KR20000073494A - Positive active material for lithium secondary battery and lithium secondary by using the same - Google Patents
Positive active material for lithium secondary battery and lithium secondary by using the same Download PDFInfo
- Publication number
- KR20000073494A KR20000073494A KR1019990016811A KR19990016811A KR20000073494A KR 20000073494 A KR20000073494 A KR 20000073494A KR 1019990016811 A KR1019990016811 A KR 1019990016811A KR 19990016811 A KR19990016811 A KR 19990016811A KR 20000073494 A KR20000073494 A KR 20000073494A
- Authority
- KR
- South Korea
- Prior art keywords
- active material
- lithium secondary
- secondary battery
- positive electrode
- present
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Materials Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Secondary Cells (AREA)
Abstract
Description
[산업상 이용 분야][Industrial use]
본 발명은 리튬 이차 전지용 양극 활물질에 관한 것으로서, 더욱 상세하게는 고온 사이클 수명 특성이 우수한 리튬 이차 전지용 양극 활물질에 관한 것이다.The present invention relates to a positive electrode active material for lithium secondary batteries, and more particularly, to a positive electrode active material for lithium secondary batteries having excellent high temperature cycle life characteristics.
[종래 기술][Prior art]
현재 리튬 이차 전지는 휴대폰, 캠코더 및 노트북 컴퓨터에 적용이 급격하게 증가되고 있는 추세이다. 이들 전지들의 용량을 좌우하는 인자는 양극 활물질이고 이들 물질들의 전기 화학적 특성에 의해 고율에서 장시간 사용가능한지 아니면 많은 충반전 사이클을 지나도록 초기의 용량을 유지하는 특성이 결정된다. 다른 중요한 특성 요인은 고온에서의 용량 감소율이다. 예를 들면 휴대폰인 경우 높은 온도(50℃)에 장시간 방치시 용량 저하가 급격하며 이 원인은 고온에서 양극 활물질을 구성하는 원소가 전해액으로 용출되기 때문이다.Currently, lithium secondary batteries are rapidly increasing in application to mobile phones, camcorders, and notebook computers. The factor that determines the capacity of these batteries is the positive electrode active material and the electrochemical properties of these materials determine whether they can be used at high rates for a long time or maintain their initial capacity over many charge and discharge cycles. Another important characteristic factor is the rate of capacity reduction at high temperatures. For example, in the case of a mobile phone, the capacity decreases rapidly when left at a high temperature (50 ° C.) for a long time.
상기 리튬 이차 전지용 양극 활물질로 사용되고 있는 물질 중에서 LiMn2O4, LiMnO2등의 망간계 활물질은 합성이 용이하며, 제조 비용이 비교적 저렴하고, 환경에 대한 오염도 적다는 장점이 있다. 그 중에서도 LiMn2O4는 전지 시스템의 안정성 등으로 전기 자동차(electric vehicle)에 적용 가능성이 가장 높은 양극 활물질로 부각되고 있다.Among the materials used as the cathode active material for lithium secondary batteries, manganese-based active materials such as LiMn 2 O 4 and LiMnO 2 are easy to synthesize, have a relatively low manufacturing cost, and have low environmental pollution. Among them, LiMn 2 O 4 is emerging as a cathode active material having the highest applicability to electric vehicles due to the stability of a battery system.
LiMn2O4는 상온 사이클 수명은 우수하지만, 고온에서 연속적인 충방전시 용량이 급격히 감소하는 문제점이 있다. LiMn2O4에서 Mn의 원자가는 3.5로써, 실질적으로는 Mn이 Mn3+와 Mn4+의 형태로 존재한다. 이때, 온도가 증가하면, Mn4+는 안정하나, Mn3+는 불안정하여, 고온 충방전시 Mn3+가 Mn4+와 Mn2+로 되는 불균형화(disproportionation) 반응이 일어나서, 고온 충방전시 용량이 급격히 감소하는 것으로 알려져 있다. 또한, LiMn2O4를 사용한 전지는 초기 10 사이클 이내에 용량이 급격하게 감소하는 현상이 발생되는 문제점이 있다.LiMn 2 O 4 has excellent cycle life at room temperature, but has a problem in that capacity decreases rapidly during continuous charge and discharge at high temperatures. The valence of Mn in LiMn 2 O 4 is 3.5, substantially Mn is present in the form of Mn 3+ and Mn 4+ . At this time, when the temperature is increased, Mn 4+ is stable, but Mn 3+ is unstable, and a disproportionation reaction occurs in which Mn 3+ becomes Mn 4+ and Mn 2+ during high temperature charge and discharge, and thus, high temperature charge and discharge It is known that the dose decreases rapidly. In addition, a battery using LiMn 2 O 4 has a problem in that a phenomenon in which capacity decreases rapidly within an initial 10 cycle occurs.
