[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20020092583A - Preparation of TiO2 ultrafine powders from titanium tetrachloride with inorganic acid solution by the advanced washing method - Google Patents

Preparation of TiO2 ultrafine powders from titanium tetrachloride with inorganic acid solution by the advanced washing method Download PDF

Info

Publication number
KR20020092583A
KR20020092583A KR1020010031285A KR20010031285A KR20020092583A KR 20020092583 A KR20020092583 A KR 20020092583A KR 1020010031285 A KR1020010031285 A KR 1020010031285A KR 20010031285 A KR20010031285 A KR 20010031285A KR 20020092583 A KR20020092583 A KR 20020092583A
Authority
KR
South Korea
Prior art keywords
solution
inorganic acid
aqueous solution
powder
tio
Prior art date
Application number
KR1020010031285A
Other languages
Korean (ko)
Other versions
KR100424069B1 (en
Inventor
양영석
박정식
Original Assignee
(주)아해
양영석
박정식
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)아해, 양영석, 박정식 filed Critical (주)아해
Priority to KR10-2001-0031285A priority Critical patent/KR100424069B1/en
Publication of KR20020092583A publication Critical patent/KR20020092583A/en
Application granted granted Critical
Publication of KR100424069B1 publication Critical patent/KR100424069B1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/053Producing by wet processes, e.g. hydrolysing titanium salts
    • C01G23/0536Producing by wet processes, e.g. hydrolysing titanium salts by hydrolysing chloride-containing salts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/04Oxides; Hydroxides
    • C01G23/047Titanium dioxide
    • C01G23/08Drying; Calcining ; After treatment of titanium oxide
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

PURPOSE: A method for preparing TiO2 supermicro powder using titanium tetrachloride(TiCl4) and an inorganic acid aqueous solution is provided, to improve the washing method, thereby allowing the nano-sized crystalline TiO2 powder with a narrow distribution of size without the pulverization process. CONSTITUTION: The method comprises the steps of adding TiCl4 into a reactor charted with an inert gas at a room temperature, and adding 0.01-90% inorganic acid aqueous solution by the amount more than the stoichiometric amount to prepare a Ti4+ aqueous solution mixed with an inorganic acid; adding 0.01-90% inorganic acid aqueous solution to the obtained solution at a room temperature to prepare a 0.1-1.4 M Ti4+ aqueous solution; leaving the diluted solution at 15-200 deg.C to obtain a TiO2 particle-containing slurry; filtering the slurry, washing the filtered one with an alkali halide or acid solution and filtering the washed one; adding an alkali aqueous solution to the filtered slurry to adjust the pH to be 2-9; and washing the solution with distilled water and an alcohol, filtering the washed one and drying the filtered one. Preferably the inorganic acid is HCl or HNO3; and the alkali halide is NaCl, KCl or NH4Cl.

Description

개선된 수세방법으로 사염화티타늄과 무기산 수용액을 이용한 TiO₂ 극미세 분말의 제조방법{Preparation of TiO2 ultrafine powders from titanium tetrachloride with inorganic acid solution by the advanced washing method}Preparation of TiO₂ ultrafine powders from titanium tetrachloride with inorganic acid solution by the advanced washing method

본 발명은 용액상태에서 결정성 이산화 티타늄을 제조하는 것으로 초기 출발물질로서 사염화티타늄(TiCl4)을 이용하여 나노크기를 갖고 입도 분포가 좁은 결정성 TiO2분말 제조방법에 관한 것이다.The present invention relates to a method for preparing crystalline TiO 2 powder having a nano-sized, narrow particle size distribution using titanium tetrachloride (TiCl 4 ) as an initial starting material.

일반적으로 이산화티타늄(TiO2)은 도료, 잉크, 제지, 법랑 및 도자기 안료, 산화티탄자기, glass, 시멘트, 용접봉, 티탄연와 등 고전요업에서 98% 이하의 순도와 3 ㎛ 이상의 입도를 갖는 것이 널리 사용되어 왔으나, 최근 고기능 전자세라믹스의 MLCC, 콘덴서, 압전체, 써미스터, 센서, 광촉매 등에 쓰이기 위해서는 99% 이상의 순도와 0.1∼1.0 ㎛의 입도분포를 갖는 극미세 분말이 요구되고 있다. 특히 photo catalyst, photo-electrode, semiconductor에 사용되는 것은 0.01∼0.2 ㎛일 때 nano composite를 설계할 수 있는 최적 입도크기로 분류되고 있으며, 분말의 입도분포 범위가 좁아야 반도체 성질, 산란 및 굴절 특성이 우수한 것으로 알려지고 있다.Generally, titanium dioxide (TiO 2 ) has a purity of 98% or less and a particle size of 3 μm or more in high-tech industries such as paint, ink, paper, enamel and porcelain pigment, titanium oxide magnetic, glass, cement, welding rod, titanium lead, etc. Although it has been used, in recent years, in order to be used in MLCCs, capacitors, piezoelectrics, thermistors, sensors, and photocatalysts of high-performance electronic ceramics, an ultrafine powder having a purity of 99% or more and a particle size distribution of 0.1 to 1.0 µm is required. Particularly used for photo catalyst, photo-electrode, and semiconductor is classified as the optimum particle size for designing nano composite when 0.01 ~ 0.2 ㎛, and the particle size distribution range of powder should be narrow to improve semiconductor properties, scattering and refraction characteristics. It is known to be excellent.

이산화티탄늄의 제조방법은 크게 황산법과 염소법으로 구분할 수 있다.The production method of titanium dioxide can be largely divided into sulfuric acid method and chlorine method.

