KR20000065880A - Thermoelectric cooler/heater modules manufacture with metal plates - Google Patents
Thermoelectric cooler/heater modules manufacture with metal plates Download PDFInfo
- Publication number
- KR20000065880A KR20000065880A KR1019990012611A KR19990012611A KR20000065880A KR 20000065880 A KR20000065880 A KR 20000065880A KR 1019990012611 A KR1019990012611 A KR 1019990012611A KR 19990012611 A KR19990012611 A KR 19990012611A KR 20000065880 A KR20000065880 A KR 20000065880A
- Authority
- KR
- South Korea
- Prior art keywords
- heat
- metal substrate
- manufacturing
- thermoelectric cold
- thermoelectric
- Prior art date
Links
- 229910052751 metal Inorganic materials 0.000 title claims abstract description 41
- 239000002184 metal Substances 0.000 title claims abstract description 41
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 26
- 239000000758 substrate Substances 0.000 claims abstract description 41
- 238000000034 method Methods 0.000 claims abstract description 15
- 239000000919 ceramic Substances 0.000 claims abstract description 12
- 238000010438 heat treatment Methods 0.000 claims abstract description 8
- 238000002156 mixing Methods 0.000 claims abstract description 8
- 230000015556 catabolic process Effects 0.000 claims abstract description 7
- 238000001816 cooling Methods 0.000 claims abstract description 5
- 239000010408 film Substances 0.000 claims description 29
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 14
- 239000011889 copper foil Substances 0.000 claims description 10
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 7
- 229920005989 resin Polymers 0.000 claims description 7
- 239000011347 resin Substances 0.000 claims description 7
- 229910000679 solder Inorganic materials 0.000 claims description 6
- 238000010292 electrical insulation Methods 0.000 claims description 5
- 239000000853 adhesive Substances 0.000 claims description 4
- 230000001070 adhesive effect Effects 0.000 claims description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 claims description 4
- 239000011230 binding agent Substances 0.000 claims description 4
- 239000004020 conductor Substances 0.000 claims description 4
- 238000009413 insulation Methods 0.000 claims description 4
- 229910052802 copper Inorganic materials 0.000 claims description 3
- 239000010949 copper Substances 0.000 claims description 3
- 238000005520 cutting process Methods 0.000 claims description 3
- 238000005530 etching Methods 0.000 claims description 3
- WABPQHHGFIMREM-UHFFFAOYSA-N lead(0) Chemical compound [Pb] WABPQHHGFIMREM-UHFFFAOYSA-N 0.000 claims description 3
- 239000010409 thin film Substances 0.000 claims description 3
- 229910018072 Al 2 O 3 Inorganic materials 0.000 claims description 2
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 2
- 239000011888 foil Substances 0.000 claims description 2
- 239000011256 inorganic filler Substances 0.000 claims description 2
- 229910003475 inorganic filler Inorganic materials 0.000 claims description 2
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 claims description 2
- 238000003825 pressing Methods 0.000 claims description 2
- 238000003475 lamination Methods 0.000 claims 2
- 239000003822 epoxy resin Substances 0.000 abstract description 2
- 229920000647 polyepoxide Polymers 0.000 abstract description 2
- 239000011248 coating agent Substances 0.000 description 8
- 238000000576 coating method Methods 0.000 description 8
- 230000017525 heat dissipation Effects 0.000 description 7
- 230000035939 shock Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 5
- 239000011810 insulating material Substances 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000007598 dipping method Methods 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000005476 soldering Methods 0.000 description 2
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- -1 Polyethylene Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- 238000003915 air pollution Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000011231 conductive filler Substances 0.000 description 1
