[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

KR20000076579A - Mixed conducting cubic perovskite for ceramic ion transport membrane - Google Patents

Mixed conducting cubic perovskite for ceramic ion transport membrane Download PDF

Info

Publication number
KR20000076579A
KR20000076579A KR1020000004824A KR20000004824A KR20000076579A KR 20000076579 A KR20000076579 A KR 20000076579A KR 1020000004824 A KR1020000004824 A KR 1020000004824A KR 20000004824 A KR20000004824 A KR 20000004824A KR 20000076579 A KR20000076579 A KR 20000076579A
Authority
KR
South Korea
Prior art keywords
oxygen
membrane element
ceramic
cobalt
oxide
Prior art date
Application number
KR1020000004824A
Other languages
Korean (ko)
Inventor
할란유. 앤더슨
빈센트 스프렌클
잉게보르크 카우스
치에-쳉 첸
Original Assignee
조안 엠. 젤사
프랙스에어 테크놀로지, 인코포레이티드
로버트 지. 호헨스타인
도로시 엠. 보어
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 조안 엠. 젤사, 프랙스에어 테크놀로지, 인코포레이티드, 로버트 지. 호헨스타인, 도로시 엠. 보어 filed Critical 조안 엠. 젤사
Publication of KR20000076579A publication Critical patent/KR20000076579A/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/0271Perovskites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0051Inorganic membrane manufacture by controlled crystallisation, e,.g. hydrothermal growth
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion
    • B01D53/228Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion characterised by specific membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/24Dialysis ; Membrane extraction
    • B01D61/30Accessories; Auxiliary operation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • B01D67/00411Inorganic membrane manufacture by agglomeration of particles in the dry state by sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/14Dynamic membranes
    • B01D69/141Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes
    • B01D69/145Heterogeneous membranes, e.g. containing dispersed material; Mixed matrix membranes containing embedded catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/0213Silicon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0223Group 8, 9 or 10 metals
    • B01D71/02231Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/19Catalysts containing parts with different compositions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/58Fabrics or filaments
    • B01J35/59Membranes
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0251Physical processing only by making use of membranes
    • C01B13/0255Physical processing only by making use of membranes characterised by the type of membrane
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/45Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on copper oxide or solid solutions thereof with other oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/8605Porous electrodes
    • H01M4/8621Porous electrodes containing only metallic or ceramic material, e.g. made by sintering or sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/12Specific ratios of components used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/26Electrical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/024Multiple impregnation or coating
    • B01J37/0244Coatings comprising several layers
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00474Uses not provided for elsewhere in C04B2111/00
    • C04B2111/00793Uses not provided for elsewhere in C04B2111/00 as filters or diaphragms
    • C04B2111/00801Membranes; Diaphragms
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Electrochemistry (AREA)
  • Composite Materials (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Water Supply & Treatment (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Dispersion Chemistry (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

본 발명의 산소 분리 장치용 세라믹막 요소는 하기 화학식으로 나타내어지는 세라믹 물질로부터 형성된다:The ceramic membrane element for the oxygen separation device of the present invention is formed from a ceramic material represented by the formula:

A1-xA'xB1-yB'yO3-z A 1-x A ' x B 1-y B' y O 3-z

상기 식에서,Where

A는 란탄 계열 원소이고; A'은 적합한 란탄 계열 원소의 도펀트(dopant)이고; B는 티탄, 바나듐, 크롬, 망간, 철, 코발트, 니켈 및 아연 및 이들의 혼합물로 구성된 군으로부터 선택되고; B'는 구리이고; x는 0.4 내지 0.8이고; y는 0.1 내지 0.9이고; z는 0보다 크며, 화학량론적으로 결정된다. B가 0.1보다 많은 양의 코발트를 포함하는 경우에, 철의 함량은 0.05 미만이다. 본 발명의 세라믹막 요소는 비교적 저온에서 이를 통해 산소 이온을 선택적으로 수송하고, 플럭스는 약 600℃에서 검출된다. 이렇게 함으로써, 산소 분리 장치는 종종 900℃를 초과하는 작동 온도를 갖는 통상의 분리 장치 보다 낮은 온도에서 작동될 수 있다. 기계적인 안정성은 세라믹에 제 2 상을 첨가함으로써 증대될 수 있다.A is a lanthanide series element; A 'is a dopant of a suitable lanthanide series element; B is selected from the group consisting of titanium, vanadium, chromium, manganese, iron, cobalt, nickel and zinc and mixtures thereof; B 'is copper; x is 0.4 to 0.8; y is 0.1 to 0.9; z is greater than 0 and is determined stoichiometrically. If B comprises an amount of cobalt greater than 0.1, the iron content is less than 0.05. The ceramic membrane element of the present invention selectively transports oxygen ions therethrough at a relatively low temperature, and the flux is detected at about 600 ° C. By doing so, the oxygen separation device can often be operated at lower temperatures than conventional separation devices with operating temperatures in excess of 900 ° C. Mechanical stability can be enhanced by adding a second phase to the ceramic.

Description

세라믹 이온 수송막용의 혼합된 전도성 입방형 페로브스카이트 {MIXED CONDUCTING CUBIC PEROVSKITE FOR CERAMIC ION TRANSPORT MEMBRANE}Mixed Conductive Cubic Perovskite for Ceramic Ion Transport Membrane {MIXED CONDUCTING CUBIC PEROVSKITE FOR CERAMIC ION TRANSPORT MEMBRANE}

본 발명은 고체 전해질 이온 수송막으로서 유용한 세라믹 조성물에 관한 것이다. 보다 구체적으로, 본 발명은 두 개의 란탄 계열 원소와 두 개의 전이금속의 산화물을 함유하는 페로브스카이트 구조에 관한 것이다. 본 발명의 조성물은 산소가 부족하며, 광범위한 온도 범위에 걸쳐 입방 구조를 유지하고 있다.The present invention relates to ceramic compositions useful as solid electrolyte ion transport membranes. More specifically, the present invention relates to a perovskite structure containing oxides of two lanthanide series elements and two transition metals. The compositions of the present invention lack oxygen and maintain a cubic structure over a wide temperature range.

기체 상태의 스트림을 함유하는 산소로부터 산소의 분리는 다수의 상업적 의미가 있는 제조 산업에서의 공정 단계이다. 산소를 분리하는 한가지 방법은 혼합된 전도체 세라믹 물질을 사용하는 것이다. 산소 이온 및 전자는 다른 종에 대해서는 불투성인 비다공성 세라믹막 요소를 통해 선택적으로 수송된다. 적합한 세라믹 물질은 혼합된 전도체 페로브스카이트 및 이중상 금속-금속 산화물 조합체를 포함한다. 이러한 세라믹 조성물은 본원에 참고문헌으로 인용되는 미국특허 제 5,702,959호(마자넥(Mazanec) 등), 제 5,712,220호(카롤란(Carolan) 등) 및 제 5,733,435호(프라사드(Prasad) 등)에 기술되어 있다.Separation of oxygen from oxygen containing gaseous streams is a process step in a number of commercially significant manufacturing industries. One way to separate oxygen is to use mixed conductor ceramic materials. Oxygen ions and electrons are selectively transported through nonporous ceramic membrane elements that are opaque to other species. Suitable ceramic materials include mixed conductor perovskites and dual phase metal-metal oxide combinations. Such ceramic compositions are described in US Pat. Nos. 5,702,959 (Mazanec et al.), 5,712,220 (Carolan et al.) And 5,733,435 (Prasad et al.) Incorporated herein by reference. have.

막 요소는 산소 선택도를 갖는다. "산소 선택도"는 다른 원소 및 이들의 이온을 배제한 단지 산소 이온만이 막을 가로질러 수송됨을 의미한다. 고체 전해질막은 플루오라이트 또는 페로브스카이트 구조를 갖는 칼슘- 또는 이트륨-안정화된 지르코늄 또는 유사한 산화물에 의해 대표되는 무기 산화물로부터 생성된다. 기체 정화 분야에서의 이들 막의 용도는 발명의 명칭이 "Reactive Purge for Solid Electrolyte Membrane Gas Separation"인 프라사드 등의 유럽특허출원 제 778,069호에 기술되어 있다.The membrane element has oxygen selectivity. "Oxygen selectivity" means that only oxygen ions excluding other elements and their ions are transported across the membrane. Solid electrolyte membranes are produced from inorganic oxides represented by calcium- or yttrium-stabilized zirconium or similar oxides having a fluorite or perovskite structure. The use of these membranes in the field of gas purification is described in European Patent Application No. 778,069 to Prasad et al., Entitled "Reactive Purge for Solid Electrolyte Membrane Gas Separation."

세라믹막 요소는 화학적인 전위차가 막 요소를 가로질러 유지될 때 450℃ 내지 약 1200℃의 온도 범위 및 일반적인 산소 분압에서 산소 이온 및 전자를 수송하는 능력을 갖는다. 이러한 화학적인 전위차는 이온 수송막을 가로지르는 산소 분압의 비를 양으로 유지시킴으로써 수립된다. 산소 분압(PO2)은 수송된 산소가 회수되는 애노드측에서보다 산소 함유 기체에 노출도는 막의 캐소드측에서 높게 유지된다. 이러한 양의 PO2비는 수송된 산소와 산소 소모 공정 또는 연료 기체와 반응시킴으로써 수득될 수 있다. 혼합된 전도체 페로브스카이트 세라믹막의 산소 이온 전도도는 전형적으로 0.01 내지 100S/cm 범위이며, 상기 단위에서 S("지멘스(Siemens)")는 오옴의 역수(1/Ω)이다.The ceramic membrane element has the ability to transport oxygen ions and electrons in the temperature range of 450 ° C. to about 1200 ° C. and general oxygen partial pressure when the chemical potential difference is maintained across the membrane element. This chemical potential difference is established by keeping the ratio of the partial pressure of oxygen across the ion transport membrane positive. The partial pressure of oxygen (P O2 ) is maintained higher at the cathode side of the membrane which is exposed to the oxygen containing gas than at the anode side where the transported oxygen is recovered. This amount of P O2 ratio can be obtained by reacting the transported oxygen with an oxygen consuming process or fuel gas. Oxygen ion conductivity of the mixed conductor perovskite ceramic membrane is typically in the range of 0.01 to 100 S / cm, where S ("Siemens") is the inverse of ohms (1 / Ω).

산소를 분리하기 위해 페로브스카이트를 효과적으로 적용시키기 위해서는 다수의 요건들이 충족되어야 한다. 페로브스카이트는 높은 산소 플럭스를 가져야 하며, 상기 플럭스는 막 구조물을 통과하는 산소 수송량이다. 페로브스카이트는 작동 온도의 전체 범위에 걸쳐 입방형 결정 구조를 가져야 한다. 6방정계형 결정 구조를 갖는 페로브스카이트는 산소 수송에 효과적이지 않다. 일부 페로브스카이트는 실온(공칭 20℃)에서 6방정계형 결정 구조를 가지며, 승온에서는 상 전환이 일어난다. 이러한 물질에서, 상 전환 온도는 막 요소와 같은 물질을 함유하는 산소 분리 장치가 작동될 수 있는 최소 온도를 나타낸다. 페로브스카이트 구조는 작동 온도에서 화학적으로 그리고 기계적으로 안정해야 한다.In order to effectively apply perovskite to separate oxygen, a number of requirements must be met. Perovskite should have a high oxygen flux, which is the amount of oxygen transport through the membrane structure. Perovskite must have a cubic crystal structure over the entire range of operating temperatures. Perovskite having a hexagonal crystal structure is not effective for oxygen transport. Some perovskites have a hexagonal crystal structure at room temperature (nominal 20 ° C.), and phase conversion occurs at elevated temperatures. In such materials, the phase inversion temperature represents the minimum temperature at which an oxygen separation device containing a material such as a membrane element can be operated. The perovskite structure must be chemically and mechanically stable at operating temperatures.

다수의 혼합된 산화물 페로브스카이트는 산소 분리에 유용한 것으로 기술되어 있다. 이들 페로브스카이트는 A가 란탄 계열 원소이고 B가 전이금속이고 O가 산소인 ABO3형태를 나타낸다. 란탄 계열 원소 또는 희토류 원소는 IUPAC에 의해 지정된 바와 같이 원소주기율표의 원자번호 57(란탄)과 원자번호 71(루테늄) 사이의 원소이다. 전형적으로, 이트륨(원자번호 39)은 란탄족에 포함된다. 전이금속은 원소주기율표의 4주기에 속하면서 II족 내지 III족 금속이며, 티타늄, 바나듐, 크롬, 망간, 철, 코발트, 니켈, 구리 및 아연을 포함한다. A 성분 및/또는 B 성분은 안정성 및 성능을 증대시키기 위해 다른 물질로 도핑될 수 있다.Many mixed oxide perovskites have been described as useful for oxygen separation. These perovskites represent an ABO 3 form wherein A is a lanthanide series element, B is a transition metal and O is oxygen. The lanthanum series element or rare earth element is an element between atomic number 57 (lanthanum) and atomic number 71 (ruthenium) in the periodic table of the elements, as specified by IUPAC. Typically, yttrium (atomic number 39) is included in the lanthanides. Transition metals are Group II to III metals belonging to the fourth cycle of the Periodic Table of the Elements and include titanium, vanadium, chromium, manganese, iron, cobalt, nickel, copper and zinc. The component A and / or component B may be doped with other materials to enhance stability and performance.

마자넥 등의 미국특허 제 5,648,304호에는 하기 화학식으로 표현되는 산소 선택적 페로브스카이트가 기술되어 있다:United States Patent No. 5,648,304 to Mazaneck et al. Describes an oxygen selective perovskite represented by the formula:

[A1-xA'x][Co1-y-xByB'z]O3-d [A 1-x A ' x ] [Co 1-yx B y B' z ] O 3-d

상기 식에서,Where

A는 칼슘, 스트론튬 및 바륨으로 구성된 군으로부터 선택되고;A is selected from the group consisting of calcium, strontium and barium;

A'는 이트륨, 토륨 및 우라늄뿐만 아니라 원소주기율표상의 원자번호 57 내지 71의 원소로서 정의된 란탄 계열 원소로부터 선택되고;A 'is selected from yttrium, thorium and uranium as well as lanthanide series elements defined as elements of atomic numbers 57 to 71 on the Periodic Table of the Elements;

B는 철, 망간, 크롬, 바나듐 및 티탄으로 구성된 군으로부터 선택되고;B is selected from the group consisting of iron, manganese, chromium, vanadium and titanium;

B'은 구리 또는 니켈로부터 선택되고;B 'is selected from copper or nickel;

x는 약 0.0001 내지 0.1이고;x is about 0.0001 to 0.1;

y는 약 0.002 내지 0.05이고;y is about 0.002 to 0.05;

z는 약 0.0005 내지 0.3이고;z is about 0.0005 to 0.3;

d는 금속의 원자가에 의해 결정된다.d is determined by the valence of the metal.

마자넥 등은 비교적 저농도의 특정한 전이금속의 첨가가 입방형 구조로서 페로브스카이트를 안정화시켜 6방정계 물질의 형성을 억제한다고 기술하고 있다. 결정 구조는 25℃ 내지 950℃의 온도에 대해 안정한 것으로 기술되어 있다.Mazaneck et al. Describe that the addition of a relatively low concentration of a specific transition metal stabilizes the perovskite as a cubic structure and inhibits the formation of hexagonal materials. The crystal structure is described as stable to temperatures of 25 ° C to 950 ° C.

카롤란(Carolan) 등의 미국특허 제 5,712,220호에는 하기 구조에 의해 나타내어진 고체 상태 산소 분리 장치에 효과적인 페로브스카이트가 기술되어 있다:US Pat. No. 5,712,220 to Carolan et al. Discloses perovskite effective for solid state oxygen separation devices represented by the following structure:

LnxA'x'A"x"ByB'y'B"y"O3-z Ln x A 'x' A "x" B y B 'y' B "y" O 3-z

상기 식에서,Where

Ln은 f 블록 란탄 계열 원소로부터 선택되는 원소이고;Ln is an element selected from f block lanthanum series elements;

A'는 2족 원소로부터 선택되고;A 'is selected from the Group 2 element;

A"는 1, 2 및 3족 및 f 블록 란탄 계열 원소로부터 선택되고;A ″ is selected from Groups 1, 2 and 3 and the f block lanthanide series elements;

B, B' 및 B"는 티타늄을 제외한 d 블록 전이금속로부터 독립적으로 선택되고;B, B 'and B "are independently selected from d block transition metals except titanium;

0 〈 x 〈 1 이고;0 <x <1;

0 〈 x' 〈 1 이고;0 <x '<1;

0 〈 x" 〈 1 이고;0 <x "<1;

0 〈 y 〈 1 이고;0 <y <1;

0 〈 y' 〈 1 이고;0 <y '<1;

0 〈 y" 〈 1 이고;0 <y "<1;

x + x' + x"는 1.0 이고;x + x '+ x "is 1.0;

1.1 〉 y + y' + y" 〉 1.0이고;1.1> y + y '+ y "> 1.0;

z는 원소가 IUPAC에 의해 채택된 원소주기율표에 따라 나타내어지는 경우에 화합물 전하가 중성이 되게 하는 수이다.z is the number that causes the compound charge to be neutral when the element is represented according to the Periodic Table of the Elements adopted by IUPAC.

카롤란 등에 의해 기술된 구조는 1보다 큰 B (전이금속)의 비 (y + y' + y" / x + x' + x")를 갖는다. 이러한 구조는 높은 이산화탄소 및 수증기 분압을 갖는 환경에서 안정성을 갖는 것으로 기술되어 있다.The structure described by Karola et al. Has a ratio of B (transition metal) greater than 1 (y + y '+ y "/ x + x' + x"). This structure is described as having stability in an environment with high carbon dioxide and water vapor partial pressure.

카롤란 등의 미국특허 제 5,817,597호에는 하기 구조에 의해 나타내어지는 고체 상태 산소 분리 장치에 효과적인 페로브스카이트가 기술되어 있다 :US Pat. No. 5,817,597 to Karlan et al. Describes perovskite effective for solid state oxygen separation devices represented by the following structure:

LnxA'x'CoyFey'Cuy"O3-z Ln x A 'x' Co y Fe y ' Cu y " O 3-z

상기 식에서,Where

Ln은 f 블록 란탄 계열 원소로부터 선택되는 원소이고;Ln is an element selected from f block lanthanum series elements;

A'는 스트론튬 또는 칼슘이고;A 'is strontium or calcium;

x, y 및 z는 0 보다 큰 수이고;x, y and z are numbers greater than 0;

x + x'는 1 이고;x + x 'is 1;

y + y' + y"는 1이고;y + y '+ y "is 1;

0 〈 y" 〈0.4이고;0 <y "<0.4;

z는 물질을 이루는 조성물의 전하가 중성이 되게 하는 수이다. 상기 조성물은 높은 산소 분압 조건하에서 선호되는 산소 투과의 균형 및 분해에 대한 저항성을 갖는 것으로 기술되어 있다. B 자리는 철 및 구리상에서의 조합에 의해 안정화된다.z is the number that causes the charge of the composition comprising the material to be neutral. The composition is described as having a balance of oxygen permeability and resistance to decomposition under high oxygen partial pressure conditions. The B site is stabilized by a combination on iron and copper.

산소 수송막으로서 사용하기에 적합한 또 다른 페로브스카이트 구조는 1986년 1월 30일에 공고된 코카이(Kokai) 등의 일본특허 제 61-21,717호에 기술되어 있다. 코카이의 상기 특허문헌에는 하기 화학식을 갖는 산소 수송막용 금속 산화물이 기술되어 있다 :Another perovskite structure suitable for use as an oxygen transport membrane is described in Japanese Patent No. 61-21,717 to Kokai et al., Published January 30, 1986. Cokai's patent document describes a metal oxide for an oxygen transport membrane having the formula:

La1-xSrxCo1-yFeyO3-δ La 1-x Sr x Co 1-y Fe y O 3-δ

상기 식에서,Where

x는 0.1 내지 1이고;x is 0.1 to 1;

y는 0.05 내지 1이고;y is 0.05 to 1;

δ는 0.5 내지 0이다.δ is 0.5 to 0.

테라오카(Teraoka)의 논문[Chemistry Letters, A publication of the Chemical Society of Japan, 1988]에는 산소 수송막으로서 사용하기에 적합한 페로브스카이트 구조와, 산소 투과도에 대한 양이온 치환의 효과가 기술되어 있다. 상기 논문에 기술된 조성물은 La0.6Sr0.4Co0.8B'0.2O3이며, 여기에서 B'는 망간, 철, 니켈, 구리, 코발트 및 크롬으로 구성된 군으로부터 선택된다.Teraoka's paper (Chemistry Letters, A publication of the Chemical Society of Japan, 1988) describes perovskite structures suitable for use as oxygen transport membranes and the effect of cation substitution on oxygen permeability. . The composition described in the above paper is La 0.6 Sr 0.4 Co 0.8 B ' 0.2 O 3 , wherein B' is selected from the group consisting of manganese, iron, nickel, copper, cobalt and chromium.

또 다른 연구 분야에서, 페로브스카이트는 질소의 비점에 근접하는 온도에서 사실상 어떠한 전기 저항도 갖지 않는 전자를 전도하는 능력인 초전도성을 갖는 것으로 밝혀졌다. 저널 오브 솔리드 스테이트 케미스트리(Journal of Solid State Chemistry)는 1995년에 제노우엘(Genouel) 등의 논문을 발표하였는데, 하기 화학식을 갖는 산소 부족한 페로브스카이트가 기술되어 있다 :In another field of research, perovskites have been found to have superconductivity, the ability to conduct electrons that have virtually no electrical resistance at temperatures near the boiling point of nitrogen. The Journal of Solid State Chemistry published a paper by Genouel et al. In 1995, describing an oxygen deficient perovskite having the formula:

La0.2Sr0.8Cu0.4M0.6O3-y La 0.2 Sr 0.8 Cu 0.4 M 0.6 O 3-y

상기 식에서,Where

M은 코발트 및 철로 구성된 군으로부터 선택되고;M is selected from the group consisting of cobalt and iron;

y는 0.3 내지 0.58이다.y is 0.3 to 0.58.

제노우엘은 결정 구조가 상당한 농도의 임의로 분포되어 있는 산소 공간을 가지며, 화학량론적으로 예견된 0보다 0.52 만큼 크다고 기술하고 있다. 상기 문헌에는 높은 전기 전도도가 혼합된 원자가 구리(Cu(II)/Cu(III))의 존재와 관련되어 있다고 기술되어 있으며, 전기 전도도가 1000/T=3 (k-1) 내지 1000/T=10(k-1)라고 보고되어 있다. 이러한 온도 범위, 즉, 60℃ 내지 -173℃는 고온 초전도체에 대하여 초전도성의 개시 온도를 나타낸다.Xenouel describes that the crystal structure has a significant concentration of randomly distributed oxygen space and is 0.52 larger than stoichiometrically predicted zero. The document states that high electrical conductivity is associated with the presence of mixed valence copper (Cu (II) / Cu (III)), with electrical conductivity of 1000 / T = 3 (k −1 ) to 1000 / T = 10 (k −1 ) is reported. This temperature range, ie, 60 ° C. to −173 ° C., represents the superconductivity starting temperature for high temperature superconductors.

상기한 페로브스카이트가 산소 분리 장치에서 막으로서 사용되는 경우에, 산소 분리 장치는 높은 산소 플럭스를 달성하기 위해서 전형적으로 약 900℃ 내지 1100℃의 온도에서 작동된다. 이와 같은 고온에서의 작동은 반응기의 다른 요소뿐만 아니라 막의 안정성에 이롭지 못하다.When the above-described perovskite is used as a membrane in an oxygen separation device, the oxygen separation device is typically operated at a temperature of about 900 ° C to 1100 ° C to achieve high oxygen flux. Operation at such high temperatures does not benefit the stability of the membrane as well as other elements of the reactor.

따라서, 900℃ 미만의 온도 및 비교적 높은 산소 플럭스에서 산소를 함유하는 기체 상태의 스트림으로부터 산소를 효과적으로 분리하면서도 기계적인 안정성을 갖는 페로브스카이트 구조가 여전히 요구되고 있다.Thus, there is still a need for perovskite structures with mechanical stability while effectively separating oxygen from gaseous streams containing oxygen at temperatures below 900 ° C. and relatively high oxygen fluxes.

본 발명의 제 1 목적은 산소 분리 장치에서 막 요소로서 사용하기에 적합한 세라믹 물질을 제공하는 데에 있다. 상기 세라믹 물질은 600℃ 만큼 낮은 온도에서 입방형 페로브스카이트 결정 구조 및 검출 가능한 산소 플럭스를 갖는다.It is a first object of the present invention to provide a ceramic material suitable for use as a membrane element in an oxygen separation device. The ceramic material has a cubic perovskite crystal structure and detectable oxygen flux at temperatures as low as 600 ° C.

본 발명의 제 2 목적은 세라믹 물질에 증대된 기계적 안정성을 제공하여 응력하에서의 분열을 피하는 데에 있다. 이러한 응력은 개시 동안 애노드측의 산소의 높은 농도뿐만 아니라 막 요소의 상이한 부분들 간의 온도차로 인해 부과될 수 있다.It is a second object of the present invention to provide increased mechanical stability to the ceramic material and to avoid cracking under stress. This stress can be imposed due to the high concentration of oxygen on the anode side during initiation as well as the temperature difference between the different parts of the membrane element.

도 1은 본 발명에 따라서 형성된 막 요소를 사용하는 산소 분리 장치의 횡단면도이다.1 is a cross-sectional view of an oxygen separation apparatus using membrane elements formed in accordance with the present invention.

도 2는 본 발명의 막 요소의 입방형 결정 구조의 X-선 회절 패턴을 도시하는 그래프이다.2 is a graph showing the X-ray diffraction pattern of the cubic crystal structure of the film element of the present invention.

도 3은 본 발명의 제 1 막 요소에 대하여 온도에 따른 산소 플럭스를 나타내는 그래프이다.3 is a graph showing oxygen flux versus temperature for a first membrane element of the present invention.

도 4는 본 발명의 제 2 막 요소에 대하여 온도에 따른 산소 플럭스를 나타내는 그래프이다.4 is a graph showing oxygen flux versus temperature for a second membrane element of the invention.

*도면의 주요 부분에 대한 부호의 설명** Description of the symbols for the main parts of the drawings *

10 : 막 요소 12 : 산소 분리 장치10 membrane element 12 oxygen separation device

14 : 공급 기체 16 : 산소 분리 장치의 제 1 측면14 feed gas 16 first side of oxygen separation device

18 : 다공성 촉매 20 : 캐소드(cathode)측 표면18 porous catalyst 20 cathode side surface

22 : 애노드(anode)측 표면 24 : 생성물 기체22: anode side surface 24: product gas

26 : 산소 분리 장치의 제 2 측면26: second side of the oxygen separation device

발명의 요약Summary of the Invention

본 발명의 첫 번째 일면에 따르면, 산소 분리 장치용 세라믹막 요소는 실질적으로 입방형 페로브스카이트 구조로 구성된다. 이러한 구조는 25 내지 950℃의 온도 범위에 대해 실질적으로 공기중에서 안정하다. 이러한 구조는 다음의 형태를 갖는다:According to the first aspect of the invention, the ceramic membrane element for the oxygen separation device is composed of a substantially cubic perovskite structure. This structure is substantially stable in air over a temperature range of 25 to 950 ° C. This structure has the following form:

A1-xA'xB1-yB'yO3-z A 1-x A ' x B 1-y B' y O 3-z

상기 식에서,Where

A는 란탄 계열 원소이고;A is a lanthanide series element;

A'은 적합한 란탄 계열 원소의 도펀트이고;A 'is a dopant of a suitable lanthanide series element;

B는 티탄, 바나듐, 크롬, 망간, 철, 코발트, 니켈 및 아연 및 이들의 혼합물로 구성된 군으로부터 선택되며, 단, 코발트가 0.1 보다 많은 양으로 존재하는 경우에, 철의 함량은 0.05 미만이며;B is selected from the group consisting of titanium, vanadium, chromium, manganese, iron, cobalt, nickel and zinc and mixtures thereof, provided that cobalt is present in an amount greater than 0.1, the iron content is less than 0.05;

B'는 구리이고;B 'is copper;

x는 0.4 내지 0.8이고;x is 0.4 to 0.8;

y는 0.1 내지 0.9이고;y is 0.1 to 0.9;

z는 0보다 크며, 화학량론적으로 계산된다.z is greater than 0 and is calculated stoichiometrically.

첫 번째 일면의 바람직한 구체예로서, A는 란탄이고, A'은 스트론튬이고, B는 코발트이다. x는 0.6 내지 0.8이고, y는 0.1 내지 0.3이고, z는 0.1 내지 0.5이다.In a preferred embodiment of the first aspect, A is lanthanum, A 'is strontium and B is cobalt. x is 0.6 to 0.8, y is 0.1 to 0.3 and z is 0.1 to 0.5.

본 발명의 두 번째 일면에 따르면, 막 요소는 기계적인 안정성을 증가시키는 제 2 상을 추가로 포함한다. 상기 두 번째 일면에서, 구조를 하기의 형태를 갖는다 :According to a second aspect of the invention, the membrane element further comprises a second phase which increases the mechanical stability. In the second aspect, the structure has the form:

A1-xA'xB1-yB'yO3-z+ CA 1-x A ' x B 1-y B' y O 3-z + C

C는 은, 팔라듐, 백금, 금, 로듐, 루테늄, 텅스텐, 탄탈륨, 고온 합금, 프라세오디뮴-산화인듐의 혼합물, 니오븀-산화티탄의 혼합물, 산화니켈, 산화텅스텐, 산화탄탈륨, 세리아(ceria), 지르코니아, 마그네시아, 및 이들의 합금 또는 혼합물로 구성된 군으로부터 선택된다.C is silver, palladium, platinum, gold, rhodium, ruthenium, tungsten, tantalum, high temperature alloy, mixture of praseodymium-indium oxide, mixture of niobium-titanium oxide, nickel oxide, tungsten oxide, tantalum oxide, ceria, zirconia , Magnesia, and alloys or mixtures thereof.

상기 두 번째 일면의 바람직한 구체예로서, C는 조성물의 3중량% 내지 50중량%를 구성하는 Ag와 Pd의 합금이다. Ag/Pd 합금은 10중량% 내지 95중량%의 팔라듐을 추가로 함유한다.In a preferred embodiment of the second aspect, C is an alloy of Ag and Pd constituting 3% to 50% by weight of the composition. The Ag / Pd alloy further contains 10% to 95% by weight of palladium.

그 밖의 목적, 특징 및 장점은 하기의 바람직한 구체예에 대한 설명 및 첨부 도면을 참조하여 당업자에게는 자명해질 것이다.Other objects, features, and advantages will become apparent to those skilled in the art with reference to the following description of the preferred embodiments and the accompanying drawings.

발명의 상세한 설명Detailed description of the invention

본 발명의 조성물은 산소와 전자를 선택적으로 수송할 수 있는 혼합된 이온성 세라믹 물질이다. 도 1을 보면, 세라믹 조성물은 산소 분리 장치(12)의 일부인 막 요소(10)내에 형성된다. 공기와 같은 산소 함유 공급 기체(14)는 산소 분리 장치(12)의 제 1 측면으로 도입된다. 소결된 니켈 또는 코발트와 같은 다공성 촉매(18)는 막 요소(10)의 한쪽 측면 또는 두 측면 모두를 코팅한다. 공급 기체(14)내에 함유된 산소는 다공성 촉매(18)내로 흡수되고 막 요소(10)의 캐소드측 표면(20)에서 분리된다. 산소 이온은 막 요소(10)를 통해 캐소드측 표면(20)으로부터 애노드측 표면(22)으로 수송된다. 애노드측 표면(22)에서, 산소 이온은 재조합되어 공정중에서 전자를 방출시킨 산소를 형성한다. 이러한 전자는 막 요소(10)를 통해 애노드측 표면(22)으로부터 캐소드측 표면(20)으로 수송된다. 재조합된 산소 분자는 애노드측 표면(22)상에서 다공성 촉매(18)로부터 탈착되고, 산소 분리 장치(12)의 제 2 측면(26)으로부터 생성물 기체(24)로서 회수된다. 생성물 기체(24)는 비반응된 산소 분자, 또는 공정 또는 연료 기체(26)와의 산화 반응 생성물일 수 있다.The composition of the present invention is a mixed ionic ceramic material capable of selectively transporting oxygen and electrons. Referring to FIG. 1, the ceramic composition is formed in the membrane element 10 that is part of the oxygen separation device 12. Oxygen-containing feed gas 14, such as air, is introduced to the first side of the oxygen separation device 12. Porous catalyst 18, such as sintered nickel or cobalt, coats one or both sides of the membrane element 10. Oxygen contained in feed gas 14 is absorbed into porous catalyst 18 and separated at the cathode side surface 20 of membrane element 10. Oxygen ions are transported from the cathode side surface 20 to the anode side surface 22 through the membrane element 10. At the anode side surface 22, oxygen ions recombine to form oxygen which releases electrons in the process. These electrons are transported from the anode side surface 22 to the cathode side surface 20 via the membrane element 10. Recombined oxygen molecules are desorbed from the porous catalyst 18 on the anode side surface 22 and recovered from the second side 26 of the oxygen separation device 12 as product gas 24. Product gas 24 may be an unreacted oxygen molecule or an oxidation reaction product with process or fuel gas 26.

본 발명의 첫 번째 구체예로서, 막 요소(10)는 25℃ 내지 950℃의 온도에 대해 안정한 실질적으로 입방형 페로브스카이트 구조를 갖는 세라믹 조성물이다. 막 요소(10)는 ABO 형태이며 특정의 도펀트를 함유한다.As a first embodiment of the invention, the membrane element 10 is a ceramic composition having a substantially cubic perovskite structure that is stable to temperatures between 25 ° C. and 950 ° C. Membrane element 10 is in the form of ABO and contains certain dopants.

이러한 조성물은 하기 화학식을 갖는다 :Such a composition has the formula:

A1-xA'xB1-yB'yO3-z A 1-x A ' x B 1-y B' y O 3-z

상기 식에서,Where

A는 란탄 계열 원소, 바람직하게는 란탄이고;A is a lanthanide series element, preferably lanthanum;

A'는 적합한 도펀트, 바람직하게는 스트론튬이고;A 'is a suitable dopant, preferably strontium;

B는 티탄, 바나듐, 크롬, 망간, 철, 코발트, 니켈, 아연 및 이들의 혼합물로 구성된 군으로부터 선택되고;B is selected from the group consisting of titanium, vanadium, chromium, manganese, iron, cobalt, nickel, zinc and mixtures thereof;

B'은 구리이고;B 'is copper;

x는 0.4 내지 0.8이고;x is 0.4 to 0.8;

y는 0.1 내지 0.9이고;y is 0.1 to 0.9;

상기 조성물이 산소 부족하기 때문에, z는 0 보다 크다(화학량론적으로 결정됨).Since the composition is oxygen deficient, z is greater than zero (determined stoichiometrically).

B가 0.1 보다 큰 양으로 코발트를 포함하는 경우에, 철 치환의 증가가 막의 산소 이온 전도성을 증가시키기 때문에, 포함된 철 함량은 0.05 미만이다. 바람직하게는, 철은 순수한 수준 이하로 존재한다.If B comprises cobalt in an amount greater than 0.1, the iron content included is less than 0.05, since increasing iron substitution increases the oxygen ion conductivity of the membrane. Preferably, iron is present at below pure levels.

본 발명의 바람직한 일면에서, x는 0.6 내지 0.8이고, y는 0.1 내지 0.3이고, z는 0.1 내지 0.5이다.In one preferred aspect of the invention, x is from 0.6 to 0.8, y is from 0.1 to 0.3, and z is from 0.1 to 0.5.

가장 바람직한 조성물은 La0.2Sr0.8Co0.9Cu0.1O3-z이다.The most preferred composition is La 0.2 Sr 0.8 Co 0.9 Cu 0.1 O 3-z .

본 발명의 조성물은 어떠한 적합한 방법에 의해서도 수득될 수 있지만, 변형된 페치니(Pechini)(액체 혼합) 방법이 특히 적합하다.The composition of the present invention can be obtained by any suitable method, but a modified Pechini (liquid mixing) method is particularly suitable.

란탄 및 스트론튬의 탄산염을 2,000ml 들이 비이커내 HNO340ml중에 용해시켰다. 온화한 가열(약 50℃까지) 및 교반은 용이하게 용해시키는데 유용하다. 그런 다음, 구리 및 코발트의 질산염 용액을 상기 용액에 첨가하였다. 약 20ml의 증류수를 공정중에 첨가하여 모든 미량의 반응물을 반응 용기내로 세정하였다. 0.3몰의 시트르산 및 0.3몰의 에틸렌 글리콜을 착화제로서 첨가하였다. 각각의 배치에 요망되는 세라믹 물질 0.2몰이 형성되었다. 다양한 성분의 양 및 분자량을 하기 표 1에 기재하였다.The carbonates of lanthanum and strontium were dissolved in 40 ml of HNO 3 in a 2,000 ml beaker. Mild heating (up to about 50 ° C.) and stirring are useful to facilitate dissolution. Then, a nitrate solution of copper and cobalt was added to the solution. About 20 ml of distilled water was added during the process to wash all traces of the reactants into the reaction vessel. 0.3 mole citric acid and 0.3 mole ethylene glycol were added as complexing agent. In each batch 0.2 moles of the desired ceramic material were formed. The amounts and molecular weights of the various components are listed in Table 1 below.

La0.2Sr0.8Co0.9Cu0.1O3-z의 합성시에 사용된 다양한 반응물의 양Amount of various reactants used in the synthesis of La 0.2 Sr 0.8 Co 0.9 Cu 0.1 O 3-z 화학식Chemical formula 분자량(g/mol)Molecular Weight (g / mol) 첨가된 몰수Added moles 첨가된 양(g)Amount added (g) La2(CO3)3 La 2 (CO 3 ) 3 457.85457.85 0.020.02 9.15709.1570 SrCO3 SrCO 3 147.63147.63 0.160.16 23.620823.6208 Cu-질산염Cu-nitrate 1352.151352.15 0.020.02 27.042927.0429 Co-질산염Co-nitrate 506.731506.731 0.180.18 91.211691.2116

그런 다음, 질소 기체가 전개되기 시작할 때까지, 상기 용액을 비점 미만의 온도, 전형적으로는 약 90℃의 온도로 가열하였다. 그런 다음, 용액을 가열된 자기 접시(porcelain dish)내로 붓고 최소 3시간 동안 약 180℃의 건조 오븐중에서 가열하였다. 그 결과, 경성 포움이 생성되었고, 이것을 분말로 분쇄시키고, 매질로서 이산화지르코늄을 사용하여 24시간 동안 에탄올 매질중의 진동 밀에서 분쇄시켰다. 공정 및 온도를 하기 표 2에 기재하였다.The solution was then heated to a temperature below the boiling point, typically about 90 ° C., until nitrogen gas began to develop. The solution was then poured into a heated porcelain dish and heated in a drying oven at about 180 ° C. for at least 3 hours. As a result, a rigid foam was produced, which was ground to a powder and ground in a vibratory mill in ethanol medium for 24 hours using zirconium dioxide as the medium. Processes and temperatures are listed in Table 2 below.

샘플의 온도 처리Temperature treatment of the sample 공정의 목적Purpose of the process 가열 속도 (℃/분)Heating rate (℃ / min) 유지 온도(℃)Holding temperature (℃) 유지 시간(시)Retention time (hours) 유기물 제거Organic matter removal 0.50.5 300300 1One 소성Firing 22 700700 44 소결Sintered 22 10301030 2*2*

*는 가열 및 냉각시에 300℃에서 각각 1시간 동안 유지된 시간이다.* Is the time maintained for 1 hour at 300 ° C. at the time of heating and cooling.

소성 후, 분말을 진동 밀에서 4시간 동안 건조 분쇄시켰다. 그런 다음, 분말을 펠릿 압착을 위한 결합제로서의 폴리비닐 알코올 수용액 4중량%와 혼합시키고, 0.8g의 폴리비닐 알코올 용액을 10g의 분말에 첨가하였다. 그런 다음, 분말 및 결합제를 폴리메틸 메타크릴레이트 매질과 함께 스펙스 밀(Spex mill)(뉴욕 에디슨에 소재하는 스펙스 인더스트리즈, 인코포레이티드(Spex Industries, Inc.)의 제품)에서 짧은 시간 동안 분쇄시켜 용액을 분말중에 분산시켰다.After firing, the powder was dry ground for 4 hours in a vibration mill. The powder was then mixed with 4% by weight aqueous polyvinyl alcohol solution as binder for pellet compaction, and 0.8 g polyvinyl alcohol solution was added to 10 g powder. The powder and binder are then milled together with a polymethyl methacrylate medium for a short time in a Specx mill (Specex Industries, Inc., Edison, NY). The solution was dispersed in the powder.

그런 다음, 펠릿을 직경이 1.5인치인 스테인레스강 다이를 사용하여 단축으로 압착시켰다. 각각의 펠릿에 대해, 9g의 분말을 사용하였고, 2,830psi의 압력을 적용시켰다. 그런 다음, 펠릿을 40,000psi의 압력으로 균일하게 압착시키고, 산소 대기중에서 소결시켰다. 그 결과, 약 95%의 이론적인 밀도를 갖는 펠릿 샘플이 생성되었다.The pellet was then uniaxially pressed using a stainless steel die 1.5 inches in diameter. For each pellet, 9 g of powder was used and a pressure of 2830 psi was applied. The pellet was then uniformly pressed at a pressure of 40,000 psi and sintered in an oxygen atmosphere. As a result, a pellet sample with a theoretical density of about 95% was produced.

첫 번째 구체예의 세라믹 물질이 산소 분리 장치(12)용 세라믹막 구조(10)에 대하여 많은 요망 특성을 갖지만, 부서지기 쉬우며 파쇄되는 경향이 있다. 세라믹막의 실제 적용은 열 순환 동안 세라믹의 구조적 파괴의 가능성으로 인해 제한된다. 세라믹막의 기계적인 특성은 막 요소(10)를 구성하는 세라믹내로 제 2 상으로서 연질 금속을 첨가함으로써 증대된다.Although the ceramic material of the first embodiment has many desired properties for the ceramic membrane structure 10 for the oxygen separation device 12, it tends to be brittle and fracture. The practical application of the ceramic film is limited due to the possibility of structural breakdown of the ceramic during thermal cycling. The mechanical properties of the ceramic film are enhanced by adding a soft metal as the second phase into the ceramic constituting the film element 10.

고율의 산소 플럭스가 요구되므로, 금속은 침출 한계 미만의 양으로 첨가된다. 침출 한계는 본원에서 캐소드측 표면(20)으로부터 애노드측 표면(22)으로 연장되는 금속 통로를 형성시키기 위해 세라믹 분말과 조합되어야 하는 금속 분말의 이론적인 계산으로서 정의된다. 일반적으로, 이것은 연속적인 제 2 상을 형성시키기 위해 금속성의 제 2 상이 30용적% 보다 커야한다. 그러나, 이러한 금속 통로는 본 발명에서 요망되는 요소는 아니다.Since a high rate of oxygen flux is required, the metal is added in amounts below the leaching limit. The leaching limit is defined herein as the theoretical calculation of the metal powder that must be combined with the ceramic powder to form a metal passageway extending from the cathode side surface 20 to the anode side surface 22. In general, this should be greater than 30 vol% of the metallic second phase to form a continuous second phase. However, this metal passage is not a desired element in the present invention.

세라믹의 처리 온도 보다 높은 용융 온도를 갖는 어떠한 전기 전도성의 연성 금속도 제 2 상으로 이용될 수 있다. 제 2 상은 은, 팔라듐, 백금, 금, 로듐, 루테늄, 텅스텐, 탄탈륨, 및 인코넬(inconel), 하스텔로이(hastelloy), 모넬(monel) 및 듀크롤로이(ducrolloy)와 같은 고온 합금, 및 이들의 혼합물로 구성된 군으로부터 바람직하게 선택된다. 보다 바람직한 제 2 상 금속은 은, 은과 팔라듐의 합금 및 고온 합금을 포함한다. 합금이 전체 조성물의 약 3중량% 내지 약 50중량%를 구성하는 은과 팔라듐의 합금이 가장 바람직하다. 보다 바람직하게는, 은/팔라듐 합금은 전체 조성물의 약 3중량% 내지 약 20중량%를 구성한다.Any electrically conductive soft metal having a melting temperature higher than the processing temperature of the ceramic can be used as the second phase. The second phase is silver, palladium, platinum, gold, rhodium, ruthenium, tungsten, tantalum, and hot alloys such as inconel, hastelloy, monel and ducrolloy, and mixtures thereof It is preferably selected from the group consisting of. More preferred second phase metals include silver, alloys of silver and palladium, and high temperature alloys. Most preferred is an alloy of silver and palladium in which the alloy comprises from about 3% to about 50% by weight of the total composition. More preferably, the silver / palladium alloy constitutes about 3% to about 20% by weight of the total composition.

하나의 바람직한 은/팔라듐 합금은 10중량% 내지 95중량%의 은을 함유한다. 가장 바람직하게는, 합금의 은 함량은 약 50중량% 내지 95중량%이다.One preferred silver / palladium alloy contains 10% to 95% by weight silver. Most preferably, the silver content of the alloy is about 50% to 95% by weight.

대안적으로, 제 2 상 세라믹은 프라세오디뮴-산화인듐의 혼합물, 니오븀-산화티탄의 혼합물, 산화니켈, 산화텅스텐, 산화탄탈륨, 세리아, 지르코니아, 마그네시아, 및 이들의 혼합물로 구성된 군으로부터 선택될 수 있다. 바람직한 제 2 상 세라믹 물질은 산화물로서 상기 조성물에 도입된 후 환원성 대기중에서 가열함으로써 금속으로 환원될 수 있는 물질이다. 바람직한 제 2 상 세라믹 물질의 예로는 산화티탄 및 산화니켈이 있다.Alternatively, the second phase ceramic may be selected from the group consisting of a mixture of praseodymium-indium oxide, a mixture of niobium-titanium oxide, nickel oxide, tungsten oxide, tantalum oxide, ceria, zirconia, magnesia, and mixtures thereof. . Preferred second phase ceramic materials are materials which can be reduced to metals by introduction into the composition as oxides and then heating in a reducing atmosphere. Examples of preferred second phase ceramic materials are titanium oxide and nickel oxide.

본 발명의 두 번째 구체예에 따르면, 막 요소의 조성물은 하기 화학식에 의해 나타내어진다:According to a second embodiment of the invention, the composition of the membrane element is represented by the formula:

A1-xA'xB1-yB'yO3-z+ CA 1-x A ' x B 1-y B' y O 3-z + C

상기 식에서, A, A', B, B', x, y 및 z는 구체예 1에서 규정한 바와 같고, C는 은, 팔라듐, 백금, 금, 로듐, 루테늄, 텅스텐, 탄탈륨, 은, 은/팔라듐 합금, 고온 합금, 프라세오디뮴-산화인듐의 혼합물, 니오븀-산화티탄의 혼합물, 산화니켈, 산화텅스텐, 산화탄탈륨, 세리아, 지르코니아, 마그네시아, 및 이들의 합금 또는 혼합물로 구성된 군으로부터 선택된다.Wherein A, A ', B, B', x, y and z are as defined in Example 1, and C is silver, palladium, platinum, gold, rhodium, ruthenium, tungsten, tantalum, silver, silver / Palladium alloy, high temperature alloy, mixture of praseodymium-indium oxide, mixture of niobium-titanium oxide, nickel oxide, tungsten oxide, tantalum oxide, ceria, zirconia, magnesia, and alloys or mixtures thereof.

하나의 예시적 조성물은 La0.2Sr0.8Co0.9Cu0.1O3-z+ 20중량%의 90% Ag/10% Pd이다.One exemplary composition is La 0.2 Sr 0.8 Co 0.9 Cu 0.1 O 3-z + 20% by weight 90% Ag / 10% Pd.

이러한 조성물은 어떠한 적합한 방법에 의해서도 생성될 수 있지만, 전형적인 방법은 성분을 이루는 이온의 열비중계적으로 표준화된 탄산염 및 질산염 용액이 시트르산 및 에틸렌 글리콜 및 물과 함께 가열되는 변형된 액체 혼합 방법이다.Such compositions may be produced by any suitable method, but a typical method is a modified liquid mixing process in which a thermogravimetrically standardized carbonate and nitrate solution of the constituent ions is heated together with citric acid and ethylene glycol and water.

한 방법으로서, 9.1570g의 La2(CO3)3및 23.6208g의 SrCO3를 2,000ml 들이 비이커에 첨가하였다. 약 20ml의 증류수를 상기 탄산염에 첨가한 후, 약 30ml의 질산을 첨가하여 탄산염을 용해시켰다. 생성된 용액을 약 90℃로 가열하고 교반하여 분리하였다. 일단 탄산염을 용해시키고, 28.7875g의 구리 질산염 용액(Cu2+1몰 당 용액 1439.38g) 및 91.2116g의 코발트 질산염 용액을 상기 비이커에 첨가하였다. 그런 다음, 57.6g의 시트르산 및 18.6g의 에틸렌 글리콜을 첨가하고, 그 용액을 90℃에 유지시키면서 교반하였다. 모든 질소 기체가 용액으로부터 방출될 때까지 전구 용액을 90℃에 유지시키고, 이때, 상기 용액을 예열처리된 세라믹 접시에 위치시키고 12시간 동안 180℃로 가열 및 유지시켜 반경성의 중합체 목탄을 생성시켰다.As a method, 9.1570 g La 2 (CO 3 ) 3 and 23.6208 g SrCO 3 were added to a 2,000 ml beaker. After about 20 ml of distilled water was added to the carbonate, about 30 ml of nitric acid was added to dissolve the carbonate. The resulting solution was heated to about 90 ° C. and stirred to separate. Once the carbonate was dissolved, 28.7875 g of copper nitrate solution (1439.38 g of solution per mole of Cu 2+ ) and 91.2116 g of cobalt nitrate solution were added to the beaker. Then 57.6 g citric acid and 18.6 g ethylene glycol were added and the solution was stirred while maintaining at 90 ° C. The precursor solution was kept at 90 ° C. until all nitrogen gas had been released from the solution, where the solution was placed in a preheated ceramic dish and heated and maintained at 180 ° C. for 12 hours to produce semi-rigid polymer charcoal.

그런 다음, 상기 목탄을 8시간 동안 에탄올중에서 분쇄시키고, 에탄올 증발시킨 후 소성시켰다. 상기 분쇄된 목탄을 먼저 분 당 0.4℃의 속도로 300℃로 가열한 후, 분 당 1.7℃의 속도로 700℃로 신속히 가열하고 700℃에서 4시간 동안 유지시켜 상을 형성시켰다.The charcoal was then ground in ethanol for 8 hours, ethanol evaporated and calcined. The crushed charcoal was first heated to 300 ° C. at a rate of 0.4 ° C. per minute and then rapidly heated to 700 ° C. at a rate of 1.7 ° C. per minute and held at 700 ° C. for 4 hours to form a phase.

페로브스카이트 플러스 합금의 복합 조성물은 모르타르 및 막자에서 0.5g의 결합제(수중 폴리비닐 알코올 5중량%)와 8.0g의 생성된 세라믹 및 2.0g의 합금을 혼합시킴으로써 제조하였다.A composite composition of perovskite plus alloy was prepared by mixing 0.5 g of binder (5% by weight polyvinyl alcohol in water) with 8.0 g of the resulting ceramic and 2.0 g of alloy in mortar and pestle.

약 0.5g의 분말 형태 복합체를 5,000lb의 압력으로 직경이 0.5인치인 다이에서 단축으로 압착시켰다. 상기 샘플을 산화알루미늄 고정판의 상부상의 사전 조립화된 La0.2Sr0.8Co0.9Cu0.1O3-z의 베드상에 위치시키고 분 당 3℃의 속도로 소결 온도로 가열하였다. 그런 다음, 상기 물질을 공기중에서 4.0 시간 동안 940℃ 내지 1000℃의 온도에서 소결시켰다.About 0.5 g of powdered composite was uniaxially compressed on a 0.5 inch diameter die at 5,000 lb pressure. The sample was placed on a bed of pre-assembled La 0.2 Sr 0.8 Co 0.9 Cu 0.1 O 3-z on top of an aluminum oxide holding plate and heated to sintering temperature at a rate of 3 ° C. per minute. The material was then sintered in air at a temperature of 940 ° C. to 1000 ° C. for 4.0 hours.

소결 온도를 940℃로 하여 가열한 경우에는 2.17%의 개구 다공도와 함께 6.37g/cm3의 밀도가 달성되었다. 소결 온도를 960℃로 증가시킨 경우에는 0.7%의 개구 다공도와 함께 6.39g/cm3밀도로 증가하였다. 소결 온도를 980℃로 증가시킨 경우에는 0.6%의 개구 다공도와 함께 6.42g/cm3의 밀도가 달성되었다. 그러나, 소결 온도를 1,000℃로 증가시켰을 때, 금속은 사전 조립화된 세라믹 베드로부터 리칭(leaching)되기 시작하였고, 생성된 밀도는 6.31g/cm3로 증가한 반면에 개구 다공도는 0.2%로 감소하였다.When heated at a sintering temperature of 940 ° C., a density of 6.37 g / cm 3 was achieved with a porosity of 2.17%. Increasing the sintering temperature to 960 ° C. increased the density to 6.39 g / cm 3 with an aperture porosity of 0.7%. When the sintering temperature was increased to 980 ° C., a density of 6.42 g / cm 3 was achieved with an open porosity of 0.6%. However, when the sintering temperature was increased to 1,000 ° C., the metal began to leach from the pre-assembled ceramic bed, and the resulting density increased to 6.31 g / cm 3 while the opening porosity decreased to 0.2%. .

상기한 바와 같이, 소결은 용융된 금속 리칭(leaching)이 일어나는 온도 미만의 온도에서 수행되어야 한다.As noted above, the sintering should be performed at a temperature below the temperature at which molten metal leaching occurs.

산소 분리 장치용 막 요소로서 사용하기 위한 본 발명의 세라믹 물질의 장점은 하기의 실시예에 의해 보다 자명해질 것이다.The advantages of the ceramic material of the present invention for use as a membrane element for an oxygen separation device will become more apparent by the following examples.

실시예Example

실시예 1Example 1

다양한 온도에서 상 전개를 분석하기 위해 고온 스테이지 부착물을 갖춘 신태그(Scintag)(캘리포니아 구페르티노에 소재하는 신태그, 인코포레이티드(Scintag, Inc.) 제품) 회절계측기를 사용하여 상기한 첫 번째 구체예에 따라서 형성된 세라믹 펠릿의 X-선 회절(XRD) 분석을 수행하였다. 도 2에 도해된 바와 같이, 시험편은 40℃ 내지 700℃의 모든 온도에서 상 변환 없이 입방형 구조를 유지시켰다. 도 2에 도시된 규소와 백금 피크는 각각 내부 표준 및 샘플 홀더로부터 취한 피크이다. 은 페이스트로 알루미나 시험 셀에 밀봉된 1.0mm의 두께를 갖는 소결된 디스크를 사용하여 샘플의 산소 투과율을 측정하였다. 공급 기체로서 질소중의 산소 20용적%를 사용하여 온도의 함수로서 투과 시험을 수행하였다. 헬륨 세정 후 공급 기체를 도입시켰다. 휼렛 패커드 5890 기체 크로마토그래프(독일 윌밍톤에 소재하는 휼렛 패커드 컴패니(Hewlett Packard Company) 제품) 및 세르보멕스 시리즈 1100 산소 애널라이저(잉글랜드 서섹스 크로우보로에 소재하는 세르보멕스 리미티드(Servomex Ltd.) 제품)를 사용하여 기체 조성물을 분석하고 산소 플럭스를 계산하였다. 표 3은 약 1.0eV에 활성화 에너지가 사용될 때 온도의 함수로서 산소 플럭스를 기록한 것이다.First described above using a Scintag (Scintag, Inc., Gupertino, Calif.) Diffractometer with high temperature stage attachment to analyze phase development at various temperatures. X-ray diffraction (XRD) analysis of the ceramic pellets formed according to the first embodiment was performed. As illustrated in FIG. 2, the specimens maintained a cubic structure without phase conversion at all temperatures between 40 ° C. and 700 ° C. FIG. The silicon and platinum peaks shown in FIG. 2 are peaks taken from an internal standard and a sample holder, respectively. The oxygen transmission rate of the sample was measured using a sintered disc having a thickness of 1.0 mm sealed to alumina test cell with silver paste. Permeation tests were performed as a function of temperature using 20% by volume of oxygen in nitrogen as the feed gas. Feed gas was introduced after helium cleaning. Hewlett Packard 5890 Gas Chromatograph (Hewlett Packard Company, Wilmington, Germany) and Cervomex Series 1100 Oxygen Analyzer (Servomex Ltd., Sussex Crowboro, England) Product) to analyze the gas composition and calculate the oxygen flux. Table 3 records the oxygen flux as a function of temperature when activation energy is used at about 1.0 eV.

온도 (℃)Temperature (℃) 산소 플럭스 (Sccm/cm2)Oxygen Flux (Sccm / cm 2 ) 600600 0.20.2 700700 0.40.4 800800 0.80.8 900900 1.51.5

도 3은 표 3에 기록된 산소 플럭스를 종래 기술로부터 공지되어 있는 세라믹막 구조물(La0.05Sr0.95CoO3)과 비교한 것이다. 종래기술에서 사용되는 조성물은 약 900℃로 가열될 때까지 산소를 수송하지 못했다. 그러나, 본 발명의 조성물은 600℃ 만큼 낮은 온도에서는 산소 수송이 검출될 수 있었으며, 700 내지 800℃의 온도에서는 상업적으로 유용한 산소 플럭스를 지녔다.3 compares the oxygen flux reported in Table 3 with a ceramic membrane structure (La 0.05 Sr 0.95 CoO 3 ) known from the prior art. The compositions used in the prior art did not transport oxygen until heated to about 900 ° C. However, the compositions of the present invention could detect oxygen transport at temperatures as low as 600 ° C. and had commercially useful oxygen fluxes at temperatures between 700 and 800 ° C.

그런 다음, 세라믹 구조물을 실온으로 냉각시키고, 세라믹의 분열을 검출하였다.The ceramic structure was then cooled to room temperature and the breakup of the ceramic was detected.

실시예 2Example 2

상기한 두 번째 구체예로서 기술되어 있는 상기 조성물의 1mm 두께의 디스크를 은 페이스트로 알루미나 시험 셀에서 밀봉시키고 상기한 바와 같이 투과 시험을 수행하였다. 표 4에 검출된 산소 플럭스를 기록하였다.A 1 mm thick disk of the composition described as the second embodiment described above was sealed in an alumina test cell with silver paste and a permeation test was performed as described above. The detected oxygen flux is recorded in Table 4.

온도 (℃)Temperature (℃) 산소 플럭스 (Sccm/cm2)Oxygen Flux (Sccm / cm 2 ) 600600 0.10.1 700700 0.30.3 800800 0.70.7 900900 1.11.1

도 4는 구체예 2에 따라서 형성된 세라믹 물질에 의해 달성된 산소 플럭스를 구체예 1에 따라 형성된 세라믹 물질 및 상기한 종래기술의 세라믹 물질의 산소 플럭스와 각각 비교한 도면이다. 금속 상의 첨가가 산소 플럭스를 약간 감소시키지만, 산소 플럭스는 600℃ 만큼 낮은 온도에서 검출되고, 상업적으로 유용한 산소 플럭스는 800℃ 만큼 낮은 온도에서 달성된다. 중요하게는, 냉각시에, 상기 샘플은 어떠한 분열도 없이 원형대로 유지된다.FIG. 4 is a diagram comparing oxygen flux achieved by the ceramic material formed according to embodiment 2 with oxygen fluxes of the ceramic material formed according to embodiment 1 and the ceramic material of the prior art described above, respectively. While addition of the metal phase slightly reduces the oxygen flux, the oxygen flux is detected at temperatures as low as 600 ° C., and commercially useful oxygen flux is achieved at temperatures as low as 800 ° C. Importantly, upon cooling, the sample remains intact without any disruption.

이상에서와 같이, 본 발명의 세라믹막 요소는 산소 분리 장치에서 막 요소로서 사용하기에 적합하며, 600℃ 만큼 낮은 온도에서도 입방형 페로브스카이트 결정 구조 및 검출 가능한 산소 플럭스를 갖는다. 또한, 본 발명은 세라믹 물질의 기계적인 안정성을 증대시켜 응력하에서의 분열을 피한다.As described above, the ceramic membrane element of the present invention is suitable for use as a membrane element in an oxygen separation device, and has a cubic perovskite crystal structure and detectable oxygen flux even at temperatures as low as 600 ° C. In addition, the present invention increases the mechanical stability of the ceramic material to avoid breakage under stress.

Claims (9)

필수적으로 25℃ 내지 950℃의 온도 범위에 걸쳐 공기중에서 실질적으로 안정한, 사실상 입방형 페로브스카이트 구조로 구성되는 하기 화학식의 산소 분리 장치용 세라믹막 요소:A ceramic membrane element for an oxygen separation device of the formula consisting of a substantially cubic perovskite structure, essentially stable in air over a temperature range of 25 ° C. to 950 ° C .: A1-xA'xB1-yB'yO3-z A 1-x A ' x B 1-y B' y O 3-z 상기 식에서,Where A는 란탄 계열 원소이고;A is a lanthanide series element; A'은 적합한 란탄 계열 원소의 도펀트(dopant)이고;A 'is a dopant of a suitable lanthanide series element; B는 티탄, 바나듐, 크롬, 망간, 철, 코발트, 니켈 및 아연 및 이들의 혼합물로 구성된 군으로부터 선택되며, 단, 코발트가 0.1 보다 많은 양으로 존재하는 경우에, 상기 혼합물의 철의 함량은 0.05 미만이며;B is selected from the group consisting of titanium, vanadium, chromium, manganese, iron, cobalt, nickel and zinc and mixtures thereof, provided that cobalt is present in an amount greater than 0.1, the iron content of the mixture is 0.05 Less than; B'는 구리이고;B 'is copper; x는 0.4 내지 0.8이고;x is 0.4 to 0.8; y는 0.1 내지 0.9이고;y is 0.1 to 0.9; z는 0보다 크며, 화학량론적으로 결정된다.z is greater than 0 and is determined stoichiometrically. 제 1항에 있어서, x가 0.6 내지 0.8이고, y가 0.1 내지 0.3이고, z가 0.1 내지 0.5임을 특징으로 하는 막 요소.The membrane element of claim 1 wherein x is from 0.6 to 0.8, y is from 0.1 to 0.3, and z is from 0.1 to 0.5. 제 1항에 있어서, A가 란탄이고, A'이 스트론튬이고, B가 코발트임을 특징으로 하는 막 요소.The membrane element of claim 1 wherein A is lanthanum, A 'is strontium, and B is cobalt. 제 3항에 있어서, x가 0.6 내지 0.8이고, y가 0.1 내지 0.3이고, z가 0.1 내지 0.5임을 특징으로 하는 막 요소.4. The membrane element of claim 3 wherein x is 0.6 to 0.8, y is 0.1 to 0.3 and z is 0.1 to 0.5. 제 1항에 있어서, 하기 화학식으로 나타내어지는 바와 같이 C를 추가로 포함함을 특징으로 하는 막 요소:The membrane element of claim 1 further comprising C as represented by the formula: A1-xA'xB1-yB'yO3-z+ CA 1-x A ' x B 1-y B' y O 3-z + C 상기 식에서,Where C는 은, 팔라듐, 백금, 금, 로듐, 루테늄, 텅스텐, 탄탈륨, 및 인코넬(inconel), 하스텔로이(hastelloy), 모넬(monel) 및 듀크롤로이(ducrolloy)와 같은 고온 합금, 프라세오디뮴-산화인듐의 혼합물, 니오븀-산화티탄의 혼합물, 산화니켈, 산화텅스텐, 산화탄탈륨, 세리아(ceria), 지르코니아, 마그네시아, 및 이들의 혼합물로 구성된 군으로부터 선택된다.C is silver, palladium, platinum, gold, rhodium, ruthenium, tungsten, tantalum, and high temperature alloys such as inconel, hastelloy, monel and ducrolloy, praseodymium-indium oxide Mixtures, mixtures of niobium-titanium oxide, nickel oxide, tungsten oxide, tantalum oxide, ceria, zirconia, magnesia, and mixtures thereof. 제 5항에 있어서, C가 은, 은/팔라듐 합금, 및 인코넬, 하스텔로이, 모넬 및 듀크롤로이와 같은 고온 합금으로 구성된 군으로부터 선택됨을 특징으로 하는 막 요소.6. Membrane element according to claim 5, wherein C is selected from the group consisting of silver, silver / palladium alloys and high temperature alloys such as Inconel, Hastelloy, Monel and Ducroroy. 제 6항에 있어서, C가 Ag와 Pd의 합금이고, 상기 조성물의 3중량% 내지 50중량%를 구성함을 특징으로 하는 막 요소.7. Membrane element according to claim 6, wherein C is an alloy of Ag and Pd and constitutes 3% to 50% by weight of the composition. 제 7항에 있어서, C가 Ag와 Pd의 합금이고, 상기 조성물의 3중량% 내지 20중량%를 구성함을 특징으로 하는 막 요소.8. Membrane element according to claim 7, wherein C is an alloy of Ag and Pd and constitutes 3% to 20% by weight of the composition. 제 7항에 있어서, C가 10중량% 내지 95중량%의 팔라듐을 함유함을 특징으로 하는 막 요소.Membrane element according to claim 7, characterized in that C contains 10% to 95% by weight of palladium.
KR1020000004824A 1999-02-02 2000-02-01 Mixed conducting cubic perovskite for ceramic ion transport membrane KR20000076579A (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/241,610 US6235187B1 (en) 1996-12-31 1999-02-02 Oxygen separation method using a mixed conducting cubic perovskite ceramic ion transport membrane
US9/241,610 1999-02-02

Publications (1)

Publication Number Publication Date
KR20000076579A true KR20000076579A (en) 2000-12-26

Family

ID=22911410

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020000004824A KR20000076579A (en) 1999-02-02 2000-02-01 Mixed conducting cubic perovskite for ceramic ion transport membrane

Country Status (10)

Country Link
US (1) US6235187B1 (en)
EP (1) EP1027916A1 (en)
JP (1) JP2000233120A (en)
KR (1) KR20000076579A (en)
CN (1) CN1263791A (en)
AU (1) AU1484200A (en)
BR (1) BR0000233A (en)
CA (1) CA2297578A1 (en)
MX (1) MXPA00001136A (en)
ZA (1) ZA200000435B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO312342B1 (en) * 1998-05-20 2002-04-29 Norsk Hydro As A dense single-phase membrane with both high ionic and high electronic conductivity and application thereof
US6368383B1 (en) * 1999-06-08 2002-04-09 Praxair Technology, Inc. Method of separating oxygen with the use of composite ceramic membranes
JP2001302246A (en) * 2000-04-24 2001-10-31 Murata Mfg Co Ltd Method of producing ceramic, and ceramic
US6596054B2 (en) * 2001-07-23 2003-07-22 Advanced Technology Materials, Inc. Method for carbon monoxide reduction during thermal/wet abatement of organic compounds
JP2003183004A (en) * 2001-12-14 2003-07-03 Mitsubishi Heavy Ind Ltd Method for manufacturing synthetic gas, and system for manufacturing liquid fuel and system for generating fuel cell-electric power utilizing this
JP4132863B2 (en) * 2002-02-18 2008-08-13 株式会社ノリタケカンパニーリミテド Oxygen ion conductor molding raw material powder and method for producing the same
DE60239660D1 (en) * 2002-02-22 2011-05-19 Praxair Technology Inc Plasma coatings applied by plasma spraying for oxygen transport
WO2004047207A2 (en) * 2002-11-15 2004-06-03 Battelle Memorial Institute Copper-substituted perovskite compositions for solid oxide fuel cell cathodes and oxygen reduction electrochemical devices
US7229712B2 (en) * 2003-03-07 2007-06-12 Microcell Corporation Fuel cell structures and assemblies
US20040214070A1 (en) * 2003-04-28 2004-10-28 Simner Steven P. Low sintering lanthanum ferrite materials for use as solid oxide fuel cell cathodes and oxygen reduction electrodes and other electrochemical devices
WO2004107482A1 (en) * 2003-05-27 2004-12-09 Symyx Technologies, Inc. Platinum-vanadium-iron fuel cell electrocatalyst
US7465335B2 (en) * 2005-02-02 2008-12-16 United Technologies Corporation Fuel deoxygenation system with textured oxygen permeable membrane
CN100354033C (en) * 2005-09-12 2007-12-12 南京工业大学 Supported mixed conductor dense film and preparation method thereof
US8356485B2 (en) * 2007-02-27 2013-01-22 Siemens Energy, Inc. System and method for oxygen separation in an integrated gasification combined cycle system
US8182965B2 (en) * 2008-09-30 2012-05-22 Battelle Memorial Institute Optimized cell configurations for stable LSCF-based solid oxide fuel cells
CN104529448B (en) * 2015-01-23 2016-03-30 景德镇陶瓷学院 A kind of high porosity high osmosis Nb 2o 5ceramic membrane and preparation method thereof
JP6658038B2 (en) * 2016-02-08 2020-03-04 日本製鉄株式会社 Low temperature operable perovskite-type oxide adsorbent and method for producing the same
CN114460149A (en) * 2020-11-09 2022-05-10 陈文亮 Biochip detection device, biosensor platform, manufacturing method and application thereof
CN112705017B (en) * 2020-12-21 2022-05-27 中国人民解放军空军军医大学 Oxygen-enriched collective protection system constructed based on composite membrane separator and control method
CN112850799A (en) * 2021-01-26 2021-05-28 河海大学 Preparation method of double-scale porous perovskite for chemical looping hydrogen production

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121717A (en) * 1984-07-10 1986-01-30 Toyo Soda Mfg Co Ltd Separation of oxygen
JPH01133924A (en) * 1987-11-19 1989-05-26 Tokin Corp Perovskite type oxide superconductor having silver-containing oxygen-defective triple structure
US5240480A (en) * 1992-09-15 1993-08-31 Air Products And Chemicals, Inc. Composite mixed conductor membranes for producing oxygen
US5306411A (en) * 1989-05-25 1994-04-26 The Standard Oil Company Solid multi-component membranes, electrochemical reactor components, electrochemical reactors and use of membranes, reactor components, and reactor for oxidation reactions
US5648304A (en) * 1994-09-23 1997-07-15 Mazanec; Terry J. Oxygen permeable mixed conductor membranes
US5712220A (en) * 1995-03-13 1998-01-27 Air Products And Chemicals, Inc. Coompositions capable of operating under high carbon dioxide partial pressures for use in solid-state oxygen producing devices

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69603762T2 (en) * 1995-03-13 2000-03-09 Air Products And Chemicals, Inc. Electrochemical membranes based on compositions capable of functioning under high oxygen partial pressures for use in solid state devices for the production of oxygen
US5837125A (en) 1995-12-05 1998-11-17 Praxair Technology, Inc. Reactive purge for solid electrolyte membrane gas separation
US5911860A (en) * 1996-12-31 1999-06-15 Praxair Technology, Inc. Solid electrolyte membrane with mechanically-enhancing constituents
ID19327A (en) * 1996-12-31 1998-07-02 Praxiar Technology Inc SOLID ELECTROLITE MEMBRANES WITH MECHANICAL AND CATALYTIC HIGHERING ELEMENTS WHICH ARE CATALYTIC WHICH CAN BE ABSORBED

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6121717A (en) * 1984-07-10 1986-01-30 Toyo Soda Mfg Co Ltd Separation of oxygen
JPH01133924A (en) * 1987-11-19 1989-05-26 Tokin Corp Perovskite type oxide superconductor having silver-containing oxygen-defective triple structure
US5306411A (en) * 1989-05-25 1994-04-26 The Standard Oil Company Solid multi-component membranes, electrochemical reactor components, electrochemical reactors and use of membranes, reactor components, and reactor for oxidation reactions
US5240480A (en) * 1992-09-15 1993-08-31 Air Products And Chemicals, Inc. Composite mixed conductor membranes for producing oxygen
US5648304A (en) * 1994-09-23 1997-07-15 Mazanec; Terry J. Oxygen permeable mixed conductor membranes
US5712220A (en) * 1995-03-13 1998-01-27 Air Products And Chemicals, Inc. Coompositions capable of operating under high carbon dioxide partial pressures for use in solid-state oxygen producing devices

Also Published As

Publication number Publication date
US6235187B1 (en) 2001-05-22
AU1484200A (en) 2000-08-24
CA2297578A1 (en) 2000-08-02
ZA200000435B (en) 2000-09-06
JP2000233120A (en) 2000-08-29
MXPA00001136A (en) 2002-03-08
EP1027916A1 (en) 2000-08-16
CN1263791A (en) 2000-08-23
BR0000233A (en) 2000-09-05

Similar Documents

Publication Publication Date Title
US6235187B1 (en) Oxygen separation method using a mixed conducting cubic perovskite ceramic ion transport membrane
Li et al. A CO2‐tolerant perovskite oxide with high oxide ion and electronic conductivity
US7588626B2 (en) Composite mixed oxide ionic and electronic conductors for hydrogen separation
JP3212304B2 (en) Novel solid multi-component membranes, electrochemical reactors, and use of membranes and reactors for oxidation reactions
DE69515586T2 (en) Oxygen-permeable, composite, conductive membranes
US5624542A (en) Enhancement of mechanical properties of ceramic membranes and solid electrolytes
AU737377B2 (en) Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them
JP5126535B2 (en) Composite type mixed conductor
US7682494B2 (en) Proton conducting materials and devices incorporating them
Kharton et al. Surface modification of La0. 3Sr0. 7CoO3− δ ceramic membranes
US5911860A (en) Solid electrolyte membrane with mechanically-enhancing constituents
US6949230B2 (en) Solid state oxygen anion and electron mediating membrane and catalytic membrane reactors containing them
US7258820B2 (en) Ceramic mixed protonic/electronic conducting membranes for hydrogen separation
Wang et al. Structure and oxygen permeability of a dual-phase membrane
JP5509077B2 (en) Hydrogen ion conducting ceramic membranes for hydrogen separation
US20050252372A1 (en) Hydrogen separation using oxygen ion-electron mixed conduction membranes
US6146445A (en) Stabilized perovskite for ceramic membranes
US20130216938A1 (en) Co2 tolerant, mixed conductive oxide and uses thereof for hydrogen separation
EP0994083B1 (en) Ceramic laminate material
JP4320531B2 (en) Mixed conductive composite oxide for oxygen separation and method for producing the same
Tang et al. Ni-doping influence on functional properties of SrTi0. 65Fe0. 35O3-δ for use as oxygen transport membranes
Galenda et al. Oxygen permeation measurements: An alternative tool to select new intermediate temperature solid oxide fuel cell cathodes
JP3758084B2 (en) Ceramics for oxygen separation and oxygen separator
Weber et al. Processing and Electrochemical Properties of Mixed Conducting Lat-xAxCo1-yFeyO3-δ (A= Sr, Ca)
MXPA00004949A (en) Stabilized perovskite for ceramic membranes

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E601 Decision to refuse application