[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20020048636A - Method for chemical mechanical polishing of titanium-aluminium-nitride - Google Patents

Method for chemical mechanical polishing of titanium-aluminium-nitride Download PDF

Info

Publication number
KR20020048636A
KR20020048636A KR1020000077848A KR20000077848A KR20020048636A KR 20020048636 A KR20020048636 A KR 20020048636A KR 1020000077848 A KR1020000077848 A KR 1020000077848A KR 20000077848 A KR20000077848 A KR 20000077848A KR 20020048636 A KR20020048636 A KR 20020048636A
Authority
KR
South Korea
Prior art keywords
aluminum nitride
titanium aluminum
chemical mechanical
mechanical polishing
polishing
Prior art date
Application number
KR1020000077848A
Other languages
Korean (ko)
Other versions
KR100407296B1 (en
Inventor
김재홍
Original Assignee
박종섭
주식회사 하이닉스반도체
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 박종섭, 주식회사 하이닉스반도체 filed Critical 박종섭
Priority to KR10-2000-0077848A priority Critical patent/KR100407296B1/en
Publication of KR20020048636A publication Critical patent/KR20020048636A/en
Application granted granted Critical
Publication of KR100407296B1 publication Critical patent/KR100407296B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/31051Planarisation of the insulating layers
    • H01L21/31053Planarisation of the insulating layers involving a dielectric removal step
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/02Polishing compositions containing abrasives or grinding agents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE: A CMP(Chemical Mechanical Polishing) method of a TiAlN layer used as a diffusion barrier is provided to simplify CMP processes and to improve a polishing speed by using an improved slurry. CONSTITUTION: After forming an interlayer dielectric(24) having a contact hole on a semiconductor substrate(23), a polysilicon plug(25) is formed on a contact hole. A titanium silicide(26) is formed on the polysilicon plug(25). After forming a TiAlN layer(27) as a diffusion barrier on the resultant structure, the TiAlN layer(27) is planarized by CMP using a slurry contained a nitride acid and an ammonium salt.

Description

티타늄알루미늄나이트라이드의 화학적기계적연마 방법{METHOD FOR CHEMICAL MECHANICAL POLISHING OF TITANIUM-ALUMINIUM-NITRIDE}Chemical mechanical polishing method of titanium aluminum nitride {METHOD FOR CHEMICAL MECHANICAL POLISHING OF TITANIUM-ALUMINIUM-NITRIDE}

본 발명은 반도체소자의 제조 방법에 관한 것으로, 특히 캐패시터의 확산배리어막(Diffusion barrier layer)으로 사용되는 티타늄알루미늄나이트라이드 (TiAlN)의 화학적기계적연마(Chemical Mechanical Polishing; CMP) 방법에 관한 것이다.BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly, to a chemical mechanical polishing (CMP) method of titanium aluminum nitride (TiAlN) used as a diffusion barrier layer of a capacitor.

반도체소자의 제조 공정 중 캐패시터의 제조 방법에 있어서, 확산배리어막 으로서 티타늄알루미늄나이트라이드(TiAlN)를 이용하는 경우, 티타늄알루미늄나이트라이드(TiAlN)는 기계적특성(마모성)과 화학적 특성이 매우 우수한 물질이면서 고성능 캐패시터를 제조하는데 필수적으로 요구되는 물질로서, 산화막상의 티타늄알루미늄나이트라이드(TiAlN)를 제거하기 위하여 화학적기계적연마 방법을 적용하고 있다.In the method of manufacturing a capacitor during the manufacturing process of a semiconductor device, when titanium aluminum nitride (TiAlN) is used as the diffusion barrier film, titanium aluminum nitride (TiAlN) is a material having excellent mechanical properties (abrasion properties) and chemical properties and high performance. As an essential material for manufacturing a capacitor, a chemical mechanical polishing method is applied to remove titanium aluminum nitride (TiAlN) on an oxide film.

도 1a 내지 도 1b는 종래기술에 따른 캐패시터의 확산배리어막의 화학적기계적연마 방법을 나타낸 도면이다.1A to 1B are views illustrating a chemical mechanical polishing method of a diffusion barrier film of a capacitor according to the prior art.