황산법은 오랜 역사를 지니고 있으며, 제조방법도 안정화 단계에 있는 방법으로 건조 및 분쇄된 ilmenite를 황산으로 용해하는 과정, 용해과정에서 불용성 잔류물과 황산티타닐 용액을 분리하여 가수분해하는 과정 및 소성과정으로 구성되는데, 가수분해 과정에서 TiO2입자의 대체적인 기본물성이 결정된다. 한편, 현재 생산되고 있는 TiO2의 50%이상이 이와 같은 황산법으로 제조되고 있으며, 단위공정별반응식은 다음과 같다.The sulfuric acid method has a long history, and the manufacturing method is also in the stabilization stage, dissolving the dried and pulverized ilmenite with sulfuric acid, separating the insoluble residue and the titanyl sulfate solution during the dissolution process, and calcining process. In the hydrolysis process, the basic basic properties of TiO 2 particles are determined. On the other hand, more than 50% of the TiO 2 currently produced is manufactured by such a sulfuric acid method, the reaction formula for each unit is as follows.

① 용해 공정 : FeOㆍTiO2+ 2H2SO4= TiOSO4+ FeSO4+ 2H2O (1)① Dissolution process: FeOTiO 2 + 2H 2 SO 4 = TiOSO 4 + FeSO 4 + 2H 2 O (1)

② 가수분해 공정 : TiOSO4+mH2O = TiO2ㆍnH2O + H2SO4(2)② Hydrolysis Process: TiOSO 4 + mH 2 O = TiO 2 ㆍ nH 2 O + H 2 SO 4 (2)

③ 소성 공정 : TiO2ㆍnH2O = TiO2+ nH2O (3)③ Firing process: TiO 2 ㆍ nH 2 O = TiO 2 + nH 2 O (3)

염소법은 출발물질이 TiCl4로서 비점(沸点, boiling point)이 상대적으로 낮기 때문에 증류공정으로 용이하게 정제할 수 있을 뿐 아니라 생성입자가 균일하고 공정의 연속화 및 자동화가 쉬운 장점이 있는 반면 취급물질의 위험성 때문에 기밀성이 유지되는 고가의 장치사용이 요구되고 원료물질이 풍부하지 않은 단점이 있다The chlorine method can be easily purified by distillation because the starting point is TiCl 4, which has a relatively low boiling point. The chlorine method has the advantages of uniform particles and easy process continuity and automation. Due to the risk of the use of expensive equipment that maintains confidentiality is required and there is a disadvantage that is not rich in raw materials

이 밖에도 TiO2초미립자 제조방법으로 sol-gel법, 기상법, 습식법 및 열가수분해법 등이 사용되고 있으며, 효율적이고 대량생산이 가능한 제조법 개발이 국내에서도 활발히 진행되고 있다. 기존에 알려진 액상법에 의한 TiO2제조방법으로 일본 특개평 4-280816호에서는 염기성 유기카르본산 등을 첨가해 제조한 알칼리 수용액에 사염화티타늄 용액을 가하여 생성된 반응 축합물을 여과, 수세하고 수세한 현탁수용액에 수산화 알칼리금속을 첨가해 pH 8 이상, 50℃의 온도에서 처리하여 티탄산 알칼리용액을 만든다. 이 용액을 다시 여과, 수세한 후 현탁수용액에 산을 첨가해 pH 3 이하, 50℃ 이상의 온도에서 티탄산 알칼리금속으로 중화시킨다. 최종적으로 이 용액을 여과, 수세, 건조하는 후처리 공정을 거쳐 이산화티타늄을 제조하는 방법을 제시하였다. 그리고 대한민국 특허공고 제91-9589호에서는 TiOCl2함유용액을 불소이온과 핵이 존재하는 가압조건에서 가열시켜 TiOCl2를 가수분해하는 과정으로 아나타제형 및 거의 입방체형의 이산화티탄을 제조하는 방법을 제시하였는데, 이 방법은 고온고압에서 반응을 행하기 때문에 제조상 공정관리가 까다롭고 설비비와 운전비용이 많이 요구되는 문제가 있다.In addition, the TiO 2 ultra-fine particles are manufactured using the sol-gel method, the gas phase method, the wet method and the thermal hydrolysis method, and the development of an efficient and mass-produced manufacturing method is actively underway in Korea. In Japanese Patent Application Laid-Open No. 4-280816, a method of preparing TiO 2 by a known liquid phase method, a reaction solution formed by adding a titanium tetrachloride solution to an aqueous alkali solution prepared by adding basic organic carboxylic acid or the like is filtered, washed with water and suspended in water. An alkali metal hydroxide is added to the aqueous solution and treated at a temperature of pH 8 or higher and 50 ° C. to form an alkaline titanate solution. The solution is filtered again, washed with water, and then, acid is added to the suspended aqueous solution and neutralized with alkali metal titanate at a pH of 3 or less and a temperature of 50 ° C or higher. Finally, a method of preparing titanium dioxide was proposed through a post-treatment process in which the solution was filtered, washed with water and dried. In addition, Korean Patent Publication No. 91-9589 proposes a method for producing anatase and nearly cubic titanium dioxide by hydrolyzing TiOCl 2 by heating TiOCl 2 -containing solution under pressurized conditions in which fluorine ions and nuclei exist. However, this method has a problem in that it is difficult to manage the process in manufacturing and requires a lot of equipment cost and operation cost because the reaction is performed at high temperature and high pressure.