- 230000010485 coping Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000007719 peel strength test Methods 0.000 description 1
- 229920000768 polyamine Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/01—Manufacture or treatment
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/851—Thermoelectric active materials comprising inorganic compositions
- H10N10/855—Thermoelectric active materials comprising inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N10/00—Thermoelectric devices comprising a junction of dissimilar materials, i.e. devices exhibiting Seebeck or Peltier effects
- H10N10/80—Constructional details
- H10N10/85—Thermoelectric active materials
- H10N10/856—Thermoelectric active materials comprising organic compositions
Landscapes
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
Abstract
Description
본 발명은 금속기판을 이용한 열전냉온소자의 제조방법에 관한 것으로서 종래의 세라믹스기판을 이용한 열전냉온소자의 열전도특성및 기계적충격에 약한 문제점을 보완한 발명으로서 열전냉온소자를 구성하는 N-Chip과 P-Chip들의 조직배열을 위한 상,하 양면의 기판을 종래의 세라믹스기판 대신 열전도율이 높은 금속기판으로 대체함으로서 소자에서 발생되는 접합부(Junction)의 펠티어(Paltier)열및 주율(Joule) 열을 빨리 방출 할수있어서 열전냉온소자의 효율이 개선되고 충격에도 강한 열전냉온소자의 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a thermoelectric cold / heating device using a metal substrate. The present invention supplements the problems of weak thermal conductivity and mechanical shock of a thermoelectric cold / heating device using a conventional ceramic substrate. -Fast dissipation of Paltier and Joule heat of the junction generated in the device by replacing the upper and lower double-sided boards for the organization of the chips with a high thermal conductivity metal board instead of the conventional ceramic board. The present invention relates to a method for manufacturing a thermoelectric cold / heat device that can improve the efficiency of the thermoelectric cold / heat device and resist a shock.
본 발명에 의한 금속기판을 이용한 열전냉온소자는 열전도율이 높아서 고온측의 열방출이 빨라 , 종래의 고열전도성 전기 절연재료인 알루미나세라믹스의 경우 그열전도율이 25(W/m℃)이하인 반면 본 발명에 사용되는 알루미늄이나 튜랄루민등 금속기판의 경우 그 열전도율은 재질에 따라 약간의 변동은 있으나 200(W/m℃)정도가 되는고로 세라믹스에 8배이상 높은 열전도를 보이는 것이다.The thermoelectric cold / heat device using the metal substrate according to the present invention has a high thermal conductivity, and thus heat dissipation at the high temperature side is fast. In the case of alumina ceramics, which is a conventional high thermal conductivity electrical insulating material, its thermal conductivity is 25 (W / m ° C.) or less. In the case of used metal substrates such as aluminum and turalumine, the thermal conductivity varies slightly depending on the material, but it is about 200 (W / m ℃), so it shows 8 times higher thermal conductivity than ceramics.
본 발명에 의한 금속기판을 이용한 열전냉온소자의 제조방법에 관하여 계략적인 설명을 하면 금속기판(알루미늄,동판, 튜랄루민등)의 한쪽면에 Epoxy계의 Resin을 주로한 Binder에 열전도성이 높은 무기질 Filler를 혼합한 재질로 50-150㎛정도의 피막처리를 하여서 파괴전압 2000V 이상되는 전기절연막을 형성시킨다. 이 피막 상면에 100-300㎛정도의 동 Foil을 접합한후, 이 동 Foil면에 필요한 패턴(Pattern)을 인쇄 에칭(Etching)공법으로 처리하여서 금속기판이 된다. 이 완성된 금속기판2매를 상,하로 그사이에 N-칩과P-칩을 소정된 배열을하여 샌드위치형으로 납땜으로 고착시키면 본 발명의 금속기판을 이용한 열전냉온소자가 완성되는 것이다.A method of manufacturing a thermoelectric cold / heat element using a metal substrate according to the present invention will be described in a schematic manner. The thermal conductivity is high in a binder mainly made of epoxy-based resin on one side of a metal substrate (aluminum, copper, turallumin, etc.). Inorganic filler is mixed and 50 ~ 150㎛ coating is used to form an electric insulation film with breakdown voltage over 2000V. A copper foil having a thickness of about 100 to 300 µm is bonded to the upper surface of the film, and then a pattern necessary for the surface of the moving foil is processed by a printing etching method to form a metal substrate. When the two completed metal substrates are fixed up and down by sandwiching N-chips and P-chips in a sandwiched manner, a thermoelectric cold / heat device using the metal substrate of the present invention is completed.