본 발명은 상기한 문제점을 해결하기 위한 것으로서, 본 발명의 목적은 고온 사이클 수명 특성이 우수한 망간계 리튬 이차 전지용 양극 활물질을 제공하는 것이다.The present invention is to solve the above problems, an object of the present invention is to provide a positive electrode active material for manganese-based lithium secondary battery excellent in high temperature cycle life characteristics.
도 1은 본 발명의 실시예 및 비교예의 방법으로 제조된 리튬 이차 전지의 고온 사이클 수명 특성을 나타낸 그래프.1 is a graph showing the high temperature cycle life characteristics of the lithium secondary battery prepared by the method of the Examples and Comparative Examples of the present invention.
상기한 목적을 달성하기 위하여, 본 발명은 하기 화학식 1의 리튬 이차 전지용 양극 활물질을 제공한다.In order to achieve the above object, the present invention provides a cathode active material for a lithium secondary battery of the formula (1).
[화학식 1][Formula 1]
Li1+yMn2O4-zSz Li 1 + y Mn 2 O 4-z S z
(상기 식에서, -0.1 ≤ y ≤ 0.2, 0 ≤ z ≤ 0.2이다.)(In the above formula, -0.1 <y <0.2, 0 <z <0.2.)
또한, 상기 화학식 1의 리튬 이차 전지용 양극 활물질을 포함하는 양극; 리튬 이온의 탈삽입이 가능한 음극 활물질을 포함하는 음극; 상기 양극과 음극 사이에 존재하는 세퍼레이터; 및 상기 비수용액 전해질을 포함하는 리튬 이차 전지를 제공한다.In addition, the positive electrode including a positive active material for a lithium secondary battery of Formula 1; A negative electrode including a negative electrode active material capable of deintercalation of lithium ions; A separator present between the anode and the cathode; And it provides a lithium secondary battery comprising the non-aqueous electrolyte.
이하 본 발명을 더욱 상세하게 설명한다.Hereinafter, the present invention will be described in more detail.
본 발명자들은 LiMn2O4에서 O의 일부를 S로 치환함으로써, 고온에서의 사이클 수명이 우수한 망간계 리튬 이차 전지용 양극 활물질을 제공할 수 있음을 발견하고 본 발명을 완성하였다.The present inventors have found that by substituting a portion of O for LiMn 2 O 4 with S, it is possible to provide a positive electrode active material for manganese-based lithium secondary batteries with excellent cycle life at high temperature, and completed the present invention.
O의 일부를 S로 치환한 본 발명의 양극 활물질은 하기 화학식 1을 갖는다.The positive electrode active material of the present invention in which a part of O is substituted with S has the following formula (1).
[화학식 1][Formula 1]
Li1+yMn2O4-zSz Li 1 + y Mn 2 O 4-z S z
(상기 식에서, -0.1 ≤ y ≤ 0.2, 0 ≤ z ≤ 0.2이다.)(In the above formula, -0.1 <y <0.2, 0 <z <0.2.)
상기 화학식 1에 나타낸 것과 같이, 본 발명의 양극 활물질은 O의 일부를 S로 치환하고, Li의 양을 일부 조절하여 형성된 양극 활물질이다.As shown in Formula 1, the positive electrode active material of the present invention is a positive electrode active material formed by substituting part of O with S and partially controlling the amount of Li.
상기한 구성을 갖는 양극 활물질은 O의 일부를 S로 치환함에 따라 고온 사이클 수명 특성이 우수한 전지를 제공할 수 있었다. 또한, Li의 양을 조절함에 따라, Mn의 원자가를 조절할 수 있으므로, Mn3+가 Mn4+와 Mn2+로 되는 불균형화 현상에 따른 고온에서 급격한 용량 감소를 방지할 수 있다.The positive electrode active material having the above structure was able to provide a battery having excellent high temperature cycle life characteristics by substituting a portion of O for S. In addition, by controlling the amount of Li, the valence of Mn can be adjusted, so that a sudden decrease in capacity at high temperatures due to an unbalanced phenomenon in which Mn 3+ becomes Mn 4+ and Mn 2+ can be prevented.