대한민국 특허(등록번호:10-0285210, 출원번호:10-1999-0013284)에서는 사염화티타늄에 얼음 또는 얼음물을 첨가하여 불안정한 수산화물을 먼저 형성시킨 후 물을 더 첨가해 수산화물을 용해하여 Ti4+농도가 0.15∼1.2M인 티타닐클로라이드 (TiOCl2) 수용액을 제조하고, 초음파 교반과 함께 암모니아 수를 첨가하여 65 ℃이하에서 TiO2슬러리를 제조한다. 이와 같이 제조한 슬러리를 0.1 M 이상의 알칼리할라이드 수용액으로 수세하고 여과하여 루틸상 TiO2초미분체를 제조하는 방법을 제시하였다. 그러나 이 방법은 티타닐클로라이드(TiOCl2)를 만들기 위하여 초기에 사염화티타늄에 얼음 또는 얼음물을 첨가하여 불안정한 수산화물을 먼저 형성시키고, 이 용액에 다시 증류수를 미량씩 첨가하여 반응시키기 때문에 제조단계가 복잡하여 제조시간이 많이 소요되며, 수산화물 제조시 TiCl4손실량이 상대적으로 많은 단점을 가지고 있다. 또한, 수세과정에서 침전체의 해교현상 방지를 위해 0.1M 이상의 알칼리할라이드(NaCl, KCl) 수용액을 사용하였으나 침전체의 해교현상이 발생하지 않으면서 슬러리를 중성으로 만들기 위해서는 많은 알칼리할라이드 수용액이 필요하게 된다.In Korean patent (Registration No.:10-0285210, Application No.:10-1999-0013284), ice or ice water is added to titanium tetrachloride to form an unstable hydroxide first, and then water is added to dissolve the hydroxide to increase the Ti 4+ concentration. A titanyl chloride (TiOCl 2 ) aqueous solution of 0.15 to 1.2 M was prepared, and TiO 2 slurry was prepared at 65 ° C. or lower by adding ammonia water with ultrasonic stirring. The slurry thus prepared was washed with an aqueous alkali halide solution of 0.1 M or more and filtered to provide a method for preparing rutile TiO 2 ultrafine powder. However, this method is complicated by the first step of adding titanium or tetrachloride to ice or ice water to form unstable hydroxide to make titanyl chloride (TiOCl 2 ) and then reacting by adding a small amount of distilled water to the solution. It takes a long time to manufacture, and has a relatively large disadvantage of TiCl 4 loss in the preparation of hydroxide. In addition, an aqueous alkali halide (NaCl, KCl) solution of 0.1 M or more was used to prevent peptizing of the precipitate in the washing process, but a large amount of aqueous alkali halide solution is necessary to make the slurry neutral without peptising of the precipitate. do.

따라서 발명자들은 대한민국 특허(등록번호:10-0285210, 출원번호:10-1999-0013284)에서 전술한 초미립 루틸상 이산화티타늄 분말 제조방법의 문제점을 해결하고자 연구한 결과 개선된 제조공정을 개발하여 특허(특허출원 10-2001-0018426호)를 출원하였다. 그러나 이 방법은 Ti4+수용액을 용이하게 제조할 수 있는 장점이 있으나 저온을 유지해야 되는 단점이 있다. 또한, 이 방법이 보다 효율적인 제조공정이 되기 위해서는 TiO2슬러리의 생성속도 증가와 수세과정에 대한 공정개선이 필요함에 따라 본 발명자들은 상술한 공정의 개선방법에 초점을 맞추어 연구한 결과 상온에서 반응이 가능할 뿐 아니라 TiO2슬러리의 생성속도 증가와 수세과정이 현저히 개선된 공정을 개발하여 본 발명에서 제시하고자 한다. 이 방법은 상온에서 불활성 가스를 충전한 반응기에 사염화티타늄(TiCl4)을 넣은 후, 0.01∼90%의 무기산(HCl, HNO3등)용액을 화학양론비 이상으로 첨가하여 무기산이 혼합된 Ti4+수용액을 제조한다. 제조한 용액에 0.01∼90%의 무기산(HCl, HNO3등)용액을 첨가하여 0.1∼1.4M 농도범위의 Ti4+수용액을 제조한 후 15℃∼200℃ 온도범위에서 방치하여 TiO2입자가 생성된 슬러리를 얻는다. 슬러리를 여과한 후 알칼리 할라이드(NaCl, KCl, NH4Cl 등) 또는 산성용액으로 수세하고, 알카리수용액을 첨가하여 pH 2∼9범위의 슬러리를 제조한다. 이와 같이 제조한 슬러리 여과물을 증류수와 알코올로 다시수세한 후 여과하여 건조하는 과정으로 결정성 TiO2분말을 제조하는 방법이다. 이 방법은 본 발명자들이 출원한 특허(특허출원 10-2001-0018426호)에서 제시한 방법보다 불활성 기체가 충전된 반응기에서 저온이 아닌 상온에서 무기산과 원료물질과의 급격한 반응으로 Ti4+수용액을 제조하기 때문에 사염화티타늄(TiCl4)의 손실량이 미미하고, 제조방법과 제조시간 측면에서 많은 장점을 가지고 있다. 또한, Ti4+수용액의 희석단계에서도 무기산 수용액을 사용하기 때문에 무기산을 사용하지 않고 증류수를 사용하는 공정에 비하여 TiO2슬러리 생성단계에서 생성속도가 현저히 증가되었으며, 최종적으로 얻어진 분말의 수세과정을 개선함으로서 분쇄과정 없이 효율적으로 나노미터(nano meter) 크기의 결정성 TiO2분말을 제조할 수 있는 장점을 가진 우수한 제조방법이다.Therefore, the inventors have developed an improved manufacturing process as a result of research to solve the problems of the ultra-fine rutile titanium dioxide powder manufacturing method described above in the Republic of Korea patent (Registration No.:10-0285210, Application No.:10-1999-0013284) (Patent Application 10-2001-0018426) was filed. However, this method has an advantage of easily preparing a Ti 4+ aqueous solution, but has a disadvantage of maintaining a low temperature. In addition, in order to make the process more efficient, the production rate of TiO 2 slurry needs to be improved and the process of washing with water is improved. As well as possible, the present invention has been developed by developing a process in which the production rate of TiO 2 slurry is increased and the washing process is significantly improved. This way, insert the titanium tetrachloride (TiCl 4) in a reactor filled with an inert gas at room temperature, the inorganic acid of 0.01~90% (HCl, HNO 3, etc.) was added to a mixture of mineral acid is added to the stoichiometric ratio than Ti 4 + Prepare an aqueous solution. A solution of inorganic acid (HCl, HNO 3, etc.) of 0.01-90% was added to the prepared solution to prepare a Ti 4+ aqueous solution in a concentration range of 0.1-1.4 M, and then left at 15 ° C. to 200 ° C. to obtain TiO 2 particles. Obtain the resulting slurry. The slurry was filtered and washed with an alkali halide (NaCl, KCl, NH 4 Cl, etc.) or an acidic solution, and an alkaline aqueous solution was added to prepare a slurry having a pH range of 2-9. The slurry filtrate thus prepared is washed with distilled water and alcohol again and then filtered and dried to produce crystalline TiO 2 powder. This method is a solution of Ti 4+ aqueous solution due to the rapid reaction of inorganic acid and raw material at room temperature rather than low temperature in a reactor filled with an inert gas than the method proposed in the patent (patent application 10-2001-0018426) filed by the present inventors. Because of the production, the loss of titanium tetrachloride (TiCl 4 ) is insignificant, and has many advantages in terms of manufacturing method and manufacturing time. In addition, since the inorganic acid aqueous solution is used in the dilution step of the Ti 4+ aqueous solution, the production rate is significantly increased in the TiO 2 slurry production step compared to the process using the distilled water without the inorganic acid, and the washing process of the finally obtained powder is improved. It is an excellent manufacturing method with the advantage of producing crystalline TiO 2 powder of nanometer size efficiently without grinding process.