이하 본 발명의 열전냉온소자의 제조방법을 도면에 의하여 상세히 설명하면, 도1의 1a 에서 금속기판(2)을 제조함에 있어 소정의 치수로 금속기판을 절단한후 격판을 층층이 삽입하여 적층(Lamination)하고 이를 40-60kg/㎠정도의 압력으로 가압하여서 500℃정도의 열간으로 1.5-3시간 정도 열처리 한다. 이 열처리된 금속판을 서서히 냉각한후 이 금속판의 일면에 도1-1b에 도시한 전기절연막(4)을 80-120㎛정도를 피막시키되 미리준비한 수지용액을 점적(In-still)한후 500-2000RPM 의 회전 원심력으로 확산시켜 박막상태로 하여 금속판의 열팽창에 대처할수있는 유연성과 파괴전압 2000V이상의 전기절연성과 열전도성이 높은 전기절연막이 형성되면 이를 180-280℃ 정도의 열로 소성 처리한 다음 2차로 동일한 재질로 동일한 방법의 작업과정으로 전기절연막을 형성시키되 이 피막이 되는 Binder의 접착력을 이용하여 도1-1b에 도시한 동호일(Foil)두께 100-300㎛정도를 압착하고 180-280℃의 열로 다시 열처리한다. 상기 기술한 방법으로 이루어진 금속기판상에 필요한 패턴(Pattern)을 인쇄한후 에칭(Etching)공법으로 처리하며, 다음으로 이 금속기판 즉 도1-1a에 도시한 금속기판(2)을 치구인 형틀에 넣고 도체 리드(Lead)편을 조립하고 가압평판으로 누른후 열간처리하며, 치구인 형틀에서 분리한후 Paste상의 Solder로 인쇄한 다음 다시 다른 치구에 넣어 도1-1a에 도시한 N,P Chip(3)을 샌드위치형태로 배열조립후 치구인 가압판으로 가압 소정온도로 가열하면 앞서 인쇄된 Paste상의 Solder가 용융 용착 (Deposite) 되며 Soldering된 도1의 열전냉온소자(1a)에 리-드선을 부착하여 열전냉온소자의 제품이 완성된다.Hereinafter, the manufacturing method of the thermoelectric cold element of the present invention will be described in detail with reference to the drawings. In the manufacturing of the metal substrate 2 in FIG. And pressurize it at a pressure of 40-60kg / ㎠ and heat-treat it for 1.5-3 hours with 500 ℃ hot. After slowly cooling the heat-treated metal plate, the surface of the metal plate was coated with 80-120 μm of the electrical insulating film 4 shown in Fig. 1-B, but the pre-prepared resin solution was in-still and then 500-2000 RPM. After spreading by rotating centrifugal force to form a thin film, the electrical insulation film having high flexibility and coping resistance to thermal expansion of metal plate and breakdown voltage of 2000V or more is formed, and then it is calcined by heat of about 180-280 ℃ and then made of the same material for the second time. An electrical insulating film was formed by the same process, but using the adhesive force of the binder to form the film, the copper foil thickness shown in Fig. 1-1B was pressed at about 100-300 μm and heat-treated again at 180-280 ° C. do. After printing the necessary pattern on the metal substrate made by the above-described method, it is processed by etching method, and then the metal substrate 2, shown in Fig. 1-1a, is placed on the jig. Assemble the conductor lead piece, press it with a pressure plate, and then hot-treat it, separate it from the jig mold, print it with a solder on Paste, and put it back in another jig. 3) After assembling in the form of sandwich and heating it to a predetermined temperature by pressing plate which is jig, Solder of previously printed paste is melt-deposited and the lead wire is attached to the soldered thermoelectric cold element 1a of FIG. The product of thermoelectric cold element is completed.