도 1a에 도시된 바와 같이, 소정 공정이 완료된 반도체기판(11) 또는 하부층상에 층간절연막(12)을 형성하고, 층간절연막(12)을 선택적으로 식각하여 플러그용 콘택홀을 형성한다. 콘택홀을 포함한 전면에 폴리실리콘을 증착한 후 에치백하여 콘택홀의 소정 깊이까지 매립되는 폴리실리콘플러그(13)를 형성한다. 폴리실리콘플러그(13)를 포함한 전면에 티타늄을 증착하고 열처리하여 폴리실리콘플러그(13)상에 티타늄실리사이드(TiSi2)(14)를 형성한 후, 미반응 티타늄을 제거한다. 이 때, 콘택홀의 소정깊이까지 매립된 폴리실리콘플러그(13)와 티타늄실리사이드(14)의 적층구조가 형성된다.As shown in FIG. 1A, an interlayer insulating layer 12 is formed on a semiconductor substrate 11 or a lower layer on which a predetermined process is completed, and the interlayer insulating layer 12 is selectively etched to form a plug contact hole. Polysilicon is deposited on the entire surface including the contact hole and then etched back to form a polysilicon plug 13 that is embedded to a predetermined depth of the contact hole. Titanium is deposited on the entire surface including the polysilicon plug 13 and heat treated to form titanium silicide (TiSi 2 ) 14 on the polysilicon plug 13, and then unreacted titanium is removed. At this time, a laminated structure of the polysilicon plug 13 and the titanium silicide 14, which is embedded up to a predetermined depth of the contact hole, is formed.

계속해서, 티타늄실리사이드(14)를 포함한 전면에 티타늄알루미늄나이트라이드(15)를 증착한다.Subsequently, titanium aluminum nitride 15 is deposited on the entire surface including the titanium silicide 14.

도 1b에 도시된 바와 같이, 티타늄알루미늄나이트라이드(15)를 화학적기계적연마하여 티타늄실리사이드(14)에 접하여 콘택홀을 완전히 매립시키는 티타늄알루미늄나이트라이드(15a)를 형성한다.As shown in FIG. 1B, the titanium aluminum nitride 15 is chemically mechanically polished to form titanium aluminum nitride 15a in contact with the titanium silicide 14 to completely fill the contact holes.

이 때, 통상적인 슬러리를 적용한 화학적기계적연마를 이용하여 티타늄알루미늄나이트라이드(15)를 연마시키려고 하면, 연마속도가 매우 작기 때문에 연마시킬 수 있는 슬러리가 없으므로 통상적인 슬러리의 공급유량을 증가시키고 매우 열악한 공정 조건으로 비교적 장시간동안 연마하여 연마속도를 증가시켜야 한다.At this time, when attempting to polish the titanium aluminum nitride (15) using chemical mechanical polishing applied with a conventional slurry, since the polishing rate is very small, no slurry can be polished, thus increasing the supply flow rate of the conventional slurry and being very poor. As the processing conditions, the grinding speed should be increased by grinding for a relatively long time.

그러나, 장시간동안의 연마로 인해 층간절연막(12)인 산화막에 심한 긁힘(Scratch) 현상(16)과 슬러리 찌거기 같은 불순물(17)이 다량 잔류하게 되는 문제점이 있다.However, there is a problem in that a large amount of impurities 17 such as a severe scratch phenomenon 16 and a slurry residue remain in the oxide film, which is the interlayer insulating film 12, due to prolonged polishing.

또한, 매우 열악한 공정 조건에서 장시간 연마하기 때문에 층간절연막(12)이 노출되는 시점부터 티타늄알루미늄나이트라이드(TiAlN)이 주변에 있는 층간절연막보다 과도연마(Over polishing)되어 디싱(Dishing) 현상(18)이나 층간절연막(12)이 침식(Erosion)되는 현상이 나타난다.In addition, since polishing is performed for a long time under extremely poor process conditions, titanium aluminum nitride (TiAlN) is over polished from the surrounding interlayer insulating film from the time when the interlayer insulating film 12 is exposed, thereby causing dishing (18). However, the phenomenon that the interlayer insulating film 12 is eroded appears.

결국, 티타늄알루미늄나이트라이드의 연마속도를 증가시키기 위하여 열악한 공정 조건을 적용함에 따라 연마 특성(디싱이나 침식)이 불량하고 심각한 결함이 발생되어 소자의 특성을 저하시키는 문제점이 있다.As a result, when poor process conditions are applied in order to increase the polishing rate of titanium aluminum nitride, polishing characteristics (dishing or erosion) are poor and serious defects occur, thereby deteriorating the characteristics of the device.

