KR20020008710A - Cu-ni-sn-al, si, sr, ti, b alloys for high strength wire or plate and its manufacturing method - Google Patents
Cu-ni-sn-al, si, sr, ti, b alloys for high strength wire or plate and its manufacturing method Download PDFInfo
- Publication number
- KR20020008710A KR20020008710A KR1020000042761A KR20000042761A KR20020008710A KR 20020008710 A KR20020008710 A KR 20020008710A KR 1020000042761 A KR1020000042761 A KR 1020000042761A KR 20000042761 A KR20000042761 A KR 20000042761A KR 20020008710 A KR20020008710 A KR 20020008710A
- Authority
- KR
- South Korea
- Prior art keywords
- copper
- nickel
- tin
- alloy
- aluminum
- Prior art date
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/06—Alloys based on copper with nickel or cobalt as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
- C22C9/02—Alloys based on copper with tin as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/08—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of copper or alloys based thereon
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Conductive Materials (AREA)
Abstract
Description
본 발명은 고강도 선재 및 판재용 구리(Cu)-니켈(Ni)-주석(Sn)-알루미늄(Al), 실리콘(Si), 스트론튬(Sr), 티타늄(Ti), 보론(B) 합금 및 그 제조방법에 관한 것이다.The present invention is a copper (Cu) -nickel (Ni) -tin (Sn) -aluminum (Al), silicon (Si), strontium (Sr), titanium (Ti), boron (B) alloy and It relates to a manufacturing method.
기존의 구리합금 중에서 스피노달 분해강화 효과로써 고강도를 나타내는 것으로는 구리(Cu)-니켈(Ni)-주석(Sn)계 3원합금이 있으며, 이 합금의 대표적인 조성은 중량 퍼센트로서 9%의 니켈(Ni)과 6%의 주석(Sn)을 함유하며 나머지 85%는 구리(Cu)로 구성된다.Among the existing copper alloys, copper (Cu) -nickel (Ni) -tin (Sn) -based ternary alloys exhibit high strength as a spinodal decomposition strengthening effect. The typical composition of this alloy is 9% nickel by weight. (Ni) and 6% tin (Sn), with the remaining 85% composed of copper (Cu).
85% 구리(Cu)-9% 니켈(Ni)-6% 주석(Sn)계 3원합금은 스피노달 분해강화 효과를 이용한 가공열처리를 통하여 인장강도를 1,000MPa 이상 얻을 수 있어서, 전기부품이나 특수 목적용 고강도 스프링용으로 사용되고 있다.85% copper (Cu)-9% nickel (Ni)-6% tin (Sn) -based ternary alloy can obtain tensile strength of 1,000 MPa or more through processing heat treatment using spinodal decomposition strengthening effect. It is used for the purpose high strength spring.
그러나 구리(Cu)-니켈(Ni)-주석(Sn)계 스피노달 분해강화 합금에서 주석의 함량이 6% 이상이 되면 주석의 주상정 입계석출로 인하여 주괴의 열간가공이 불가능하여 분말야금법에 의한 판재, 봉재 및 선재가 일부 생산되고 있으나 제조공정의 어려움, 품질의 안정성, 고비용 및 양산성에 문제가 있으며, 그 단가가 매우 고가라는 경제적 문제점이 있다.However, in the case of copper (Cu) -nickel (tin) -tin (Sn) -based spinodal decomposition-reinforced alloys, when the tin content is 6% or more, the ingot is not available for hot working due to the precipitation of the columnar grain boundary of the tin. Plate, bar and wire by the production of some, but there are problems in the manufacturing process, the stability of the quality, high cost and mass production, there is an economic problem that the unit price is very expensive.
상기와 같은 문제점을 해결하기 위한 본 발명의 목적은 구리-니켈-주석 합금에 있어서 니켈과 주석을 주 합금원소로 하나 고가인 니켈(Ni)과 주석의 일부를 줄이고 이에 따른 재료강도의 보완과 미세조직을 제어할 수 있는 기능을 갖는 원소들을 첨가하여 새로운 고강도 합금 및 그 제조방법을 제공하는데 있다.An object of the present invention for solving the above problems is to reduce the portion of nickel (Ni) and tin, which is nickel and tin as the main alloying element in the copper-nickel-tin alloy, thereby reducing the material strength and fine It is to provide a new high-strength alloy and its manufacturing method by adding elements having a function to control the structure.
상기와 같은 본 발명은 합금조성범위를 1.0 ∼ 8.0 wt%(중량 백분율)니켈(Ni)과, 1.0 ∼ 6.0 wt%(중량 백분율)주석(Sn)과, 총합량을 0.1 ∼ 5.0 wt%(중량 백분율)로한 알루미늄(Al), 실리콘(Si), 스트론튬(Sr), 티타늄(Ti) 및 보론(B)으로 이루어진 군중에서 선택된 2 종 이상의 원소와, 나머지는 구리(Cu)로 조성함으로서 인장강도를 1,000 Mpa 이상, 연신율을 5 ∼ 10%를 얻고 있으며, 전기비저항치도 10 ∼ 14 μΩcm를 나타내는 고강도 동합금 및 그 제조방법을 제공함으로써 달성된다.In the present invention as described above, the alloy composition range is 1.0 to 8.0 wt% (weight percent) nickel (Ni), 1.0 to 6.0 wt% (weight percent) tin (Sn), and the total amount is 0.1 to 5.0 wt% (weight). Tensile strength by forming two or more elements selected from the group consisting of aluminum (Al), silicon (Si), strontium (Sr), titanium (Ti) and boron (B), and the remainder of copper (Cu). It is achieved by providing a high-strength copper alloy having a tensile strength of 1,000 Mpa or more and having an elongation of 5 to 10%, and having an electrical resistivity of 10 to 14 mu OMEGA cm and a method for producing the same.