본 발명의 목적은 종래의 세라믹스 열전냉온소자의 문제점으로 야기된 열전도율 및 기계적충격에 약한 단점을 해결하기 위하여 열전냉온소자를 구성하는 N-Chip과 P-Chip들의 조직배열을 위한 상,하기판을 종래의 세라믹스기판 대신 열전도율이 높은 금속판으로 대체함으로서 소자에서 발생되는 주율(Joule)열을 빨리 방출 할수있어 열전냉온소자의 효율이 높아지고 기계적충격에도 강한 열전냉온소자를 공급하여 산업전반에 광범위하게 사용할수있도록 하는것이 본 발명의 목적이다.An object of the present invention is to provide a top and bottom substrate for the tissue arrangement of the N-Chip and P-Chip constituting the thermoelectric cold / hot element in order to solve the weakness of the thermal conductivity and mechanical shock caused by the problems of the conventional ceramic thermoelectric cold / hot element By replacing metal plates with high thermal conductivity instead of conventional ceramics boards, it can quickly release Joule heat generated from the device, which increases the efficiency of thermoelectric devices, and provides thermoelectric devices that are resistant to mechanical shock. It is an object of the present invention.
종래의 열전냉온소자의 구조는 상,하 2매의 세라믹스판위에 필요한 형태의 패턴을 전도성재료로 프린트한후, 소성로에서 소성, 숙성하는 과정과 상기에 프린트된 패턴상에 일정하게 납땜한고 전류에 통로가 될 동으로된 전도판을 패턴형태에 맞게 절단하여 프린트된면에 고정시켜 납땜한후 N-칩과P-칩을 샌드위치형으로 배치한후 고착시켜 완성되는 것이다. 그러나 상기에 기술한 제조방법은 노동집약적 수작업에 의존하여야 하므로 품질이 균일하지못하고 대량생산에 문제점이 야기되여 제조원가가 높은것이 단점이며 아울러 냉온소자에서 발생되는 열방출, 열전도율에 의한 낮은 효율, 기계적충격에 약하여 대량생산시에 문제점등을 들 수 있다.The structure of the conventional thermoelectric element is printed on the upper and lower ceramic plates of two sheets with a conductive material, and then fired and aged in a kiln, and soldered uniformly on the printed pattern. It is completed by cutting the conductive plate made of copper to be a pattern and fixing it to the printed surface, fixing it on the printed surface, arranging N-chip and P-chip in a sandwich form, and then fixing them. However, the above-described manufacturing method has to be dependent on labor-intensive manual labor, which results in inconsistent quality and problems in mass production, resulting in high manufacturing costs. Also, heat dissipation generated in cold and warm devices, low efficiency due to thermal conductivity, and mechanical shock. It is fragile and there are problems in mass production.
본 발명은 상기 기술한 문제점들을 해결하기 위하여 발명된것으로서 ,세라믹스기판에 비하여 열전도율이 8배이상되는 알루미늄,튜랄루민등을 이용하여 높은 전압에 견딜수있는 50-150㎛의 절연피막재료에 열의 양도체물질을 혼합코팅한후 소성로에서 열처리하여 N,P-Chip을 샌드위치형으로 배열하여 기판에 고착시킴으로서 전기적인 절연성,및 열방출이 우수한 금속기판을 이용한 열전냉온소자의 제조기술을 발명한 것이다.The present invention has been invented to solve the above-described problems, the heat transfer conductor of 50-150㎛ insulation coating material that can withstand high voltage by using aluminum, turallumin, etc., the thermal conductivity is more than 8 times compared to the ceramic substrate After mixing and coating the materials, the invention is invented a thermoelectric cold / heat device using a metal substrate having excellent electrical insulation and heat dissipation by arranging N, P-Chips in a sandwich form and fixing them to a substrate.