본 발명은 상기 종래기술의 문제점을 해결하기 위해 안출한 것으로서, 질산과 암모늄염을 첨가한 슬러리를 이용하여 티타늄알루미늄나이트라이드의 화학적기계적연마시 연마속도를 증가시키고 디싱 또는 침식 현상을 방지하는데 적합한 화학적기계적연마 방법을 제공하는데 그 목적이 있다.The present invention has been made to solve the problems of the prior art, using a slurry to which nitric acid and ammonium salts are added to increase the polishing rate when chemical mechanical polishing of titanium aluminum nitride, and suitable for preventing dishing or erosion. Its purpose is to provide a polishing method.

도 1a 내지 도 1b는 종래기술에 따른 확산배리어막으로 이용된 티타늄알루미늄나이트라이드의 화학적기계적연마후 소자를 도시한 도면,1a to 1b is a view showing a device after chemical mechanical polishing of titanium aluminum nitride used as a diffusion barrier film according to the prior art,

도 2는 본 발명의 실시예에 따른 티타늄알루미늄나이트라이드의 화학적기계적연마 방법을 나타낸 공정 흐름도,2 is a process flowchart showing a method of chemical mechanical polishing of titanium aluminum nitride according to an embodiment of the present invention;

도 3은 도 2의 공정 흐름도를 적용하여 티타늄알루미늄나이트라이드를 화학적기계적연마한 후의 소자를 도시한 도면.FIG. 3 shows the device after chemical mechanical polishing of titanium aluminum nitride by applying the process flow chart of FIG. 2.

*도면의 주요 부분에 대한 부호의 설명* Explanation of symbols for the main parts of the drawings

23 : 반도체기판 24 : 산화막23 semiconductor substrate 24 oxide film

25 : 폴리실리콘플러그 26 : 티타늄실리사이드25: polysilicon plug 26: titanium silicide

27 : 티타늄알루미늄나이트라이드27: titanium aluminum nitride

상기의 목적을 달성하기 위한 본 발명은 소정 공정이 완료된 반도체기판상에 산화막을 형성하는 단계, 상기 산화막상에 티타늄알루미늄나이트라이드를 형성하는 단계, 및 질산과 암모늄염이 동시에 첨가된 슬러리를 이용하여 상기 티타늄알루미늄나이트라이드를 화학적기계적연마하는 단계를 포함하여 이루어짐을 특징으로 한다.The present invention for achieving the above object is the step of forming an oxide film on a semiconductor substrate having a predetermined process, the step of forming titanium aluminum nitride on the oxide film, and using a slurry to which nitric acid and ammonium salt is added at the same time And chemical mechanical polishing of titanium aluminum nitride.

바람직하게, 상기 티타늄알루미늄나이트라이드를 화학적기계적연마하는 단계는 상기 티타늄알루미늄나이트라이드의 연마속도와 상기 산화막과의 연마선택비를 고려한 조건으로 연마하는 제 1 단계, 및 상기 산화막이 노출되면 디싱 및 침식 현상을 최소화시킬 수 있는 조건으로 연마하는 제 2 단계를 포함하여 이루어짐을 특징으로 한다.Preferably, the chemical mechanical polishing of the titanium aluminum nitride may include a first step of polishing the titanium aluminum nitride under conditions considering the polishing rate of the titanium aluminum nitride and the polishing selectivity with respect to the oxide film, and dishing and erosion when the oxide film is exposed. It characterized in that it comprises a second step of polishing in a condition that can minimize the phenomenon.

바람직하게, 상기 슬러리는 산화세륨 또는 산화지르코늄 중 어느 하나의 연마제가 포함된 것을 특징으로 한다.Preferably, the slurry is characterized in that the abrasive containing any one of cerium oxide or zirconium oxide.

도 2는 본 발명의 실시예에 따른 티타늄알루미늄나이트라이드의 화학적기계적연마 방법을 나타낸 공정 흐름도이고, 도 3은 도2의 공정 흐름도에 따라 티타늄알루미늄나이트라이드를 화학적기계적연마한 후의 소자 단면도이다.FIG. 2 is a process flowchart showing a chemical mechanical polishing method of titanium aluminum nitride according to an embodiment of the present invention, and FIG. 3 is a cross-sectional view of the device after chemical mechanical polishing of titanium aluminum nitride according to the process flowchart of FIG.