본 발명이 이루고자하는 기술적 과제는 결정성 이산화티타늄(TiO2)을 제조하는데 있어서, 초기반응시 반응기내부를 불활성기체로 충전하여 상온에서 무기산과 사염화티타늄(TiCl4)을 급격하게 반응시킴으로서 제조시간의 단축과 사염화티타늄(TiCl4)의 손실량을 최소화하고, TiO2슬러리 생성시간을 단축시켜 제조공정의 효율을 증가시키며, 효과적인 수세공정을 개발하여 공정에 적용함으로서 분쇄과정이 요구되지 않는 나노미터(nano meter) 크기의 결정성 TiO2분말을 얻을수 있는 우수한 제조방법을 제공하는 것이다.The technical problem to be achieved by the present invention is to prepare crystalline titanium dioxide (TiO 2 ), the reaction time of the production time by rapidly reacting the inorganic acid and titanium tetrachloride (TiCl 4 ) at room temperature by filling the reactor with an inert gas during the initial reaction Minimization of shortening and loss of titanium tetrachloride (TiCl 4 ), shortening the production time of TiO 2 slurry to increase the efficiency of the manufacturing process, developing an effective washing process to apply to the process nanometer (nano) It is to provide an excellent manufacturing method to obtain crystalline TiO 2 powder of meter) size.

도 1은 60℃에서 HCl이 혼합된 Ti4+수용액에 0.1M HCl을 첨가하여 제조한 TiO2분말의 X-선 회절선이다.FIG. 1 is an X-ray diffraction line of TiO 2 powder prepared by adding 0.1M HCl to an aqueous Ti 4+ solution mixed with HCl at 60 ° C. FIG.

도 2는 60℃에서 HCl이 혼합된 Ti4+수용액에 0.1M HCl을 첨가하여 제조한 TiO2분말의 TEM 사진이다.FIG. 2 is a TEM photograph of TiO 2 powder prepared by adding 0.1M HCl to a Ti 4+ aqueous solution mixed with HCl at 60 ° C. FIG.

도 3은 60℃에서 HCl이 혼합된 Ti4+수용액에 0.1M HCl을 첨가하여 제조한 TiO2분말의 EDX 분석 결과이다.3 is an EDX analysis result of TiO 2 powder prepared by adding 0.1M HCl to an aqueous Ti 4+ solution mixed with HCl at 60 ° C.

도 4는 60℃에서 HCl이 혼합된 Ti4+수용액에 0.5M HNO3을 첨가하여 제조한 TiO2분말의 X-선 회절선이다.FIG. 4 is an X-ray diffraction line of TiO 2 powder prepared by adding 0.5M HNO 3 to a Ti 4+ aqueous solution mixed with HCl at 60 ° C. FIG.

상기의 목적을 달성하기 위한 본 발명은 용액 상태에서 결정성 이산화티타늄을 효율적으로 제조하는 방법에 관한 것으로 초기 출발물질로서 사염화티타늄(TiCl4)을 이용하여 나노미터(nano meter) 크기의 결정성 TiO2분말을 얻을 수 있는 우수한 제조방법에 관한 것이다.The present invention for achieving the above object relates to a method for efficiently preparing the crystalline titanium dioxide in solution state using a titanium tetrachloride (TiCl 4 ) as the initial starting material crystalline TiO of the nanometer (nano meter) size 2 relates to an excellent method for producing a powder.