도1: 1a : 열전냉온소자의 사시도 1b:1a의 대한 단면도1: 1a: A sectional view of a perspective view 1b: 1a of a thermoelectric device
도2 : 본 발명에의한 열전냉온소자의 열전도특성도2: Thermal conductivity characteristic diagram of thermoelectric cold and hot element according to the present invention
도3 : 본 발명에 의한 열전냉온소자의 고온측방열과 최대온도차와의 관계도3: Relationship between high temperature side heat dissipation and maximum temperature difference of thermoelectric cold / heat element according to the present invention
도4 : 본발명에 의한 열전냉온소자 절연피막의 열저항곡선4: Heat resistance curve of the thermoelectric cold and hot element insulating film according to the present invention
도5 : 본 발명에의한 열전냉온소자의 절연피막의 온도상승시 파괴내압곡선도5: Breakdown voltage curve at the temperature rise of the insulating film of the thermoelectric cold and hot element according to the present invention
도6 : 본 발명에 의한 열전냉온소자의 절연피막의 박리강도 곡선도6 is a peel strength curve diagram of the insulating film of the thermoelectric cold and hot element according to the present invention
<도면의 주요부분에 대한 부호의 설명><Description of the code | symbol about the principal part of drawing>
2 : 금속기판 3 : N,P-칩 4 : 전기절연막 5 : 동호일(Cupper foil)2: metal substrate 3: N, P-chip 4: electrical insulation film 5: copper foil
본 발명에 의한 열전냉온소자의 제조방법을 도면에의하여 상세히 설명하면 도1-1a에 도시한 금속기판(2)인 알루미늄,튜랄루민등의 금속기판을 우선 제조함에 있어 소정의 치수로 절단하여 일정한 간격으로 층층이 격판을 삽입하여 적층한후 40-60kg/㎠로 가압하여 소성로에서 400-600℃로 열처리한다. 이렇게 열처리한 금속판위에 도1-1b에 도시한 전기절연막(4)100㎛정도을 형성시키되 절연재인 수지용액을점적한후, 500-2000RPM의 원심력으로 확산시켜 박막상태로 하여 열팽창에 대처할수있는 유연성과 파괴전압 2000V정도의 전기절연성및 열전도성이 높은 절연막이 일단 형성되면 180-280℃정도의 열로 소결처리하고 2차적으로 Paste상Epoxy계의 Resin의 절연물질을 상기기술한 1차 절연막과 동일한 방법으로 형성시킨다. 이 2차 절연막의 접착력을 이용하여 도1-1b에 도시한 동호일(5) 100-300㎛을 압착하여 180-280℃로 열처리한 다음 동Foil(5)면에 필요한 패턴을 인쇄하고 에칭처리한다.Referring to the method of manufacturing a thermoelectric cold element according to the present invention in detail with reference to the drawings in the first production of a metal substrate, such as aluminum, turallumin, the metal substrate 2 shown in Figure 1-1 by cutting to a predetermined dimension After laminating the layers by inserting the diaphragm at regular intervals, pressurize at 40-60kg / ㎠ and heat-treat at 400-600 ℃ in the kiln. On the heat-treated metal sheet, an electric insulation film (4) as shown in Fig. 1-1b is formed to about 100 µm, and a resin solution, which is an insulating material, is deposited, and then diffused with a centrifugal force of 500-2000 RPM to form a thin film to cope with thermal expansion. Once an insulating film with high electrical conductivity and thermal conductivity of about 2000V is formed, it is sintered with heat of about 180-280 ° C, and secondly, an insulating material of epoxy-based resin of paste phase is formed in the same manner as the above-described primary insulating film. Let's do it. Using the adhesive force of the secondary insulating film, 100-300 μm of the copper foil 5 shown in Fig. 1-1 was compressed and heat-treated at 180-280 ° C., and then the necessary pattern was printed and etched on the copper foil 5 surface. do.
다음으로 치구인형틀에 넣고 연결리드편을 조립하고 가압평판으로누른후 열처리한 다음 형틀에서 분리하고 Paste상의 Solder로 인쇄하여 치구에 넣어 도1-1b에 도시한 N,P-Chip(3)을 샌드위치형으로 배열하여 조립한후 가압평판으로 다시압착한후 소정온도로 가열하여 Soldering하고 치구에서 분리한 다음 리드선을 납땜하여 제품을 완성시킨다.Next, put the jig into a jig doll, assemble the connecting lead piece, press it with a pressurized flat plate, heat-treat it, separate it from the mold, print it with a solder on Paste, and put it in the jig. Then, put N, P-Chip (3) as shown in Fig. 1-1b. After assembling and assembling in sandwich type, press the plate again and press it again, heat it to a predetermined temperature, solder it, separate it from the jig, and solder the lead wire to complete the product.