도 2에 도시된 바와 같이, 확산배리어막으로서 티타늄알루미늄나이트라이드를 증착한 후(21), 질산(Nitric acid)과 암모늄염(Ammonium salt)을 첨가한 슬러리를 사용하여 티타늄알루미늄나이트라이드를 화학적기계적연마한다(22).As shown in FIG. 2, after titanium titanium nitride is deposited as a diffusion barrier film (21), titanium aluminum nitride is chemically mechanically polished using a slurry to which nitric acid and ammonium salt are added. (22).

여기서, 질산은 강한 산이므로 티타늄알루미늄나이트라이드내의 금속을 부식시키거나 용해시켜 그 물질의 원자간 결합력을 감소시키고 막의 치밀도를 저하시켜 화학적기계적연마 공정에서 쉽게 연마되도록 티타늄알루미늄나이트라이드의 화학적 특성을 변화시킨다.Since nitric acid is a strong acid, the chemical properties of titanium aluminum nitride are changed so that the metal in titanium aluminum nitride is corroded or dissolved to reduce the interatomic bonding force of the material and the film density to be easily polished in the chemical mechanical polishing process. Let's do it.

이 때, 부식속도와 용해속도는 질산의 농도가 증가할수록 증가하지만 과량의 질산을 첨가하면, 슬러리의 안정성과 취급성을 확보하기 어렵고 연마공정에서 마진을 오히려 저하시키기 때문에 슬러리의 pH를 2∼3으로 유지시키고 농도는 질산과 슬러리가 1∼5wt%가 유지되도록 조절한다.At this time, the corrosion rate and dissolution rate increase as the concentration of nitric acid increases, but adding excess nitric acid makes it difficult to secure the stability and handleability of the slurry and lowers the margin in the polishing process. The concentration is adjusted to maintain 1-5wt% nitric acid and slurry.

또한, 슬러리에 질산을 첨가할 때 암모늄염을 함께 첨가하면, 암모늄염은 사화제(Oxidizer)로서 작용하여 티타늄알루미늄나이트라이드의 연마속도를 약간 증갓키는 작용을 하지만 오히려 산화막의 연마속도를 더 크게 증가시키는 작용을 하기 때문에 그 농도에 따라 티타늄알루미늄나이트라이드와 산화막의 연마선택비를 조절할 수 있다.In addition, when ammonium salt is added together when nitric acid is added to the slurry, the ammonium salt acts as an oxidizer, which slightly increases the polishing rate of titanium aluminum nitride but increases the polishing rate of the oxide film even more. Since it acts, the polishing selectivity of titanium aluminum nitride and oxide film can be adjusted according to the concentration.

예컨대, 티타늄알루미늄나이트라이드와 산화막의 선택비가 1:1인 슬러리를 사용할 경우, 산화막이 노출되더라도 티타늄알루미늄나이트라이드가 과도연마되는현상을 제거하거나 최소화하여 디싱을 방지할 수 있다.For example, when using a slurry having a selectivity ratio of titanium aluminum nitride to an oxide film of 1: 1, it is possible to prevent dishing by eliminating or minimizing a phenomenon in which titanium aluminum nitride is over-polished even when the oxide film is exposed.

즉, 통상의 기술에서는 티타늄알루미늄나이트라이드의 연마속도를 증가시킬 수 있는 슬러리를 사용하여 산화막상에 존재하는 결함들을 제거하더라도 연마특성이 좋은 2차 슬러리를 사용하여 디싱이나 침식같은 현상을 제거하여야 하기 때문에, 질산과 암모늄염을 동시에 첨가한 슬러리를 사용할 경우 한 번의 공정으로 통상의 공정에서 발생되는 문제점을 모두 해결할 수 있다.That is, in the conventional art, even if the defects on the oxide film are removed by using a slurry that can increase the polishing rate of titanium aluminum nitride, the secondary slurry having good polishing characteristics should be used to remove phenomena such as dishing or erosion. Therefore, when using a slurry to which nitric acid and ammonium salts are added at the same time, it is possible to solve all the problems occurring in the conventional process in one process.

