the ionic conductivity of LiPON by selecting a composition having a small S / P ratio.

상기한 바와같이 본 발명에 따른 전해질 조성물 LiwPOxNySz은 고체 전해질로서 LiCoO2또는 LiMn2O4음극을 갖는 박막 리튬 또는 리튬-이온 전지에 사용하는 경우 음극과의 안정성을 유지하면서도 종래의 LiPON-베이스 전지보다 높은 이온 전도도를 가지므로 더 많은 파워와 에너지를 전달할 수 있다.As described above, the electrolyte composition Li w PO x N y S z according to the present invention is a solid electrolyte, while maintaining stability with a negative electrode when used in a thin film lithium or lithium-ion battery having a LiCoO 2 or LiMn 2 O 4 negative electrode. It has higher ionic conductivity than conventional LiPON-based cells, so it can transfer more power and energy.

이상에서는 본 발명을 특정의 바람직한 실시예를 예를들어 도시하고 설명하였으나, 본 발명은 상기한 실시예에 한정되지 아니하며 본 발명의 정신을 벗어나지 않는 범위내에서 당해 발명이 속하는 기술분야에서 통상의 지식을 가진자에 의해 다양한 변경과 수정이 가능할 것이다.In the above, the present invention has been illustrated and described with reference to specific preferred embodiments, but the present invention is not limited to the above-described embodiments and is not limited to the spirit of the present invention. Various changes and modifications can be made by those who have

Claims (4)

일반식 LiwPOxNySz로 표현되며, 2x+3y+2z = 5+w이고, w3이며, 0〈S/P 비≤0.2의 값을 갖는 것을 특징으로 하는 박막 리튬 전해질 조성물.Represented by the general formula Li w PO x N y S z , 2x + 3y + 2z = 5 + w, w 3, which has a value of 0 &lt; S / P ratio ≤ 0.2. 제1항에 있어서, 상기 S/P 비는 더욱더 바람직하게는 0.12〈S/P 비≤0.16 범위로 설정되는 것을 특징으로 하는 박막 리튬 전해질 조성물.The thin film lithium electrolyte composition according to claim 1, wherein the S / P ratio is more preferably set in a range of 0.12 &lt; S / P ratio ≤ 0.16. Li3PO4파우더를 Li2SO4또는 Li2S 파우더와 혼합하여 스퍼터링 타겟을 형성하는 단계와,Mixing the Li 3 PO 4 powder with the Li 2 SO 4 or Li 2 S powder to form a sputtering target, 상기 타겟을 N2분위기에서 스퍼터링하여 일반식 LiwPOxNySz(여기서, 2x+3y+2z = 5+w이며, w3인)로 표현되는 조성물로서 전해질막을 생성하는 단계로 구성되는 것을 특징으로 하는 박막 리튬 전해질의 제조방법.The target is sputtered in an N 2 atmosphere to give a general formula Li w PO x N y S z (where 2x + 3y + 2z = 5 + w) 3) a method for producing a thin film lithium electrolyte, characterized in that consisting of the step of producing an electrolyte membrane. 제3항에 있어서, 상기 전해질막을 이루는 조성물은 S/P 비가 0〈S/P 비≤0.2의 값을 갖도록 S를 함유하는 것을 특징으로 하는 박막 리튬 전해질의 제조방법.The method of claim 3, wherein the composition constituting the electrolyte membrane contains S so that the S / P ratio has a value of 0 &lt; S / P ratio ≤ 0.2.
KR10-2001-0030911A 2001-06-01 2001-06-01 Electrolyte Compositions for Thin Film Lithium Secondary Batteries and Method for Preparing the Same KR100393636B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0030911A KR100393636B1 (en) 2001-06-01 2001-06-01 Electrolyte Compositions for Thin Film Lithium Secondary Batteries and Method for Preparing the Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0030911A KR100393636B1 (en) 2001-06-01 2001-06-01 Electrolyte Compositions for Thin Film Lithium Secondary Batteries and Method for Preparing the Same

Publications (2)

Publication Number Publication Date
KR20020092056A true KR20020092056A (en) 2002-12-11
KR100393636B1 KR100393636B1 (en) 2003-08-02

Family

ID=37490889

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0030911A KR100393636B1 (en) 2001-06-01 2001-06-01 Electrolyte Compositions for Thin Film Lithium Secondary Batteries and Method for Preparing the Same

Country Status (1)

Country Link
KR (1) KR100393636B1 (en)

Also Published As

Publication number Publication date
KR100393636B1 (en) 2003-08-02

Similar Documents

Publication Publication Date Title
EP2058880B1 (en) All-solid-state cell
KR100884599B1 (en) Lithium ion secondary battery and solid electrolyte therefor
US20040096745A1 (en) Lithium ion conductor and all-solid lithium ion rechargeable battery
US8197972B2 (en) All-solid-state cell
EP1732152B1 (en) Negative electrode member for secondary lithium battery and process for producing the same
JP2002513991A (en) Coated lithium electrode having glass protective layer and method for producing the same
KR20040047664A (en) Lithium ion secondary battery and a method for manufacturing the same
KR20020029813A (en) Lithium-ion secondary thin-film battery exhibiting good cycling stability and high ion-conductivity
US9209486B2 (en) All-solid-state cell
EP2983230A1 (en) Cathode active material for lithium battery, lithium battery, and method for producing cathode active material for lithium battery
Thangadurai et al. Tailoring ceramics for specific applications: a case study of the development of all-solid-state lithium batteries
JP2004179158A (en) Lithium ion conductor and all solid rechargeable lithium-ion battery
US7736811B2 (en) Solid electrolyte and all solid state battery using the same
DE102019111405A1 (en) SULPHIDE AND OXYSULPHIDE GLASS AND CERAMIC SOLID BODY ELECTROLYTE FOR ELECTROCHEMICAL CELLS
JP2020514948A (en) ALL-SOLID LITHIUM-ION BATTERY AND MANUFACTURING METHOD THEREOF
JP2006156284A (en) Lithium-ion conductor and secondary battery using it
EP0905807B1 (en) Nonaqueous secondary battery
KR20090121148A (en) Solid electrolyte, fabrication method thereof and thin film battery comprising the same
KR100393636B1 (en) Electrolyte Compositions for Thin Film Lithium Secondary Batteries and Method for Preparing the Same
EP3916854B1 (en) Electrode plate and battery
KR20020085942A (en) Multi-layered Solid Electrolyte for High Charge/Discharge Rate, Thin Film Battery Using the Same and Fabrication Method thereof
WO2024090533A1 (en) Coating-equipped positive electrode active material for lithium secondary battery, solution for forming coating layer, and lithium secondary battery
CN1392623A (en) Electrolytic film of lithium-phosphor-oxygen-nitrogen-sulfur compound
KR100513185B1 (en) Solid electrolyte for lithium secondary battery
KR20240047583A (en) Cathode active material for all-solid-state battery with controlled particle size and manufacturing method thereof

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080723

Year of fee payment: 6

LAPS Lapse due to unpaid annual fee