상기에 기술한 본발명에 대한 제조방법의 실시예를 상세히 설명하면If described in detail an embodiment of the manufacturing method for the present invention described above
<실시예 1><Example 1>
전기절연피막의 성분 배합비Composition ratio of components of electrical insulating film
엑폭시트 : 22-26%Epoxy sheet: 22-26%
포리에치렌폴리아민 : 2.8-3.8%Polyethylene Polyamine: 2.8-3.8%
디 부틸 푸탈라트(알콜종류):5-6%Dibutyl Puthalat (Alcohol Type): 5-6%
혼합온도 : 실온Mixing temperature: room temperature
혼합시간 : 24시간Mixing time: 24 hours
<실시예2><Example 2>
프탈리 연속고 : 6.5-8.5%Phthaly straight: 6.5-8.5%
디메틸푸탈라트 : 3-4%Dimethylputalate: 3-4%
ED-6송진 : 20-30%ED-6 rosin: 20-30%
<실시예3><Example 3>
열전도성 Filler 제조방법Thermal conductive filler manufacturing method
Alumina Al2O3: 10-12%Alumina Al 2 O 3 : 10-12%
Berylium-Oxid : 15-18%Berylium-Oxid: 15-18%
Aluminium-nitride: 3.5-5%Aluminum-nitride: 3.5-5%
Magnesium-Oxid : 3-4%Magnesium-Oxid: 3-4%
혼합온도 : 160-180℃Mixing temperature: 160-180 ℃
혼합시간 : 1.5-2.5시간Mixing time: 1.5-2.5 hours
<실시예4><Example 4>
전기절연막 형성방법Electrical insulation film formation method
상술한바 소정의 전처리가 되고 표면이 세척된 도1- 1a,1b 에 도시한 금속기판(2)의 일면에 정량의 피막용액재료를 점적(In-still)하되 이때에 기판이 될 금속기판(2)을 회전하는 원판위에 놓여있다. 회전판의 회전속도는 500-2000RPM 정도가 되며 회전속도와 절연피막의 두께는 상관관계가 있다. 즉 회전속도가 빠르면 피막 피막은 180-280℃정도의 열로 열처리 한후 다시한번 동일한 용액과 방법으로 2차적으로 Cooting을 행하여 도1-1b에 도시한 전기절연막(4)이 완성된다. 이때에 미리 준비된 도1-1b에 도시한 동호일(5)을 두께100-300㎛정도을 2차 Cooting한 절연피막의 점착력을 이용하여 면접착(Laminate)한후 40-60kg/㎠정도의 압력으로 압착하여 180-250℃ 정도의 온도로 열간처리한다. 상기와 같이 제조한 금속기판(2)은 열전도율이 200(W/m℃)로 이를 이용한 열전냉온소자는 종래의 고열전도성 전기 절연재료인 알루미나세라믹스기판의 열전도율 25(W/m℃)8배 정도의 열효율을 갖게된다. 이는 열전냉온소자의 접합부에서 발생된 펠티어(Peltier)열과 주울(Joule)열을 급속하게 방출하여 열전냉온소자의 효율을 크게 향상시키게 되며 전류의 통로가 되는 패턴(Pattern)인 동호일(Cupper foil)의 전류로 인한 발열도 억제되어 열전냉온소자의 효과를 배가 시키게 된다. 도3에서는 열방산이(저온과고온의 온도차)에 미치는 영향을 보여주고 있다.A predetermined amount of the coating solution material is deposited on one surface of the metal substrate 2 shown in FIGS. ) On the rotating disc. The rotational speed of the rotating plate is about 500-2000RPM, and the rotational speed and the thickness of the insulating film have a correlation. That is, if the rotational speed is high, the coating film is heat-treated with a heat of about 180-280 ° C., and then secondly cooted by the same solution and method to complete the electrical insulating film 4 shown in Fig. 1-1B. At this time, the copper foil (5) prepared in FIG. 1-1 prepared in advance is subjected to surface bonding using the adhesive force of the insulating coating of the second coating in thickness of about 100-300 μm, and then compressed at a pressure of about 40-60 kg / cm 2. Heat treatment to a temperature of about 180-250 ℃. The metal substrate 2 manufactured as described above has a thermal conductivity of 200 (W / m ° C.), and the thermoelectric cold / heat device using the same has about a thermal conductivity of 25 times (W / m ° C.) of the alumina ceramic substrate, which is a conventional high thermal conductivity electrical insulating material. It will have a thermal efficiency. It rapidly releases the Peltier and Joule heat generated at the junction of the thermoelectric elements, which greatly improves the efficiency of the thermoelectric elements. The copper foil is a pattern for the passage of current. The heat generated by the current is also suppressed to double the effect of the thermoelectric element. In Figure 3, heat dissipation The effect on temperature difference between low and high temperature is shown.