상술한 질산과 암모늄염을 첨가한 슬러리를 사용하는 화학적기계적연마 공정의 조건은, 먼저 티타늄알루미늄나이트라이드의 연마속도와 산화막과의 연마선태비를 고려하여 공정 조건을 결정하는데, 그 공정 조건은 연마압력을 1psi∼7psi로 설정하고, 테이블 회전속도를 100fpm∼600fpm(feet per minute)로 설정하며, 종말점검출(End point detect)을 사용하여 산화막의 노출되는 시점을 감지한다.The conditions of the chemical mechanical polishing process using the slurry to which nitric acid and ammonium salt are added as described above first determine the process conditions in consideration of the polishing rate of titanium aluminum nitride and the polishing line ratio with the oxide film. Is set to 1psi ~ 7psi, the table rotational speed is set to 100fpm ~ 600fpm (feet per minute), and the end point detect (end point detect) to detect the exposure point of the oxide film.

그리고, 티타늄알루미늄나이트라이드를 연마하다가 산화막이 노출되면 디싱 및 침식을 최소화시킬 수 있는 공정 조건을 사용하는데, 그 공정 조건은 연마압력을 1psi∼2psi로 설정하고, 테이블 회전속도를 500fpm∼600fpm(feet per minute)로 설정한다.In addition, while polishing titanium aluminum nitride, when the oxide film is exposed, process conditions are used to minimize dishing and erosion. The process conditions are set at 1 psi to 2 psi and the table rotation speed is set at 500 fpm to 600 fpm (feet). per minute).

그리고, 슬러리는 산화세륨(CeO2) 또는 산화지르코늄(ZrO2) 중 어느 하나의 연마제, 질산과 암모늄염을 포함한다. 이 때, 연마제의 입자크기는 0.25㎛∼0.6㎛이며, 첨가되는 암모늄염은 슬러리의 pH에 영향이 없는 NH4NO2를 이용하되 선택비를 고려하여 농도를 10wt%∼20wt%가 되도록 조절한다.The slurry contains an abrasive of either cerium oxide (CeO 2 ) or zirconium oxide (ZrO 2 ), nitric acid and ammonium salt. At this time, the particle size of the abrasive is 0.25㎛ ~ 0.6㎛, the ammonium salt to be added using NH 4 NO 2 does not affect the pH of the slurry, but the concentration is adjusted to 10wt% to 20wt% in consideration of the selection ratio.

도 3은 질산과 암모늄염을 첨가한 슬러리를 이용하여 티타늄알루미늄나이트라이드를 화학적기계적연마한 상태를 도시한 도면이다.FIG. 3 is a diagram illustrating a state in which chemical mechanical polishing of titanium aluminum nitride is performed using a slurry to which nitric acid and an ammonium salt are added.

도 3에 도시된 바와 같이, 소정 공정이 완료된 반도체기판(23) 또는 하부층상에 층간절연막으로서 산화막(24)을 형성하고, 산화막(12)을 선택적으로 식각하여 플러그용 콘택홀을 형성한다. 콘택홀을 포함한 전면에 폴리실리콘을 증착한 후 에치백하여 콘택홀의 소정 깊이까지 매립되는 폴리실리콘플러그(25)를 형성한다. 폴리실리콘플러그(25)를 포함한 전면에 티타늄을 증착하고 열처리하여 폴리실리콘플러그(25)상에 티타늄실리사이드(TiSi2)(26)를 형성한 후, 미반응 티타늄을 제거한다. 이 때, 콘택홀의 소정깊이까지 매립된 폴리실리콘플러그(25)와 티타늄실리사이드(26)의 적층구조가 형성된다.As shown in FIG. 3, an oxide film 24 is formed as an interlayer insulating film on a semiconductor substrate 23 or a lower layer where a predetermined process is completed, and the oxide film 12 is selectively etched to form a plug contact hole. Polysilicon is deposited on the entire surface including the contact hole and then etched back to form a polysilicon plug 25 that is embedded to a predetermined depth of the contact hole. Titanium is deposited on the entire surface including the polysilicon plug 25 and heat treated to form titanium silicide (TiSi 2 ) 26 on the polysilicon plug 25, and then unreacted titanium is removed. At this time, the laminated structure of the polysilicon plug 25 and the titanium silicide 26 buried to a predetermined depth of the contact hole is formed.

계속해서, 티타늄실리사이드(26)를 포함한 전면에 티타늄알루미늄나이트라이드(27)를 증착한 후, 질산과 암모늄염이 첨가된 산화세륨이나 산화지르코늄을 연마제로 포함하는 슬러리를 이용하여 티타늄알루미늄나이트라이드(15)를 화학적기계적연마하여 티타늄실리사이드(26)에 접하여 콘택홀을 완전히 매립시키는 티타늄알루미늄나이트라이드(27)를 형성한다.Subsequently, titanium aluminum nitride 27 is deposited on the entire surface including titanium silicide 26, and then titanium aluminum nitride (15) is used by using a slurry containing cerium oxide or zirconium oxide to which nitric acid and ammonium salt are added as an abrasive. ) Is chemically polished to form titanium aluminum nitride 27 which completely contacts the titanium silicide 26 to completely fill the contact hole.