상기한 바와 같은 목적을 달성하고 종래의 결점을 보완하기 위한 과제를 수행하는 본 발명의 실시예인 구성과 그 작용을 상세히 설명하면 다음과 같다.When explaining the configuration and the operation of the embodiment of the present invention to accomplish the object as described above and to perform the task for compensating the conventional drawbacks in detail as follows.
본 발명의 합금은 1.0 ∼ 8.0 wt%(중량 백분율)니켈(Ni)과, 1.0 ∼ 6.0 wt%(중량 백분율)주석(Sn)과, 총합량을 0.1 ∼ 5.0 wt%(중량 백분율)로한 알루미늄(Al), 실리콘(Si), 스트론튬(Sr), 티타늄(Ti) 및 보론(B)으로 이루어진 군중에서 선택된 2 종 이상의 원소와, 나머지는 구리(Cu)로 조성된다.The alloy of the present invention is made of aluminum (1.0-8.0 wt% (wt%) nickel (Ni), 1.0-6.0 wt% (wt%) tin (Sn) and total amount of 0.1-5.0 wt% (wt%)). At least two elements selected from the group consisting of Al), silicon (Si), strontium (Sr), titanium (Ti) and boron (B), and the remainder are composed of copper (Cu).
상기에서 스피노달 분해강화효과 외에 알루미늄 및 실리콘을 첨가함으로써 석출강화효과를 얻었으며,The precipitation strengthening effect was obtained by adding aluminum and silicon in addition to the spinodal decomposition strengthening effect.
상기에서 스트론튬, 티타늄 및 보론 등을 첨가하여 조직미세화 등을 달성하였다.In the above, strontium, titanium, boron, and the like were added to achieve microstructure.
또한 상기 알루미늄과 실리콘은 석출강화를 목적으로 첨가하나 용탕 속에서 강력한 탈산작용에 의한 정련효과와 함께 용탕의 유동성도 개선하며, 미량으로 첨가하는 스트론튬, 티타늄 및 보론 등은 접종효과로써 주상조직을 미세화 시키며, 제조공정 중에서 소성가공 후에 소둔열처리시에 결정성장을 억제하여 기지조직을 미세화 시키는 효과를 나타낸다.In addition, the aluminum and silicon are added for the purpose of precipitation strengthening, but the refining effect by the strong deoxidation effect in the molten metal improves the fluidity of the molten metal, and the addition of a small amount of strontium, titanium, and boron is inoculated to refine the columnar tissue. In addition, it exhibits the effect of miniaturizing the matrix structure by inhibiting crystal growth during annealing heat treatment after plastic working in the manufacturing process.
실험한 결과에 의하면, 시효강화효과가 우수한 원소중에서 알루미늄이 효과가 우수하면서 정련효과도 나타나고 있다.According to the results of the experiment, aluminum has excellent refining effect among the elements having excellent aging enhancing effect.
그리고 결정미세화 효과가 우수한 스트론튬, 티타늄, 보론 등은 알루미늄-스트론튬, 알루미늄-티타늄-보론 등의 모합금으로서 저렴하면서 구하기도 용이하다.In addition, strontium, titanium, and boron, which have excellent crystal refining effect, are inexpensive and easy to obtain as mother alloys such as aluminum-strontium, aluminum-titanium-boron, and the like.
그리고 이들 원소는 이렇게 복합적으로 합성된 경우에 합금하기가 좋으며, 성분 손실이 적다.And these elements are good to alloy when composited in this way, and the component loss is small.
본 발명의 경우에 박팜 및 세선까지의 가공성과 재료의 강도향상을 위해서 인고트의 주조조직에서 가공조직에 이르기까지 결정립을 미세하게 제어할 필요가 있으며, 이를 위해 접종처리로써 주조 인고트 단계에서부터 효과를 얻을 수 있는 원소들이다.In the case of the present invention, it is necessary to finely control the grains from the casting structure of the ingot to the processing structure in order to improve the workability up to the thin palm and thin wire, and for this purpose, the effect from the casting ingot stage to the inoculation treatment Are the elements that can be obtained.
그리고 상기 각 성분별 수치를 한정한 이유는 한정 범위 이하에서는 효과가 거의 없으며, 그 이상에서는 오히려 기계적 성질에 악영향을 미치므로 수치를 제한하엿다.In addition, the reason for limiting the numerical value of each component has little effect under the limited range, and above, the numerical value was limited because it adversely affects the mechanical properties.