본 발명에 따른 양극 활물질은 리튬 카보네이트, 리튬 설파이드 및 망간 옥사이드를 적정 비율로 혼합한 후, 이를 약 750∼800℃에서 소성함으로써 제조될 수 있다.The positive electrode active material according to the present invention may be prepared by mixing lithium carbonate, lithium sulfide and manganese oxide in an appropriate ratio, and then firing it at about 750 to 800 ° C.
본 발명의 양극 활물질을 이용한 리튬 이차 전지는 음극으로 리튬 이온의 탈삽입(deintercalation-intercalation)이 가능한 그라파이트, 카본 등의 일반적으로 리튬 이차 전지의 음극 활물질로 사용되는 물질인 탄소재 활물질로 제조된 것을 사용할 수 있다. 전해질로는 일반적으로 리튬 이차 전지의 전해질로 사용되는 비수용액계 액체 전해질, 폴리머 전해질 등을 사용할 수 있다. 세퍼레이터로는 일반적으로 리튬 이차 전지에서 사용되는 고분자 필름이 사용될 수 있다.The lithium secondary battery using the positive electrode active material of the present invention is made of a carbon-based active material that is a material that is generally used as a negative electrode active material of lithium secondary batteries, such as graphite and carbon, which can deintercalation-intercalation of lithium ions as a negative electrode. Can be used. As the electrolyte, a non-aqueous liquid electrolyte, a polymer electrolyte, or the like, which is generally used as an electrolyte of a lithium secondary battery, can be used. As the separator, a polymer film generally used in a lithium secondary battery may be used.
이하 본 발명의 바람직한 실시예 및 비교예를 기재한다. 그러나 하기한 실시예는 본 발명의 바람직한 일 실시예일 뿐 본 발명이 하기한 실시예에 한정되는 것은 아니다.Hereinafter, preferred examples and comparative examples of the present invention are described. However, the following examples are only one preferred embodiment of the present invention and the present invention is not limited to the following examples.
(실시예 1)(Example 1)
Li2CO3, LiS 및 MnO2를 LiMn2O3.95S0.05의 몰비가 되도록 균일하게 혼합한 후, 이 혼합물을 790℃에서 24시간 동안 소성 후 상온까지 서냉하여, 리튬 이차 전지용 양극 활물질을 제조하였다.After mixing Li 2 CO 3 , LiS and MnO 2 uniformly to a molar ratio of LiMn 2 O 3.95 S 0.05 , the mixture was calcined at 790 ° C. for 24 hours and then cooled slowly to room temperature to prepare a cathode active material for a lithium secondary battery. .
상기 활물질, 바인더로서 폴리비닐리덴, 도전제로서 카본 블랙을 92 : 4 :4의 중량%로 혼합한 다음, 일정량의 N-메틸 피롤리돈을 첨가하면서 균일한 페이스트가 될 때까지 섞었다. 이 페이스트를 닥터-블레이드(doctor-blade)기를 이용하여 300 미크론(micron)의 두께로 알루미늄 호일에 코팅한 후 150℃에서 N-메틸 피롤리돈을 완전히 날려 보낸 다음 일정한 압력으로 압축하였다. 대극으로 리튬 호일도 양극과 같은 크기로 자른 다음, 코인 전지 캡의 Ni 호일에 압축하여 붙였다. 세퍼레이터는 셀가드 사(celgard) 제품을 사용하였으며, 전해질은 LiPF6가 용해된 에틸렌 카보네이트/디메틸 카보네이트의 혼합물을 사용하였다.The active material, polyvinylidene as a binder, and carbon black as a conductive agent were mixed at a weight ratio of 92: 4: 4, and then mixed until a uniform paste was added while adding an amount of N-methyl pyrrolidone. The paste was coated on aluminum foil to a thickness of 300 microns using a doctor-blade machine and then completely blown N-methyl pyrrolidone at 150 ° C. and then compressed to constant pressure. As a counter electrode, the lithium foil was also cut to the same size as the positive electrode, and then pressed to Ni foil of the coin battery cap. The separator used was celgard, and the electrolyte used was a mixture of ethylene carbonate / dimethyl carbonate in which LiPF 6 was dissolved.