본 발명에 따른 결정성 이산화티타늄(TiO2)의 구체적인 제조방법은,Specific manufacturing method of crystalline titanium dioxide (TiO 2 ) according to the present invention,

(1) 상온에서 불활성 가스를 충전한 반응기에 사염화티타늄(TiCl4)을 넣은 후, 0.01∼90%의 무기산(HCl, HNO3등)용액을 화학양론비 이상으로 첨가하여 무기산이 혼합된 Ti4+수용액을 제조하는 단계(제 1단계)(1) After adding titanium tetrachloride (TiCl 4 ) to a reactor filled with an inert gas at room temperature, 0.01 to 90% of an inorganic acid (HCl, HNO 3, etc.) solution was added at a stoichiometric ratio or higher to mix Ti 4 with an inorganic acid. + Preparing an aqueous solution (first step)

(2) 상온에서 제 1단계 용액에 0.01∼90%의 무기산(HCl, HNO3등)용액을 첨가하여 0.1∼1.4M 농도범위의 Ti4+수용액을 제조하는 단계(제 2단계)(2) preparing a Ti 4+ aqueous solution having a concentration range of 0.1 to 1.4 M by adding 0.01 to 90% of an inorganic acid (HCl, HNO 3, etc.) solution to the first step solution at room temperature (second step)

(3) 제 2단계의 희석용액을 15℃∼200℃ 온도범위에서 방치하여 TiO2입자가 생성된 슬러리를 얻는 단계(제 3단계)(3) leaving the dilution solution of the second step at a temperature range of 15 ° C. to 200 ° C. to obtain a slurry in which TiO 2 particles are produced (third step)

(4) 제 3단계의 슬러리를 여과한 후 알칼리 할라이드(NaCl, KCl, NH4Cl 등) 또는 산성용액으로 수세하여 여과하는 단계(제 4단계)(4) filtering the slurry of the third step, followed by washing with an alkaline halide (NaCl, KCl, NH 4 Cl, etc.) or an acidic solution and filtering (fourth step)

(5) 제 4단계의 슬러리 여과물에 알카리 수용액을 첨가하여 pH 2∼9범위로조절하는 단계(제 5단계)(5) adding alkaline aqueous solution to the slurry filtrate of the fourth step to adjust the pH to the range 2-9 (step 5)

(6) 제 5단계 용액을 증류수와 알코올로 수세한 후 여과하여 건조하는 단계(제 6단계)로 구성된 나노미터(nano meter) 크기의 결정성 TiO2분말의 제조방법이다.(6) The fifth step is a method for producing crystalline TiO 2 powder of nanometer size consisting of a step of washing with distilled water and alcohol, followed by filtration and drying (sixth step).

여기에서, 제 1단계와 제 2단계의 무기산 수용액은 HCl, HNO3등으로 구성된 것이 바람직하고, 제 4단계의 알칼리 수용액은 NaOH, KOH, NH4OH 등의 비금속 수산화물을 첨가하는 것이 바람직하며, 이때 산 농도를 pH 2∼9범위로 조절하는 것이 바람직하다.Here, the inorganic acid aqueous solution of the first and second steps is preferably composed of HCl, HNO 3 and the like, the aqueous alkali solution of the fourth step is preferably added a non-metal hydroxide such as NaOH, KOH, NH 4 OH, At this time, it is preferable to adjust the acid concentration to pH 2-9 range.

이하의 실시예들은 본 발명을 예증하기 위한 것으로서 본 발명의 범위를 국한시키는 것으로 이해되어져서는 안 된다.The following examples are intended to illustrate the invention and should not be understood as limiting the scope of the invention.

<실시예 1> HCl 용액을 이용한 초미립 이산화티타늄 분말의 제조<Example 1> Preparation of ultrafine titanium dioxide powder using HCl solution

상온에서 출발물질인 사염화티타늄(TiCl4)을 불활성 가스가 충전된 반응기에 넣은 후, 5M HCl 용액을 교반시키면서 첨가하여 HCl이 혼합된 2M의 Ti4+수용액을 제조하였다. 제조된 용액을 상온에서 0.1M HCl 용액을 첨가하여 Ti4+의 농도가 0.7M이 되게 희석하고 30분 동안 교반하였다. 이 희석용액을 60℃에서 4시간의 방치하여 TiO2슬러리를 제조하였다. 제조된 슬러리를 여과한 후 1M의 NaCl 용액으로 수세하여 여과시킨다. 슬러리 여과물에 1M의 NaOH 수용액을 첨가하여 수세하고 pH를 적절히 조절한 후 여과하였다. 슬러리 여과물을 증류수와 알코올용액으로 수세하고 여과 및 건조시켜 TiO2분말을 얻었다. 이 때 제조된 이산화티타늄의 X-선 회절선을 도 1에 나타내었는데, 분말은 루틸(Rutile)상의 나노미터(nano meter) 크기의 분말이었다. 또한 도 2는 TiO2분말의 TEM 사진으로서 평균 2차입자의 크기는 0.25 ㎛이었다. 또한 도 3은 상기 분말의 EDX 분석 데이터로서 Ti와 O가 양론비로 존재하며, 불순물이 존재하지 않는 것을 확인하였다.Titanium tetrachloride (TiCl 4 ), which is a starting material at room temperature, was placed in a reactor filled with an inert gas, and then 5M HCl solution was added with stirring to prepare a 2M aqueous Ti 4+ solution containing HCl. By the addition of 0.1M HCl solution to the prepared solution at room temperature was diluted to be a 0.7M concentration of the Ti 4+ and the mixture was stirred for 30 minutes. The diluted solution was left at 60 ° C. for 4 hours to prepare a TiO 2 slurry. The prepared slurry was filtered and then washed with 1M NaCl solution. 1M aqueous NaOH solution was added to the slurry filtrate and the mixture was washed with water, and pH was properly adjusted and then filtered. The slurry filtrate was washed with distilled water and alcohol solution, filtered and dried to obtain TiO 2 powder. The X-ray diffraction line of the prepared titanium dioxide is shown in FIG. 1, wherein the powder was a powder having a nanometer size of rutile (Rutile). In addition, Figure 2 is a TEM image of the TiO 2 powder, the average secondary particle size was 0.25 ㎛. 3 shows that Ti and O are present in a stoichiometric ratio as the EDX analysis data of the powder, and no impurities are present.