구리-니켈-주석 합금에서의 재료강도는 스피노달 분해강화효과에만 의존할 수 있으나, 본 발명에서는 스피노달 분해강화효과 외에 알루미늄, 실리콘, 스트론튬, 티타늄 및 보론 등을 첨가하여 석출강화 및 조직미세화 등을 도입하였다.The material strength in the copper-nickel-tin alloy may depend only on the spinodal cracking strengthening effect, but in the present invention, addition of aluminum, silicon, strontium, titanium, and boron in addition to the spinodal cracking strengthening effect may result in precipitation strengthening and microstructure. Was introduced.
즉, 알루미늄과 실리콘은 석출강화를 목적으로 첨가하나 용탕 속에서 강력한 탈산작용에 의한 정련효과와 함께 용탕의 유동성도 개선하며, 미량으로 첨가하는 스트론튬, 티타늄 및 보론 등은 접종효과로써 주상조직을 미세화시키며, 제조공정 중에서 소성가공 후에 소둔열처리시에 결정성장을 억제하여 기지조직을 미세화 시키는 효과를 나타낸다.That is, aluminum and silicon are added for the purpose of precipitation strengthening, but the refining effect of the strong deoxidation in the molten metal improves the fluidity of the molten metal, and the strontium, titanium, and boron added in small amounts make the columnar tissue fine with the inoculation effect. In addition, it exhibits the effect of miniaturizing the matrix structure by inhibiting crystal growth during annealing heat treatment after plastic working in the manufacturing process.
그리고 제조공정 중에서 주괴의 제조는 열간가공이 가능한, 주석이 4% 이하인, 합금방안의 경우에는 주괴의 살두께가 70 mm 이상의 두꺼운 판재나 직경이 Φ100 mm 이상의 큰 대경봉으로 연속주조나 금형주조로 인고트를 제조하고,In the manufacturing process, the production of ingots is performed by continuous casting or mold casting in the case of an alloy method that can be hot worked and tin alloy is 4% or less, with a thick sheet of ingot having a thickness of 70 mm or more or a large diameter rod having a diameter of Φ100 mm or more. Make an ingot,
냉간가공이 유리한, 주석이 4% 이상인, 합금방안의 경우에는 주괴의 살두께가 30 mm 이하의 얇은 판재나 직경이 Φ 20 mm 이하의 작은 소경봉으로 연속주조하여 인고트를 제조하였다.In the case of an alloy scheme having 4% or more of tin, which is advantageous in cold working, the ingot was manufactured by continuous casting with a thin plate having an ingot thickness of 30 mm or less or a small diameter rod having a diameter of Φ 20 mm or less.
이렇게 제조된 주괴 중에서 판재나 소경봉 상태의 주괴는 균질화처리 후, 냉간압연 또는 냉간인발에 의해 85% 이상의 소성가공으로 주조조직을 완전히 제거한 후, 이를 850±50℃의 온도에서 0.5∼ 1.0 시간 유지한 후에 수냉하여 용체화처리를 행한다.In the ingot thus prepared, the ingot in the form of plate or small diameter rod is completely homogenized and then completely removed from the cast structure by 85% or more plastic working by cold rolling or cold drawing, and then maintained at a temperature of 850 ± 50 ° C. for 0.5 to 1.0 hours. After cooling, the solution is subjected to a solution treatment.
그리고 열간압연이나 압출에 의해 제조된 판재나 선재의 경우도 850±50℃의 온도에서 0.5∼1.0 시간 유지한 후에 수냉하여 용체화처리를 행한다.Also, in the case of a plate or a wire rod produced by hot rolling or extrusion, the solution is subjected to solution cooling after holding at a temperature of 850 ± 50 ° C. for 0.5 to 1.0 hours, followed by water cooling.
이렇게 용체화처리된 중간 상태의 봉재나 판재는 목표로하는 물성의 목표에 따른 냉간가공량 만큼 압연이나 인발을 한 후에 시효처리로서 300 ∼ 550℃에서 1 ∼ 10 hr 유지한 후 공냉하면 구리(Cu)-니켈(Ni)-주석(Sn)계 합금에서 나타나는 (CuxNiy)zSn 형 스피노달 분해생성물에 의한 강화효과와 구리(Cu)-니켈(Ni)-알루미늄(Al), 실리콘(Si)계 합금에서 나타나는 CuxAl, CuyNizAl, NixAl, CuxSi, CuyNizSi, NixSi 형 석출물에 의한 강화효과를 얻으므로 고강도의 동합금을 얻을 수 있다.The bar or plate in the intermediate state, which is solvated, is rolled or drawn as much as the cold working amount according to the target physical properties, and then maintained at 300 to 550 ° C. for 1 to 10 hrs as an aging treatment. Reinforcement effect of (Cu x Ni y ) z Sn type spinoidal decomposition products in) -nickel (Ni) -tin (Sn) -based alloys and copper (Cu) -nickel (Ni) -aluminum (Al), silicon ( Since the reinforcement effect by Cu x Al, Cu y Ni z Al, Ni x Al, Cu x Si, Cu y Ni z Si, and Ni x Si type precipitates appearing in Si) alloy is obtained, a high strength copper alloy can be obtained.