<실시예5><Example 5>
도2에 도시한 열전냉온소자의 열전도특성도에서 (A)점은 종래의 세라믹스기판의 경우이며 점선(B)로 이어지는 점이 새로운 알루미늄기판을 이용한 열전냉온소자이며, 대략 12%정도의 전류(I)을 더 증가 시킬수있으며 이때의 고온측 접합부(Junction)의 열방출량은 방열조건(방열판,표면적,풍량)에 좌우되기는하나 종래의 세라믹스을 이용한 열전냉온소자에 비하여 대략 22%증가를 나타내고 있다.In the thermal conductivity diagram of the thermoelectric elements shown in FIG. 2, the point (A) is the case of a conventional ceramic substrate and the dotted line (B) is a thermoelectric element using a new aluminum substrate. ) The heat dissipation of the junction at the high temperature side depends on the heat dissipation conditions (heat sink, surface area, air volume), but it shows an increase of about 22% compared to the thermoelectric cold / heat element using ceramics.
<실시예6><Example 6>
도4에서 도시한 열전냉온소자 절연피막에 대한 열저항곡선도로서 알루미늄기판에 고내열성 Epoxy계의 수지를 주성분으로한 Resin에 열전도성이 높은 특수 Filler을 혼합하여 0.5(℃/W)정도의 극히낮은 전기저항피막이 형성되어 고온 열방출에 효과적인것으로 나타났다.As a heat resistance curve for the insulating film of the thermoelectric cold and hot element shown in FIG. 4, a special filler having high thermal conductivity is mixed with an resin based on a high heat-resistance epoxy resin on an aluminum substrate to an extremely low temperature of about 0.5 ° C./W. Low electrical resistive coating was formed, which appeared to be effective for high temperature heat release
<실시예7><Example 7>
도5에 도시한 열전냉온소자의 절연피막의 온도상승시 파괴내압곡선도는 상온 상태에서는 물론 가혹한 고온상태에서도 2000V이상의 전기절연내력시험에 절연이 파괴됨이 없이 도5-5a,5b에서도 안정된 동작을 효과적으로 하는것으로 니타났다.The breakdown voltage curve at the temperature rise of the insulating film of the thermoelectric cold / heat element shown in FIG. 5 shows stable operation even in FIGS. It was shown to be effective.
<실시예8><Example 8>
도6에 도시한 열전냉온소자의 절연피막의 박리강도 곡선도는 열전내온소자의 장시간 부하상태에서 납땜및 Dipping시에 고열로 인한 절연막의 내열성 열화로인한 도전동박등이 박리되어서는 안되는데 본 발명에서는 실제 동작시의 최고온도를 상회하는 가상설정온도인 150℃와 납땜및 Dipping시의 최고온도를 260℃로 하여 박리내력시험을 도 6-6a,6b 와 같이하여 만족한 결과를 얻었다.The peel strength curve of the insulating film of the thermoelectric cold / heat element shown in FIG. 6 shows that the conductive copper foil due to the high heat resistance of the insulating film due to high heat during soldering and dipping under the long-term load state of the thermoelectric element shall not be peeled off. The peel strength test was performed as shown in Figs. 6-6A and 6B with the virtual set temperature 150 deg. C exceeding the maximum temperature in actual operation and 260 deg. C during soldering and dipping as 260 deg.