<실시예 2> HNO3용액을 이용한 초미립 이산화티타늄 분말의 제조<Example 2> Preparation of Ultrafine Titanium Dioxide Powder Using HNO 3 Solution

출발물질인 사염화티타늄(TiCl4)을 상온에서 불활성 가스가 충전된 반응기에 넣은 후, 7M HNO3용액을 교반시키면서 첨가하여 HCl과 HNO3용액이 혼합된 2M의 Ti4+수용액을 제조하였다. 제조된 용액을 상온에서 0.5M HNO3용액을 첨가하여 Ti4+의 농도가 1.0M이 되게 희석하고 25분 동안 교반하였다. 이 희석용액을 60℃에서 2시간 방치하여 TiO2슬러리를 제조하였다. 제조된 슬러리를 여과한 후 1M의 CH3COOH 용액으로 수세하여 여과시킨다. 슬러리 여과물에 1M의 KOH 수용액을 첨가하여 수세하고 pH를 적절히 조절한 후 여과하였다. 슬러리 여과물을 증류수와 알코올용액으로 수세하고 여과 및 건조시켜 TiO2분말을 얻었다. 이 때 제조된 초미립 이산화티타늄의 X-선 회절선을 도 4와 같으며, 분말은 루틸(Rutile)상의 나노미터(nano meter) 크기의 분말이었다.Titanium tetrachloride (TiCl 4 ) as a starting material was added to a reactor filled with an inert gas at room temperature, and then 7M HNO 3 solution was added while stirring to prepare a 2M Ti 4+ aqueous solution in which HCl and HNO 3 solution were mixed. The prepared solution was diluted to a concentration of Ti 4+ to 1.0M by adding 0.5M HNO 3 solution at room temperature and stirred for 25 minutes. The diluted solution was left at 60 ° C. for 2 hours to prepare a TiO 2 slurry. The prepared slurry was filtered and washed with 1M of CH 3 COOH solution and washed. 1M aqueous KOH solution was added to the slurry filtrate, and the mixture was washed with water, and pH was adjusted. The slurry filtrate was washed with distilled water and alcohol solution, filtered and dried to obtain TiO 2 powder. The X-ray diffraction line of the ultrafine titanium dioxide prepared at this time is as shown in FIG. 4, and the powder was a powder having a nanometer size of rutile (Rutile).

이상에서 살펴본 바와 같이 본 발명의 제조방법은 상온에서 교반이 가능한 반응기에 불활성가스를 주입한 상태에서 사염화티타늄(TiCl4)을 수용액 상태의 무기산으로 반응시키기 때문에 원료물질의 손실량이 미미할 뿐 아니라 TiO2슬러리 생성시간을 단축시키고, 효과적인 수세공정을 개발하여 공정에 적용함으로서 분쇄과정이 요구되지 않는 나노미터(nano meter) 크기의 결정성 TiO2분말을 제조할 수 있으며, 고온 분위기로 소성하는 장치가 필요하지 않으므로 대량생산이 가능하여 생산비용을 낮출 수 있는 매우 실용적인 제조방법으로서 TiO2나노(nano) 분말의 시장성을 확대시킬 것이다.As described above, in the preparation method of the present invention, since titanium tetrachloride (TiCl 4 ) is reacted with an inorganic acid in an aqueous solution state while inert gas is injected into a reactor that can be stirred at room temperature, not only the amount of raw material loss is small but also TiO 2. By shortening the slurry production time and developing an effective washing process, it is possible to produce nanometer-sized crystalline TiO 2 powder that does not require grinding process, and requires a device to be fired at a high temperature atmosphere. As it is possible to mass-produce and lower production costs, it will expand the marketability of TiO 2 nano powders as a very practical manufacturing method.

Claims (7)