이러한 결과는 고가인 니켈(Ni)과 주석을 각각 8% 이하와 주석(Sn)을 6% 이하로 줄이고도 인장강도를 1,000 Mpa 이상, 연신율을 5 ∼ 10%를 얻고 있으며, 전기비저항치도 10 ∼ 14 μΩcm를 나타내는 고강도 동합금을 제조할 수 있다.These results show that even when the expensive nickel (Ni) and tin are reduced to 8% or less and tin (Sn) to 6% or less, respectively, the tensile strength is 1,000 Mpa or more and the elongation is 5 to 10%. A high strength copper alloy exhibiting 14 μΩcm can be produced.
이하 보다 상세한 본 발명의 제조방법이다.Hereinafter, the production method of the present invention in more detail.
고강도 선재 및 판재용 동합금으로 합금조성범위를 1.0 ∼ 8.0 wt%(중량 백분율)니켈(Ni)과, 1.0 ∼ 6.0 wt%(중량 백분율)주석(Sn)과, 총합량을 0.1 ∼ 5.0 wt%(중량 백분율)로한 알루미늄(Al), 실리콘(Si), 스트론튬(Sr), 티타늄(Ti) 및 보론(B)으로 이루어진 군중에서 선택된 2 종 이상의 원소와, 나머지는 구리(Cu)로 조성되도록 각각 평량하는 단계와,Copper alloy for high-strength wire and sheet, with alloy composition range of 1.0 to 8.0 wt% (weight percentage) nickel (Ni), 1.0 to 6.0 wt% (weight percentage) tin (Sn), and total amount of 0.1 to 5.0 wt% ( Weight percent) of at least two elements selected from the group consisting of aluminum (Al), silicon (Si), strontium (Sr), titanium (Ti) and boron (B), and the basis weight so that the remainder is composed of copper (Cu) To do that,
평량한 후, 용해로 바닥에 구리(Cu)를 적당량 깔고 그 위에 니켈(Ni)을 한 층 깔고 다시 구리(Cu)를 적당량 덮고 다시 니켈(Ni)을 깔고 구리(Cu)로 덮는 방법을 반복한 적층으로 장입하되 마지막에는 구리(Cu)로써 비교적 두껍게 덮은 후, 용해를 시작하여 구리와 니켈이 모두 용해하면 슬래그를 제거하고 난 후, 용탕의 온도가 약 1,250℃ 정도가 되었을 때, 가열을 중단하거나 매우 낮은 열원을 공급하는 정도로 하고 주석(Sn)을 비롯하여, 알루미늄(Al), 실리콘(Si), 스트롬튬(Sr), 티타늄(Ti), 보론(B) 중에서 첨가원소로 선정된 원소들을 연속적으로 투입하고 잘 교반하여 용해시키는 용해합금단계와,After weighing, lay a proper amount of copper (Cu) at the bottom of the melting furnace, lay a layer of nickel (Ni) on it, cover copper (Cu) again, add nickel (Ni), and cover with copper (Cu). Charge it, and finally cover it with copper (Cu), and then start dissolution. When both copper and nickel are dissolved, slag is removed and the heating is stopped when the temperature of the molten metal reaches about 1,250 ℃. It supplies a low heat source and continuously inputs elements selected as additive elements from aluminum (Al), silicon (Si), strontium (Sr), titanium (Ti), and boron (B) as well as tin (Sn). And the melt alloy step of stirring well to dissolve,
합금원소들이 충분히 용해하고 용탕온도도 1100∼1250℃ 정도로서 용탕의 유동성이 좋아지면, 주석이 4% 이하로 열간가공이 가능한 합금방안의 경우에는 주괴의 살두께가 70 mm 이상의 두꺼운 판재나 직경이 Φ100 mm 이상의 큰 대경봉으로 연속주조나 금형주조로 인고트를 제조하고, 냉간가공이 유리한 주석이 4% 이상인합금방안의 경우에는 주괴의 살두께가 30 mm 이하의 얇은 판재나 직경이 Φ20 mm 이하의 작은 소경봉으로 연속주조하여 주괴를 만드는 단계와,When alloy elements are sufficiently dissolved and the melt temperature is about 1100 ~ 1250 ℃ and the flowability of the molten metal is improved, in the case of the alloy method which can be hot-processed to 4% or less tin, the thick plate of the ingot having a thickness of 70 mm or more or Φ100 Ingots are manufactured by continuous casting or mold casting with large diameter rods larger than mm, and in the case of alloys with 4% or more of tin, which is advantageous for cold working, thin plates having an ingot thickness of 30 mm or less or diameters of Φ20 mm or less Making a ingot by continuous casting with a small diameter rod,
이렇게 제조된 주괴 중에서 판재나 소경봉 상태의 주괴는 균질화처리 후, 냉간압연 또는 냉간인발에 의해 85% 이상의 소성가공으로 주조조직을 완전히 제거한 후, 이를 850±50℃의 온도에서 0.5 ∼ 1.0 시간 유지한 후에 수냉하여 용체화처리를 행하며, 열간압연이나 압출에 의해 제조된 판재나 선재의 경우도 850±50℃의 온도에서 0.5 ∼ 1.0 시간 유지한 후에 수냉하여 용체화처리를 행하는 단계와,In the ingot thus prepared, the ingot in the form of plate or small diameter rod is completely homogenized and then completely removed from the cast structure by 85% or more plastic working by cold rolling or cold drawing, and then maintained at a temperature of 850 ± 50 ° C. for 0.5 to 1.0 hours. After cooling, the solution is subjected to the solution treatment, and in the case of a plate or wire produced by hot rolling or extrusion, the solution is subjected to solution cooling after holding at 0.5 to 1.0 hour at a temperature of 850 ± 50 ° C.,
이렇게 용체화처리된 중간 상태의 봉재나 판재는 목표로하는 물성의 목표에 따른 냉간가공량 만큼 압연이나 인발을 한 후에 시효처리로서 300∼550℃에서 1∼10hr 유지한 후 공냉하면 구리(Cu)-니켈(Ni)-주석(Sn)계 합금에서 나타나는 (CuxNiy)zSn 형 스피노달 분해생성물에 의한 강화효과와 구리(Cu)-니켈(Ni)-알루미늄(Al), 실리콘(Si)계 합금에서 나타나는 CuxAl, CuyNizAl, NixAl, CuxSi, CuyNizSi, NixSi 형 석출물에 의한 강화효과를 얻는 시효처리 단계를 거친다.The bar or plate in the intermediate state, which is solvated, is rolled or drawn as much as the cold working amount according to the target physical property, and then maintained at 300 to 550 ° C for 1 to 10 hours as an aging treatment. -Strengthening effect of (Cu x Ni y ) z Sn-type spinoidal decomposition products in nickel (Ni) -tin (Sn) -based alloys and copper (Cu) -nickel (Ni) -aluminum (Al) and silicon (Si) It undergoes an aging treatment step to obtain reinforcing effect by Cu x Al, Cu y Ni z Al, Ni x Al, Cu x Si, Cu y Ni z Si and Ni x Si type precipitates appearing in the) -based alloy.
다음의 표 1은 본 발명에서 제시하는 합금들의 예이며, 표 2와 표 3은 가공열처리에 따른 인장강도와 연신율의 변화이며, 표 4는 가공열처리에 따른 전기비저항치의 변화이다.The following Table 1 is an example of the alloys presented in the present invention, Tables 2 and 3 are changes in tensile strength and elongation according to the processing heat treatment, Table 4 is a change in the electrical resistivity value according to the processing heat treatment.
표 2, 표 3 및 표 4에서 보면, 기존의 85% 구리(Cu)-9% 니켈(Ni)-6%주석(Sn) 3원합금의 경우에 300 ∼ 400℃에서 3 시간 시효처리하면 인장강도는 1,043 ∼ 1,195 MPa, 연신율은 7 ∼ 9%를 얻을 수 있으며, 전기비저항치는 10 ∼ 14 μΩcm를 나타내고 있다.In Table 2, Table 3 and Table 4, when 85% copper (Cu) -9% nickel (Ni) -6% tin (Sn) ternary alloy is aged for 3 hours at 300 to 400 ° C, tensile The strength is 1,043 to 1,195 MPa and the elongation is 7 to 9%, and the electrical resistivity value is 10 to 14 µΩcm.
그러나 구리(Cu)-9% 니켈(Ni)-6% 주석(Sn)계에 알루미늄(Al), 실리콘(Si) 및 티타늄(Ti) 만을 첨가한 것은 인장강도가 최고 1,250 MPa까지로서 첨가하지 않은 경우의 최고 인장강도인 1,195 MPa에 비하여 그 증가가 크게 현저하지 못하며, 경우에 따라서는 오히려 1,000 MPa 이하로 저하하는 예도 나타나고 있으며, 연신율은 5% 이하로 크게 저하하고 있으며, 전기비저항치는 2∼5 μΩcm 증가하여 도전성을 해치는 것으로 나타났다.However, the addition of only aluminum (Al), silicon (Si) and titanium (Ti) to copper (Cu) -9% nickel (Ni) -6% tin (Sn) -based steels did not add tensile strength up to 1250 MPa. Compared to 1,195 MPa, which is the highest tensile strength in the case, the increase is not very remarkable, and in some cases, it is rather lowered to 1,000 MPa or less, and the elongation is greatly reduced to 5% or less, and the electrical resistivity is 2 to 5 An increase in μΩcm has been shown to compromise conductivity.
한편, 본 발명의 경우인 구리(Cu)-니켈(Ni)-주석(Sn)-알루미늄(Al), 실리콘(Si), 스트롬튬(Sr), 티타늄(Ti), 보론(B)계 합금에서와 같이, 니켈(Ni)과 주석(Sn)의 일부를 줄이고 여기에 알루미늄(Al), 실리콘(Si), 스트론튬(Sr), 티타늄(Ti) 및 보론(B) 중에서 2 종 이상의 원소를 소량 첨가한 경우의 합금계에서는 인장강도를 1,000 Mpa 이상, 연신율을 5∼10%를 얻고 있으며, 전기비저항치도 10∼14 μΩcm를 나타내는 고강도 동합금을 제조할 수 있다.Meanwhile, in the case of the present invention, in the copper (Cu) -nickel (Ni) -tin (Sn) -aluminum (Al), silicon (Si), strontium (Sr), titanium (Ti), and boron (B) -based alloys As a result, a portion of nickel (Ni) and tin (Sn) is reduced and a small amount of two or more elements of aluminum (Al), silicon (Si), strontium (Sr), titanium (Ti) and boron (B) is added thereto. In the alloy system in one case, a high strength copper alloy having a tensile strength of 1,000 Mpa or more and an elongation of 5 to 10% is obtained, and an electrical resistivity of 10 to 14 µΩcm can be produced.
그리고 특별히 주목되는 점은 알루미늄(Al), 실리콘(Si), 스트론튬(Sr), 티타늄(Ti) 및 보론(B) 등의 합금원소를 첨가한 경우에는 450℃의 고온시효처리에도 많은 합금들이 900 MPa 이상의 고강도를 유지하고 있다.In particular, when alloying elements such as aluminum (Al), silicon (Si), strontium (Sr), titanium (Ti) and boron (B) are added, many alloys are 900 even at high temperature aging at 450 ° C. The strength of MPa or more is maintained.
이상의 결과는 인장강도를 1000 MPa 이상 얻을 수 있는 새로운 고강도 재료인 구리(Cu)-니켈(Ni)-주석(Sn)-알루미늄(Al), 실리콘(Si), 스트롬튬(Sr),티타늄(Ti), 보론(B)계 합금을 개발하는 효과를 가져오게 되었으며, 특히, 고온 시효온도인 450℃ 이상의 온도에 노출되어도 열화되지 않고 고강도를 유지하는 장점을 갖는다.The results show that new high strength materials such as copper (Cu) -nickel (Ni) -tin (Sn) -aluminum (Al), silicon (Si), strontium (Sr), and titanium (Ti) can achieve tensile strengths of 1000 MPa or more. ), Has the effect of developing a boron (B) alloy, in particular, has the advantage of maintaining high strength without deterioration even when exposed to a temperature of 450 ℃ or more high temperature aging temperature.
표 1 합금의 종류 및 합금성분(wt%)Table 1 Types of Alloys and Alloy Components (wt%)
표 2 가공열처리에 따른 인장강도의 변화 (단위 : MPa)Table 2 Change in Tensile Strength by Heat Treatment (Unit: MPa)
표 3 가공열처리에 따른 연신율의 변화 (단위 : %)Table 3 Change in elongation due to heat treatment (Unit:%)
표 4 가공열처리에 따른 전기비저항의 변화 (단위 : μΩcm)Table 4 Variation of Electrical Resistivity by Heat Treatment (Unit: μΩcm)
본 발명은 상술한 특정의 바람직한 실시예에 한정되지 아니하며, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형실시가 가능한 것은 물론이고, 그와 같은 변경은 청구범위 기재의 범위 내에 있게 된다.The present invention is not limited to the above-described specific preferred embodiments, and various modifications can be made by any person having ordinary skill in the art without departing from the gist of the present invention claimed in the claims. Of course, such changes will fall within the scope of the claims.
상기와 같은 본 발명은 기존의 Cu-9Ni-6Sn 합금에서 고가인 Ni과 Sn의 일부를 줄여원가절감과 열간소성가공성을 부여하여 양산이 가능한 경제성을 갖추었고, 스피노달분해 강화형에다 석출강화 및 조직 미세화 기능을 부여한 고강도 합금으로서 고온 내열화성을 개선함으로써 인장강도를 1,000 Mpa 이상, 연신율을 5∼10%를 얻고 있으며, 전기비저항치도 10∼14 μΩcm를 나타내는 등의 장점이 있어서 그 산업상 이용가능성이 크게 기대된다.As described above, the present invention provides cost reduction and hot plasticity by reducing a part of expensive Ni and Sn in the existing Cu-9Ni-6Sn alloy, and has economic feasibility in mass production. It is a high-strength alloy with a fine structure, and has improved strength at high temperature to obtain tensile strength of 1,000 Mpa or more, elongation of 5 to 10%, and electrical resistivity of 10 to 14 μΩcm. This is greatly expected.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2000-0042761A KR100371128B1 (en) | 2000-07-25 | 2000-07-25 | Cu-Ni-Sn-Al, Si, Sr, Ti, B alloys for high strength wire or plate |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2000-0042761A KR100371128B1 (en) | 2000-07-25 | 2000-07-25 | Cu-Ni-Sn-Al, Si, Sr, Ti, B alloys for high strength wire or plate |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20020008710A true KR20020008710A (en) | 2002-01-31 |
KR100371128B1 KR100371128B1 (en) | 2003-02-05 |
Family
ID=19679828
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR10-2000-0042761A KR100371128B1 (en) | 2000-07-25 | 2000-07-25 | Cu-Ni-Sn-Al, Si, Sr, Ti, B alloys for high strength wire or plate |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100371128B1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2017148568A1 (en) * | 2016-03-03 | 2017-09-08 | Wieland-Werke Ag | Copper alloy containing tin, method for producing same, and use of same |
DE102016008754A1 (en) | 2016-07-18 | 2018-01-18 | Wieland-Werke Ag | Copper-nickel-tin alloy, process for their preparation and their use |
DE102016008745A1 (en) | 2016-07-18 | 2018-01-18 | Wieland-Werke Ag | Copper-nickel-tin alloy, process for their preparation and their use |
DE102016008757A1 (en) | 2016-07-18 | 2018-01-18 | Wieland-Werke Ag | Copper-nickel-tin alloy, process for their preparation and their use |
DE102016008758A1 (en) | 2016-07-18 | 2018-01-18 | Wieland-Werke Ag | Copper-nickel-tin alloy, process for their preparation and their use |
DE102016008753A1 (en) | 2016-07-18 | 2018-01-18 | Wieland-Werke Ag | Copper-nickel-tin alloy, process for their preparation and their use |
CN108188362A (en) * | 2017-12-15 | 2018-06-22 | 中南大学 | CuNiSn systems alloy and made-up belt combination outfield horizontal casting preparation method and device |
CN109429497A (en) * | 2017-06-22 | 2019-03-05 | 日本精线株式会社 | Spring copper alloy superfine wire and its manufacturing method |
CN110777280A (en) * | 2019-11-28 | 2020-02-11 | 安徽实友电力金具有限公司 | Copper-nickel-tin alloy for socket and preparation method thereof |
CN115896539A (en) * | 2022-12-28 | 2023-04-04 | 北冶功能材料(江苏)有限公司 | Ultrahigh-strength and fracture-resistant copper-nickel-tin alloy foil and manufacturing method thereof |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5616642A (en) * | 1979-07-20 | 1981-02-17 | Furukawa Kinzoku Kogyo Kk | High-strength corrosion-resistant copper alloy |
US5089057A (en) * | 1989-09-15 | 1992-02-18 | At&T Bell Laboratories | Method for treating copper-based alloys and articles produced therefrom |
KR100256852B1 (en) * | 1997-12-11 | 2000-05-15 | 정정원 | Manufacturing method for cu-ni-mn-sn-al alloy and same product |
KR100256851B1 (en) * | 1997-12-11 | 2000-05-15 | 정정원 | Manufacturing method for cu-ni-mn-sn-si alloy and same product |
KR100264233B1 (en) * | 1998-05-19 | 2000-08-16 | 정정원 | High strength wire and plate of cu-ni-mn-sn-ti alloy and it's manufacturing process |
KR100278117B1 (en) * | 1998-07-13 | 2001-06-01 | 정정원 | High strength wire and plate of Cu-Ni-Mn-Sn-(Al,Si,Ti) alloy and it's manufacturing method |
-
2000
- 2000-07-25 KR KR10-2000-0042761A patent/KR100371128B1/en not_active IP Right Cessation
Cited By (29)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108699631A (en) * | 2016-03-03 | 2018-10-23 | 威兰德-沃克公开股份有限公司 | Tin and copper containing alloy, manufacturing method and application thereof |
WO2017148568A1 (en) * | 2016-03-03 | 2017-09-08 | Wieland-Werke Ag | Copper alloy containing tin, method for producing same, and use of same |
DE102016008745B4 (en) | 2016-07-18 | 2019-09-12 | Wieland-Werke Ag | Copper-nickel-tin alloy, process for their preparation and their use |
US10982302B2 (en) | 2016-07-18 | 2021-04-20 | Wieland-Werke Ag | Copper-nickel-tin alloy, method for the production and use thereof |
DE102016008754A1 (en) | 2016-07-18 | 2018-01-18 | Wieland-Werke Ag | Copper-nickel-tin alloy, process for their preparation and their use |
DE102016008753A1 (en) | 2016-07-18 | 2018-01-18 | Wieland-Werke Ag | Copper-nickel-tin alloy, process for their preparation and their use |
WO2018014992A1 (en) | 2016-07-18 | 2018-01-25 | Wieland-Werke Ag | Copper-nickel-tin alloy, method for the production and use thereof |
WO2018014994A1 (en) | 2016-07-18 | 2018-01-25 | Wieland-Werke Ag | Copper-nickel-tin alloy, method for the production and use thereof |
WO2018014990A1 (en) | 2016-07-18 | 2018-01-25 | Wieland-Werke Ag | Copper-nickel-tin-alloy, method for the production and use thereof |
WO2018014993A1 (en) | 2016-07-18 | 2018-01-25 | Wieland-Werke Ag | Copper-nickel-tin alloy, method for the production and use thereof |
WO2018014991A1 (en) | 2016-07-18 | 2018-01-25 | Wieland-Werke Ag | Copper-nickel-tin alloy, method for the production and use thereof |
US11041233B2 (en) | 2016-07-18 | 2021-06-22 | Wieland-Werke Ag | Copper-nickel-tin alloy, method for the production and use thereof |
DE102016008745A1 (en) | 2016-07-18 | 2018-01-18 | Wieland-Werke Ag | Copper-nickel-tin alloy, process for their preparation and their use |
US11035024B2 (en) | 2016-07-18 | 2021-06-15 | Wieland-Werke Ag | Copper-nickel-tin alloy, method for the production thereof and use thereof |
DE102016008758A1 (en) | 2016-07-18 | 2018-01-18 | Wieland-Werke Ag | Copper-nickel-tin alloy, process for their preparation and their use |
US11035025B2 (en) | 2016-07-18 | 2021-06-15 | Wieland-Werke Ag | Copper-nickel-tin alloy, method for the production and use thereof |
US11035030B2 (en) | 2016-07-18 | 2021-06-15 | Wieland-Werke Ag | Copper-nickel-tin alloy, method for the production and use thereof |
DE102016008753B4 (en) * | 2016-07-18 | 2020-03-12 | Wieland-Werke Ag | Copper-nickel-tin alloy, process for their production and their use |
DE102016008754B4 (en) * | 2016-07-18 | 2020-03-26 | Wieland-Werke Ag | Copper-nickel-tin alloy, process for their production and their use |
DE102016008757B4 (en) | 2016-07-18 | 2020-06-10 | Wieland-Werke Ag | Copper-nickel-tin alloy, process for their production and their use |
DE102016008758B4 (en) | 2016-07-18 | 2020-06-25 | Wieland-Werke Ag | Copper-nickel-tin alloy, process for their production and their use |
DE102016008757A1 (en) | 2016-07-18 | 2018-01-18 | Wieland-Werke Ag | Copper-nickel-tin alloy, process for their preparation and their use |
CN109429497A (en) * | 2017-06-22 | 2019-03-05 | 日本精线株式会社 | Spring copper alloy superfine wire and its manufacturing method |
CN109429497B (en) * | 2017-06-22 | 2021-07-09 | 日本精线株式会社 | Copper alloy ultra-fine wire for spring and method for producing same |
CN108188362A (en) * | 2017-12-15 | 2018-06-22 | 中南大学 | CuNiSn systems alloy and made-up belt combination outfield horizontal casting preparation method and device |
CN108188362B (en) * | 2017-12-15 | 2019-10-15 | 中南大学 | CuNiSn system alloy and made-up belt combination outfield horizontal casting preparation method and device |
CN110777280A (en) * | 2019-11-28 | 2020-02-11 | 安徽实友电力金具有限公司 | Copper-nickel-tin alloy for socket and preparation method thereof |
CN115896539B (en) * | 2022-12-28 | 2024-04-26 | 北冶功能材料(江苏)有限公司 | Ultrahigh-strength fracture-resistant copper-nickel-tin alloy foil and manufacturing method thereof |
CN115896539A (en) * | 2022-12-28 | 2023-04-04 | 北冶功能材料(江苏)有限公司 | Ultrahigh-strength and fracture-resistant copper-nickel-tin alloy foil and manufacturing method thereof |
Also Published As
Publication number | Publication date |
---|---|
KR100371128B1 (en) | 2003-02-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4073667A (en) | Processing for improved stress relaxation resistance in copper alloys exhibiting spinodal decomposition | |
US4388270A (en) | Rhenium-bearing copper-nickel-tin alloys | |
KR100375306B1 (en) | Cu-Ni-Mn-Sn-Al, Si-Ce, La, Nd, Pr alloys for high strength wire or plate | |
US11427903B2 (en) | High-strength and high-conductivity Cu—Ag—Sc alloy and preparation method thereof | |
CN100532599C (en) | Fatigue resistant Cu-Ti alloy and producing method thereof | |
JP2007056365A (en) | Copper-zinc-tin alloy and manufacturing method therefor | |
KR100371128B1 (en) | Cu-Ni-Sn-Al, Si, Sr, Ti, B alloys for high strength wire or plate | |
JPH06264202A (en) | Production of high strength copper alloy | |
JP5555154B2 (en) | Copper alloy for electrical and electronic parts and method for producing the same | |
CN104294131A (en) | Age hardenable Mg-Zn-Cr-Bi-Zr alloy and preparation method thereof | |
JP4930993B2 (en) | Copper alloy material, method for producing the same, and electrode member for welding equipment | |
CN103421980B (en) | A kind of high-strength elastic brass and preparation method thereof | |
KR100413660B1 (en) | Cu-Ni-Mn-Sn-Zr, Cr alloys for corrosion resistance to sea water | |
KR100256851B1 (en) | Manufacturing method for cu-ni-mn-sn-si alloy and same product | |
CN116676521A (en) | CrCoNi-based medium entropy alloy with heterogeneous grain heterostructure and preparation method thereof | |
JP3763234B2 (en) | Method for producing high-strength, high-conductivity, high-heat-resistant copper-based alloy | |
KR102175426B1 (en) | High strength and high conductivity copper alloy and manufacturing method thereof | |
CN114672688A (en) | Copper alloy and preparation method and application thereof | |
KR100278117B1 (en) | High strength wire and plate of Cu-Ni-Mn-Sn-(Al,Si,Ti) alloy and it's manufacturing method | |
KR100264233B1 (en) | High strength wire and plate of cu-ni-mn-sn-ti alloy and it's manufacturing process | |
KR100256852B1 (en) | Manufacturing method for cu-ni-mn-sn-al alloy and same product | |
KR100444291B1 (en) | High strength phosphorous copper with fine grain structure | |
CN115821171B (en) | Trace B element doped modified high-strength high-plasticity multicomponent alloy, and preparation method and application thereof | |
EP3951000B1 (en) | Zinc alloy and manufacturing method thereof | |
JPH04210438A (en) | Continuous casting mold material made of high strength cu alloy |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E902 | Notification of reason for refusal | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20100219 Year of fee payment: 8 |
|
LAPS | Lapse due to unpaid annual fee |