(실시예 2)(Example 2)
Li2CO3, LiS 및 MnO2를 LiMn2O3.9S0.1의 몰비가 되도록 균일하게 혼합한 후, 이 혼합물을 790℃에서 24시간 동안 소성 후 상온까지 서냉하여 리튬 이차 전지용 양극 활물질을 제조하였다. 상기 활물질을 이용하여 상기 실시예 1과 같이 코인 전지를 제조하였다.After Li 2 CO 3 , LiS and MnO 2 were uniformly mixed so as to have a molar ratio of LiMn 2 O 3.9 S 0.1 , the mixture was calcined at 790 ° C. for 24 hours, and then cooled slowly to room temperature to prepare a cathode active material for a lithium secondary battery. A coin battery was manufactured as in Example 1 using the active material.
(실시예 3)(Example 3)
Li2CO3, LiS 및 MnO2를 LiMn2O3.85S0.15의 몰비가 되도록 균일하게 혼합한 후, 이 혼합물을 790℃에서 24시간 동안 소성하고, 상온까지 서냉하여 리튬 이차 전지용 양극 활물질을 제조하였다. 상기 양극 활물질을 이용하여, 상기 실시예 1과 동일하게 실시하여 코인 전지를 제조하였다.Li 2 CO 3 , LiS and MnO 2 were uniformly mixed so as to have a molar ratio of LiMn 2 O 3.85 S 0.15 , and then the mixture was calcined at 790 ° C. for 24 hours and slowly cooled to room temperature to prepare a cathode active material for a lithium secondary battery. . Using the positive electrode active material, a coin battery was manufactured in the same manner as in Example 1.
(비교예 1)(Comparative Example 1)
Li2CO3및 MnO2를 LiMn2O4의 몰비가 되도록 균일하게 혼합한 후, 이 혼합물을 790℃에서 24시간 동안 소성하고, 상온까지 서냉하여 리튬 이차 전지용 양극 활물질을 제조하였다. 상기 양극 활물질을 이용하여 상기 실시예 1과 동일하게 실시하여 코인 전지를 제조하였다.After uniformly mixing Li 2 CO 3 and MnO 2 to a molar ratio of LiMn 2 O 4 , the mixture was calcined at 790 ° C. for 24 hours, and cooled slowly to room temperature to prepare a cathode active material for a lithium secondary battery. A coin battery was prepared in the same manner as in Example 1 using the cathode active material.
상기 실시예 1-3 및 비교예 1의 전지를 이용하여 전지의 고온(50℃) 사이클 수명 특성을 측정하여 그 결과를 도 1에 나타내었다. 도 1에 나타낸 것과 같이, 실시예 1-3 및 비교예 1의 전지의 초기 용량을 측정한 결과, 실시예 1은 118mAh/g, 실시예 2는 113mAh/g, 실시예 3은 105mAh/g로 나타났으며, 비교예 1은 117mAh/g이었다. 또한, 실시예 1-3 및 비교예 1의 전지를 0.2C로 20회 충방전시켰을 때, 초기 용량 대비 용량 유지율이 실시예 1은 85%, 실시예 2는 89%, 실시예 3은 93%를 나타내었으며, 비교예 1은 70%를 나타내었다. 즉, 비교예 1의 전지가 초기 용량은 다소 높으나, 충방전 사이클을 진행함에 따라 용량 감소가 급격하게 일어남을 알 수 있다. 따라서, 실시예 1-3의 전지가 초기 용량은 비교예 1의 전지에 비하여 다소 낮으나, 충방전 사이클에 따른 용량 유지율이 비교예 1의 전지에 비해 매우 높으므로, 고온 사이클 수명이 우수함을 알 수 있다.The high temperature (50 ° C) cycle life characteristics of the battery were measured using the batteries of Examples 1-3 and Comparative Example 1, and the results are shown in FIG. 1. As shown in FIG. 1, the initial capacities of the batteries of Examples 1-3 and Comparative Example 1 were measured. As a result, Example 1 is 118 mAh / g, Example 2 is 113 mAh / g, and Example 3 is 105 mAh / g. It appeared, and Comparative Example 1 was 117mAh / g. In addition, when the batteries of Examples 1-3 and Comparative Example 1 were charged and discharged 20 times at 0.2 C, the capacity retention ratio of the initial capacity was 85% in Example 1, 89% in Example 2, and 93% in Example 3, respectively. In Comparative Example 1, 70% was indicated. That is, although the initial capacity of the battery of Comparative Example 1 is slightly higher, it can be seen that the capacity decreases rapidly as the charge and discharge cycle proceeds. Therefore, although the initial capacity of the battery of Examples 1-3 is slightly lower than that of Comparative Example 1, the capacity retention rate according to the charge / discharge cycle is much higher than that of Comparative Example 1, indicating that the high temperature cycle life is excellent. have.