본 발명은 열전냉온소자내에서 발생되는 주울(Joule)열을 빨리 방출시킴으로서 열전냉온소자의 동작특성을 향상시킬수있고 기판의 기계적충격에 강하여 대량생산에 적용시킬수있어 산업전반에 걸쳐 사용범위가 많아져서 대기오염의 주범인 후레온계의 냉온산업분야에 지대한 영향을 미칠것이 기대된다.The present invention can improve the operating characteristics of the thermoelectric cold-temperature device by quickly dissipating Joule heat generated in the thermoelectric cold-temperature device, and can be applied to mass production by being resistant to mechanical shock of the substrate, thus increasing the range of use throughout the industry. It is expected to have a profound effect on the cold and hot industry of the Freon system, which is the main cause of air pollution.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990012611A KR20000065880A (en) | 1999-04-09 | 1999-04-09 | Thermoelectric cooler/heater modules manufacture with metal plates |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1019990012611A KR20000065880A (en) | 1999-04-09 | 1999-04-09 | Thermoelectric cooler/heater modules manufacture with metal plates |
Publications (1)
Publication Number | Publication Date |
---|---|
KR20000065880A true KR20000065880A (en) | 2000-11-15 |
Family
ID=19579303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
KR1019990012611A KR20000065880A (en) | 1999-04-09 | 1999-04-09 | Thermoelectric cooler/heater modules manufacture with metal plates |
Country Status (1)
Country | Link |
---|---|
KR (1) | KR20000065880A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100928728B1 (en) * | 2008-03-28 | 2009-11-27 | 홍지영 | Cooling device of light emitting diode lighting fixture using Peltier effect |
KR101063920B1 (en) * | 2009-06-11 | 2011-09-14 | 한국전기연구원 | manufacturing method of bare type thermoelectric module |
-
1999
- 1999-04-09 KR KR1019990012611A patent/KR20000065880A/en not_active Application Discontinuation
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100928728B1 (en) * | 2008-03-28 | 2009-11-27 | 홍지영 | Cooling device of light emitting diode lighting fixture using Peltier effect |
KR101063920B1 (en) * | 2009-06-11 | 2011-09-14 | 한국전기연구원 | manufacturing method of bare type thermoelectric module |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4612601A (en) | Heat dissipative integrated circuit chip package | |
US7808788B2 (en) | Multi-layer electrically isolated thermal conduction structure for a circuit board assembly | |
JP6171622B2 (en) | Power module substrate, power module, and method of manufacturing power module substrate | |
JP2783751B2 (en) | Method for manufacturing multilayer ceramic substrate | |
JP2924177B2 (en) | Functionally graded circuit board | |
US20230178509A1 (en) | Adhesive transfer film and method for manufacturing power module substrate by using same | |
US10330304B2 (en) | Heatsink including thick film layer for UV LED arrays, and methods of forming UV LED arrays | |
KR20000065880A (en) | Thermoelectric cooler/heater modules manufacture with metal plates | |
EP0015053A1 (en) | A method of manufacturing a semi-conductor power device assembly and an assembly thereby produced | |
JP2001358207A (en) | Silicon wafer support member | |
CN114747301B (en) | Circuit board and method for manufacturing circuit board | |
JP3618060B2 (en) | Wiring board for mounting semiconductor element and semiconductor device using the same | |
CN109148411A (en) | Heat-radiating substrate and preparation method thereof | |
JPH07162157A (en) | Multilayered board | |
CN114727504B (en) | Metal ceramic composite substrate and manufacturing method thereof | |
WO2024095813A1 (en) | Component mounting board, method for manufacturing component mounting board, electronic module, and method for manufacturing electronic module | |
JP2506270B2 (en) | High thermal conductivity circuit board and high thermal conductivity envelope | |
KR20050086589A (en) | Method and structures for enhanced temperature control of high power components on multilayer ltcc and ltcc-m boards | |
CN114828383A (en) | Circuit board structure and manufacturing method thereof | |
JPH06196585A (en) | Circuit board | |
JP2001230350A (en) | Method of manufacturing metallic plate for heat dissipation | |
JPS63229843A (en) | Composite ceramic substrate | |
KR20210135025A (en) | Adhesive transfer film and method for manufacturing power module substrate using the same | |
TW201223731A (en) | Method of preparing high thermal-conductivity basis element and high thermal-conductivity basis element | |
CN113767470A (en) | Instantly sintered silver film |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A201 | Request for examination | ||
N231 | Notification of change of applicant | ||
E902 | Notification of reason for refusal | ||
E902 | Notification of reason for refusal | ||
E601 | Decision to refuse application |