이 때, 산화막(24)이 노출되더라도 티타늄알루미늄나이트라이드(27)의 과도연마로 인한 디싱 현상이 발생되지 않으며, 산화막(24)이 침식되는 현상이 나타난지 않는다.At this time, even if the oxide film 24 is exposed, dishing due to excessive polishing of the titanium aluminum nitride 27 does not occur, and the phenomenon that the oxide film 24 is eroded does not appear.

본 발명의 실시예는 캐패시터에 적용되는 확산배리어막인 티타늄알루미늄나이트라이드를 예로 들어 설명하였으나, 티탄늄알루미늄나이트라이드를 이용한 모든반도체소자에서 티타늄알루미늄나이트라이드를 화학적기계적연마하는 공정에 적용될 수 있다.An embodiment of the present invention has been described using titanium aluminum nitride, which is a diffusion barrier film applied to a capacitor, as an example, but may be applied to a process for chemical mechanical polishing titanium aluminum nitride in all semiconductor devices using titanium aluminum nitride.

본 발명의 기술 사상은 상기 바람직한 실시예에 따라 구체적으로 기술되었으나, 상기한 실시예는 그 설명을 위한 것이며 그 제한을 위한 것이 아님을 주의하여야 한다. 또한, 본 발명의 기술 분야의 통상의 전문가라면 본 발명의 기술 사상의 범위 내에서 다양한 실시예가 가능함을 이해할 수 있을 것이다.Although the technical idea of the present invention has been described in detail according to the above preferred embodiment, it should be noted that the above-described embodiment is for the purpose of description and not of limitation. In addition, those skilled in the art will understand that various embodiments are possible within the scope of the technical idea of the present invention.

상술한 바와 같은 본 발명은 확산배리어막인 티타늄알루미늄나이트라이드를 화학적기계적연마할 때, 질산과 암모늄염을 동시에 첨가한 슬러리를 사용하므로써 티타늄알루미늄나이트라이드의 부식속도와 용해속도를 증가시키고 디싱 또는 침식 현상을 방지하여 확산배리어 특성이 우수한 티타늄알루미늄나이트라이드를 제조할 수 있으며, 일종의 슬러리로 한 번의 공정을 진행하므로써 화학적기계적연마 공정을 단순화시킬 수 있는 효과가 있다.In the present invention as described above, the chemical mechanical polishing of titanium aluminum nitride, which is a diffusion barrier film, increases the corrosion rate and dissolution rate of titanium aluminum nitride by using a slurry to which nitric acid and ammonium salt are added at the same time. Titanium aluminum nitride can be produced by preventing the excellent diffusion barrier properties, and the chemical mechanical polishing process can be simplified by performing a single process with a kind of slurry.

그리고, 화학적기계적연마 공정이 용이하고 단순하므로 공정 마진을 증가시킬 수 있고 소자의 수율을 증가시킬 수 있는 효과가 있다.In addition, since the chemical mechanical polishing process is easy and simple, the process margin can be increased and the yield of the device can be increased.

Claims (9)

반도체소자의 확산배리어막 제조 방법에 있어서,In the method of manufacturing a diffusion barrier film of a semiconductor device, 소정 공정이 완료된 반도체기판상에 산화막을 형성하는 단계;Forming an oxide film on the semiconductor substrate on which a predetermined process is completed; 상기 산화막상에 티타늄알루미늄나이트라이드를 형성하는 단계; 및Forming titanium aluminum nitride on the oxide film; And 질산과 암모늄염이 동시에 첨가된 슬러리를 이용하여 상기 티타늄알루미늄나이트라이드를 화학적기계적연마하는 단계Chemical mechanical polishing of the titanium aluminum nitride using a slurry to which nitric acid and ammonium salt are added at the same time 를 포함하여 이루어짐을 특징으로 하는 티타늄알루미늄나이트라이드의 화학적기계적연마 방법.Chemical mechanical polishing method of titanium aluminum nitride, characterized in that comprises a. 제 1 항에 있어서,The method of claim 1, 상기 티타늄알루미늄나이트라이드를 화학적기계적연마하는 단계는,Chemical mechanical polishing of the titanium aluminum nitride, 상기 티타늄알루미늄나이트라이드의 연마속도와 상기 산화막과의 연마선택비를 고려한 조건으로 연마하는 제 1 단계; 및A first step of polishing under conditions in consideration of the polishing rate of the titanium aluminum nitride and the polishing selectivity with respect to the oxide film; And 상기 산화막이 노출되면 디싱 및 침식 현상을 최소화시킬 수 있는 조건으로 연마하는 제 2 단계A second step of polishing under conditions that can minimize dishing and erosion when the oxide film is exposed 를 포함하여 이루어짐을 특징으로 하는 티타늄알루미늄나이트라이드의 화학적기계적연마 방법.Chemical mechanical polishing method of titanium aluminum nitride, characterized in that comprises a. 제 2 항에 있어서,The method of claim 2, 상기 제 1 단계는,The first step is, 연마압력을 1psi∼7psi로 설정하고, 테이블 회전속도를 100fpm∼600fpm로 설정하여 이루어지며, 종말점검출법을 사용하여 상기 산화막의 노출되는 시점을 감지하는 것을 특징으로 하는 티타늄알루미늄나이트라이드의 화학적기계적연마 방법.The polishing pressure is set to 1 psi to 7 psi and the table rotational speed is set to 100 fpm to 600 fpm, and the chemical mechanical polishing method of titanium aluminum nitride is characterized by detecting the point of exposure of the oxide film using an endpoint detection method. . 제 2 항에 있어서,The method of claim 2, 상기 제 2 단계는,The second step, 연마압력을 1psi∼2psi로 설정하고, 테이블 회전속도를 500fpm∼600fpm로 설정하여 이루어지는 것을 특징으로 하는 티타늄알루미늄나이트라이드의 화학적기계적연마 방법.A chemical mechanical polishing method of titanium aluminum nitride, wherein the polishing pressure is set at 1 psi to 2 psi and the table rotational speed is set at 500 fpm to 600 fpm. 제 1 항에 있어서,The method of claim 1, 상기 슬러리는 산화세륨 또는 산화지르코늄 중 어느 하나의 연마제를 포함하는 것을 특징으로 하는 티타늄알루미늄나이트라이드의 화학적기계적연마 방법.The slurry is a chemical mechanical polishing method of titanium aluminum nitride, characterized in that containing an abrasive of either cerium oxide or zirconium oxide. 제 5 항에 있어서,The method of claim 5, 상기 연마제의 입자크기는 0.25㎛∼0.6㎛인 것을 특징으로 하는 티타늄알루미늄나이트라이드의 화학적기계적연마 방법.Particle size of the abrasive is 0.25 to 0.6 ㎛ chemical mechanical polishing method of titanium aluminum nitride. 제 1 항에 있어서,The method of claim 1, 상기 첨가되는 암모늄염은 NH4NO2를 이용하되, 상기 슬러리내에서 10wt%∼20wt%의 농도가 되도록 조절하는 것을 특징으로 하는 티타늄알루미늄나이트라이드의 화학적기계적연마 방법.The ammonium salt is added using NH 4 NO 2 , the chemical mechanical polishing method of titanium aluminum nitride, characterized in that to adjust the concentration to 10wt% to 20wt% in the slurry. 제 1 항에 있어서,The method of claim 1, 상기 첨가되는 질산은 상기 슬러리내에서 1wt%∼5wt%의 농도가 되도록 조절하는 것을 특징으로 하는 티타늄알루미늄나이트라이드의 화학적기계적연마 방법.The added nitric acid is controlled to the concentration of 1wt% to 5wt% in the slurry, the chemical mechanical polishing method of titanium aluminum nitride. 제 1 항에 있어서,The method of claim 1, 상기 티타늄알루미늄나이트라이드와 상기 산화막의 연마선택비는 1:1을 유지하는 것을 특징으로 하는 티타늄알루미늄나이트라이드의 화학적기계적연마 방법.The method of chemical mechanical polishing of titanium aluminum nitride is characterized in that the polishing selectivity between the titanium aluminum nitride and the oxide film is maintained at 1: 1.
KR10-2000-0077848A 2000-12-18 2000-12-18 Method for chemical mechanical polishing of titanium-aluminium-nitride KR100407296B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR10-2000-0077848A KR100407296B1 (en) 2000-12-18 2000-12-18 Method for chemical mechanical polishing of titanium-aluminium-nitride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR10-2000-0077848A KR100407296B1 (en) 2000-12-18 2000-12-18 Method for chemical mechanical polishing of titanium-aluminium-nitride