(1) 상온에서 불활성 가스를 충전한 반응기에 사염화티타늄(TiCl4)을 넣은 후, 0.01∼90%의 무기산(HCl, HNO3등) 용액을 화학양론비 이상으로 첨가하여 무기산이 혼합된 Ti4+수용액을 제조하는 단계(제 1단계)(1) After adding titanium tetrachloride (TiCl 4 ) to a reactor filled with an inert gas at room temperature, 0.01 to 90% of an inorganic acid (HCl, HNO 3, etc.) solution was added at a stoichiometric ratio or higher to mix Ti 4 with an inorganic acid. + Preparing an aqueous solution (first step) (2) 상온에서 제 1단계 용액에 0.01∼90%의 무기산(HCl, HNO3등) 수용액을 첨가하여 0.1∼1.4M 농도범위의 Ti4+수용액을 제조하는 단계(제 2단계)(2) adding an aqueous solution of 0.01 to 90% inorganic acid (HCl, HNO 3, etc.) to the first step solution at room temperature to prepare a Ti 4+ aqueous solution in a concentration range of 0.1 to 1.4 M (second step) (3) 제 2단계의 희석용액을 15℃∼200℃ 온도범위에서 방치하여 TiO2입자가 생성된 슬러리를 얻는 단계(제 3단계)(3) leaving the dilution solution of the second step at a temperature range of 15 ° C. to 200 ° C. to obtain a slurry in which TiO 2 particles are produced (third step) (4) 제 3단계의 슬러리를 여과한 후 알칼리 할라이드(NaCl, KCl, NH4Cl 등) 또는 산성용액으로 수세하여 여과하는 단계(제 4단계)(4) filtering the slurry of the third step, followed by washing with an alkaline halide (NaCl, KCl, NH 4 Cl, etc.) or an acidic solution and filtering (fourth step) (5) 제 4단계의 슬러리 여과물에 알카리 수용액을 첨가하여 pH 2∼9범위로 조절하는 단계(제 5단계)(5) adding an aqueous alkali solution to the slurry filtrate of the fourth step to adjust the pH to the range of 2-9 (step 5) (6) 제 5단계 용액을 증류수와 알코올로 수세한 후 여과하여 건조하는 단계(제 6단계)로 구성된 나노미터(nano meter) 크기의 극미세 결정성 TiO2분말의 제조방법(6) Method of manufacturing ultra-fine crystalline TiO 2 powder of nanometer size consisting of the step 5 washed with distilled water and alcohol and then filtered and dried (sixth step) 제 1항의 (1)에 있어서, 불활성가스는 99.9% 이상의 질소(N2), 아르곤(Ar), 질소(N2)와 아르곤(Ar)의 혼합가스를 사용하는 것이 바람직하며, 그 이외의 기체로서 반응기내에서 반응물과 화학적 반응을 하지 않는 순성분 가스와 이들의 혼합가스를 사용하는 것을 특징으로 하는 나노미터(nano meter) 크기의 결정성 TiO2분말의 제조방법The inert gas of claim 1, wherein a mixture of a mixture of nitrogen (N 2 ), argon (Ar), nitrogen (N 2 ), and argon (Ar) is preferably 99.9% or more. As a method for producing a nanometer sized crystalline TiO 2 powder, characterized in that the use of a pure component gas and a mixed gas thereof do not chemically react with the reactants in the reactor 제 1항의 (1)에 있어서, Ti4+수용액의 제조를 위해 사염화티타늄(TiCl4)과 무기산을 첨가할 때, 회분식 또는 연속반응기를 사용하여 제조하는 것을 특징으로 하는 나노미터(nano meter) 크기의 결정성 TiO2분말의 제조방법The nanometer size according to claim 1, wherein when titanium tetrachloride (TiCl 4 ) and an inorganic acid are added to prepare a Ti 4+ aqueous solution, a nanometer size is prepared using a batch or a continuous reactor. Of crystalline TiO 2 powder 제 1항의 (1)과 (2)에 있어서, 무기산 용액의 농도는 0.01∼90% 범위에서 첨가하는 것이 바람직하며, 무기산 물질로서 HCl, HNO3등을 사용하는 것이 바람직하고, 그 이외의 무기산 물질을 포함하는 것을 특징으로 하는 나노미터(nano meter) 크기의 결정성 TiO2분말의 제조방법(1) and (2), the concentration of the inorganic acid solution is preferably added in the range of 0.01 to 90%, it is preferable to use HCl, HNO 3 and the like as the inorganic acid material, other inorganic acid material Method for producing a crystalline TiO 2 powder of nanometer size characterized in that it comprises a 제 1항의 (4)에 있어서, 알칼리 할라이드 또는 산성용액으로 수세하고 여과하는데, 할라이드 수용액은 NaCl, KCl, NH4Cl 등으로 구성된 0.1M 이상의 수용액이바람직하고 그 이외의 알칼리 할라이드로 구성된 모든 물질을 포함한다. 또한 산성용액은 HCl, HNO3, CH3COOH 등으로 구성된 0.1M 이상의 수용액이 바람직하며, 그 이외의 산성용액으로 구성된 모든 물질을 사용하는 것을 특징으로 하는 나노미터(nano meter) 크기의 결정성 TiO2분말의 제조방법The method of claim 1 (4), which is washed with an alkaline halide or an acidic solution and filtered. The aqueous halide solution is preferably an aqueous solution of 0.1 M or more composed of NaCl, KCl, NH 4 Cl, or the like, and all substances composed of other alkali halides. Include. In addition, the acidic solution is preferably an aqueous solution of 0.1M or more consisting of HCl, HNO 3 , CH 3 COOH and the like, crystalline TiO of nanometer size (nano meter) characterized in that to use all materials consisting of other acidic solution 2 Preparation of Powder 제 1항의 (5)에 있어서, 알카리 수용액은 KOH, NaOH, NH4OH, LiOH 등으로 구성된 수용액이 바람직하고, 그 이외의 알칼리로 구성된 모든 물질을 포함한다. 또한, 알카리 수용액을 첨가할 때 pH 2∼9범위로 조절하는 것을 특징으로 하는 나노미터(nano meter) 크기의 결정성 TiO2분말의 제조방법The aqueous alkali solution according to claim 1 (5) is preferably an aqueous solution composed of KOH, NaOH, NH 4 OH, LiOH, or the like, and includes all substances composed of other alkalis. In addition, the method of producing a crystalline TiO 2 powder of the nanometer (nano meter) size, characterized in that adjusted to the pH range 2-9 when the aqueous alkali solution is added. 제 1항의 (6)에 있어서, 증류수와 알코올로 수세한 후 여과하여 건조하는 것을 특징으로 하는 나노미터(nano meter) 크기의 결정성 TiO2분말의 제조방법The method for producing a crystalline TiO 2 powder having a nanometer size according to claim 1, which is washed with distilled water and alcohol, followed by filtration and drying.
KR10-2001-0031285A 2001-06-04 2001-06-04 Preparation of TiO2 ultrafine powders from titanium tetrachloride with inorganic acid solution by the advanced washing method KR100424069B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2001-0031285A KR100424069B1 (en) 2001-06-04 2001-06-04 Preparation of TiO2 ultrafine powders from titanium tetrachloride with inorganic acid solution by the advanced washing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2001-0031285A KR100424069B1 (en) 2001-06-04 2001-06-04 Preparation of TiO2 ultrafine powders from titanium tetrachloride with inorganic acid solution by the advanced washing method