상술한 바와 같이, 본 발명의 리튬 이차 전지용 양극 활물질은 고온 사이클 수명 특성이 LiMn2O4에 비해 15% 이상 향상되었다.As described above, the cathode active material for a lithium secondary battery of the present invention has improved high-temperature cycle life characteristics by at least 15% compared to LiMn 2 O 4 .
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990016811A KR100300332B1 (en) | 1999-05-11 | 1999-05-11 | Positive active material for lithium secondary battery and lithium secondary by using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990016811A KR100300332B1 (en) | 1999-05-11 | 1999-05-11 | Positive active material for lithium secondary battery and lithium secondary by using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
KR20000073494A true KR20000073494A (en) | 2000-12-05 |
KR100300332B1 KR100300332B1 (en) | 2001-09-26 |
Family
ID=19584808
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019990016811A KR100300332B1 (en) | 1999-05-11 | 1999-05-11 | Positive active material for lithium secondary battery and lithium secondary by using the same |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR100300332B1 (en) |
-
1999
- 1999-05-11 KR KR1019990016811A patent/KR100300332B1/en not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
KR100300332B1 (en) | 2001-09-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0870339B1 (en) | Electrode material for electrochemical lithium intercalation | |
CA2522107C (en) | Cathode active material comprising additive for improving overdischarge-performance and lithium secondary battery using the same | |
KR20140070259A (en) | Anode active material for lithium secondary battery, preparation method of thereof, and lithium secondary battery comprising the same | |
JPH10289733A (en) | Nonaqueous secondary battery and manufacture therefor | |
KR20150032014A (en) | Silicon based anode active material and lithium secondary battery comprising the same | |
KR20040080932A (en) | Production methods for positive electrode active matter and non-aqueous electrolytic battery | |
US6395425B1 (en) | Non-aqueous electrolyte secondary battery with a lithium copper titanium oxide electrode | |
KR100570417B1 (en) | Rechargeable lithium battery comprising spinel structure limn.sub.2o.sub.4 for cathode active material to which nickel based active material is added | |
JPH0541251A (en) | Nonaqueous electrolyte secondary battery | |
KR20000074691A (en) | Positive active material composition for lithium secondary battery and lithium secondary battery comprising the same | |
KR101756938B1 (en) | Anode active material and lithium secondary battery comprising the same | |
KR101816949B1 (en) | Non-aqueous liquid electrolyte and lithium secondary battery comprising the same | |
KR101853149B1 (en) | Anode active material for lithium secondary battery having core-shell structure, lithium secondary battery comprising the material, and method of preparing the material | |
KR100300332B1 (en) | Positive active material for lithium secondary battery and lithium secondary by using the same | |
KR100432669B1 (en) | Negative active material for rechargeable lithium batteries and preparing for same | |
KR100296878B1 (en) | Positive active material for lithium secondary battery and lithium secondary battery comprising the same | |
KR100300331B1 (en) | A positive active material for a lithium battery | |
KR100434547B1 (en) | Lithium metal oxide cathode and lithium secondary battery using the same | |
KR100296877B1 (en) | Positive active material for lithium secondary battery and lithium secondary by using the same | |
KR100300330B1 (en) | A positive active material for a lithium battery | |
KR100326458B1 (en) | Positive active material for lithium secondary battery and lithium secondary battery by using the same | |
KR100300329B1 (en) | A positive active material for a lithium battery | |
KR20000074958A (en) | Positive active material for lithium secondary battery and lithium secondary by using the same | |
KR100307164B1 (en) | Positive active material for lithium secondary battery and lithium secondary battery comprising the same | |
KR20190031978A (en) | Lithium secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
E701 | Decision to grant or registration of patent right | ||
GRNT | Written decision to grant | ||
FPAY | Annual fee payment |
Payment date: 20130522 Year of fee payment: 13 |
|
FPAY | Annual fee payment |
Payment date: 20140526 Year of fee payment: 14 |
|
FPAY | Annual fee payment |
Payment date: 20150519 Year of fee payment: 15 |
|
LAPS | Lapse due to unpaid annual fee |