Publications (2)

Publication Number Publication Date
KR20020048636A true KR20020048636A (en) 2002-06-24
KR100407296B1 KR100407296B1 (en) 2003-11-28

Family

ID=27682844

Family Applications (1)

Application Number Title Priority Date Filing Date
KR10-2000-0077848A KR100407296B1 (en) 2000-12-18 2000-12-18 Method for chemical mechanical polishing of titanium-aluminium-nitride

Country Status (1)

Country Link
KR (1) KR100407296B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008060505A1 (en) * 2006-11-15 2008-05-22 Cabot Microelectronics Corporation Methods for polishing aluminum nitride

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5858813A (en) * 1996-05-10 1999-01-12 Cabot Corporation Chemical mechanical polishing slurry for metal layers and films
US5773364A (en) * 1996-10-21 1998-06-30 Motorola, Inc. Method for using ammonium salt slurries for chemical mechanical polishing (CMP)
US6309560B1 (en) * 1996-12-09 2001-10-30 Cabot Microelectronics Corporation Chemical mechanical polishing slurry useful for copper substrates
JP3371775B2 (en) * 1997-10-31 2003-01-27 株式会社日立製作所 Polishing method
KR19990085105A (en) * 1998-05-13 1999-12-06 윤종용 Slurry for metal film CMP and CMP method using the same
US6136714A (en) * 1998-12-17 2000-10-24 Siemens Aktiengesellschaft Methods for enhancing the metal removal rate during the chemical-mechanical polishing process of a semiconductor
KR100645841B1 (en) * 1998-12-30 2007-03-02 주식회사 하이닉스반도체 Polysilicon Plug Forming Method Using Abrasive Stopping Film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008060505A1 (en) * 2006-11-15 2008-05-22 Cabot Microelectronics Corporation Methods for polishing aluminum nitride

Also Published As

Publication number Publication date
KR100407296B1 (en) 2003-11-28

Similar Documents

Publication Publication Date Title
KR100510977B1 (en) Polishing compound for chemimechanical polishing and method for polishing substrate
KR100450987B1 (en) Chemical mechanical polishing slurry
US5836806A (en) Slurries for chemical mechanical polishing
US6541384B1 (en) Method of initiating cooper CMP process
US7052625B2 (en) Slurry and use thereof for polishing
KR20000035287A (en) Semiconductor device and method for manufacturing the same
KR101053712B1 (en) Combinations, Methods, and Compositions for Chemical Mechanical Planarization of Tungsten-Containing Substrates
JP2004512681A (en) Chemical mechanical polishing slurry and polishing method
KR100535074B1 (en) Slurry for Chemical Mechanical Polishing of Ruthenium and the Process for Polishing Using It
KR20040068294A (en) Methods for planarization of group ⅷ metal-containing surfaces using complexing agents
JP2003086548A (en) Manufacturing method of semiconductor device and polishing liquid therefor
KR20030048058A (en) Slurry for chemical-mechanical polishing copper damascene structures
EP1544901A1 (en) Polishing compound composition, method for producing same and polishing method
US20060261041A1 (en) Method for manufacturing metal line contact plug of semiconductor device
JP4756814B2 (en) Ruthenium CMP solution and ruthenium pattern forming method using them
JP3780767B2 (en) Polishing liquid for metal and method for polishing substrate
KR20040068293A (en) Methods for planarization of group ⅷ metal-containing surfaces using oxidizing gases
US7731864B2 (en) Slurry for chemical mechanical polishing of aluminum
US20060084271A1 (en) Systems, methods and slurries for chemical mechanical polishing
KR100407296B1 (en) Method for chemical mechanical polishing of titanium-aluminium-nitride
US20020125460A1 (en) Compositions for chemical mechanical planarization of tungsten
KR100645841B1 (en) Polysilicon Plug Forming Method Using Abrasive Stopping Film
JP4683681B2 (en) Polishing liquid for metal and substrate polishing method using the same
JP4224221B2 (en) Polishing liquid for conductor and polishing method using the same
JP2001085376A (en) Method for polishing substrate

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20101025

Year of fee payment: 8

LAPS Lapse due to unpaid annual fee