Publications (2)

Publication Number Publication Date
KR20020092583A true KR20020092583A (en) 2002-12-12
KR100424069B1 KR100424069B1 (en) 2004-03-22

Family

ID=27707838

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2001-0031285A KR100424069B1 (en) 2001-06-04 2001-06-04 Preparation of TiO2 ultrafine powders from titanium tetrachloride with inorganic acid solution by the advanced washing method

Country Status (1)

Country Link
KR (1) KR100424069B1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100413720B1 (en) * 2001-06-04 2003-12-31 (주)아해 Preparation of anatase type TiO2 ultrafine powders from TiCl4 with acetone by the advanced washing method
KR100475551B1 (en) * 2002-10-08 2005-03-10 (주)아해 Preparation of Nanosized brookite-phase Titanium Dioxide Powder from Titanium Tetrachloride and Aqueous Hydrochloric Acid
KR100769481B1 (en) * 2006-06-16 2007-10-23 계명대학교 산학협력단 Synthetic method of titanium dioxide photocatalysts to change crystal structure by low heat treatment

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01301518A (en) * 1988-05-28 1989-12-05 Sakai Chem Ind Co Ltd Production of titanium dioxide
DE4216122A1 (en) * 1992-05-15 1993-11-18 Bayer Ag Highly pure titanium di:oxide prodn. from titanium tetra:halide - by reacting with aq. sulphuric acid without crystallisation of titanyl sulphate, removing hydrogen halide, hydrolysis and calcination
KR100224732B1 (en) * 1996-08-07 1999-10-15 김성년 Process for producing a micropowder type crystalline titanium oxide
KR100285210B1 (en) * 1999-04-15 2001-03-15 장인순 Method for production of mono-dispersed TiO2 ultrafine spherical powders with rutile phase from TiCl4
KR100404449B1 (en) * 2001-02-16 2003-11-05 한상목 The manufacturing method of titanium oxide powder by dropping precipitant

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100413720B1 (en) * 2001-06-04 2003-12-31 (주)아해 Preparation of anatase type TiO2 ultrafine powders from TiCl4 with acetone by the advanced washing method
KR100475551B1 (en) * 2002-10-08 2005-03-10 (주)아해 Preparation of Nanosized brookite-phase Titanium Dioxide Powder from Titanium Tetrachloride and Aqueous Hydrochloric Acid
KR100769481B1 (en) * 2006-06-16 2007-10-23 계명대학교 산학협력단 Synthetic method of titanium dioxide photocatalysts to change crystal structure by low heat treatment

Also Published As

Publication number Publication date
KR100424069B1 (en) 2004-03-22

Similar Documents

Publication Publication Date Title
Kim et al. Homogeneous precipitation of TiO2 ultrafine powders from aqueous TiOCl2 solution
CN101238069B (en) Process for preparing barium titanate
KR101396803B1 (en) Low temperature process for producing nano-sized titanium dioxide particles
Yang et al. Preparation of rutile titania nanocrystals by liquid method at room temperature
CN107555987B (en) Preparation method of submicron barium titanate powder ultrafine particles
JPS6317221A (en) Crystalline titanium oxide sol and production thereof
JPS62207718A (en) Sol of crystalline titanium oxide and its preparation
CN1123551C (en) Nanometer grade tetragonal-phase barium titanate powder and its prepn.
KR101152382B1 (en) Manufacturing method of titanium oxide improved whiteness
KR100420275B1 (en) Preparation of TiO2 fine powder from titanium tetrachloride with inorganic acid
KR100708812B1 (en) Manufacturing method of anatase type titanium dioxide photocatalyst
KR100424069B1 (en) Preparation of TiO2 ultrafine powders from titanium tetrachloride with inorganic acid solution by the advanced washing method
AU776394B2 (en) Processing aqueous titanium solutions to titanium dioxide pigment
JPH06305729A (en) Fine powder of perovskite type compound and its production
KR101764016B1 (en) Method for preparation of pure anatase type TiO2 powders
EP1685068B1 (en) Process for simultaneous preparation of nanocrystalline titanium dioxide and hydrazine monohydrochloride
KR100343395B1 (en) Method for production of titanium dioxide ultrafine powders with rutile phase from titanium sulfate
KR100420277B1 (en) Preparation of TiO2 fine powder from titanium tetrachloride with Alcohol or Acetone
JPS6272525A (en) Production of barium titanate or strontium titanate
JPH05163022A (en) Spherical anatase titanium oxide and its production
CN1597534A (en) Preparation method of nanometer rutile type titanium dioxide
CN1843937A (en) Method for preparing size-controllable electronic grade anatase titania nanopowder
KR100503858B1 (en) Preparation of Nano-sized Crystalline Titanic Acid Strontium Powder from Aqueous Titanium Tetrachloride and Strontium Carbonate Solutions Prepared by Use of Inorganic Acids
KR100413720B1 (en) Preparation of anatase type TiO2 ultrafine powders from TiCl4 with acetone by the advanced washing method
KR100503857B1 (en) Preparation of Nano-sized Crystalline Titanic Acid Barium Powder from Aqueous Titanium Tetrachloride and Barium Chloride Solutions Prepared by Use of Inorganic Acids

Legal Events

Date Code Title Description
A201 Request for examination
N231 Notification of change of applicant
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee